基于Hilbert-Huang变换的地震噪声衰减与薄层预测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高信噪比,是伴随整个地震勘探资料采集处理解释流程的一项重要工作。在高分辨率地震资料的处理工作中,信噪比的提高是根本和前提。而纵观各种已成熟或发展中的地震数据去噪方法,我们可以发现,大部分的地震去噪方法和技术都是建立在通用的数字技术基础上的,这些数字技术往往也可以用在类似的其他领域,如图像图形的去噪增强或压缩算法,语音及机械或其他振动信号的加强或分析等等,并且每种数字技术往往都有多方面的应用。先进的数字信号处理技术有利于在地震反射数据上进行复杂地质目标的成像和分析。经验模态分解(EMD)和Hilbert-Huang变换(HHT)是一个处理非线性非平稳信号的方法。经验模态分解先首先将信号分解为一系列的子信号,这些子信号在经过hilbert变换后会落在相同的时频区域中。HHT为随机信号或伪随机信号提供了一种时频域瞬时属性分析的方法。在本文中,EMD和HHT在地震数据上的应用研究主要包括:1)评价EMD和HHT在时间域及时频域确定有意义的地质信息的能力,2)在地震数据的f-x域内使用EMD分解来压制随机噪声,3)使用HHT的瞬时属性来设计一个好的滤波器,提高地震数据的信噪比。在滤波器设计和实际滤波过程中,HHT所表现出来的经验特性,可以比其他的滤波器更好的提高信噪比。本文使用模拟数据和实际地震数据证明了HHT和EMD可以成功应用在地震反射数据的处理上。在其中的一个实验中,强烈的工业交流电噪声可以通过HHT的陷频滤波进行消除。在另一实验中,使用HHT方法进行面波的压制,与其它方法相比,显示其具有较好的去噪效果。本篇文章的主要研究工作是如何更好的将EMD和HHT技术应用在地震反射数据上,尝试将EMD,HHT在其他领域中的新特点使用在地震勘探上,以提高反射地震数据的质量。这些研究不是要取代传统的地震数据处理方法,而是要将EMD和HHT补充到其中去。EMD是一种非常有效的时间域滤波器,HHT又是一种可以同时在时间和频率方面分析信号的优秀方法。同时,HHT的最大优点是它可以不通过任何先验信息就可以获取信号的瞬时振幅,瞬时频率和瞬时相位信息。先验信息通常是指采样率,噪声尖峰及步函数等时间序列的局部分布。
     本文首先介绍了EMD分解的有关基本概念及实施过程,以一个由多频率简谐波合成的调频信号为例来说明EMD分解的具体做法,相关概念,分解后的结果及原始信号的重构方法等。随后讨论了EMD分解应该注意的问题及EMD分解的不当会产生的问题,EMD分解的一个缺陷是容易产生频率混叠及出现原信号中不包含的虚假IMF分量,本文提出使用可变阈值的方法来改善这一缺陷,同时,阈值方法的改进也大幅加快了EMD分解的效率。为了讨论f-x域内的地震数据去噪方法,叙述了f-x反褶积的基本原理及发展过程,并讨论了其局限性,由此引出了在f-x域内使用EMD滤波方法来消除地震噪声的观点。使用模拟数据加入噪声前后的f-x域谱等频信息的对比来说明EMD滤波压制噪声的可行性。提出了f-x域EMD与小波阈值法的联合去噪的方法。使用简单模型,复杂模型的模拟数据来验证这种方法的有效性并与其他去除随机噪声的方法比较说明其优缺点。随后使用叠前及叠后的实际地震数据进行去噪实验,并对去噪结果进行详细分析。
     本文所提出的f-x域EMD与小波阈值法联合噪声衰减的方法是Battista B.M的f-x域EMD去噪方法进行了改进,通过分析EMD分解的过程指出直接删除IMF1分量的去噪方法是不严格的,而本文所提出的f-x域EMD与小波阈值法联合噪声衰减的方法在有效衰减噪声的同时可以更大程度的保留有效信号成分,整体效果优于f-x反褶积等其他去噪方法。
     本文系统的将HHT滤波技术引入到地震数据规则噪声的衰减过程中来。具体包括:基于HHT的工频噪声衰减,基于HHT的面波衰减方法研究和基于HHT的海上地震数据涌浪噪声衰减方法研究。首先分析了这几种规则噪声的特点,它们在EMD分解及Hilbert-Huang变换的过程中是易于分离的,从中得出结论,适合使用HHT滤波的方法来衰减这几种地震数据中的规则噪声。对模拟和实际地震数据使用所设计的方法进行去噪测试,结果表明基于HHT的方法与基于FFT的方法相比可以更好的压制噪声并保留有效信号。
     本文简要介绍了去除地震数据中工业交流电及面波干扰的常规方法,并讨论了这些方法的优缺点。随后,简要介绍了Hilbert-Huang变换的基本过程,并随即给出了基于HHT的时频域滤波的概念及实施过程。EMD和HHT对工频噪声具有突出的分离和时频分析的能力,因此可以设计一种使用HHT进行陷频滤波以消除地震数据中的工频噪声干扰的方法。对含工频噪声的地震数据进行EMD分解及HHT的计算,结果表明EMD分解可以将工频噪声较为完整的分离出来,进而在HHT谱上有很好的对应于工频噪声的时频显示。对单道含工频噪声的地震信号进行HHT陷频滤波去噪实验,结果表明该方法可以有效的压制噪声并保留有效信号。与其他基于FFT的滤波方法比较,该方法的去噪效果是最好的。随后对实际数据进行去噪实验,并与普通陷频滤波方法进行对比。本文进行了HHT时频滤波对面波干扰的压制研究。对合成含面波数据及实际数据都进行了HHT分析,所得时频谱中可以清楚的得到面波所对应的时频信息,对实际数据使用HHT滤波方法及FK滤波两种方法来压制噪声,对所得结果进行对比分析,本文方法优于传统的FK面波压制方法。而对于海上地震数据通常包含的低频强振幅的涌浪噪声,进行了HHT滤波方法压制研究。通过对实际数据的分析指出,直接使用EMD分解的方法来剔除涌浪噪声是不合适的,针对实际数据的涌浪噪声的特点,本文设计了HHT低切滤波的方法,有效的滤波除了海上数据的涌浪噪声,与FFT低切滤波方法的去噪效果进行对比分析,结果表明本文方法在有效压制噪声的同时更大程度的保留了有效反射信号。
     本文对基于BEMD的二维去噪技术及地震属性提取技术进行了研究,首先简要介绍了BEMD分解的基本过程,包括二维数据局部极值点求取方法,构造包络曲面的插值计算方法等。随后介绍了目前BEMD分解技术还存在的问题及改进方向。使用BEMD技术对二维双曲面数据进行滤波,与中值滤波,均值滤波,维纳滤波及小波阈值滤波方法比较,BEMD滤波对该数据的噪声消除效果更好。将BEMD技术引入到地震属性提取及相干数据体上断层信息的提取。BEMD对二维信号高低频分离的特性可以用于识别时间切片上的隐伏圈闭等构造。BEMD同时具有很好的边缘检测和纹理识别的能力,对相干数据的切片进行BEMD处理可以压制非构造的噪声信号,将其用于提高在地震相干数据切片上的断层识别能力,使断层信号更清晰连续,效果很好。
     对数谱在常规地震勘探数据处理中的使用方法主要是反褶积及子波提取,本文进行了基于对数谱的薄层估计研究。在数字信号处理的其他领域,如音频信号的处理,对数谱(倒谱)的定义方法将信号频谱的自然对数作为信号再求其频谱。本文分析了这种对数谱的特点,首先研究如何使用对数谱来快速测试地震仪正弦波信号的畸变。对数谱应用在地震仪信号畸变程度的检测当中时,可以更快速直观的判断正弦波信号的畸变程度。使用对数谱可以进行薄层厚度预测,所得的关于薄层厚度的分辨率要高于直接在时间域及频率域的厚度识别能力,本文使用楔状模型试验来检验对数谱在薄层识别上的效果,信号主频在30Hz时,薄层的识别能力可以达到10ms以内。本文提出了一种使用对数谱进行低频信号检测的方法并与其他谱分解方法进行比较,结果表明对数谱方法在对低频信号检测过程中,所取得的时间和频率分辨能力要优于其他的谱分解的方法。
The improving of signal-to-noise ratio is always an important task accompaniedby the entire seismic data processing and interpretation. In the high-resolutionseismic data processing, the improving of signal-to-noise ratio is the fundamentaland premise. A general review of various maturity or development of seismic datadenoising method, we can find that, most of the seismic denoising methods andtechniques are built on a basis of common digital technology, these digitaltechnologies often used in similar in other areas, such as enhancement orcompression algorithm of image and graphics, the strengthen or analysis of voiceand mechanical vibration signal, etc., and each digital technology often have a widerange of applications.Advanced digital signal processing technology is conducive tothe imaging and analysis of seismic reflection data with complex geological targets.At present a method to handle non-linear non-stationary signals is the empiricalmode decomposition (EMD) and Hilbert-Huang transform (HHT). First of all, thesignal is decomposed into a series of sub-signal by the empirical modedecomposition, these sub-signals would fall on the same frequency region afterhilbert transform.HHT provides an instantaneous attributes of time and frequencydomain analysis method for random signal or pseudo-random signal. In this paper,the main application of EMD and HHT on the seismic data is:1) evaluate the abilityto identify meaningful geological information of the EMD and HHT in a timelymanner in the time domain to frequency domain,2) Use of EMD decomposition tosuppress random noise in the the f-x doman of the seismic data,3) design a betterfilter to improve the seismic data signal-to-noise ratio by the instantaneous attributesof HHT. In filter design and the actual filtering process, the experience characteristicof the HHT demonstrating, can improve the signal-to-noise ratio better than anyother filte.In this paper we use the simulated data and real seismic data to prove thatthe HHT and EMD can be successfully used in the processing of seismic reflectiondata. In an experiment, a strong industrial AC noise can be eliminated by HHT notchfilter. In another experiment, using the HHT method, surface wave is eliminated,compared with other methods, its better denoising is shown. The main research work of this paper is how to use the EMD and HHT technology applications better inseismic reflection data, try to use the new features of EMD and the HHT in otherareas in the seismic exploration to improve the quality of seismic reflection data.These studies not intended to replace the traditional seismic data processing methods,but rather to supplement the EMD and HHT technology to the processing methods.EMD is a very efficient time-domain filter, the HHT is a good way to analysissignals in terms of time and frequency. Meanwhile, the biggest advantage of HHT isthat it can provide you the instantaneous amplitude the instantaneous frequency andinstantaneous phase information of the signal without any priori information. Prioriinformation usually refers to the sampling rate, the local distribution of time seriessuch as the noise peak and step functions.
     In this paper, we first introduced the basic concepts and implementation processof the EMD. A signal which is mixed by some harmonic with different frequency istaken for example to illustrate the EMD practices, related concepts, the result ofdecomposition and the original signal reconstruction method. Then we discussed theproblems in EMD decomposition and problems should be noted when the improperEMD decomposition will produce. In order to discuss the f-x domain seismic datadenoising method described f-x deconvolution of the basic principles anddevelopment process, and discusses its limitations, which leads to the view that weshould use the EMD filtering method in the f-x domain to eliminate seismic noiseUsing simulated data with and without noise adding, by comparing thecross-frequency information in the f-x domain to illustrate the feasibility of EMDfilter to suppress noise.F-x domain A EMD and wavelet thresholding joint denoisingmethod was put forward. Using simulated data of simple models and complexmodels we verified the effectiveness of this method and by comparison with othermethods to remove random noise we explained the advantages and disadvantages.Subsequent a denoising test is taken by the actual prestack and poststack seismicdata with random noise, then detailed analysised the denoising results.
     In this paper, the joint noise attenuation method of the f-x domain EMD andwavelet thresholding is improved from the Battista, BM’s EMD denoising method inf-x domain,by the analysis of EMD process we can get a conclusion that directlydeleting IMF1component denoising method is not strictly, this proposed the f-xdomain EMD and wavelet thresholding joint noise attenuation greater degree ofeffective noise attenuation at the same time to retain effective signal components, the overall effect is better than f-x deconvolution and other denoising methods.
     The HHT filter technology was first introduced into the process in the regularnoise attenuation of seismic data in this article. Including: HHT-based powerfrequency noise attenuation, based on HHT surface wave attenuation methods andHHT-based marine seismic data swell noise attenuation. First analysised thecharacteristics of these types of noise, they are easily separated in the process ofEMD and Hilbert-Huang Transform, and draw conclusions from which that it issuitable to attenuation these kinds of regular seismic data noise for HHT filtermethod. Results show that the HHT-based approach compared to the FFT-basedapproach can better suppress noise and to retain effective signal noise tests onsimulated and real seismic data using the design method.
     This article briefly introduced surface wave interference with conventionaldenoising methods, and then discusses the advantages and disadvantages of thesemethods.Subsequently, a brief introduction to the basic process of the Hilbert-Huangtransform, and then gived the concept and implementation process of thetime-frequency domain filtering which is based on HHT. Based on the outstandingability of separation and time-frequency analysis of EMD and HHT,we design anotch filter to eliminate the power frequency noise in seismic data based on HHTtechnology. The results of EMD and HHT calculation of seismic data includingpower frequency signal show that in the process of EMD decomposition powerfrequency signal has a more complete separation and a well corresponds to thefrequency signal frequency display on the HHT spectrum. The experimental resultsof single channel containing the power frequency noise of seismic signals to HHTnotch filter denoising show that this method can effectively suppress noise and retaineffective signal. Compared with the FFT-based filtering method, the denoising effectof this method is the best. Then a experiment by the actual data noise was done,frequency filtering methods were compared with the ordinary trap. In this article aresearch of suppression of wave interference on HHT time-frequency filteringopposite was carried out. Synthesis and actual data of surface wave were andanalysis HHT spectrum obtained when the surface waves corresponding to thetime-frequency information, the actual data using the the HHT filter method and FKfiltering are two ways to suppress noise, comparative analysis of the results of thismethod due to the FK surface wave suppression methods. The section3.5is aboutthe study of marine seismic data the HHT filtering method to suppress swell noise. Through the analysis of actual data that directly using the EMD method to weed outthe swell noise is not appropriate, the characteristics of surge noise of the actual data,this paper designs a of HHT low cut filter method, the effective filtering in additionto the at-sea data the noise of the surge, were analyzed with FFT low-cut filterdenoising results show that this method effectively suppress noise while a greaterdegree of retained effectively reflected signal.
     Two-dimensional de-noising technology and seismic attributes based on BEMDextraction technology is studied. Firstly briefly describes the basic process of BEMDdecomposition, including how to get the local extreme point of the two-dimensionaldata and how to calculate the structural envelope surface through the interpolationcalculation. Then introduced some existing problems in the currently BEMDdecomposition technique and the improving direction. BEMD is used in the filteringof two-dimensional surface data, comparing with other filtting method such an themedian filtering, mean filtering, wiener filtering and wavelet threshold filtering,noise cancellation of the BEMD filtering of the data is the better. BEMD technologyis introduced into the extraction of seismic attribute and the fault information in thecoherent data body. BEMD’s separation characteristics of the low and highfrequency in two-dimensional signal can be used to identify seismic structure such asinsidious trap on the time slices. BEMD also has the ability of edge detection andtexture recognition, slices of coherent data BEMD treatment to suppress thenon-structural noise signal to be used to improve the ability to identify faults inseismic coherence data slice, with good results. Fault signal more clearly continuous,fault identification capability in the coherent data.
     The application of logarithm spectrum in the conventional seismic dataprocessing is deconvolution and wavelet extraction, in this paper, logarithmspectrum is used to estimate the thickness of thin layer In other areas of digital signalprocessing, such as the audio signal processing, the logarithm spectrum (cepstrum) isdefined signal spectrum of the natural logarithm of the logarithm spectrum and thenseek its spectrum. This paper analyzes the spectrum characteristics of the logarithmspectrum, first of all how to use the logarithmic spectral to test the distortion of thesine wave signal generation by a seismograph. Logarithm spectrum used in thedetection of the seismograph signal distortion of which can judgment sine wavedistortion of the signal more quickly and intuitively. Logarithmic spectrum can beused in a thin layer thickness predicting when the resolution is higher than that obtained on the thin layer thickness directly in the time domain and frequencydomain, the thickness of the ability to identify, we use the wedge model test to verifythe identification effect of the thin layer using the logarithmic spectrum, when thedominant frequency of the signal is30Hz, the recognition ability of the thin layer canbe less than10ms. In this paper, a low-frequency signal detection method usinglogarithmic spectra is put forward, comparison with other spectral decompositionmethods. Finally the results show that the capability of logarithmic spectrum in thelow-frequency signal detection process is better comparing with other spectraldecomposition method, in the time and frequency resolution.
引文
[1]俞寿朋,高分辨率地震勘探[M].北京:石油工业出版社,1993.
    [2]何樵登.地震勘探原理和方法[M].北京:地质出版社,1986.
    [3]王典,刘财,等.反射波地震勘探噪声消除技术研究[J].地球物理学进展,2006,21(3):957-970.
    [4]苑益军,周芝旭,等.浅谈地震资料处理中的提高信噪比处理技术[J].石油地球物理勘探,2005,40(2):311-317.
    [5]刘洋,王典,等.数学变换方法在地震勘探中的应用[J].吉林大学学报(地球科学版),2005,35(7):1-8.
    [6]张军华,吕宁,田连玉,等.地震资料去噪方法技术综合评述[J].地球物理学进展,2006,21(2):546-550.
    [7]付燕.人工地震信号去噪方法研究[D].西北工业大学,博士论文,2002.
    [8]傅旦丹,林小竹.三维地震勘探中强声波干扰的压制[J].石油物探,2007,46(5):463-467.
    [9]闫立志,景新义,等. F-K滤波在噪声减去法中的应用[J].海洋地质动态,2006,22(10):28-32.
    [10]张雅纯.唐文榜.t-p变换压制线性干扰的应用[J].石油物探,1994,33(2):102-106.
    [11]林盛,吴峰,等.叠前相干干扰滤除-倾斜滤波法[J].石油地球物理勘探,1998,33(3):390-399.
    [12]王者江,曾昭发,等. KL变换消除探地雷达数据中的水平相干噪声[J].吉林大学学报(地球科学版),2005,35(7):124-127.
    [13]张亚红. Focal变换及其在地震数据去噪和插值中的应用研究[D].长春:吉林大学,2010.
    [14]仝中飞. Curvelet阈值迭代法在地震数据去噪和插值中的应用研究[D].长春:吉林大学,2009.
    [15]刘伟明.基于CFP技术层间多次波压制方法研究[D].长春:吉林大学,2010.
    [16]武克奋.双向预测法压制线性干扰波和多次波[J].石油物探,2005,44(5):458-460.
    [17]刘琦.基于反射、散射波场分离的多次波消除方法研究[D].长春:吉林大学,2009.
    [18]杨宝俊,李月,等.改善地震勘探记录的4项技术[J].吉林大学学报(地球科学版),2006,36(5):856-862.
    [19]孙鲁平,郑晓东等.薄层地震峰值频率与厚度关系研究[J].石油地球物理勘探,45(2):254-259.
    [20]N. E. Huang,Shen Z,Long S R. The Impirical Mode Decomposition Method andthe Hilbert Spectrum for Non-Stationary Time Series Analysis[J],Proc.Royal.Soc.London A,1998,454(A):903-995.
    [21]N. E.Huang,Wu M L,Long S R, et al. A confidence limit for the empirical modedecomposit ion and hilbert spect ral analysis[J]. Proc R Soc London.2003,45(9):2317-2345.
    [22]Huang N E and Zhaohua Wu. A study of the characteristics of white noise usingthe empirical mode decomposition method [J]. Proc. Roy. Soc. London. A,2004,460:1597-1611.
    [23]Zhongxuan Liu and Silong Peng. Boundary processing of bidimensional EMDusing texture synthesis [J]. IEEE Signal Processing Letter,2005,12(1):33-36.
    [24]Kizhner S,Flatley T P, Huang N E.On the Hilbert Huang T ransform DataProcessing System Development[C].IEEE Aero space Conference Pro ceedings,2004.
    [25]张郁山,梁建文,胡聿贤.应用自回归模型处理EMD方法中的边界问题[J].科学通报,2003,13(10):1054-1059.
    [26]赵娜. HHT经验模式分解的周期延拓方法[J].计算机仿真,2008,25(12):346-350.
    [27]钟佑明,秦树人.希尔伯特-黄变换的统一理论依据研究[J].振动与冲击,2006,25(3):40-43.
    [28]黄诚惕.希尔伯特-黄变换及其应用研究[D].重庆:西南交通大学,2006.
    [29]李琳. HHT时频分析方法的研究与应用[D].长春:吉林大学,2006.
    [30]谢启伟.经验模式分解算法分析与应用[D].合肥:中国科学技术大学,2008.
    [31]段丹辉.基于Hilbert-Huang变换的非平稳数据处理技术[D].北京航空航天大学,2007.
    [32]王伟. Hilbert-Huang变换及其在非平稳信号分析中的应用研究[D].北京:华北电力大学,2008.
    [33]赵翠霞.基于Hilbert-Huang变换的时频分析方法研究[D].东营:中国石油大学,2011.
    [34]李琛. Hilbert-Huang变换用于频变特征提取[D].南京:南京大学,2011.
    [35]王春,彭东林. Hilbert-Huang变换及其在去噪方面的应用[J].仪器仪表学报,2004,25(4):42-45.
    [36]Flandrin, P., G. Rilling, and P. Goncalves. Empirical mode decomposition as afilter bank[J]. IEEE Signal Processing Letters,2005,11(2),112-114.
    [37]Flandrin, P., and P. Gon alvès. Empirical mode decompositions as data-drivenwavelet-like expansions for stochastic processes[C]. International Journal ofWavelets, Multiresolution and Information Processes,2004,477-496.
    [38]李凌. Hilbert-Huang变换在说话人识别中的应用[D].湖南:湘潭大学,2006.
    [39]程百灵.基于Hilbert-Huang变换的语音增强研究[D].哈尔滨:哈尔滨工程大学,2006.
    [40]申丽然. Hilbert-Huang变换及其在含噪语音信号处理中的应用研究[D].哈尔滨:哈尔滨工程大学,2006.
    [41]胡佳宁.基于EMD的纹理分析方法研究[D].长沙:长沙理工大学,2008.
    [42]李彦军,胡祥云,何展翔. HHT变换在地球物理中的应用现状及前景[J].工程地球物理学报,2010,7(5):537-543.
    [43]Huang N.E,Chen C C,Huang K,et al. A New Spectral Representation ofEarthquake Data: Hilbert Spectral Analysis of Station TCU129,ChiChi,Taiwan,21September1999[J].Bulletin of the Seismological Society ofAmerica,2001,91(5):1310-1338.
    [44]周挚,山秀明,张立,等.基于HHT提取昆明、下关重力固体潮的地震前兆信息[J].地球物理学报,2008,51(3):836-844.
    [45]Hassan, H. Empirical mode decomposition(EMD) of potential field data:Airborne gravity data as an example[C].75th Annual International Meeting,SEG,ExpandedAbstracts,2005:704-707.
    [46]汤井田,化希瑞等. Hilbert-Huang变换与大地电磁噪声压制[J].地球物理学报,2008,51(2):603-610.
    [47]汤井田,蔡剑华,任政勇,等. Hilbert-Huang变换与大地电磁信号的时频分析[J].中南大学学报(自然科学版),2009,40(5):1399-1405.
    [48]化希瑞.高频大地电磁系统数据处理方法研究[D].长沙:中南大学,2007.
    [49]蔡剑华,汤井田,雷立云,等.大地电磁测深数据的时频分析[J].地质与勘探,2009,45(4):462-467.
    [50]Agarwal V.,Tsoukals L.H. Denoising electrical signal via empirical modedecomposition[J].Irep Symposium-Bulk Power System Dynamics and ControlVii Revitalizing Operational Reliablity,2007,1(2):72-77.
    [51]Magrin-Chagnolleau, I., and R. Baraniuk. Empirical mode decomposition basedtime-frequency attributes[C].69th Annual International Meeting,SEG, ExpandedAbstracts,1999:1949-1952.
    [52]段生全,贺振华等. HHT方法及其在地震信号处理中的应用[J].成都理工大学学报(自然科学版),2005,32(4):396-400.
    [53]吴琛,周瑞忠. Hilbert-Huang变换在提取地震信号动力特性中的应用[J].地震工程与工程振动,2006,26(5):41-46.
    [54]陈子雄,吴琛,周瑞忠.希尔伯特-黄变换谱及其在地震信号分析中的应用[J].福州大学学报(自然科学版),2006,34(2):260-265.
    [55]杨培杰,印兴耀,等.希尔伯特-黄变换地震信号时频分析与属性提取[J].地球物理学进展,2007,22(5):1585-1590.
    [56]钟飞,张伟,钟约先. Hilbert-Huang变换去除可控震源谐波畸变[J];清华大学学报(自然科学版),2011,51(6):862-867.
    [57]Battista B.M.,Knapp C. et al. Application of the impirical mode decompositonand Hilbert-Huang transform to seismic reflection data[J]. Geophysics,2007,72(2):H29-H37.
    [58]刘庆敏,杨五阳,田连玉,等.希尔伯特-黄变换在地震资料去噪中的应用[J].新疆石油地质,2009,30(3):333-336.
    [59]黄光南.希尔伯特-黄变换及其在地震资料分析处理中的应用[D].青岛:中国海洋大学,2009.
    [60]Bekara, Ma za; van der Baan, random and coherent noise attenuation byempirical mode decomposition [J]. Geophysics,2009,74(5):V89-V98.
    [61]史恒,李桂林,王伟,等.基于总体经验模式分解的地震信号随机噪声消除[J].地球物理学进展,2011,26(1):71-78.
    [62]宋平舰,张杰.二维经验模分解在海洋遥感图像信息分离中的应用[J].高技术通讯,2001(9):62-67.
    [63]C.Nunes,Y.Bouaoune,E.Delechelle.Texture analysis based on the bidimensionalempirical mode decomposition with gray-level co-occurrence models[J].Mach.Vision App.2003:633-635.
    [64]C.Nunes,Y.Bouaoune,E.Delechelle.Image analysis by bidimensional empiricalmode decomposition[J].Image and Vision Computing,2003(21):1019-1026.
    [65]J.C.Nunes,S.Guyot,E.Delechelle.Texture analysis based on local analysis of thebidimensional empirical mode decomposition[J].Machine Vision andApplications,2005(16):177-188.
    [66]周欣,二维经验模式分解(BEMD)在图像处理中的应用[D].武汉:华中科技大学,2007.
    [67]何培培.基于BEMD的图像去噪[J].计算机仿真,2009,26(1):216-218.
    [68]戴桂平,林洪彬.基于BEMD与双树复小波-局部Winner滤波的毫米波图像去噪[J].机械设计,2011,28(9):12-15.
    [69]李力松.基于经验模式分解的图像压缩算法研究[D].武汉:华中科技大学,2008.
    [70]孙艳争. EMD时频分析理论与应用研究[D].成都:电子科技大学,2007.
    [71]高凤娇.二维EMD方法及其在图像处理中的应用[D].哈尔滨:哈尔滨理工大学,2008.
    [72]宋立新,高凤娇,等.二维EMD分解方法的比较与改进[J].电子与信息学报,2008,30(12):2890-2894.
    [73]郑有志,覃征.基于二维经验模态分解的医学图像融合算法[J]. Journal ofSoftware,2009,20(5):1096-1105.
    [74]李峰,吕回.基于BEMD和小波阈值的MRI医学图像去噪[J].中国图形图像学报,2009,14(10):1972-1977.
    [75]Abdulhay.E.,Gumery,P.Y.,Fontecave,J.,et al. Cardiogenic oscillations extractionin inductive plethysmography:ensemble empirical mode decomposition[C].Annual International Conference of the IEEE Engineering in Medicine andBiology Society,2009:2240-2243.
    [76]黄静宁.深层次致矿异常信息提取及其找矿应用研究[D].北京:中国地质大学,2010.
    [77]陈建国,肖凡,等.基于二维经验模态分解的重磁异常分离[J].中国地质大学学报,2011,36(2).
    [78]Tufts, D.W., and R. Kumaresan. Estimation of frequencies of multiple sinusoids:Making linear prediction perform like maximum likelihood[J]. Proceedings ofthe IEEE,1982,70(9),975-989.
    [79]Canales, L. Random noise reduction[C].54thAnnual International Meeting, SEG,Expanded Abstracts,1984:525-527.
    [80]Galbraith, M. Random noise attenuation by f-x prediction[C]. A tutorial:61stAnnual International Meeting, SEG, ExpandedAbstracts,1991:1428-1431.
    [81]黄绪德.排除输电线干扰[J].石油物探,1977,26(4):1-15.
    [82]孙文森.无相位畸变的50Hz干扰滤波器[J].电测与仪表,1980,17(4):24-25.
    [83]王本吉,狄邦让.窄带自动跟踪陷波器[J].石油地球物理勘探,1985,20(4):411-414.
    [84]郭其贵.一种50Hz陷波器的设计及效果[J].石油地球物理勘探,1998,23(5):626-629.
    [85]凌云,郭向宇.非地表一致性噪声的压制[J].石油地球物理勘探,1992,27(1):13-28.
    [86]张建平,李庆武,张耀举.瞬变电磁仪中消除50Hz干扰的自适应滤波方法[J].测控技术,1999,18(6):67-68.
    [87]陈亚光,杨仲乐,陈心浩.诱发脑电信号中工频噪声及其谐波成分的去除[J].中南民族学院学报,1997,16(1):14-17.
    [88]吴小培,詹长安,周荷琴.采用独立分量分析方法消除信号中的工频干扰[J].中国科学技术大学学报,2000,30(6):671-676.
    [89]刘洋.强工频干扰波的提取与消除方法[J],石油物探,2003,42(2):154-159.
    [90]高少武,赵波,祝树云等.自相关法单频干扰识别与消除方法[J].地球物理学报,2011,54(3):854-861.
    [91]高少武,贺振华,赵波等.自适应单频干扰波识别与消除方法研究[J].石油物探,2008,47(4):352-356.
    [92]高少武,贺振华,赵波等.时间域单频干扰波消除方法的改进[J].石油地球物理勘探,2008,43(3):270-274.
    [93]高少武,赵波,贺振华等.基于余弦函数的自适应单频干扰消除[J].地球物理学进展,2009,24(5):1762-1767.
    [94]高少武,罗国安,赵波等.利用线性调频谱法识别与消除单频干扰[J].石油地球物理勘探,2010,45(6):861-867.
    [95]Karl E.Butler,Russell R.Subtraction of powerline harmonics from geophysicalrecords[J]. Geophysics,1993,58(6):898-903.
    [96]Nyman D C,Gaiser J E.Adaptive rejection of high-line contamination[C].Expanded Abstracts of53Annual Internat SEG Mtg,1983,321-323.
    [97]Sauecer A,Marchant M,Chouteau M.A fast and accurate frequency estimationmethod for canceling harmonic noise in geophysical records[J]. Geophysics,2006,71(1):7-18.
    [98]Dong, S., R. He, and G. T. Schuster,2006, Interferometric prediction andleast-squares subtraction of surface waves[C].76th Annual InternationalMeeting, SEG, ExpandedAbstracts,2783-2786.
    [99]David F. Halliday, Andrew Curtis,et.al. Interferometric surface-wave isolationand removal[J]. GEOPHYSICS,2007,72(5):A69-A73.
    [100]Herman, G. C.,C. Perkins. Predictive removal of scattered noise[J]. Geophysics,2006,71,(2):V41–V49.
    [101]Yanwei Xue,Shuqian Dong,et al. Interferometric prediction and subtraction ofsurface waves with a nonlinear local filter[J]. Geophysics,2009,74(1):SI1-SI8.
    [102]Kristof De Meersman. Ground Roll polarization filteting with spatialsmoothness constraints[C]. SEG techmical Program Expanded Abstracts,2008,27:413-416.
    [103]罗国安,杜世通.小波变换及信号重建在压制面波中的应用[J].石油地球物理勘探,1996,31(3):337-349.
    [104]李媛媛.小波变换去除面波的方法研究[D].西安:长安大学,2004.
    [105]李卫忠,张明振,王成礼等.压制面波的波场分离方法[J],石油地球物理勘探,1998,33(5):679-690.
    [106]胡天跃,王润秋,等.地震资料处理中的聚束滤波方法[J].地球物理学报,2000,43(1)105-115.
    [107]巩向博,韩立国,王恩利,等.压制噪声的高分辨率Radon变换法[J].吉林大学学报:地球科学版,2009,39(1):152-157.
    [108]包乾宗,高静怀,陈文超.面波压制的Ridgelet域方法[J].地球物理学报,2007,50(4):1210-1215.
    [109]梁丹丹,基于分频处理的叠前地震资料中面波压制[D].重庆:西南交通大学,2008.
    [110]杜丽华.基追踪在面波分离和压制中的应用[D].重庆:西南交通大学,2006.
    [111]张恒磊,刘天佑.Curvelet域面波衰减方法研究[J].中南大学学报(自然科学版),2011,42(8):2372-2378.
    [112]董烈乾,李振春.第二代Curvelet变换压制面波方法[J].石油地球物理勘探,2011,46(6):897-904.
    [113]陈爱萍,邹文.基于s变换的面波压制[J].世界地质,2005,24(1):82-86
    [114]段俊,张白林等.广义S变换去除面波技术及应用[J].物探化探计算技术,2011,33(3):280-285.
    [115]马见青,李庆春.面波压制的TT变换法[J].吉林大学学报,2011,41(2):565-570.
    [116]杨兆斌,张铭记,等.时频-炮检距域面波衰减方法及应用[J].物探化探计算技术,2011,33(1):30-35.
    [117]蒋婵君.瑞雷面波资料处理方法研究[D].长沙:中南大学,2009.
    [118]杨成林.瑞雷波勘探[M].北京:地质出版社,1993.
    [119]彭文.利用石油勘探面波信息调查表层结构的方法研究[D].成都:成都理工大学,2007.
    [120]Chakraborty A,Okaya D. Frequency2time decomposition of seismic data usingwavelet-based methods[J]. Geophysics,1995,60(6):1906-1916.
    [121]Minh-Quy Nguyen,Jerome Mars. Filtering surface waves using2D discretewavelet transform[C].69th Ann.Internat. Mtg.,SEG,Expanded Abstracts,1999.1228-1231.
    [122]Philippe S,Guy D.Seismic sequence analysis and attribute extraetion usingquadratic time-frequency representations[J].Geophysics,2001,66(6):1947-1959.
    [123]朱生旺.用抛物线Radon变换稀疏解分离和压制多次波[J].石油地球物理勘探,2002,37(2):110-115.
    [124]R. G. Stockwell, L. Mansinha, and R. P. Lowe. Localization of the complexspectrum: The S Transform[J]. IEEE Transactions on SignalProcessing,1996,44(4):998-1001.
    [125]李辉峰,彭文.用S变换做精细时变滤波[J].天然气工业,2006,26(3):44-45.
    [126]陈爱萍,邹文.基于S变换的面波压制技术[J].世界地质,2005,24(1):82-86.
    [127]PINNEGAR C R,MANSINHA L.The S-transform with windows of arbitraryand varying shape[J].Geophysics,2003,68(1):381-385.
    [128]C. Robert Pinnegar,David W. Eaton. Application of the S transform toprestack-noise attenuation filtering[J]. Journal of Geophysical Research,2003,108(B9):1-10.
    [129]陈学华,贺振华,黄德济.基于广义S变换的地震资料高效时频谱分解[J].石油地球物理勘探,2008,43(5):530-534.
    [130]陈学华,贺振华,黄德济.广义S变换及其时频滤波[J].信号处理,2008,24(1):28-31.
    [131]金国平.广义S变换在地震高分辨率处理中的应用[J].石油仪器,2009,23(3):51-53.
    [132]Pinnegar C R,Mansinha C,A method of time-time analysis:the TT-transform[J].Digital Signal Processing: A Review Journal,2003,13(4):588-603.
    [133]Pinnegar C R.Time-frequency and time-time filtering with the S-transform andTT-transform[J].Digital Signal Processing:A Review Journal,2005,15(6):604-620.
    [134]Simon C.On the TT-transform and its diagonal elements[J].IEEE Transactionson Signal Processing,2008,56(11):5709-5713.
    [135]梁志强.层状介质中多模式面波频散曲线研究[D].西安:长安大学,2006.
    [136]肖柏勋.高模式瑞利面波及其正反演研究[D].湖南:中南大学,2000.
    [137]凡友华.考虑高阶模的Rayleigh波勘探应用研究[D].北京:北京大学,2003.
    [138]Beaty K S,Schmitt D R.Repeatability of multimode Rayleigh-wave dispersionstudies[J].Geophysics,2003,68(3):782-790.
    [139]David T.Sandwell.Biharmonic spline interpolation of GEOS-3and SEASATaltimeter data[J]. Geophysical Research Letters,1987,14(2):139-142.
    [140]J.C.Carr,W.R.Fright,R.K.Beatson.Surface interpolation with radial basisfunctions for medical imaging[J]. Medical Imaging,IEEE Transactionson,1997,16(1):96-107.
    [141]王世星.利用不同时频分量的RGB合成预测断裂及裂缝发育带[C].中国地球物理2007.
    [142]王宇.基于谱分解的薄层反演方法研究[D].长春:吉林大学,2006
    [143]戚鹏飞.王君恒对数谱平均法地震子波估计[C].中国地球物理学会第二十七届年会论文集,2011.
    [144]凌云,俞寿朋,周熙襄.零相位同态反褶积[J].石油地球物理勘探,1995,30(3):299-309.
    [145]Matthew Hall.Predicting bed thickness with cepstral decompositon[J].TheLeading Edge,2006,25(2):199-204.
    [146]Liu Chunyuan,Xu Shengfeng.Application of cepstral analysis to thinbeds[J].Jounal of China University of Mining&Technology,2008,18(2):84-88.
    [147]Widess, M. B., How thin is a thin bed?[J] Geophysics,1973,38:1176-1180.
    [148]宋家文,陈小宏,刘国昌.地震道随机重排联合EM算法衰减高振幅涌浪噪声[C].中国地球物理学会第二十七届年会论文集.2011.
    [149]张永学,印兴耀,宋建平,等,测试地震数据采集系统总谐波畸变的剪切FFT算法[J].石油地球物理勘探,2008,43(3):252-256.
    [150]刘益成等.地震数据采集系统谐波畸变测试方法研究[J].石油物探,2006,45(4):431-434.
    [151]洪弘.基于Hilbert-Huang变换的汉语动态特征分析[D].南京:南京大学,2010.
    [152]洪弘,王新龙,陶智勇等.基于倒谱和EMD的语音基音周期的提取[J].声学技术,2009,28(2):117-118.
    [153]张显文,韩立国,王宇等.地震信号谱分解匹配追踪快速算法及其应用[J].石油物探,2010,49(1):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700