姜黄素对2型糖尿病大鼠骨骼肌胰岛素抵抗的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:姜黄素是一种天然多酚类化合物。研究表明,姜黄素能够降低2型糖尿病大鼠的血糖、血脂,增加机体葡萄糖稳态。骨骼肌胰岛素抵抗是2型糖尿病的主要病理特征。目前对于姜黄素是否能够改善骨骼肌胰岛素抵抗还未见报道。本课题以2型糖尿病大鼠和胰岛素抵抗L6骨骼肌细胞为模型,探讨姜黄素对2型糖尿病大鼠骨骼肌胰岛素抵抗的作用及机制。
     方法:体内实验:100只雄性Wistar大鼠随机分为2组,一组为空白对照组(10只),另一组为2型糖尿病造模组(90只),采用小剂量链脲佐菌素(30mg/kgBW)联合高脂高糖饲料诱导2型糖尿病模型。模型成功后,将符合标准的2型糖尿病大鼠随机分为4组:糖尿病模型组、姜黄素低剂量组(50mg/kg BW)、姜黄素中剂量组(150mg/kg BW)和姜黄素高剂量组(250mg/kg BW)。给予姜黄素干预45天后,检测空腹血糖、血脂、血清胰岛素、游离脂肪酸等指标;采用Western blot方法检测大鼠骨骼肌调节葡萄糖和脂肪酸代谢相关蛋白的表达情况。体外实验:将L6骨骼肌细胞分为对照组、胰岛素抵抗组和姜黄素处理组。对照组为正常细胞;胰岛素抵抗组用0.25mmol/L软脂酸诱导24h建立胰岛素抵抗模型;姜黄素处理组细胞分别用5μmol/L、10μmol/L、20μmol/L和40μmol/L姜黄素与0.25mmol/L软脂酸共同孵育24h。采用3H标记葡萄糖摄取实验检测细胞对葡萄糖的摄取能力;应用GS-MS检测细胞培养液中软脂酸的浓度;采用Western blot方法测定细胞内参与葡萄糖和脂肪酸代谢调节的蛋白的表达变化。
     结果:体内实验:与糖尿病模型组相比,姜黄素各干预组大鼠空腹血糖、血脂、血清游离脂肪酸水平显著降低,血清胰岛素水平显著升高;姜黄素能够显著促进2型糖尿病大鼠骨骼肌AMP激活的蛋白激酶(AMPK)的磷酸化,增加了细胞膜脂肪酸转位酶FAT/CD36、线粒体肉碱棕榈酰转移酶-(CPT1)和中链酯酰辅酶A脱氢酶(MCAD)的表达,抑制了糖原合成酶(GS)的磷酸化和丙酮酸脱氢酶激酶4(PDK4)的蛋白表达。体外实验:姜黄素在10μmol/L及以上的剂量显著增加了胰岛素抵抗L6骨骼肌细胞对3H标记的葡萄糖的摄取;姜黄素降低了胰岛素抵抗的L6骨骼肌细胞培养液中软脂酸的浓度;姜黄素促进了胰岛素抵抗的L6骨骼肌细胞内LKB1、AMPK和乙酰辅酶A羧化酶(ACC)的磷酸化水平,增加了过氧化物增殖物活化受体α(PPARα)、CPT1、MCAD和细胞膜FAT/CD36和葡萄糖转运蛋白4(GLUT4)的表达,抑制了GS的磷酸化和PDK4的蛋白表达;AMPK抑制剂——化合物C抑制了姜黄素对胰岛素抵抗L6骨骼肌细胞中AMPK及下游分子的作用;LKB1抑制剂——根赤壳菌素抑制了姜黄素对胰岛素抵抗L6骨骼肌细胞中LKB1及下游分子的作用。
     结论:姜黄素能够显著降低2型糖尿病大鼠血糖、血脂的水平,增加胰岛素敏感性;姜黄素可以增加2型糖尿病大鼠骨骼肌内葡萄糖的氧化利用和糖原合成;姜黄素增加了2型糖尿病大鼠骨骼肌对脂肪酸的氧化利用,抑制了骨骼肌内脂类的堆积;姜黄素改善骨骼肌胰岛素抵抗可能是通过LKB1-AMPK介导的信号通路实现的。
Objective: Curcumin is a natural polyphenol compound. Curcumin has beenreported to lower plasma lipids and glucose and to increase glucose homeostasis intype2diabetic animals. Muscular insulin resistance is an important feature of type2diabetes. However, it is unclear whether curcumin can improve muscular insulinresistance. We conducted the present study to determine the effect of curcumin onmuscular insulin resistance as well as the mechanism by looking into its effects onlipid and glucose metabolism in skeletal muscle of type2diabetic rats and L6insulin-resistant myotubes.
     Methods: In vivo experiment:100male wistar rats were divided into two groups,10were used as control, the other90were used to develop type2diabetes by lowdose STZ (30mg/kg) injection intraperitoneally combined with high fat diet. Afterdiabetic model established, the diabetic rats were divided into diabetic group, low(50mg/kg BW), medium (150mg/kg BW) and high (250mg/kg BW) doses ofcurcumin intervention groups. Curcumin intervention lasted for45days. Fastingblood glucose, lipids, serum insulin were measured; enzymes involve in fatty acidsand glucose metabolism in skeletal muscle were detected by Western blot. In vitroexperiment: L6myotubes were divided into control group, insulin resistant group andcurcumin treatment groups. Myotubes in control group were normal. Myotubes ininsulin resistant group were incubated with0.25mmol/L palmitate for24h. Myotubesin curcumin treatment groups were incubated with5μmol/L,10μmol/L,20μmol/L and40μmol/L curcumin in the presence of0.25mmol/L palmitate for24h. Glucose uptake by myotubes was measured using2-deoxy-[3H] D-glucose; palmitate concentration intne medium was determined by GS-MS; the expression of proteins regulating glucoseand fatty acids metabolism were detected by Western blot.
     Results: In vivo experiment: curcumin significantly decreased blood glucose,lipids, serum FFAs and increased serum insulin; curcumin up-regulated expression ofphosphorylated AMPK, membrane FAT/CD36, mitochondrial CPT1and MCAD, butdown-regulated expression of PDK4and phosphorylated GS. In vitro experiment:curcumin at10μmol/L was adequate to cause a significant increase in2-deoxy-[3H]D-glucose uptake by L6myotubes; palmitate concentration in themedium of curcumin-treated L6myotubes was lower than that of insulin-resistantmyotubes; curcumin up-regulated expression of phosphorylated LKB1,phosphorylated AMPK, phosphorylated ACC, PPARα, CPT1, MCAD, FAT/CD36andGLUT4, but down-regulated expression of PDK4and phosphorylated GS ininsulin-resistant L6myotubes; the effects of curcumin on AMPK and downstreammolecules were suppressed by AMPK inhibitor, Compound C; LKB1, an upstreamkinase of AMPK, was activated by curcumin and inhibited together with AMPK anddownstream molecules by radicicol, an LKB1destabilizer.
     Conclusion: Curcumin lowers blood glucose, lipids and imprvoes insulinsensitivity in type2diabetic rats; curcumin enhances glucose oxidation and glycogensynthesis in insulin-resistant skeletal muscle; curcumin increases fatty acids βoxidation and inhibits lipids accumulation in insulin-resistant skeletal muscle;curcumin plays its anti-insulin resistance role, at least in part, through LKB1-AMPKpathway.
引文
1. DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, and Wahren J. Effects ofinsulin on peripheral and splanchnic glucose metabolism innoninsulin-dependent (type II) diabetes mellitus. J Clin Invest.1985;76:149–155.
    2. Harding AH, Loos RJ, Luan. Polymorphisms in the gene encoding sterolregulatory element-binding factor-1c are associated with type2diabetes.Diabetologia.2006;49(11):2642-2648.
    3. Stefan N, Stumvoll M. Adiponectin its role in metabolism and beyond. HormMetab Res.2002;34(9):469-474.
    4. Eto M, Saito M, Okada M. Apolipop rotein E genetic polymorphism, remanantlipop roteins and nephropathy in type2diabetes patients. Am J Kidney Dis.2002;40(2):243-251.
    5. Goodarzi MO, Guo X, Taylor, KD, et al. Lipoprotein lipase is a gene for insulinresistance in Mexican Americans. Diabetes.2004;53(1):214-220.
    6. Andreelli F, Lsville M, Ducluzeau PH, et al. Defective regulation of phosphatidylinositol3-kinase gene expression in skeletal muscle and adipose tissue of non-insulin-dependent diabetes mellitus patients. Diabetologia.1999;42(3):358-364.
    7. Viollet B, Andreelli F, J rgensen SB, et al1The AMP-activated protein kinasealpha-catalytic subunit controls whole body insulin sensitivity. J Clin Invest.2003;111(1):91-98.
    8. Inukai T, Tayama K, Inukai Y, et al. Clinical features of a polymorphism of thebeta3-adrenergic receptor gene in patients with type2diabetes mellitus--astudy using a pinpoint sequencing method. Exp Clin Endocrinol Diabetes.2001;109:386-388.
    9. Frittitta L, Camastra S, Baratta R, et al. A soluble pc-1circulates in humanplasma: relationship with insulin resistance and associated abnormalities. J ClinEndocrinol Metab.1999;84(10):3620-3625.
    10. Frittitta L, Ercolino T, Bozzali M, et al. A cluster of three single nucleotidepolymorphisms in the3’-untranslated region of humanglycoprotein pc-1genestabilizes pc-1mRNA and isassociated with increased pc-1protein content andinsulin resistance-related abnormalities. Diabetes.2001;50(8):1952-1955.
    11. ReisAF, YeWZ, Dubois-Laforgue D, et al. Association of a variant in exon31ofthe sulfonylurea receptor1(SUR1) gene with type2diabetes mellitus in FrenchCaucasians. Hum Genet.2000;107(2):138-144.
    12. Tokuyama Y, Fan Z, Furuta H, et al. Rat inwardly rectifying potassium channelKir6.2: cloning electrophysiological characterization, and decreased exp ressionin pancreatic islets of male Zucker diabetic fatty rats. Biochem Biophys ResCommun.1996;220(3):532-538.
    13. Laukkanen O, Pihlajamaki J,Lindstrom J, et al. Polymorphisms of the SUR1(ABCC8) and Kir6.2(KCNJ11) genes p redict the conversion from impairedglucose tolerance to type2diabetes. The Finnish Diabetes Prevention Study.JClin Endocrinol Metab.2004;89(12):6286-6290.
    14. Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets ofinsulin resistance. J Clin Invest.2000;106(2):165-169.
    15. Kralik SF, Lin P, Leffler BJ, et a1. Ceramide and glucosamine antagonism ofaltemate signaling pathways regulating insulin and osmoticshock-inducedglucose transporter4translocation. Endocrinology.2002;143(1):37-46.
    16. Smith U, Axelsen M, Carvalho E, et a1. Insulin signaling and actionin fat cells:Associations with insulin resistance and type2diabetes. Ann NY Acad Sci.1999;892:119-126.
    17. Dale A, Odile P, Jason K, et a1. Adipose selective targeting of the GLUT-4geneimpairs insulin action in muscle and liver. Nature.2001;409:729-738.
    18. Trembly F, Lavigne C, Jacques H, et a1. Defective insulin-induced GLUT-4translceation in skeletal muscle of high fat-fed rats is associated with alteratiomsin both Akt/protein kinase B and atypical protein kinase C activities. Diabetes.2001;50(8):1901-1910.
    19. Yu C, Chen Y, Cline GW, et a1. Mechanism by which fatty acid inhibit insulinactivation of insulin receptor substrate-1(IRS-1) associated phosphatidy linositol3-kinase activity in muscle. Biol Chem.2002;277(52):50230-50236.
    20. Randle PJ, Garland PB, Hales CN, et a1. The glucose fatty acid cycle: Its role ininsulin sensitivity and metabolic disturbances of diabetes mellitus. Lancet.1963;l:785-789.
    21. KELLEY DE, MOKAN M, SIMONEAU JA, MANDARINO LJ: Interactionbetween glucose and free fatty acid metabolism in human skeletal muscle. J ClinInvest92:91-98,1993.
    22. RODEN M, PRICE T, PERSEGHIN G, PETERSEN K, ROTHMAN D, CLINEG, SHULMAN GI: Mechanisms of free fatty acid–induced insulin resistance inhumans. J Clin Invest.1996;97:2859-2865.
    23. SHULMAN GI. Cellular mechanisms of insulin resistance. J Clin Invest.2000;106:171-176.
    24. ROTHMAN DL, SHULMAN RG, SHULMAN GI.31P nuclear magneticresonance measurements of muscle glucose-6-phophate: evidence for reducedinsulin-dependent muscle glucose transport or phosphorylation activity innoninsulin dependent diabetes mellitus. J Clin Invest.1992;89:1069-1075.
    25. Boden G.Role of fatty acids in the pathogenesis of insulin resistance andNIDDM. Diabetes.1997;46(1):3-10.
    26. Wititisuwannakul D, Kin K. Mechanism of palmitylcoenzyme: An inhibitor ofliver glycogen synthase. Biol Chem.1997;252:7812.
    27. Boden G, Chen XH, Rniz J, et a1. Mechanism of fatty acid-induced inhibition ofglucose uptake. Biol Chem.1997;93:2483-2486.
    28. Chu CA, Sherck SM, Igawa K, et al. Effects of fre fatty acids on hepaticglycogenolysis and gluconeogenesis in conscious dogs. Am J Physiol EndocrinolMetab.2002;282(2):402-411.
    29. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulinresistance, obesity and diabetes. Trends Immunol.2004;25(1):4-7.
    30. Liu G, Rondinone CM. JNK: bridging the insulin signaling and inflammatorypathway. Curr Opin Investig Drugs.2005;6(10):979-87.
    31. Evans JL, Goldfine ID, Maddux BA, et al. Oxidative stress and stress-activatedsignaling pathways: A unifying hypothesis of type2diabetes. Endocr.2002;23:599-620.
    32. Ruhe RC, McDonald RB. Use of antioxidant nutrients in the prevention and treatment oftype2diabetes. J.Am.Coll. Nutr.2001;20:363-370.
    33. Wang YJ, Pan MH, Cheng AL. Stability of curcumin in buffer solutions andcharacterization of its degradation products. J Pharm Biomed Anal.1997;15:1867-1876.
    34. Ravindranath V, Chandrasekhara N. Absorption and tissue distribution ofcurcumin in rats. Toxicology.1980;16(3):259-265.
    35. Ravindranath V, Chandrasekhara N. Metabolism of curcumin studies with [3H]curcumin. Toxicology.1982;22:337-344.
    36. Ravindranath V,Chandrasekhara N. In Vitro studies on the intestinal absorptionof curcumin in rats. Toxicology.1981;20(23):251-257.
    37. Pan MH, Huang TM, Lin JK. Biotransformation of curcumin through reductionand glucuronidation in mice. Drug Metabolitism&Disposition.1999;27(4):86-494.
    38. Ireson CR, Jones DJ, Orr S, et al. Metabolism of the cancer chemo-preventiveagent curcumin in human and rat intestine. Cancer Epi-demiology Biomarkers&Prevention.2002;11(1):105-111.
    39.沃兴德,洪行球,高承贤.姜黄素长期毒性试验.浙江中医学院学报.2000;24(1):61-62.
    40. Cheng AL, Hsu CH, Lin JK, et al. Anticancer Res.2001;21(4B):2895-9001.
    41. Bharat BA, Anushree K, Manoj SA, et al. Curcumin Derived from Turmeric(Curcuma longa): a Spice for All Seasons. Phytopharmaceut CancerChemopreven, CRC Press LLC.2005:349-350.
    42. Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur JCancer,2005;41(13):1955–1968.
    43. Sharma RA, Steward WP, Gescher AJ. Pharmacokinetics and pharmacodynamicsof curcumin. Adv Exp Med Biol.2007;595:453-470.
    44. Shishodia S, Chaturvedi MM, Aggarwal BB. Role of curcumin in cancer therapy.Curr Probl Cancer.2007;31(4):243-305.
    45. Park MJ, Kim EH, Park IC, et al. Curcumin inhibits cell cycle progression ofimmortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p21WAF1/CIP1, p27KIP1andp53. International Journal of Oncology.2002;21(2):379-383.
    46. Weber W. M, Hunsaker LA, Roybal CN, et al. Curcumin (diferuloylmethane)inhibits constitutive NF-κB activation, induces G1/S arrest, suppressesproliferation, and induces apoptosis in mantle cell lymphoma. Bioorganic&Medicinal Chemistry.2006;14:2450.
    47. Chen A, Xu J, Johnson AC. Curcumin inhibits human colon cancer cell growthby suppressing gene expression of epidermal growth factor receptor throughreducing the activity of the transcription factor Egr-1. Oncogene.2006;25:278.
    48. Lee J, Im Y, Jung H, et al. Curcumin inhibits interferon-α induced NF-κB andCOX-2in human A549non-small cell lung cancer cells. Biochemical&Biophysical Research Communications.2005;334:313.
    49. Odot J, Albert P, CarlierA, et al. In vitro and in vivo anti-tumoral effect ofcurcumin against melanoma cells. International Journal of Cancer.2004;111(3):381-387.
    50. Priyadarsini KI, M aity DK, N aik GH, et al. Role of phenolic OH and methylenehydrogen on the free radical reactions and antioxidant activity of curcumin. FreeRad Biol Med.2003;35(5):475-484.
    51. Masuda T, Hidaka K, Shinohara A, et al.Chemical studies on antioxidantmechanism of curcuminoid: Analysis of radical reaction products from curcumin.J Agric Food Chem.1999;47(1):71-77.
    52. Panchatcharam M, M iriyala S, Srinivasan A, et al. Curcumin modulates freeradical quenching in myocardial ischaemia in rats. Inter J Biochem Cell Biol.2004;36(10):1977-1990.
    53. Shen SQ, Zhang Y, Xiang JJ, et al. Protective effect of curcumin against liverwarm ischemia/reperfusion injury in rat model is associated with regulation ofheat shock protein and antioxidant enzymes. World J Gastroenterol.2007;13(13):1953-1961.
    54. Asai A, Miyazawa T. Dietary curcuminoids prevent high-fat diet-induced lipidaccumulation in rat liver and epididymal adipose tissue.J Nutr.2001;131(11):2932-2935.
    55. Rukkumani R,Sri-Balasubashini M,Vishwanathan P,et al.Comparative effects ofcurcumin and photo-irradiated curcumin on alcohol-and polyunsaturated fattyacid-induced hyperlipidemia. Pharmacol-Res.2002;46(3):257-264.
    56. Vajragupta O, Boonchoong P, Morris GM, et al. Active-site binding modes ofcurcumin in HIV-1protease and integrase. Bioorgani c&Medicinal ChemistryLetter.2005;15:3364.
    57. Blal AK, Kapoor, OP, sthana A, et al. Efficacy of curcumin in the management ofchronic anterior uveitis. Phyother R.1999;13(4):318-322.
    58. Narayanan V, Durairal P. Curcumin preventsadriamycin nephrotoxicity in rats.British Journal of Pharmacology.2000;129:231-234.
    59. Hussain MS. Effect on curcumin on cholesterol gallstone induction in mice.Indian J Med Res.1992;96:288-911.
    60. Mahesh T, Balasubashini SM, Menon VP. Effect of photo-irradiated curcumintreatment against oxidative stress in streptozolocin induced diabetes rats. J MedFood.2005;8(2):251-255.
    61. Suryanarayana P, Satyanarayana A, Balakrishna N, Kumar PU, Reddy GB. Effectof turmeric and curcumin on oxidative stress and antioxidant enzymes instreptozotocin-induced diabetic rat. Med Sci Monit.2007Dec;13(12):BR286-92.
    62. Majithiya JB, Balaraman R. Time-dependent changes in antioxidant enzymes andvascular reactivity of aorta in streptozotocin-induced diabetic rats treated withcurcumin. J Cardiovasc Pharmacol.2005;46(5):697-705.
    63. Kuroda M, Mimaki Y, Nishiyama T, Mae T, Kishida H, Tsukagawa M, et al.Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on geneticallydiabetic KK-Ay mice. Biol Pharm Bull.2005;28:937-9.
    64. Seo KI, Choi MS, Jung UJ, Kim HJ, Yeo J, Jeon SM, et al. Effect of curcuminsupplementation on blood glucose, plasma insulin, and glucose homeostasisrelated enzyme activities in diabetic db/db mice. Mol Nutr Food Res.2008;52:995-1004.
    65. Jang EM, Choi MS, Jung UJ, Kim MJ, Kim HJ, Jeon SM, et al. Beneficial effectsof curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters.Metabolism.2008;57:1576-83.
    66. Amanda M. Gonzales and Robert A. Orlando. Curcumin and resveratrol inhibitNuclear Factor-κB-mediated cytokine expression in adipocytes. Nutr Metab(Lond).2008;5:17.
    67. Sharma S, Kulkarni SK, Chopra K. Curcumin, the active principle of turmeric(Curcuma longa), ameliorates diabetic nephropathy in rats. Clin Exp PharmacolPhysiol.2006;33(10):940-5.
    68. Kumar PA, Suryanarayana P, Reddy PY, Reddy GB. Modulation ofalpha-crystallin chaperone activity in diabetic rat lens by curcumin. Mol Vis.2005;11:561-8.
    69. Arun N, Nalini N. Efficacy of turmeric on blood sugar and polyol pathway indiabetic albino rats. Plant Foods Hum Nutr.2002;57(1):41-52.
    70. Schalch DS, Kipnis DM. Abnormalities in carbohydrate tolerance associated withelevated plasma nonesterified fatty acids. J Clin Invest.1965;44:2010-20.
    71. Lionetti L, Mollica MP, Lombardi A, Cavaliere G, Gifuni G, Barletta A. Fromchronic overnutrition to insulin resistance: the role of fat-storing capacity andinflammation. Nutr Metab Cardiovasc Dis.2009;19:146-52.
    72. Rosenfalck AM, Hendel H, Rasmussen MH, Almdal T, Anderson T, Hilsted J, etal. Minor long-term changes in weight have beneficial effects on insulinsensitivity and beta-cell function in obese subjects. Diabetes Obes Metab.2002;4:19-28.
    73. Yu Y, Hu SK, Yan H. The study of insulin resistance and leptin resistance on themodel of simplicity obesity rats by curcumin. Zhonghua Yu Fang Yi Xue Za Zhi.2008;42:818-22.
    74.高红莉,刘方永,夏作理.实验性糖尿病动物模型的理论研究与应用.中国临床康复.2005;9(3):210-212.
    75. Tancrede G, Rousseau-migneron S, Nadeau A. Long-term changes in the diabeticstate induced by different doses of streptozotocin in rats. Br J ExpPath.1983;64(2):117-123.
    76.郭啸华,刘志红,李恒等.高糖高脂饮食诱导的2型糖尿病大鼠模型及其肾病特点.中国糖尿病杂志.2002;10(5):290-294.
    77.杨李,邹瑞,唐瑛等.链脲佐菌素和高脂高糖饲料在大鼠体内的相互作用及造模应用.实用医学杂志.2007;18(23):2845-2846.
    78. Huang BW, Chiang MT, Yao HT, et al. The effect of high-fat and high-fructosediets on glucose tolerance and plasma lipid and leptin levels in rats. DiabetesObes Metab.2004;6(2):120.
    79. Haffner S, Agostino R, M ykkanen L, et al. Insulin sensitivity in subjects withtype2diabetes. Relationship to cardiovascular risk factors: the InsulinResistance A therosclerosis Study. Diabetes Care.1999;4(22):562.
    80.李秀钧等.胰岛素抵抗及胰岛素抵抗综合征研究展望.中华内分泌杂志.2000;16(5):274.
    81. Lameloise N, Muzzin P, Prentki M, et al. Uncoupling protein2: a possible linkbetween fatty acid excess and impaired glucose induced insulin secretion [J].Diabetes.2001;50(4):803.
    82.郭啸华,刘志红,李恒等.高糖高脂饮食诱导的2型糖尿病大鼠模型及其肾病特点.中国糖尿病杂志.2002;10(5):290-294.
    83.栗德林,苑迅.糖肾康对实验性大鼠ET-1、TNF-α、IL-6等的影响.中医药信息.2003;20(2):57-59.
    84.盛宏光,倪连松,曾文琴等.糖尿病大鼠肾皮质内皮素基因表达及一氧化氮含量变化的研究.上海医学.2001;24(4):217-219.
    85.于德民,吴锐,尹潍等.实验性链脲佐菌素糖尿病动物模型的研究.中国糖尿病杂志.1995;3(2):105-109.
    86.苏青,董艳,冯绮文等.血管紧张素受体拮抗剂洛沙坦对糖尿病大鼠肾脏蛋白激酶C活性的影响.第二军医大学学报.2001;22(11):1077-1078.
    87.王志刚,岳辉.丹参对实验性2型糖尿病大鼠肾损害的保护作用[J].牡丹江医学院学报.2005;26(1):202.
    88. Defronzo RA, Jequier E, Maeder E, Wahren J, Felber JP. Insulin on the disposalof intravenous glucose: results from indirect calorimetry and hepatic and femoralvenous catheterization. Diabetes.1981;30:1000-1007.
    89. Boden G. Fatty acids and insulin resistance. Diabetes Care.1996;19(4):394-395.
    90. Han P, Zhang YY, Lu Y, et al. Effects of different free fatty acids on insulinresistance in rats. Hepatobiliary Pancreat Dis Int.2008;7(1):91-96.
    91. Ragheb R, Medhat AM, Shanab GM, et al. Links between enhanced fatty acidflux, protein kinase C and NFkappaB activation, and apoB-lipoproteinproduction in the fructose-fed hamster model of insulin resistance. BiochemBiophys Res Commun.2008;370(1):134-139.
    92. Kruszynska YT, Olef sky JM, Frias JP. Effect of obesity on susceptibility to fattyacid-induced peripheral tissue insulin resistance. Metabolism.2003;52:233-238.
    93. Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL, SummersSA. A role for ceramide, but not diacylglycerol, in the antagonism of insulinsignal transduction by saturated fatty acids. J Biol Chem.2003;278:10297-10303.
    94. Jove M, Planavila A, Laguana JC, et al. Palmitate-Induced Interleukin6Production Is Mediated by Protein Kinase C and Nuclear-Factor-B Activationand Leads to Glucose Transporter4Down-Regulation in Skeletal Muscle Cells.Endocrinology.2008;146(7):3087-3095.
    95. Grith S, Olsen, Bo F, et al. AMP kinase activation ameliorates insulin resistanceinduced by free fatty acids in rat skeletal muscle. Am J Physiol EndocrinolMetab.2002;283: E965–E970.
    96. Watson RT,Pessin JE. Intrace1lu1ar organization of insulin signaling andGLUT4translocation. Recent Prog Horm Res.2001;56:175-193.
    97. Nguyen C, Pan J, Charles MA. Preclinical studies of glimepiride. Drug Today(Barc).1998;34(5):391-400.
    98. Konrad D, Bilan PJ, Nawaz Z, et al. Need for GLUT4activation to reachmaximum effect of insulin-mediated glucose uptake in brown adipocytesisolated from GLUT4myc-expressiong mice. Diabetes.2002;51(9):2917-2716.
    99. Sugden MC, Holness MJ: Recent advances in mechanisms regulating glucoseoxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am JPhysiol Endocrinol Metab.2003;284:E855–E862.
    100. Holness MJ, Kraus A, Harris RA, Sugden MC. Targeted upregulation ofpyruvate dehydrogenase kinase (PDK)-4in slow-twitch skeletal muscleunderlies the stable modification of the regulatory characteristics of PDKinduced by high-fat feeding. Diabetes.2000;49:775-781.
    101. Peters SJ, Harris RA, Wu P, Pehleman TL, Heigenhauser GJ, Spriet LL: Humanskeletal muscle PDH kinase activity and isoform expression during a3-dayhigh-fat/low-carbohydrate diet. Am J Physiol Endocrinol Metab.2001;281:E1151–E1158.
    102. Jorgensen, SB, Nielsen, JN, Birk, JB, et al. The a2-5’AMP-activated proteinkinase is a site2glycogen synthase kinase in skeletal muscle and is responsiveto glucose loading. Diabetes.2004;53:3074-3081.
    103. Henrik Vestergaard, Sten Lund, Flemming S. Larsen, Ole J. Bjerrum,and OlufPedersen. Glycogen Synthase and Phosphofructokinase Protein and mRNALevels in Skeletal Muscle from Insulin-resistant Patients withNon-Insulin-dependent Diabetes Mellitus. J.Clin.Invest.1993;91:2342-2350.
    104. Vestergaard H. Studies of gene expression and activity of hexokinase,phosphofructokinase and glycogen synthase in human skeletal muscle in statesof altered insulin-stimulated glucose metabolism. Dan Med Bull.1999;46(1):13-34.
    105. ROTHMAN DL, SHULMAN RG, SHULMAN GI.31P nuclear magneticresonance measurements of muscle glucose-6-phophate: evidence for reducedinsulin-dependent muscle glucose transport or phosphorylation activity innoninsulin dependent diabetes mellitus. J Clin Invest.1992;89:1069-1075.
    106. Claire CB,Tahar H,Victor AD, et al. CD36in myocytes channels fatty acids toa lipase accessible triglyceride pool that is related to cell lipid and insulinresponsiveness.Diabetes.2004;53:2209-16.
    107. Debard C, Laville M et al. Expression of key genes of fatty acid oxidation,including adiponectin receptors, in skeletal muscle of Type2diabetic patients.Diabetologia.2004;47:917-925.
    108. Shumate, J. B., J. E. Carroll, M. H. Brooke, and R. M. Choksi. Palmitateoxidation in human muscle: comparison to CPT and carnitine. Muscle Nerve.1982;5:226–231.
    109. Seo KI, Choi MS, Jung UJ, Kim HJ, Yeo J, Jeon SM, et al. Effect of curcuminsupplementation on blood glucose, plasma insulin, and glucose homeostasisrelated enzyme activities in diabetic db/db mice. Mol Nutr Food Res.2008;52:995-1004.
    110. Ejaz A, Wu D, Kwan P, Meydani M. Curcumin inhibits adipogenesis in3T3-L1adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr.2009;139:919-25.
    111. Davis BJ, Xie Z, Viollet B, et al. Activation of the AMP-activated kinase byantidiabetes drug metformin stimulates nitricoxide synthesis in vivo bypromoting the association of heat shock protein90and endothelial nitric oxidesynthase. Diabetes.2006;55(2):496-505.
    112. Sapkota, GP, Kieloch, A, Lizcano, JM, et al. Phosphorylation of the proteinkinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431byp90RSK and cAMP-dependent protein kinase, but not its farnesylation atCys433, is essential for LKB1to suppress cell growth. J Biol Chem.2001;276:19469-19482.
    113. Hwang SL, Yang BK, Lee JY, et al. Isodihydrocapsiate stimulates plasmaglucose uptake by activation of AMP-activated protein kinase. Biochem BiophysRes Commun.2008;371:289-293.
    114. Hwang SL, Kim HN, Jung HH, et al. Beneficial effects of β-sitosterol on glucoseand lipid metabolism in L6myotube cells are mediated by AMP-activatedprotein kinase. Biochem Biophys Res Commun.2008;26:1253-1258.
    115. Weisberg SP, Leibel R, Tortoriello DV. Dietary curcumin significantly improvesobesity-associated inflammation and diabetes in mouse models of diabesity.Endocrinology.2008;149:3549-58.
    116. Wang SL, Li Y, Wen Y, Chen YF, Na LX, Li ST, et al. Curcumin, a potentialinhibitor of up-regulation of TNF-alpha and IL-6induced by palmitate in3T3-L1adipocytes through NF-kappaB and JNK pathway. Biomed Environ Sci.2009;22:32-9.
    117. Best L, Elliott AC, Brown PD. Curcumin induces electrical activity in ratpancreatic beta-cells by activating the volume-regulated anion channel. BiochemPharmacol.2007;73:1768-75.
    118. Pari L, Murugan P. Antihyperlipidemic effect of curcumin andtetrahydrocurcumin in experimental type2diabetic rats. Ren Fail.2007;29:881-9.
    119. Meghana K, Sanjeev G, Ramesh B. Curcumin prevents streptozotocin-inducedislet damage by scavenging free radicals: a prophylactic and protective role. EurJ Pharmacol.2007;577:183-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700