沿海沙地5竹种生态系统特性与抗性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对沿海沙地青皮竹(Bambusa.textilis)、大叶龙竹(Dendrocalamus giganteus)、黄金间碧玉(Bambusa vulgarix cv.Vittata)、凤尾竹(Bambusa multiplex cv.Fernleaf)、观音竹(Bambusa multiplexvar.riviereorum)五种竹林生态系统的生态系统特性的进行了研究,研究内容包括竹林生态系统的生物量结构、水文动态、养分特征及养分循环等内容。同时,本文还研究了青皮竹、凤尾竹、观音竹3个竹种的抗盐、抗旱机理问题。这些研究结果为在沿海沙地引种竹子提供了科学的理论依据,主要结论如下:
     (1)引种的竹子体内含水率较高,5种竹子各器官含水率均随竹龄的增大而减小,这可能是因为新竹还处于不稳定状况,新竹木质化程度直接影响新老竹子各器官的含水率。地上部分各器官平均含水率竹秆、竹枝较大,竹叶最小:地下部分各器官含水率则是竹蔸>竹根。
     (2)1年生竹子单株总生物量均随竹高的升高而呈现逐渐下降的变化趋势,而2年竹子单株总生物量除凤尾竹外均随竹高的升高而呈现出先增加而后又逐渐下降的变化趋势。各竹子不同器官生物量随年龄的增大有较大幅度的提高。各林分不同器官生物量分配,地上部分均为竹秆>竹枝>竹叶,地下部分为竹蔸>竹根。林分群落现存生物量以青皮竹为最大,总计为44.94 t·hm~(-2),黄金间碧玉最小,只有11.65t·hm~(-2)。从生态系统中各林分群落现存生物量分布看,乔木层生物量最大,占总生物量的70%以上,其次为凋落物,最小为林下植被。
     (3)沿海沙地的竹林在水文效应上同样起到蓄水、林冠对降雨的截持和对径流的调节等作用。降雨量是影响林冠截留量、竹秆茎流量、穿透水量的主导因素。在一定的降雨量范围内,林冠截留量、竹秆茎流量、穿透水量均随着降雨量的增大而增加。凤尾竹的全年截留量为最大,占总降水的31.3%,而黄金间碧玉最小,占26.1%。黄金间碧玉的竹秆茎流量和穿透水总量均为最大,分别达到35.4 mm和688.8 mm。
     (4)不同林分的持水量相差较大。青皮竹乔木层和枯枝落叶层的持水量最大,分别达到36.17 t·hm~(-2)和14.84 t·hm~(-2)。大叶龙竹林下植被持水量最大,达到8.35 t·hm~(-2),黄金间碧玉为最小,仅为1.67 t·hm~(-2)。
     (5)植物器官营养元素的浓度主要受植物的遗传特性和环境因素的影响。从各竹种不同器官各种元素浓度看,N元素浓度最大,K浓度则相对较高,Ca和Mg浓度相近,Mg浓度略大于Ca的浓度,P浓度最小。在地上各器官中,各种养分浓度竹叶>竹枝>竹秆,地下部分根的各种养分浓度均比蔸的要高。
     (6)竹子单株养分含量分配规律与生物量的分配规律不同,单株养分含量的垂直分布规律呈现出生物量与养分浓度垂直分布规律相叠加的规律。各竹秆的各养分含量均随高度的上升而呈现逐渐下降的变化趋势,而竹枝和叶则呈现出小—大—小的变化规律。N元素含量在不同年龄的各竹种中最大,而P元素含量最小。地下部分各器官中N、Ca元素含量大小为根>蔸,而P、K和Mg含量则是蔸>根。
     (7)不同的林分,养分现存量的分配格局不同,从林分养分现存量看,以乔木层为主。各林分乔木层养分现存量中,以凤尾竹最大,达到459.29 kg·hm~(-2)。从乔木层不同元素现存量看,各竹种中的N现存量最大。各林分草本层养分现存量中,以观音竹的为最大,而黄金间碧玉最小。枯落物层的养分现存量以凤尾竹最大,黄金间碧玉仍为最小。
     (8)沿海沙地的竹子凋落物量主要受竹子生理活动的季节变化和当地气候环境的影响,一年中有着明显的季节变化,全年呈现出两个峰值期。凋落物量中以大叶龙和观音竹的为最多。从凋落物养分含量月动态看,各元素平均月含量仍以N含量为最大。凋落物的养分归还量月变化呈现出凋落物量及其元素含量月动态相叠加的规律,各竹种凋落物养分归还量最大的为大叶龙竹,黄金间碧玉的养分归还总量最小。
     (9)竹子凋落物不同组分分解失重规律存在着一定的差异性。竹叶分解速率最大,竹枝和笋箨分解速率较小。竹叶的分解失重表现出先快后慢的规律,而竹枝和笋箨的分解失重则呈现出快—慢—快的变化规律。
     (10)由于营养元素在凋落物中以不同形态存在,在凋落物的不同分解阶段,元素的释放和迁移是复杂多样的。不同竹种的凋落物在分解过程中,同种元素含量变化规律基本一致。N和P含量在整个分解过程中均呈现出前期逐渐上升,而后迅速下降,后期又稳中有升的变化规律。Ca含量在整个分解过程的前期有所积累,而后呈下降的变化趋势。而K和Mg在整个凋落物分解过程中,含量不断下降,到了后期含量又略有上升,上升幅度不大。
     (11)在盐分、水分胁迫下,各竹种的质膜透性随着胁迫强度的增强和胁迫时间的延长而增加,胁迫强度越大,细胞膜受破坏越强,质膜透性也就越大,反之,越小。经方差分析可知,盐分胁迫强度和盐分胁迫时间对各竹种质膜透性的影响存在极显著差异。
     (12)随着盐分胁迫时间的延长和盐分胁迫强度的增强,叶绿素含量由变化不明显转为呈现一定规律下降,chl.a下降的幅度小于Chl.b。在水分胁迫下,强度胁迫下竹子的叶绿体受到破坏,叶绿素含量下降明显,中度胁迫下竹子的叶绿体也受到破坏,但程度较强度胁迫低,叶绿素含量的变化没那么明显。
     (13)盐分胁迫浓度越大,胁迫时间越长,失水量也就越多,保水力越差。青皮竹的叶保水力最大,凤尾竹次之,观音竹最小。在水分胁迫下,各竹种的叶保水力变化与盐分胁迫相似,强度胁迫条件下叶失水率大,中度胁迫较正常供水的叶失水率大,但没强度胁迫的明显。
     (14)在水分、盐分胁迫下,叶片相对含水量随着胁迫强度的增大、胁迫时间的延长而下降,水分饱和亏缺则与叶片相对含水量相反。
     (15)竹子的N、P、K含量的变化与水分、盐分胁迫时间长短、胁迫强度大小密切相关。随着盐分胁迫强度的增大、胁迫时间的延长,N、P含量呈逐渐下降的变化趋势,而K含量呈逐渐增加的变化趋势,且盐分胁迫浓度越大,K含量值越大,盐分胁迫时间越长,K含量也越大。在水分胁迫的条件下,各竹种在强度胁迫下的N、P、K含量的变化较中度胁迫明显,正常供水的N、P、K含量变化不明显。
This text studied on the Ecosystem Characteristic of five Bamboos such as Bambusa.textilis,Dendrocalamus giganteus,Bambusa vulgarix cv.Vittata,Bambusa multiplex cv.Fernleaf and Bambusa multiplex var.riviereorum.These included structure of biomass,hydrology dynamic,nutrient characteristics and circulation.The paper studied on the resistance to salt and drought of Bambusa.textilis, Bambusa multiplex cv.Fernleaf and Bambusa multiplex var.riviereorum.The results have supplied the theory bases for cultivating the bamboo forestry in coastal sandy.The main findings were as follows:
     (1)The water rate of ten bamboos in coast was higher,and the water rate decreased with the ages.It was because that the new bamboos was on the instability and the woodiness was a maximum factor on the water rate of different organs.The water rate of branch was the highest and the leaf was the lowest over ground,and the sequence of organs under ground was stem underground>root.
     (2)With the increasing of height,the biomass in one-year-old individual bamboo decreased,although increased and then decreased in two-year-old individual bamboo except for Bambusa multiplex cv.Fernleaf The differernt organs biomass of each bamboo had significant increase with the increase of age.In the distribution of organ biomass,the sequence was crop>branch>leaf over ground and stem underground>root under ground.The total biomass of Bambusa.textilis forest was the most,which reached to 44.94 t·hm~(-2),and that of Bambusa vulgarix cv.Vittata forest was the least,which reached to 11.65 t·hm~(-2).In the distribution of biomass in bamboo forest,the arbor's biomass was the main part,which accounted for over 70%.The litter ranked second,and the herbage was last.
     (3)The bamboo forests can adjust rainfall's distribution.Rainfall was the dominant factor which affected interception,through fall and stem fall.In a certain rainfall class,with the increasing of rainfall,the interception,throughfall and stem fall increased.The annual amount of interception was the most,which occupied 31%in Bambusa multiplex cv.Fernleaf forest,while the annual amount of interception was the least,which occupied 26.1%in Bambusa vulgarix cv.Vittata forest.The annual amount of stem fall and throughfall were most.which reached to 35.4 mm and 688.8 mm respectively in Bambusa vulgarix cv.Vittata.
     (4)The water holding capacity of the forest was obviously different.The water holding capacity of arbor and litter were the most in Bambusa.textilis forest,which amounted to 36.17 t·hm~(-2)and 14.84 t·hm~(-2) respectively.The water holding capacity of herbage was the most in Dendrocalamus giganteus forest,which reached to 8.35 t·hm~(-2).That was the least in Bambusa vulgarix cv.Vittata forest,which only reached to 1.67 t·hm~(-2).
     (5)The inherit characteristic and circumstance were the main factor on concentration of nutrition element in plant.N concentration of all organs was topmost in concentration of five elelments.Mg concentration was less higher than Ca concentration.P concentration was the least The sequence of all nutrient concentration was leaf>branch>stem over ground.However,the all nutrient concentration of root>stem underground.
     (6)The individual distribution law of nutrient amount was not the same as that of biomass.The individual distribution law of nutrient element took on addition of distribution law of biomass and vertical distribution law of nutrient amount.The nutrient consent of stem was increasing with height,and the leaf and branch was decreased,although increased and then decreased.N concentration in each organ was the most,while P conecentration was the least.The sequence of N,Ca was root>stem underground,and the sequence of P,K and Mg was stem underground>root.
     (7)In the distribution of community nutrient amount in bamboo forest,arbor's was the main part.The arbor's nutrient amount was most,which reached to 459.29 kg·hm~(-2)in Bambusa multiplex cv.Fernleaf.N amount was the most in the arbor's nutrient amount.The herbage's nutrient amount in Bambusa multiplex var.riviereorum was the most,although that in Bambusa vulgarix cv.Vittata was the least.The little's nutrient amount in Bambusa multiplex cv.Fernleaf was the most,although that in Bambusa vulgarix cv.Vittata was still the least.
     (8)The litter's produce and its nutrient concentration and return amount varied in season obviously and had two peak periods in a year account of the growing law and environment.The litter's amount in Dendrocalamus giganteus and Bambusa multiplex var.riviereorum was the most.Average monthly N nutrient concentration of litter was the most.The nutrient return amount of litter in Dendrocalamus giganteus was the most,while that in Bambusa vulgarix ev.Vittata was the least.
     (9)The decomposing rate of leaf was the most,while that of branch and shoot hull was the least.The weight of leaf losted was fast at first and then slowed down,but the weight of branch and shoot hull losted was fast at first,then slowed down and was fast at last.
     (10)In different decomposing phase,because the nutrient elements existed in different forms in litter,the release and remove of element were complicated and various.During process of litter decomposing,the tendency of N,P concentration were increase-decrease-increase.However,the loss of Ca was intensive in the earlier stage,gentle in medium stage,and slight in.later stage.During the process of litter decompsing,K,Mg concentration inceased,and then decreased slimly at last.
     (11)Under the salt and water stress,the membrane permeability of each bamboo gradually declined,followed by the time of stress and the intension of stress.The cell velum was seriously destroyed under salt and water stress.The stronger the intension stress,the bigger membrane permeability.On the contrary,the membrane permeability became smaller.By analysis of variance,the membrane permeability of bamboo had extremely remarkable difference,following the time and intension of salt stress.
     (12)With the time and intension of salt stress,the content of chlorophyll varied slightly at first,and then declined obviously.The declining extent of chlorophyll.a was smaller than that of chlorophyll.b.The content of chlorophyll under the intensive water stress declined larger than tha under the middle water stress.The chloroplast of bamboo was lightly destroyed under the middle water stress.
     (13)The higher consistency and longer time of salt stress,the worse the ability of leaves' keeping water. The ability of leaves' keeping water in Bambusa.textilis was the biggest,and that in Bambusa multiplex cv.Fernleaf was the second,and that in Bambusa multiplex var.riviereorum was last.Under the water stress,the variety regulation of the ability of leaves' keeping water was the same as that of salt stress.The content of losing water of the bamboos' leaves under the stronger water stress was larger than that under the middle water stress.
     (14)Under the water and salt stress,the relatively water capacity of bamboos declined with the augment of the consistency and time of the stress,although the water saturation deficient was opposite.
     (15)The varieties of the N,P and K concentration of bamboos were related with the time and intension of the water and salt stress.Under the salt stress,the N,P concentration declined by the consistency and time of stress.On the contrary,the K concentration increased gradually.The N,P and K concentration of bamboos under the stronger water stress varied largelier than that that under the middle water stress.
引文
[1]吴锡林.福建海岸带木麻黄防护林水分生态的初步研究[D].福建农林大学硕士论文,2002.
    [2]丁雨龙.生态经济竹林培育[M].南京:南京林业大学竹类研究所.
    [3]金久宏,张关通,俞国雄.竹林带沿海防护林营造技术及其效益[J].防护林科技,1997,32(3):23-25.
    [4]金川,王月英.绿竹滩涂栽培试验[J].林业科学研究,1997,10(1):42-45.
    [5]徐昌棠.用哺鸡竹营造沿海防护林的前景和技术[J].新农村,1995,13(2):15.
    [6]苏金德.闽南滨海沙地丛生竹造林技术研究[J].防护林科技,2001,47(2):4-5,23.
    [7]陈礼光.郑郁善,姚庆端等.沿海沙地新造绿竹林生物量结构[J].福建林学院学报,2002,22(3):249-252.
    [8]郑容妹,郑郁善,张梅等.盐分胁迫对沿海绿竹光合作用及叶绿素的影响[J].竹子研究汇刊,2002,21(4):76-80.
    [9]郑郁善,郑容妹,姚庆端等.盐分胁迫对沿海沙地绿竹生理生化的效应[J].福建农林大学学报,2003,32(4):476-481.
    [10]张梅,郑郁善,陈礼光.滨海沙地竹子引种试验初报[J].西南林学院学报,2007,27(1):48-51.
    [11]荣俊冬,王新屯,陈羡德等.沿海沙地吊丝竹林植株养分分布特征研究[J].西南林学院学报,2007,27(3):1-5.
    [12]荣俊冬,郝瑞,祝杰伟等.沿海沙地竹林细根养分含量及其季节动态[J].福建林学院学报,2007,27(4):313-317.
    [13]陈羡德,陈礼光,荣俊东等.施肥对沿海沙地麻竹笋期叶片养分动态的影响[J].福建农林大学学报,2007,36(6):585-590.
    [14]张梅.滨海沙地竹林生态系统特性的研究[D].福建农林大学硕士论文,2004.
    [15]王新屯.吊丝竹等滨海沙地竹林生态系统特性的研究[D].福建农林大学硕士论文,2006.
    [16]洪有为.沿海沙地引种麻竹等6个竹种抗风抗盐抗旱的研究[D].福建农林大学硕士论文,2005.
    [17]Leyton I et al.Rainfall interception in forest and moorland[A].Int.Symp.Forest Hydrology[D]Pergamon Press,Oxford,1965:163-178.
    [18]George M.Interception,stemflow and throughfall in an encalyputs hybrid plantation[J].Indian Forester,1978,104(11):719-726.
    [19]Gash J H C.Analyticcal model of rainfall interception by forests[J].Qrart J R Met Soc,1979,105:43-53.
    [20]Jackso I J,Relationship between rainfall parameter and interception by tropical plant forest[J].Journal Hydrology,1975,24:215-238.
    [21]Burch G.J.et al.Comparative hydrological behaviour of forested and cleared cathments in Southeastern Australia[J].Journal of Hydrology,1989,90:19-42.
    [22]马雪华,杨茂瑞,王建军.亚热带杉木、马尾松人工林水文功能的研究[A].中国森林生态系统定位研究[D].哈尔滨:东北林业大学出版社,林业部科技司,1994.346-353.
    [23]张金池,李土生,姜志林等.苏南丘陵区主要森林类型水土保持功能研究[A].中国森林生态系统定位研究[D].哈尔滨:东北林业大学出版社,林业部科技司,1994.320-326.
    [24]陈步峰,周光益,曾庆波等.热带同地雨林生态系统水文动态特征的研究[J].植物生态学报,1998.22(1):68-75.
    [25]雷瑞德.华北松林冠对降雨动能的影响[A].中国森林生态系统定位研究[D].哈尔滨:东北林业大学出版社,林业部科技司,1994.245-251.
    [26]郭景唐,刘曙光.华北油松人工林树枝特征函数对干流量影响的研究[A].中国森林生态系统定位研究[D].哈尔滨:东北 林业大学出版社.林业部科技司.1994.268-273.
    [27]董世仁,郭景唐,满荣洲.华北油松人工林的透流、干流和树冠截留[A].中国森林生态系统定位研究[D].哈尔滨:东北林业大学出版社.林业部科技司,1994.235-244.
    [28]雷瑞德,尚廉斌,唐臻.人为活动对锐齿栎林水文功能的影响[A].中国森林生态系统定位研究[D].哈尔滨:东北林业大学出版社,林业部科技司,1994.250-254.
    [29]曾思齐,佘济云,肖育檀等.马尾松水土保持林水文功能计量研究-Ⅰ.林冠截留与土壤贮水能力[J].中南林学院学报,1996,16(03):1-8.
    [30]曾思齐,佘济云,肖育檀.马尾松水土保持林水文功能计量研究-Ⅱ.水文功能预测及功能计量表研制[J].中南林学院学报,1996,16(04):1-9.
    [31]车克钧,傅辉恩,贺红元.祁连山水源涵养林综合效能的计量研究[J].林业科学,1992,22(4):290-296.
    [32]Cannell M.G.R.World forest biomass and primary production Data[M].Academic.Press,London.1982.
    [33]Rai S.N.Journal of Ecology[M].V.58:439-463.1986.
    [34]林新春,方伟.苦竹各器官生物量模型[J].浙江林学院学报,2004,21(2):168-171.
    [35]邱尔发,陈卓梅等.山地麻竹笋用林生态系统生物量、生产力及能量结构[J].林业科学研究,2004,17(6):726-730.
    [36]何东进,洪伟等.武夷山毛竹天然林生物量与能量分配规律及其与人工林的比较研究[J]琳业科学研究,2004,17(4):533-540.
    [37]徐道旺,陈少红等.毛环竹笋用林生物量结构调查分析[J].福建林业科技,2004,31(1):67-70.
    [38]张昌顺,李昆.人工林养分循环研究现状与进展[J].世界林业研究,2005,18(4):35-39.
    [39]梁鸿木,陈学魁.麻竹单株生物量模型研究[J].福建林学院学报,1998,18(3):260-262.
    [40]郑郁善.台湾桂竹各器官生物量模型研究[J].竹子研究汇刊,1998,17(1):37-41.
    [41]吴炳生,祝小科.金佛山方竹林水源涵养功能的初步研究[J].竹子研究汇刊,1990,9(3):44-50.
    [42]孙天任,叶少川,魏泽长等.水竹林土壤和地下鞭生物量的研究[J].竹子研究汇刊,1988,7(3):54-65.
    [43]郑郁善,陈礼光,洪伟.毛竹杉木混交林生产力和土壤性状研究[J].林业科学,1998,34(专)1:32-39.
    [44]徐秋芳,姜培坤,董敦义等.毛竹林地土壤养分动态研究[J].竹子研究汇刊,2000,19(4):46-49.
    [45]刘永敏,王彦辉.毛竹林林内林冠层截留与降水的关系研究[J].竹子研究汇刊,1993,12(2):55-62.
    [46]方敏瑜,傅憋毅,谢锦忠.竹林养分循环规律研究Ⅲ.毛竹纯林竹秆流及其养分输入[J].竹子研究汇刊,1998,17(2):59-64.
    [47]谢锦忠,傅愚毅,肖基浒等.丛生竹林生态系统的水文效应研究[J].竹子研究汇刊,2000,19(4):18-25.
    [48]张喜.光箨篌竹林的物质分配与养分循环[J].竹子研究汇刊,1996,15(3):68-81.
    [49]王金锡,马志贵.箭竹生态系统的养分循环[J].中国森林生态系统定位研究,1994,162-170.
    [50]曹群根.毛竹林生态系统养分动态的研究.南京林业大学博士论文,1998:31-45.
    [51]陈卓梅.麻竹山地笋用林生态系统水文特征和养分动态的研究[D].福建农林大学硕士论文,2002.
    [52]邱尔发.麻竹山地笋用林生态系统特性及丰产培育技术研究[D].南京林业大学博士论文,2002.
    [53]邱尔发,陈卓梅,洪伟等.山地麻竹林生态系统养分分配格局[J].生态学报,2005,24(12):2693-2699.
    [54]邱尔发,陈卓梅,郑郁善等.麻竹山地笋用林凋落物发生、分解及养分归还动态[J].应用生态学报2005,16(5):811-814.
    [55]吴家森等.雷竹林营养元素分配与积累[J].竹子研究汇刊,2005,24(1):29-31.
    [56]李国庆.刘君慧等.树木引种技术[M].北京:中国林业出版社.1982.
    [57]赵可夫.植物抗盐生理[M].北京:中国科学出版社,1993.
    [58]L.Ridolfi,RD'Odorico.Duration and frequency of water stress in vegetation:An analvtical model[J].Water resources research,2000,36(8):2297-2307.
    [59]Kondo M,Murty M V R,Aragones D V.Characteristics of Root Growth and Water Uptake from Soil in Upland Rice and Maize under Water Stress[J].soil science and plant nutrition,2000,46(3):721-732.
    [60]Theodore C.Hsiao.Liu-Kang Xu.Sensitivity.of growth of roots versus leaves to water stress:biophysical analysis and relation to water transport[J].Journal of Experimental botany/the society or experimental biology,2000,51(350):1595-1616.
    [61]Daisuke Todaka,Hisashi Matsushima,Yukio Morohashi.Water stress enhances β-amylase activity in cucumber cotyledons[J].Journal of Experimental botany.2000,51(345):739-745.
    [62]Zhao.H.C,Wang B.C,Liu Y.Y.Influence of water stress on the lipid physical state of plasma membranes from P.nbetuloefolia.Bqe leaves[J].Colloids and surfaces B:biointerfaces,2000,19(2):181-185.
    [63]Zhao H.C,Wang B.C,Cai S.X.Effect of water stress on redox system in plasmic membrane of mature leaf of young P.Betuloefolia Bqe A[J].Colloids and surfaces B:biointerfaces,2000,18(2):99-103.
    [64]李吉跃等.侧柏种源耐旱特性及其机理研究[J].林业科学,1997(1):1-13.
    [65]李吉跃等.太行山区主要造林树种耐旱特性的研究(Ⅵ)[J].北京林业大学学报,1991(2):266-279.
    [66]王勋陵,王静.植物形态结构与环境[M].兰州:兰州大学出版社,1989.
    [67]肖雯,贾恢先等.几种盐生植物抗盐生理指标的研究[J].西北植物学报,2000,20(5):818-825.
    [68]张秀海,黄丛林,沈元月等.植物抗旱基因工程研究进展[J].生物技术通报,2001,17(4):21-25.
    [69]T.T.Kozlowski著.王世绩译.水分供应与树木生长[J].林业文摘,1983(2):1-11.
    [70]李吉跃等.北方主要造林树种耐早机理及其分类模型的研究(Ⅰ)[J].北京林业大学学报,1993,15(3):1-11.
    [71]张建国等.北方主要造林树种耐旱机理及其分类模型的研究(H)[M].北京:中国林业出版社,1994.
    [72]杨洪强,贾文锁,张大鹏.植物水分胁迫信号识别与传导[J].植物生理学通讯,2001,37(2):149-154.
    [73]郑国崎等.耐盐分胁迫的生物学机理及其基因工程研究进展[J].宁夏大学学报,2002,23(1):79-85.
    [74]胡新生,王世绩.树木水分胁迫生理与耐旱住研究进展及展望[J].林业科学,1998,38(2):77-89.
    [75]Youssef El-IKLIL,Mohammed KAEEOU.Salt stress effect on epinasty in relation to ethylene production and water relations in tomato[J].Agronomie INRA EDP Sciences,2000,20:399-406.
    [76]M.E.Younis,O.A.El-Shahaby.Effects of Water Stress on Growth,Pigments and 14CO_2 Assimilation in Three Sorghum Cultivars[Jl.Journai of agronomy and crop science,2000,185(9):73-82.
    [77]叶功富,张水松,施纯淦等.木麻黄造林区域地理和立地条件的研究[J].防护林科技,2000,专(1):133-136
    [78]周芳纯.竹林培育和利用[M].南京:南京林业大学竹类研究编委会.1998.
    [79]耿伯介.中国植物志(第九卷)(第一分册)[M].北京:科学出版社.1996.
    [80]Monsi.植物林分的数学模型.植物生态学译丛[M].北京:科学出版社,1974:123-144.
    [81]聂道平.不同立地杉木人工林生产力和养分循环的比较[A].中国森林生态系统定位研究[D].哈尔滨:东北林业大学出版社,林业部科技司,1994.123-135.
    [82]中野秀章,李云森译.森林水文学[M].北京:农业出版社,1983:58-216.
    [83]张万儒,许本彤.森林土壤定位研究方法[M].北京:中国林业出版社,1986.17-55.
    [84]俞元春,阮宏华,费世民.下蜀林场主要森林类型凋落物的研究[A].中国森林生态系统定位研究[D].哈尔滨:东北林业大学出版社,林业部科技司,1994.112-122.
    [85]田大伦,谌小勇,康文星等.杉木林生态系统凋落物分解量及养分释放规律[A].中国森林生态系统定位研究[D].哈尔滨:东北林业大学出版社,林业部科技司,1994.146-153.
    [86]国家林业局.中华人民共和国林业行业标准,1999:274-289,75-107,22-24
    [87]刘宁等.渗透胁迫下多花黑麦草叶内过氧化物酶活性和脯氨酸含量以及质膜相对透性变化[J].植物生理学通讯,2000,36(1):11-15.
    [88]华东师范大学生物系植物生理教研室主编.植物生理学实验指导[M].北京:人民教育出版社,1980.
    [89]沈其伟.测定水稻叶片叶绿素含量的混合液提取法[J].植物生理学通讯,1988,24(3):62-64.
    [90]陈福明,陈顺伟.混合法测定叶绿素含量的研究[J].浙江林业科技,1984,(1):19-23.
    [91]谢寅峰等.南方七个造林树种幼苗抗旱生理指标的研究[J].耐盐耐旱机理研究,1998:93-98.
    [92]张志良.植物生理学实验指导[M].上海:上海科技出版社,1978.
    [93]周芳纯.竹子的生长发育[J].竹类研究,1998,(1):53-73.
    [94]许慕农,陈炳浩主编.林木研究方法[M].山东省泰安市林业科学研究所,1983:250.
    [95]中野秀章,李云森译.森林水文学[M].北京:中国林业出版社,1983:58-216.
    [96]曹群根.毛竹林冠层对降水的截留作用[J].福建林学院学报,1991,11(1):37-43.
    [97]谢锦忠,傅懋毅,马占兴等.丛生竹林生态系统的水文效应研究-Ⅱ.麻竹林林冠对降水的截持作用[J].竹子研究汇刊,2003,22(1):13-22.
    [98]Rutter AJ,Kershaw KA,Robins PC,et al.A predictive model of rainfall interception in forest.1.Derivation of the model from observation in a plantation of Corsican pine[J].Agriculture and Forest Meteorology,1971,9:367-374.
    [99]Crockford RH,Richardson DP.Some hydrological influences on vegetation Technical Memorandum 83/18 September 1983.CSIRO Institute of Natural Resource and Environment,Division of water resources research,Camberra.
    [100]杨玉盛,李振向等.格氏栲天然林水源涵养功能的研究[J].自然资源学报,1992,7(3):217.
    [101]George M,Varghese G.Nutrient cycling in Eucalyptus globules plantation(Ⅱ)[J].Indian Forester,1990,116(12):962-968.
    [102]A.LAUCHLI,R.L.BIELESKI著.张礼忠,毛知耘译.植物的无机营养[M].北京:农业出版社,1992:120,12-20.
    [103]陆景陵.植物营养学(上册)[M].北京:北京农业出版社,1994:17-82.
    [104]K·蒙格尔,E·A·克尔克贝著.张宜春,刘同仇,谢振翅等译.植物营养原理[M].北京:农业出版社,1987:430-432,482-483.
    [105]周毅,古炎坤,陈远生等.海岸带农林复合系主要植物的养分含量和分配[J].华南农业大学学报,1999,20(2):55-59.
    [106]傅懋毅,方敏瑜,谢锦忠.竹林养分循环规律研究Ⅱ.毛竹林内降水的养分输入及其林地迳流的养分输出[J].林业科学研究,1992(5):497-505.
    [107]任海,彭少麟,刘鸿先等.亚热带人工混交林的凋落物及其生态效益研究[J].应用生态学报,1998,9(5):458-462.
    [108]傅懋毅,方敏瑜,谢锦忠等.竹林养分循环-Ⅰ.毛竹纯林的叶凋落物及其分解[J].林业科学研究,1989,3(2):207-212.
    [109]俞新妥,陈金耀.武夷山主要杉木伴生树种落叶分解速率的研究[J].南京林业大学报,1995,19(2):13-18.
    [110]梁宏温.田林老山中山杉木人工林凋落物及其分解作用的研究[J].林业科学,1993,29(4):355-359.
    [111]Strogonov,P.et al.Structure and function of plant cells under salinity[M].Moscow Nawka.1970.
    [112]Rao,GG.Pigment composition and Chlorophyllase activity in pigon and NaCl Salinity[J].Indian Jouranal Experimental Biology,1981,19:768-770.
    [113]陈献勇等.水分胁迫对果梅光合色素和光合作用的影响[J].福建农业大学学报,2000,29(1):35-39.
    [114]房江育等.无机营养和水分胁迫对春小麦叶绿素、丙二醛含量等的影响及其相关性[J].甘肃农业大学学报,2001,(1):89-94.
    [115]林思祖.厚朴叶片衰老中SOD对叶绿素、蛋白质及质膜透性效应的定量研究[J].实验生物学报,1996,(4):325-329.
    [116]Mukherjee SP,Chouduri M A.Implication of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in vigna seedlings[J].Physiol Plant,1983,58:166-170.
    [117]张建国.大兴安岭地区主要针叶树种苗木水分关系的研究[J].北京林业大学学报,1993,(增刊1):18-68.
    [118]Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress Hideki Sakamoto,Takashi Araki,Tetsuo Meshi and Masaki Iwabuchi Gene.2000,248(1-2).23-32.
    [119]程瑞平.水分胁迫对苹果树生长和叶中矿质元素含量的影响[J].植物生理学通讯,1992,28(1):32-34.
    [120]李德全,张以勤,邹琦.土壤水分胁迫对抗旱性小麦水分状况、光合及产量的影响[J].山东农业大学学报,1992,23(2):125-130.
    [121]N.E.Marcar and A.Termeat.Effects of root-zone solutes on Eucalyptus Camaldulensis and Eucalyplus Bicostats Seedling:Responses to Na~+,Mg~(2+),and Cl~-[J].Plant and Soil,1990,125:245-254
    [122]郑郁善,洪伟等.毛竹经营学[M]厦门:厦门大学出版社,1998,143-145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700