典型铁矿粉流态化特性与还原粘结机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流态化技术因其具有传热传质条件好、温度均匀、物料运输方便等优势,已广泛应用于石油化工、能源环保、冶金、材料、生化制药等工业领域。在非高炉炼铁气基还原法中,流态化预还原铁矿粉越来越受到广大科技工作者的重视,但铁矿粉在流化预还原过程中往往会相互粘结或粘结反应器壁,甚至引起失流破坏正常生产过程。因此,粘结是限制流态化气体还原发展的关键问题之一,引起了国内外学者的广泛关注。关于粘结失流的原因及防止方法已提出很多,大多数学者认为是因为金属铁晶须的生成及其烧结,在防止方法上着重在研究添加物或铁矿粉预处理的作用效果,但对铁晶须的形成及其控制尚看不出简单的规律,相关基础理论尚待深入。
     本论文针对典型铁矿粉颗粒,采用激光粒度分析、矿粉物性分析、颗粒聚团与破碎分析、化学反应过程的模拟等系列现代分析方法,揭示铁矿粉流态化过程中颗粒的粘结与破碎机理,并讨论影响流态化过程中颗粒粘结与破碎的因素,从而为铁矿粉流态化还原过程中的粘结失流提供依据;分析还原条件对矿粉金属化率、金属铁的分布形态、铁矿粉间粘结方式的影响及其相互关系,探索铁矿粉颗粒间的粘结机理,为解决流态化预还原过程中铁矿粉粘结失流、改善流化质量和还原反应进程奠定理论基础。
     采用自主开发设计的粉体综合特性测试仪,测定了四种铁矿粉的休止角、崩溃角、分散度、松装密度、振实密度、流动性等物性参数。研究发现,矿粉的休止角与崩溃角随粒度的变化具有相同的变化趋势,休止角与崩溃角越大,矿粉的流动性越差,矿粉颗粒之间越容易团聚;铁矿粉的分散度随粒度的减小而减小;通过霍尔流量计可以直接测量矿粉的流动性的趋势与休止角和崩溃角所反映的情况一致,同样的流动性差的细颗粒容易发生团聚;利用松装密度和振实密度确定的压缩度、Hausner比判别法、计点法三种评价手段对四种铁矿粉的流动状况进行评价,得出四种矿粉中澳矿最适合流态化操作;钒钛矿不适合流态化操作,巴西矿和北方矿在粒度小于150目时流动性较差,150目以上时流动性不稳定,有团聚粘结的趋向。
     采用物理实验与数值模拟结合的方法研究了突破力随粒径的增大而减小的规律,得到了单一均匀粒度颗粒突破力的计算关系式:通过实验表明,该公式能较好的表征气体流过B类颗粒散料填充床的突破力。对于不同粒度分布的矿粉,在平均粒度相等的情况下,按照二项/泊松离散分布函数进行设计,并引入一个表征粒度分布对流态化特性影响的判别因子Fa。得出突破力与Fa值之间的对应关系,即两种离散分布函数下颗粒的Fa值相近且均小于原矿的Fa值,基于两种分布为基础建立的流态化实验模型的突破力也相近且小于原矿的突破力。为典型铁矿粉流态化特性中的突破力提供了基础判断依据。
     通过实验测定稳定气速下床层压降随时间的变化规律,间接考察流态化过程中铁矿粉的粘结现象。结果表明:在流态化过程中四种矿粉都存在不同程度的破碎现象,其中,澳矿在较低气速下(0.21m/s)存在破碎,而钒钛矿随气速的增大一直存在破碎,巴西矿和北方矿的破碎规律相似,在0.32m/s气速后,破碎现象已不明显。在流态化过程反映的矿粉的破碎现象与物性参数测定的矿粉的流动状况相似。
     利用COMSOL的化学反应工程模块对铁矿粉的还原反应过程进行了数值模拟,研究了颗粒粒度、形状、还原温度、还原气氛等因素对还原过程的影响。结果表明:3mm及以上粒径颗粒的反应速率随着反应时间的增加先升高后降低,3mm以下粒径的颗粒反应速率随着反应时间的增加不断降低;并更容易产生铁瘤或铁晶须;颗粒的凸起与不规则处会优先反应,同时得到顶角角度为60°、70°、80°的颗粒的反应过程向底面扩散的趋势明显,固体产物不易在顶角处聚集,相对于其他的角度不易产生铁瘤及铁晶须;而50°及以下的角度质量分数随时间变化较小,固体产物容易在顶角处聚集,从而增加了产生铁瘤及铁晶须的可能性;反应过程中颗粒受热不均,则未反应物核心会向局部受热的反方向不断偏移,最终消失,而局部受热的部位,固体产物不断增加,使产物层增厚,产物层在局部聚集容易产生液相并与附近的颗粒发生粘结;H2还原时颗粒产物层界面规则,而CO还原时反应界面不规则。通过分析Fe、O原子间的距离发现H2还原时易产生铁瘤,而CO还原时易产生铁晶须;铁瘤与铁晶须在颗粒表面产生后,铁瘤对颗粒的后续反应影响较小,而铁晶须对颗粒的后续反应影响较大。是促使铁矿粉颗粒粘结的主要原因。
Because of its good heat and mass transfer condition, temperature uniformity, andthe advantages of the material transportation is convenient, Fluidization technology arewidely used in petrochemical, energy, environmental protection, metallurgy, materials,biochemical, pharmaceutical and other industrial fields. In the non-blast furnace gasbase reduction method, the fluidization prereduced iron ore powder more and more getthe attention of the general scientific and technical workers, but the iron ore powder inthe process of fluidization prereduction tend to bond or bond to each other the reactorwall, even cause of defluidization and destroy the normal production process. Therefore,the bond is one of the key problem of confining the development of fluidization gasreduction, which caused the wide attention of scholars both at home and abroad. Thecause of defluidization and prevent method has put forward a lot of, Most scholarsbelieve that because of the formation of metallic iron whisker and its sintering, on theprevent way to, emphasize the research additives or iron pretreatment effect.But on ironwhisker formation and its control is still don't see a simple rule, the relevant basictheories remain to be further.
     For typical iron ore powder particles, this paper uses the image ore particle sizeanalysis, physical property analysis, granular poly group and fracture analysis, chemicalreaction process of simulation, etc. Series of modern analysis methods, revealing thegathering and binding mechanism of iron ore powder particles in the process offluidization. And discuss the influence factor of gathering and binding in the process offluidization, providing the basis to fluidization in the process ofiron ore powderfluidized reduction. Analysis of the effect of reduction conditions on metallization ratethe breeze, the distribution of metallic iron form, the influence of the bonding way ofthe iron ore powder and their mutual relationship, and explore the bonding mechanismof iron ore powder particles between, to solve the defluidization in the process ofironore powder fluidized reduction and improves the quality of fluidization and reductionreaction process to lay the theoretical foundation.
     The self-designed powder comprehensive characteristics tester is used to measurethe angle of repose, collapse angle, the angle of dispersion, apparent density, tap density,fluidity and other physical parameters. The study found that the angle of repose andcollapse angle have the same change tendency with the change of particle size. The angle of repose and collapse angle increase with decreasingliquidity, then the particlesare prone to agglomerate. The dispersiondegree decreases with decreasing particle size.Hall flow meter can directly measure the fluidity trend, and the fluidity trend isconsistent with the case reflected by the angle of repose and collapse angle. In the sameway, particles of decreasing liquidity are prone to agglomerate. The compressiondegree, Hausner ratio criterion and scoring method determined by apparent density andtap density are used to evaluate the fluidity of the four kinds of iron ore. The resultshows that the Austrian ore is the most suitable for fluidization operation; Vanadiumtitanium ore is not suitable for fluidization operation. When the particle sizeof Brazilianore and northern ore is below150mesh, the fluidity become worse; when the particlesize is above150mesh, the fluidity is not steady, and is prone to agglomerate.Using the combined method of physical experiment and numerical simulation toget the rule of breakup force with particles size, desity, bed height. Through theoreticalderivation method got a uniform particle size particles break force calculation formula:
     After verification, the mathematical model can better characterize the breakupforce of B type particle through bulk packed bed. For the different particle sizedistribution ore powder, in the case of the average particle size is equal, according to theproportion of the binomial distribution and poisson distribution allocation granularity ofraw material, and introduce a discriminant factor Fa. Study found there is acorresponding relationship between the Fa values and breakup force, under two kinds ofdiscrete distribution of Fa values are similar and less than the Fa value of raw material,in the same time, under two kinds of discrete distribution of breakup force are similarand less than the Fa value of raw material.
     The change law of the bed pressure drop over time is tested through the experimentin the stable gas velocity, and the agglomeration is indirectly examined in thefluidization process. The result shows that there is varying degree breakage in the fourkinds of iron ore in the fluidization process. There is the breakage phenomenon in theAustralianore under lower gas velocity(0.21m/s). There is breakage phenomenon invanadium titanium ore with increasing gas velocity The breakage law of Brazilian ore issimilar to the breakage law of northern ore. The breakage is not obvious after0.32m/sgas velocity. The breakage phenomenon reflected in the fluidization process is similarto the flow condition measured by physical parameters.
     Using chemical reaction engineering module of COMSOL, simulates the reductionreaction process of iron ore powder, the effect of particle sizes, particle shapes,reduction temperature, and reaction atmosphere on reduction process. The results show,
     The reaction rate of particles with grain size3mm or more than3mm increasesfirst and then decreases with the time increasing; the reaction rate of the particles withgarain size below3mm decreases with time increasing; particles with grain size below3mm tend to produce iron tumor or iron whisker. Particle projections and irregularitiesgive priority to reaction, at the same time particles of the vertex angle60°,70°,80°tend to diffuse to the bottom obviously. Solid product dose not tend to gather at apexangle, and compare with particles of other angles, particles of the vertex angle60°,70°,80°do not tend to produce iron tumor or iron whisker.The mass fraction of particleswith angle below50°change a little over time, and solid products tend to gather at apexangle, which increasing the possibility of producing iron tumor or iron whisker.Particlesare heated unevenly in the processs of reaction, the unreacted core will shift towards theopposite direction of partial heating, eventually disappear.as to partial heating parts, thesolid products continue to increase, and make the product layer thicken, which tend toproduce liquid phase andadhension. When H2is reduced, the product layer interface isregular, but when Co is reduced, the reaction interface is irregular. After the sufaces ofparticles produce iron tumor and iron whiskey, the iron tumor has little impact on thesubsequent reaction; while the iron whisker has a greater influence on the subsequentreaction.
引文
[1]郭幕孙,李洪钟等.流态化手册[M].北京:化学工业出版社,2008.
    [2]吴占松,马润田等.流态化技术基础及应用[M].北京:化学工业出版社,2006.
    [3]金涌,祝京旭等.流态化工程原理[M].北京:清华大学出版社,2001
    [4]朱凯荪.我国流态化直接还原的开发及其在融熔还原中的发展[J].钢铁,1985,20(7):52-56.
    [5]邵剑华.流态化还原铁矿粉技术前景分析[J].冶金能源,2010,29(12)18-22.
    [6]赵华盛,王臣,李肇毅,周渝生.流态化技术在熔融还原工艺中的应用[J].世界钢铁,2010,(4):1-7.
    [7]范建峰,李维国,周渝生,李肇毅.流化床处理粉铁矿工艺研究[J].钢铁,2007,42(11):17-20
    [8] N. S. Srinivasan. Reduction of iron oxides by carbon in a circulating f luidized bedreactor[J].Powder Technology.2002,124:28-39.
    [9] C. Bhm, D. Siuka, J. Schenk, J. Kriechmair. COREX和FINEX工艺的发展及现状[J].中国钢铁,2007,(12):21-25.
    [10] Panigrahi R. Direct Reduction processes[J], The iron&Steel Society.1999:99-117.
    [11] W. Hillisch, J. Zirngast. Status of FINMET plant operation at BHP DRI[J], Austrilia. Steeltimes international,2000,(1):231-2371.
    [12]郭慕孙.氧化铁在还原过程中失流[J].中国科学院北京化工冶金研究所,1977.1
    [13]杨若薰,郭慕孙.攀枝花铁精矿流态化气体还原中粘结失流的研究[J].化工冶金,1980,2:100-116.
    [14]朱凯荪,王建军,李卫国.二步法熔融还原中流态化预还原过程的粘结机理及其预防的研究[J].华东冶金学院学报,1989,6(2):47-55.
    [15] Takafumi Mikami, Hidehiro Kamiya, Masayuki Horio.The mechanism of defluidization ofiron particles in a fluidized bed[J]. Powder Technology.2002,124:28-39.
    [16] Chung U C, Lee I O, Kim H G. et al. Degradation Characteristics of Iron Ore Fines of a WideSize Distribution in Fluidized bed Reduction [J]. ISIJ International.1998,(38):943-9521
    [17] Christoph PAWLIK, Stefan SCHUSTER, Norbert EDER. Reduction of Iron Ore Fines withCO-rich Gases under Pressurized Fluidized Bed Conditions[J]. ISIJ International,2007,47(2):217–225
    [18] Johannes Sturn, Severin Voglsam, Bernd Weiss, Johannes Schenk, Franz Winter. Evaluationof the Limiting Regime in Iron Ore Fines Reduction with H2-Rich Gases in Fluidized Beds:Fe2O3to Fe3O4[J]. Chem. Eng. Technol.2009,32,(3):392-397.
    [19]李兆丰,王建军,付元坤,王海川.流态化预还原中白云石防止铁矿粉粘结机理的研究[J].安徽工业大学学报,2010,27(2):103-107.
    [20]方觉,储满生.矿煤混合流化床还原反应[J].东北大学学报(自然科学版),2000,21(1):80-82.
    [21]李振洪,张海涛.也谈熔融还原炼铁技术[J].山东冶金,2009,31(4):5-8.
    [22]胡俊鸽,高战敏.Corex, Finex和HIsmelt技术的发展近况[J].钢铁研究,2007,35(4):55-58.
    [23] G. Fritsch, FINMET技术对亚洲钢铁工业的适用性[J].中国冶金,2003,10(10):40-42.
    [24]郭培民,赵沛,庞建明,曹朝真.熔融还原炼铁技术分析[J].钢铁钒钛,2009,30(3):1-9.
    [25]毕学工.熔融还原技术的发展及在我国推广应用的前景[J].河南冶金,2008,16(6):1-4.
    [26]周渝生,钱晖,张友平等.现有主要炼铁工艺的优缺点和研发方向[J].钢铁,2009,44(2):4-131.
    [27]徐书刚,李子木,吕庆.浦项FINEX熔融还原工艺技术研究[J].本钢技术,2007(4):1-4
    [28]安志伟,都素菊,郭丽,张英伟.FINEX流程的技术经济[J].河北理工学院学报,2007,29(2):20-24.
    [29]王薇.Finex工艺技术的现状与可行性分析[J].炼铁技术通讯,2009,(3):3-6.
    [30]张寿荣,张绍贤.韩国浦项钢铁公司FINEX工艺[J].钢铁,2009,44(5):1-6
    [31]张绍贤,强文华,李前明.FINEX熔融还原炼铁技术[J].炼铁,2005,24(4):49-521
    [32]张寿荣,张绍贤.韩国浦项钢铁公司FINEX工艺[J].钢铁,2009,44(5):50-51.
    [33]秦志田.浦项FINEX熔融还原炼铁厂正式投产[J].冶金管理,2007,(9):58-59.
    [34]重钢与韩国浦项就FINEX技术展开合作. http://www.chinaccm.com.
    [35]邵剑华,张虎成,方觉,安志伟.流化床和竖炉对熔融还原流程煤耗的影响[J].钢铁研究学报,2008,20(3):5-8.
    [36] Gabriel Tardos, Robert Pfeffer. Chemical reaction induced agglomeration and defluidizationoffluidized beds[J]. Powder Technology85(1995)29-35.
    [37]朱凯荪.2.2吨炉级流态化还原钒钦磁铁矿试验研究[J].钢铁,1987,22(7):39-42.
    [38]郭慕孙.钒钛铁矿综合利用—流态化还原法[J].钢铁,1979,14(6):1-12.
    [39]朱凯荪,安为洁,付元坤,夏春志,李卫国.碳吸附赤铁矿粉流态化预还原过程中物性、结构变化规律的研究[J].钢铁研究,2000,116(5):4-7.
    [40] Kondo, S., The direct reduction of fine iron ore in a self-agglomerating fluidized bed[J], iniron ore reduction. Tetsu-to-Hagane,1967,53(3):204-207.
    [41] Metrailer, W. J., Agglomeration of Excessively fine iron particles in a fluidized bed[J]. U.S.Pat.,1971,3607217.
    [42] Collio, P. H. and Widell, B., Reducing fine grained material containing iron oxide[J]. Ger.Offen.,1974,2521038.
    [43]朱凯荪,李卫国,王勇,甘荣火,夏正扬.宝钢利奥多西矿粉流态化还原过程中粘结问题的研究[J].华东冶金学院学报,1996,13(1):42-47.
    [44] Gilliland E R, Mason E A. Ind Eng Chem,1949,41:1191.
    [45] Wilhelm R H, Kwauk M. Fluidization Of Solid Particles[J]. Chem Eng Prog,1948,44(3):201-218.
    [46] Davidson J F, et al. Clinical evaluation of povidone-iodine aerosol spray in surgicalpractice[J]. Trans Instn Chem Engrs,1959,37:323.
    [47] Rowe P N, Partridge B A. A note on the initial motion and break-up of a two-dimensional airbubble in water[J].Trans Instn Chem Engrs,1965,43:157.
    [48] Davidson J F, Harrison H. Fluidized Particles[J]. Cambridge Univ. Press,1963.
    [49] Kunii D, Levenspiel O. The processing of solids of changing size in bubbling fluidizedbeds[J].Ind Eng Chem. Fundamentals,1968,7:446
    [50] Squires A M. Contribution Toward A History of Fluidization[J]. Joint Meeting of ChemicalEngineering, Vol. Chem. Ind.&Eng. Soc. China, And Aiche, Beijing:1982.322-353.
    [51] Squires A M, Kwauk M, Avidan A A. Fluid Beds: At Last Challenging Two EntrenchedPractices[J], Science,1985,230:1329-1337.
    [52] Squires A M. The Story of Fluid Catalytic Cracking: The First “Circulating Fluid Bed”, InCirculating Fluidized Bed Technology[J], Ed. P. Basu, Pergamon,1986.1-19.
    [53] Squires A M. Origin of The Fast Fluid Bed, In Fast Fluidization[J], Ed. Mooson Kwauk,Volume20Of Advances In Chemical Engineering Academic Press,1994:1-37.
    [54] Weinstein H, Et Al The Effect of Particle Density on Holdup In A Fast Fluidized Bed[J],Aiche Symp. Ser.1982,80(234):52-59.
    [55] Yerushalmi J, Turner D H, Squires A M. The Fast Fluidized Bed[J], Ind Eng Chem, ProcessDes.&Dev.1976,15(1):47-53.
    [56] Li Y, Kwauk M. The Dynamics of Fast Fluidization. In Fluidization[J], Ed. Grace J R, AndMatsen J M, Plenum,1980.537-554.
    [57] Kwauk M. Fluidization-Idealized And Bubbleless[M], Science Press (Beijing) And EllisHorwood (New York),1992.
    [58] Grace J R. Contacting Modes and Behavior Classification of Gas-Solid and Other Two-PhaseSuspensions[J]. Can J Chem Eng,1986,64:353-363.
    [59] Qian Z, Kwauk M. Computer Application in Characterizing Fluidization By The BedCollapsing Method[C].10thIntern. Codata Conf. Ottawa,1986.
    [60] Tung Y, Kwauk M. Dynamics of Collapsing Fluidized Beds[C], China-Japan FluidizationSymp. Hangzhou:1982.155-166.
    [61] Tung Y, Et Al. Assessing Fluidizing Characteristics of Powder[C].6thIntern. FluidizationConf Banff,1989.
    [62] Li H, Lu X, Kwauk M. Particulatization of Gas-Solid Fluidization[J]. Powder Technology, ToBe Published.
    [63]李佑楚.磁化焙烧在处理我国红矿中的地位-解决我国细粒嵌布贫赤铁矿和鲕状赤铁矿选矿问题的一个有希望的途径[M].北京:中国科学院化工冶金研究所,1973.
    [64] Pelton A D, Bale C W. Thermodynamics. In: Feinman J, D R Macrac, Editors. DirectReduction Iron. Technology and Economics of Production and Use[J]. The Iron and SteelSociety,1999:25-52.
    [65] Edstron J O. The phenomenon of pinning in an annular moving bed reactor with cross flow ofgas[J].Jisi,1953,175:289-304.
    [66] Mckewan W M. Design considerations for a multi-specimen lumbar spinal disc fatigue andwear simulator[J].Steelmaking. The Chipman Conf,1965:141-155.
    [67] Xuan Peng, Wenchuan Wang, Shiping Huang. Grace. Monte Carlo simulation for chemicalreaction equilibrium of ammonia synthesis in MCM-41pores and pillared clays[J]. FluidPhase Equilibria231(2005)138–149.
    [68] Raymond Everson, Hein Neomagus, Rufaro Kaitano. The modeling of the combustion ofhigh-ash coal–char particles suitable for pressurised fluidized bed combustion: shrinkingreacted core model[J], Fuel84(2005)1136–1143.
    [69] W.M. Kalback, L.F. Brown, R.E. West. The growth of pores in graphitized carbon reactedwith carbon dioxide[J]. Carbon,1970,117-124.
    [70]中国科学院化工冶金研究所.铁精矿加压流态化氢还原,1977,5.
    [71]中国科学院化工冶金研究所.流态化气体炼铁-100kg/日级加压联动实验[J].化工冶金,1976,3:1-18.
    [72]尤斯芬, IOC等译著.铁矿原料金属化工艺理论[M].北京:冶金工业出版社,1991:127.
    [73]中国科学院化工冶金研究所,攀枝花铁精矿钢铁冶炼新流程-流态化还原法[J],1977,5.
    [74]郭慕孙.攀枝花铁精矿钢铁冶金新流程-流态化还原法[C].中国金属学会1978年年会学术论文,1978.
    [75]郭慕孙.氧化铁在还原过程中的流失[J].化工冶金,1977,2:1-89.
    [76] Elvers B, Ea Al. Ulmann’S Encyclopedia of Industrial Chemistry[J]. Fifth Weinheim:Wiley-Vch,1989,14:515-573.
    [77]中国科学院化工冶金研究所。流态化还原四氧铁精矿失流问题探讨[J].1977,11.
    [78] Gaballah I, Et Al. Les Memoires Scientifiques De La Ravue De Metallurgie[J],1972,69(7-8):523-530.
    [79] Gabriel Tardos, Robert Pfeffer. Chemical reaction induced agglomeration and defluidizationoffluidized beds[J], Powder Technology.1995,85:29-35.
    [80]山东枣庄市化工冶金研究所,中国科学院化工冶金研究所.攀枝花铁精矿流态化还原吨级实验.1980.
    [81] Geldart D. Types of gas fluidization [J], Powder Technology,1973,7:285-292.
    [82] Chaouki J, Chavarie C, Klvana D, et al. Effects of Interparticle Forces on the HydrodynamicBehavior of Fluidized Aerogels[J]. Powder Technology,1985,43(2):117-125.
    [83] Morooka S, Kusakabe K, Kokata A, et al. Fluidization State of Ultrafine Powder[J].J.Chem.Eng.Japan,1988,21:41-46.
    [84] Pacek A W and Nienow A W. Fluidization of Fine and Very Dense Hardmetal Powders[J].Powder Technology,1990,60:145-158.
    [85] Zhou T and Li H Z. Estimation of Agglomerate Size of Cohesive Particles DuringFluidization[J]. Powder Technology,1999,101(1):57-62.
    [86]周涛,李洪钟.黏性SiC颗粒聚团流态化特性[J].化工学报,1998,49(5):528-533.
    [87]周涛,李洪钟.黏附性颗粒添加组分流态化实验[J].化工冶金,1998,19(3):231-236.
    [88] Zhou T and Li H Z. Effects of Adding Different Size Particles on Fluidization of CohesiveParticles[J]. Powder Technology,1999,102:215-220.
    [89] zhou t and li h z. shinohara k. agglomerating fluidization of group c particles: major factors ofcoalescence and breakup of agglomerates[J]. Advanced powder technology,2006,17(2):159-166.
    [90]李洪钟,郭慕孙.气固流态化的散式化[M].北京:化学工业出版社,2002.
    [91]周涛.黏性颗粒聚团流态化及应用[M].北京:化学工业出版社,2009.
    [92] Zimon A D, Corn M Adesion of Dust and Powder[C].2ndEd. New York: Plenum Press,1982.
    [93] RumpfH. Agglomeration77-Proceedings of The2ndInternational Symposium onAgglomeration[C], Atlanta, Ga,1977.
    [94] Rumpf H. Problems of scientific development in particle technology, looked upon from apractical point of view[J].Powder Technology,1977,18(1):3-17.
    [95]粉体工学会编[M].东京:日刊工业新闻社,1986,123.
    [96] Krupp H. The in vivo transformation of phospholipid vesicles to a particle resembling HDL inthe rat[J]. Advance in Colloid and Interface Science,1976,1(2):111.
    [97] De Laplace P S. Determination of the activity coefficient of neodymium in liquid aluminiumby potentiometric methods[J]. Electrochimica Acta,2008,54:280-288.
    [98] Young T. Miscellaneous Works Ed. By G. Peacock[J]. London: J.Murray,1853,1:418.
    [99]远藤贞行,向阪保雄,西江恭延.化学工学论文集[M],1993,19:55.
    [100] Pietch W, Pumpf H. Chem Ing Tech,1967,39:885.
    [101] Fisher R A. President's address before the first international orthodontic congress[J]. J AgricSci,1926,16:492.
    [102] Mcfarlane J S, Tabor D. Evidence for working memory deficits in chronic pain: A systematicreview and meta-analysis[J]. Pro Roy Soc,1950,202:224.
    [103]井伊谷钢一,村元博司.材料,1967,16(164):352-357.
    [104] Irani R R, Callis C F. Particle Size: Measurement, Interpretation and Application[J]. JohnWiley&Sons,1963.
    [105] Ridgway K, Tarbuck K J. The shape of the liquid surface inside a horizontal rotating drum[J].Brit Chem Eng,1967,12:384.
    [106]浅川贞雄,神保元二.材料,1967,16:358.
    [107]山口敏秀,富田正惠,近尺正敏.粉体工学会志[M],1979,16(9):514.
    [108] Fuchs N A. The Mechanics of Aerosols[M], Pergamon Press,1964,288.
    [109] Drake R L. Topics in Current Aerosol Research Part2,201Ed. Hidy G M, Brock J R[J].Pergamon Press,1972
    [110] Lushnikov A A. On the sticking probability of molecular clusters to solid surfaces[J]. JColloid Interface Sci,1976,65:276.
    [111] Friedlander S K. Smoke, Dust And Haze[J]. John Wiley&Sons,1977:175.
    [112] Mercer T T. Fundamentals of Aerosol Science[J]. John Wiley&Sons,1978.
    [113] Smoluchowski M V. Continuous pole figure study of magnetic recrystallization[J]. Physik Z,1916,17:557.
    [114] Saffman P G, Turner J S. Fluid Mechanics[M], Orlando: Academic Press,1956,1:16.
    [115]郁可,郑中山.分维在超细粉末团聚状态表征中的应用[J].材料研究学报,1997,11(5):523-526.
    [116]辛厚文.分形理论及其应用[M].合肥:中国科学技术大学出版社,1993,154.
    [117]张荣善.散料输送与贮存[M].北京:化学工业出版社,1994.
    [118] Hausner H H. Friction Conditions in a Mass of Metal Powder[J]. International JournalPowder Metallurgy,1967,3:7-13.
    [119] Geldart D and Wong A C Y. Fluidization of Powders Showing Degrees of Cohesiveness. BedExpansion[J]. Chemical Engineering Science,1984,39(10):1481-1488.
    [120] Carr R L. Powder And Granule Properties and Mechanics. Marchello J M, Gomezplata A(eds). Gas-Solids Handling in The Process Industry[J]. Marcel Dekker, New York,1976,326-340.
    [121] Jiandong Zhou and Duane D. Bruns, Minimum Spouting Velocity of Dense Particles inShallow Spouted Beds[J], THE CANADIAN JOU RNAL OF CHEMICAL ENGINEERING.90(2012)558-564.
    [122] A. Marzocchella, U. Arena, A. Cammarota, L. Massimilla, Break-up of cylindrical clusters ofsolid particles under gravity flow in a two-dimensional column[J], Powder Technol.65(1991)453–460.
    [123] Ruoyu Hong, Jianmin Ding and Hongzhong Li,Fluidization of Fine Powders in FluidizedBeds With an Upward or A Downward Air Jet[J].3(2005)181-186.
    [124] J.A. Asenjo, P.R. Munoz, D.L. Pyle, on the transition from a fixed to a spouted bed[J], Chem.Eng. Sci.32(1977)109–117.
    [125] Tao Zhou, Hongzhong Li, Kunio Shinohara, Agglomerating fluidization of group C particles:major factors of coalescence and breakup of agglomerates[J], PowderTechnol.17(2006)159-166.
    [126] Hongzhong Li, Xuesong Lu, Mooson Kwauk, Particulatization of gas–solids fluidization[J],Powder Technology.137(2003)54–62.
    [127] Liangying Wen, XiaotaoT.Bi, Simulation of cavity formation hysteresis in the presence ofgranular compaction[J], Chemical Engineering Science.66(2011)674–681.
    [128] Liangying Wen, Xiaotao T. Bi, Cavity formation and breakup forces in conical spoutedbeds[J],Powder Technol.206(2011)227-232.
    [129] Mike Vanderroost, Frederik Ronsse, Koen Dewettinck, Jan G. Pieters. Modelling the bedcharacteristics in fluidized-beds for top-spray coating processes[J]. Particuology(2012)649.
    [130] Geldart D, Harnby N, Wang A C. Fluidization of cohesive powders[J]. PowderTechnology,1984,37:25~37.
    [131] Bing Ren, Wenqi Zhong, Yu Chen, Xi Chen, Baosheng Jin, Zhulin Yuan, Yong Lu.CFD-DEM simulation of spouting of corn-shaped particles[J]. Particuology(2012)562.
    [132] Hongzhong Li, Xuesong Lu, Mooson Kwauk,Particulatization of gas–solids fluidization[J],Powder Technology137(2003)54–62.
    [133] Yang Z, Tung Y, Kwauk M. Characterizing fluidization by the bed collapsing method[J].Chem Eng Commun,1985,39:217~232.
    [134] Ergun S (1952). Fluid Flow through Packed Columns[J]. Chem. Eng. PROGR.,48,89-94.
    [135] Wen C Y, Yu Y H. Mechanics of Fluidization[J]. Chem Eng Symp Ser,1966,62(62):100-111.
    [136]盖国胜,陶珍东,丁明.粉体工程[M].北京:清华大学出版社,2009.
    [137]谢洪勇,刘志军.粉体力学与工程[M].北京:化学工业出版社,2007.
    [138]陶珍东,郑少华.粉体工程与设备[M].北京:化学工业出版社,2009.
    [139] Horio M and Ito M. Prediction of Cluster Size in Circulating Fluidized Beds. In: CFB-5[C],Beijing,1996,22.
    [140] Horio M And Iwadate Y. The Prediction of Sizes of Agglomerates Fromed in FluidizedBeds[C]. Proc of The5thWorld Congress of Chem. Engineering,2ndIntl Particle TechnlolgyForum,1996,5:571-582.
    [141] Li H, Xu G, Hong R, Ea Al. Hydrodynamic Modelling of Clusters in Fast Fluidized Bed[C].In: CFB-5, Beijing,1996,22.
    [142] Yang Y. Experiments and Theory on Gas and Cohesive Particles Flow Behavior andAgglomeration in The Fluidized Bed Systems[C]. Chicago, USA: Illinoiss Institute ofTechnlology,1991.
    [143] Gidaspow D Multiphase Flow and Fluidization[M]. Academic Press, Inc,1994.
    [144] Israelachvili J N. Intermolecular and Surface Forces[M]. Orlando: Academic Press, Inc.1985.
    [145] Krupp H. Particle Adhesion: Theory and Experiment[J]. Adv Colloid Interface Science,1967,1:111-120.
    [146] Mori S, Wen C Y. Estimation of Bubble Diameter in Gaseous Fluidized Beds[J]. Aiche J,1975,21:109-115.
    [147] Takafumi Mikami, Hidehiro Kamiya, Masayuki Horio. The mechanism of defluidization ofiron particles in a fluidized bed [J]. Powder Techndogy89(1996)231-238
    [148] Chiou-Liang Lin, Tzu-Huan Peng, Wei-Jen Wang. Effect of particle size distribution onagglomeration/defluidization during fluidized bed combustion [J]. Powder Technology207(2011)290–295
    [149] X.S. Wang, M.J. Rhodes. Mechanistic study of de#uidization by numerical simulation[J].Chemical Engineering Science59(2004)215–222
    [150] Chung U C, Lee I O, Kim H G. et al. Degradation Characteristics of Iron Ore Fines of a WideSize Distribution in Fluidized bed Reduction[J]. ISIJ International.1998,(38):943-9521
    [151] Christoph PAWLIK, Stefan SCHUSTER, Norbert EDER. Reduction of Iron Ore Fines withCO-rich Gases under Pressurized Fluidized Bed Conditions[J]. ISIJ International,2007,47(2):217–225
    [152]徐辉,邹宗树,周渝生,吴胜利,李肇毅.竖炉生产直接还原铁过程的模型研究[J].炼铁,2009,2:1-4.
    [153]汤忠,张建民,王洋,张碧江.流化床气化炉稀相段反应模拟[J].燃烧科学与技术,1998,4(2):150-156.
    [154]范丽婷,李鸿儒,王福利,何大阔.循环流化床烟气脱硫系统数学模型研究[J].中国电机工程学报,2008,28(32):12-17.
    [155]韩明荣,张生芹,陈建斌,高逸峰.冶金原理[M].冶金工业出版社,2008:北京.
    [156] T.Fuwa and S.Ban Ya. Calcination of calcium-based sorbents at pressure in a broad range ofCO2concentrations[J]. Trans. Iron Steel Inst. Jpn,1969,24:137-147.
    [157] Hiromitsu Takaba etc.. Development of the reaction time accelerating molecular dynamicsmethod for simulation of chemical reaction[J]. Applied Surface Science254(2008):7955–7958.
    [158] M. Teles dos Santos, V. Gerbaud, G.A.C. Le Roux. Solid Fat Content of vegetable oils andsimulation of interesterification reaction: Predictions from thermodynamic approach[J],Journal of Food Engineering126(2014):198–205.
    [159]朱光俊,孙亚琴.冶金原理[M].冶金工业出版社,2009:北京.
    [160]曹玉春,吴金星,李言钦,魏新利.基于欧拉-欧拉模型的气固鼓泡床数值模拟研究[J].热力发电,2008,37(11):35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700