泉州湾河口湿地植物环境适应性研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泉州湾河口湿地,由于其所处的地理位置和独特的地貌特征,决定了其具有广泛的生物多样性以及典型性、稀有性和脆弱性,因此,被认为是中国亚热带河口湿地的典型代表。目前,惠安县已在泉州湾河口湿地种植400多hm2的红树植物。但是,这样的红树林面积对于7039.56hm2的泉州湾河口湿地自然保护区来说,显然不够,需要扩大红树林种植面积和规模。继续种植红树林植物,这就牵涉到适宜的树种选择和合理的植物配置问题。为了更有针对性地指导泉州湾河口湿地的红树林生态修复,必须对已经恢复的420hm2红树植物的环境适应性进行分析评估,选择适应树种,进行“适地”种植和合理配置。
     通过对泉州湾河口湿地红树林植物三种优势种,秋茄(Kandelia candel)、桐花树(Aegiceras corniculatum)、白骨壤(Avicennia marina)以及近年来新引种的木榄(Bruguiera gymnorrioza)和老鼠簕(Acanthus ilicifolius)两物种,进行不同地点、不同时期的株高、冠幅直径、叶长三个生长指标的测量,研究了以上各种红树植物各自不同的生长特征。结果表明:秋茄属于快速增长型,木榄和老鼠簕属于中速增长型,桐花树和白骨壤属于慢速增长型。红树植物的生长受周围环境的影响。高盐分和高pH可能是限制秋茄生长的主要因子。白骨壤抗寒性最差,秋茄最强,桐花树介于两者之间但远强于白骨壤。对白骨壤来说,生长的限制因子是低温。植株的密度也是影响植物生长速率的因素。
     利用标志桩法测量不同区域的土壤淤积速率。结果表明,泉州湾河口湿地淤泥淤积速度平均达到6.74cm yr-1,最快的土壤淤积发生在中游,最慢的土壤淤积发生在下游。冬季的淤积量最大,占全年的48%。夏季淤积量少。中高潮位的土壤处于快速淤积期,达到平均10.64cm yr-1淤积量,而高潮位和中低潮位仅为中高潮位淤积量的1/3。植被的不同,其下土壤的淤积速率也不同;互花米草下的土壤淤积最少,秋茄下的土壤淤积量最大,可达到平均10.40cm yr-1淤积量。泉州湾河口湿地淤积速率的时空变化与水动力学的时空变化有关。植被的差异也影响该湿地的水动力学过程。
     为了研究泉州湾河口湿地盐度和pH的变化特征,分别测定洛阳江东岸上、中、下游的不同高程(中高潮区和中低潮区)和不同植物下土壤表层(2-5cm)的盐度和pH值。泉州湾河口湿地土壤的盐度在各分区的平均值为10.8-17.0ms cm-1,变幅较大,空间差异明显,总体上呈现出上游<中游<下游的变化趋势;泉州湾河口湿地土壤的酸碱度在各分区的pH平均值为6.92-7.66,呈明显的中性偏弱碱性,且变幅较小。上、中游pH均值差异极小;下游pH略高于上、中游。部分分区及其不同潮位处土壤盐度与pH相关性较强。对泉州湾河口湿地不同植物对湿地土壤的脱盐作用进行了研究,结果表明,空地和裸地土壤的盐度大于有植被生长的土壤,距主茎(丛)越远,其盐度越大,说明植物对土壤具有脱盐作用,且不同植物对土壤的脱盐能力顺序为:秋茄>互花米草>桐花树>白骨壤。有些区域植被脱盐作用和酸化作用呈剂量关系。大多数区域的植被对土壤的脱盐作用和酸化作用剂量关系不明显,甚至是两个独立的过程。
     对泉州湾河口湿地不同区域(上、中、下游)、不同植被下的土壤铵态氮、硝态氮、有效磷以及铜、锌、铁、锰的时空分布特征以及土壤营养元素的相关关系进行了研究。研究结果表明:春季土壤铵态氮含量高于其他各季,这与春季土壤脲酶的活性有关;原生桐花树下土壤30-40 cm处的铵态氮含量最高,因为该土层为原生桐花树根系密集分布区;土壤的硝态氮、有效磷含量的高低,与温度和植物生物量关系密切;泉州湾河口湿地土壤中铵态氮和硝态氮的比值为1.05-1.97,土壤的通气性决定了铵态氮和硝态氮的比值;泉州湾河口湿地土壤有效态N/P比值在0.56与1.52之间,随着植物的生长,土壤氮的限制程度越来越严重;泉州湾河口湿地土壤有效态铜、锌、铁、锰含量时空变化明显,这与植物的吸收、季节、土壤通气性等因素变化有关。泉州湾河口湿地土壤中的营养元素组成模式和化学计量学关系具有多样性,因植被的变化,湿地土壤从富磷型转变成磷限制型。植物营养元素的化学计量学关系,因植物种类、元素种类以及微环境的不同而不同。污染物的输入对湿地土壤元素的组成和含量也有一定的影响。泉州湾河口湿地植物矿质营养的“多样性”是植物适应环境的物质基础。
     对泉州湾河口湿地不同区域(上、中、下游)不同季节、不同植被覆盖和不同层次土壤脲酶、磷酸酶、过氧化氢酶和多酚氧化酶活性的变化规律进行了研究。结果表明:脲酶和磷酸酶活性变化规律均为夏季(春季)>冬季(秋季)。同一季节不同植被下土壤脲酶的活力差异显著,有植被的土壤脲酶活性均大于无植被的空地和裸地,夏季和秋季互花米草根际土壤的脲酶活性均为最大值;磷酸酶活性表现为互花米草>原生桐花树>秋茄>白骨壤>桐花树>空地>裸地。无论有无植被,土壤脲酶和磷酸酶的活性都表现出随着土壤深度的增加其活性逐渐减弱的趋势。过氧化氢酶的季节变化规律表现为春季>秋季>冬季>夏季。冬季,过氧化氢酶酶活性在上中下游差异极其显著,上游酶活性最低,中游最高。白骨壤下土壤的过氧化氢酶活性在各季节差异不大,冬季原生桐花树下土壤的过氧化氢酶酶活性则最高。多酚氧化酶活性具有显著的季节变化,其活性大小顺序为:夏季>冬季>春季>秋季。在区域上土壤多酚氧化酶酶活性表现为上游春季>夏季>冬季>秋季,中游为春季>夏季>秋季>冬季,下游为夏季>冬季>秋季>春季。该酶活性在不同的植物下差异明显,在春季中以空地的酶活性最高,而在各季节中互花米草均显示出较高的活性。不同植被下不同土壤深度过氧化氢酶活性的变化有着不同的模式,这与植物根的构型以及植物的根系供氧有关。不同植被下不同土壤深度多酚氧化酶活性的变化有着不同的模式,这与植被下死亡根系的多少有关。过氧化氢酶和多酚氧化酶的相关性较弱(R2=0.036,n=770,p<0.01),且为负相关。此外,对泉州湾河口湿地土壤酶活性与营养元素的相关性也进行了分析。结果表明,泉州湾河口湿地土壤为氮、磷共同限制型,不同植被下土壤酶活性对营养元素的敏感性不同。各种植物适应干湿交替的湿地环境的机制各不相同,影响湿地土壤碳、氮、磷的生物地球化学循环的方式也各有差异。
     对泉州湾河口湿地洛阳江红树林区域优势植物的叶绿素荧光特征的研究发现:成熟的桐花树、秋茄和白骨壤具有较好的适应性。通过对泉州湾河口湿地洛阳江下游的红树植物桐花树、秋茄和白骨壤的光合作用的研究以及净光合速率与气候因子的相关分析发现,由于潮水的影响,3种植物的净光合速率日变化曲线均为3峰曲线,日平均净光合速率大小排序为白骨壤>桐花树>秋茄。3种植物的净光合速率与其自身的生理因子有显著相关,尤其是与胞间CO2浓度有极显著的负相关。不同植物的光合作用受气孔导度的影响不同,桐花树和白骨壤受气孔导度影响显著,而秋茄则不受气孔导度的影响。通过分析发现,白骨壤适宜生长在高盐环境下,但易受水分胁迫;秋茄适宜生长在潮水变化的环境下,易受盐分胁迫;桐花树则介于两者之间。
     最后,依据前面的研究结果,提出了红树林造林树种的适宜环境和建议布局的区域。
Quanzhou Bay estuary wetland is characterized with extensive, biodiversity eco-system typicality and vulnerability determined by its location and unique topographical character. Therefore, it had been regarded as the typical representative of the subtropical estuary wetland. At present, more than 400 hm2 of mangrove plants were planted in Quanzhou Bay estuary wetland in Huian County. However, the mangrove forestation areas is not apparently enough for the Quanzhou Bay estuary wetland nature reserve of 7039.56 hm2 of mangrove area, and the acreage and scale of mangrove forest needs to be expanded. To be continued to planting mangrove plants, it involves in the mangrove tree species selection and reasonable plant allocation. The research objects were the 420 hm2 mangrove plants. The plants'adaptability to environment was analyzed and valued in order to guide to purposeful ecologically restore the wetland in Quanzhou Bay estuary wetland. The appropriate mangrove species selected was planted and allocated in appropriate sites.
     Three dominant plant species in Quanzhou Bay estuary wetland, Kandelia candel, Aegiceras corniculatum and Avicennia marina, additional two new-introduced plant species, Bruguiera gymnorrioza and Acanthus ilicifolius, three growth indices, such as plant height, diameter, leaf length parameters in different sites and period, were measured, and their diverse growth characteristics were studied. The results showed that Kandelia candel belongs to the rapid growth species, Bruguiera gymnorrioza and Acanthus ilicifolius belong to the medium-rate growth one, Aegiceras corniculatum, Avicennia marina belong to the tardiness one. Mangrove growth was influenced by the surrounding environment. The high salinity and high pH are the main factors that may restrict the growth of Kandelia candel. Avicennia marina had the worst winter resistance among the three species plants, Kandelia candel had the strongest, Aegiceras corniculatum was between the two, but was much better than Avicennia marina. Plant density also influenced growth rate.
     The accretion rates in different zones were measured by marked stump method. The results indicated that the average accretion rate in Quanzhou Bay estuary wetland is 6.74 cm yr-1, the fastest accretion occurred in midstream, while the slowest in the downstream. The accretion in winter, accounting for 48% of the year, is more than that in summer. During the rapid accretion period, the accretion rate in the high-middle tide area reaches an average of 10.64 cm yr-1. The accretion rate in the high tide level and low tide level is only a third of the high mid-tide level. The accretion rate are different under different vegetations, the lowest rate occurs under Spartina alterniflora, while the highest rate occurs under Kandelia candel, up to an average of 10.40 cm yr-1. The temporal and spatial variation of accretion rate in Quanzhou Bay estuary wetland was related to the hydrodynamics variation. Vegetation variation also has impact on the hydrodynamic processes.
     To study the salinity variations of Quanzhou Bay estuary wetland, the salinity and pH values of top-soil (2-5 cm) under different vegetation at different elevation (high-mid tidal area and low-mid tidal area) from upstream, midstream and downstream of Luoyang River, were measured. The average soil salinities in different sections of Quanzhou Bay estuary wetland are spatially different and ranges in a large variation span, from 10.8 to 17.0 ms per cm. The salinity in soil is increasing in order:upstream> midstream>downstream. The average pH value in soil of Quanzhou Bay estuary wetland was 6.92-7.66, with a small variation range. The difference between the soil pH values from upstream and mid-stream was slightly and no significant. The pH values in soil from downstream are higher than those of the upstream and midstream. The soil salinities in some sections or tidal levels were positively correlated with the pH values significantly, the desalinated by different plants in Quanzhou Bay estuary wetlands were studied. The results showed that the salinity of the new alluvial without plants and the bare soil (the plants was destroyed) was higher than that of the soil under plants. The farther away from the basal main stem, the greater the salinity was. The desalination of plants in Quanzhou Bay estuary wetland was take placed. The order of plants desalination capability was as following:Kandelia candel> Spartina alterniflora> Aegiceras corniculatum> Avicennia marina. There was significant correlation between the pH and salinity in some zones. The correlation between the pH and salinity in most zones was weak. It indicated that soil desalination and acidification had poor correlation, or even were two independent processes in most zones.
     The characteristics of spatial-temporal distribution of ammonium nitrogen, nitrate nitrogen, available phosphorus, copper, zinc, iron and manganese in soil in different districts (upstream, midstream and downstream) and under different vegetations of Quanzhou Bay estuary wetland were studied. The result showed that the content of ammonium nitrogen of soil in spring was higher than that in other seasons; it was associated with the great urease activity of soil in spring. The content of ammonium nitrogen was highest in soil-layer of 30-40 centimeter in Centenary Aegiceras corniculatum, as the soil-layer was the dense distribution of roots system. The content of ammonium nitrogen and available phosphorus were related to temperature and plant biomass. The proportion of ammonium nitrogen to nitrate nitrogen of soil in Quanzhou Bay estuary wetland was between 1.05 and 1.97, and the soil ventilation influenced the proportion. The proportion of available nitrogen and available phosphorus of soil in Quanzhou Bay estuary wetland was between 0.56 and 1.52, the nitrogen-limited status of soil was more serious along with plants growing. The spatial-temporal variation of available copper, zinc, iron and manganese was significant, and this was involved in the absorption on nutrition elements by plants, the variation of seasons and the ventilation of soil. the composition patterns and stoichiometry of nutrition elements in soil of Ouanzhou Bay and estuary wetland had diversity. The wetland soil transformed from phosphorus-abundance to phosphorus-limitation owing to the variation of the vegetation. Stoichiometry of nutrition elements depended on the plant species, the element types and the variation of microenvironment. The input of pollutant also had some influence on the composition and content of nutrition elements in soil. The diversity of mineral nutrition elements was the foundation of the plants'adaptability to environment.
     The variations of the activities of urease, phosphatase, catalase (CAT) and polyphenol oxidase (PPO) at different soil depth, under different vegetation, in different seasons and from different district of Quanzhou estuary wetland were studied. The results revealed that the urease and phosphatase activities from summer (spring) were higher than these from winter (autumn). In the same season, the soil urease activity was significantly different under different plant species. The activity of urease in soil with vegetation was higher than that with no vegetation. The urease activity of Spartina alterniflora rizhozsphere soil was the highest. The order of the phosphatase activity in soil under different vegetation was as following:Spartina alterniflora> Centenary Aegiceras corniculatum> Kandelia candel> Avicennia marina> Aegiceras corniculatum> Bared land> new alluvial without plants. The soil urease and phosphatase enzyme activities got lower along with the increasing soil depth no matter with or without vegetations. The seasonal variation of CAT was as following:spring> autumn> winter> summer. In winter, the variation of CAT activity from different stream was greatly significant, the soil CAT activity from upstream was the lowest and that from midstream was the highest. The seasonal variation of soil CAT activity from Avicennia marina rhizosphere was not significant and that from Centenary Aegiceras corniculatum rhizosphere was the highest in winter. The seasonal variation of soil PPO activity was significant and the order of the activity was as following:summer> winter > spring> autumn. Spatially, the order of the soil PPO activity from upstream was as following:spring> summer> winter> autumn; that from the mid-stream was as following:spring> summer> autumn> winter and that from the downstream was as following:summer> winter> autumn> spring. The variation of the PPO activity from different vegetation rhizosphere was significant. There was a highest enzyme activity in bare soil in spring. Comparing with other vegetations, the soil PPO activity from Spartina alterniflora rizhozsphere was high. The variation patterns of the soil CAT activities along with the soil depths under different vegetation were involved in the roots architecture and oxygen supply by plant roots. The variation patterns of the soil PPO activities along with the soil depths under different vegetation were involved in the amount of the dead roots. The negative correlation between the activity of catalase and polyphenol oxidase in soil of Quanzhou Bay estuary wetland was weak (R2=0.036, n=770, p<0.01). In addition, the correlation between soil enzyme activity and nutrition elements in Quanzhou Bay estuary wetland were analyzed. The result showed that the soil in Quanzhou Bay estuary wetland was nitrogen and phosphorus co-limited. The response of soil enzymes on nutrient elements varied with the vegetations. The mechanism on the plants'adaptability to the wetland environment alternately dried and immersed varied with the plant species. The diverse patterns will influence the biogeochemical circles of soil carbon, nitrogen and phosphorus.
     The characteristics of chlorophyll fluorescence and photosynthesis of these dominant plants, Aegiceras corniculatum, Kandelia candel and Avicennia marina, in the wetland from different streams at different times were studied. The results showed that mature Aegiceras corniculatum, Kandelia candel and Avicennia marina were provided with good adaptability. The photosynthetics of mangrove Aegiceras corniculatum, Kandelia candel and Avicennia marina at downstream in Quanzhou Bay estuarine wetland were measured, and the relationship between the net photosynthetic rates of these plants and the climatic factors were analyzed. The results had shown that the diurnal variation of net photosynthetic rates of three species of plants were three-peak curve due to tidal action. The order of the average daily net photosynthetic rate was as following:Avicennia marina>Aegiceras corniculatum>Kandelia candel. The net photosynthetic rate of the plants was significantly correlated with their own physiological factors. There was a significant negative correlation between the net photosynthetic rate of the plants and the internal CO2 concentration, especially. The impact of stomatal conductance on the photosynthesis varied with plants. The net photosynthetic rates of Aegiceras corniculatum and Avicennia marina were significantly affected by stomatal conductance, and that of Kandelia candel was not affected. It was found that Avicennia marina had the adaptation to high salt environment, and sensitivity to flooding. But, Kandelia candel had the adaptation to tide changes, and sensitivity to high salt environment. The adaptation to high salt environment and flooding of Aegiceras corniculatum was intermediate between Avicennia marina and Kandelia candel.
     Finally, the principles of the selection on mangroves species, which include cold-resistance, toward-sea, and ecological security based on above results. The suggestion on the selection and configuration of mangrov species in the mangrove afforestation was put forward.
引文
[1]陈桂葵,陈桂珠,黄玉山,谭凤仪,1999。人工污水对白骨壤幼苗生理生态特性的影响。应用生态学报10(1):95-98。
    [2]陈鹭真,王文卿,林鹏,2005。潮汐淹水时间对秋茄幼苗生长的影响。海洋学报27(2):141-147。
    [3]池伟,陈少波,仇建标,曾国权,郑经和,仲伟,胡利华,谢起浪,李尚鲁,2008。红树林在低温胁迫下的生态适应性。福建林业科技35(4):146-148。
    [4]戴好富,梅文莉,曾艳波,洪葵,庄令,2007。红树林植物木果楝细胞毒活性和化学成分研究。天然产物研究与开发19(1):74-76。
    [5]段晓峰,许学工,2008。海平面上升的风险评估研究进展与展望。海洋湖沼通报4:116-122.
    [6]J振华,刘金铃,李柳强,林慧娜,吴浩,虎贞贞,2009。中国主要红树林湿地沉积物中汞的分布特征。环境科学。30(8):2210-2215。
    [7]傅新晖,2006。桐花树耐盐基因的克隆、功能表达及其适应性进化的研究(博十学位论文)。中山大学。
    [8]何斌源,赖廷和,王文卿,陈剑锋,邱广龙,2007。梯度淹水胁迫下全日潮海区秋茄幼苗的生长和生理反应,海洋通报26(2):42-49。
    [9]何斌源,赖廷和,2007。广西沿海红海榄造林的宜林临界线。应用生态学报18(8):1702-1708。
    [10]何磊,王友绍,王清吉,徐继荣,张偲,2006。药用红树植物角果木化学成分研究。中国药学杂志41(5):341-342。
    [11]黄宗国,2004。海洋河口湿地生物多样性。北京:海洋出版社p 1-384。
    [12]黄建设,赖小燕,钟明君,张偲,2004。红树植物玉蕊的化学成分和药理活性。天然产物研究与开发16(2):167-171。
    [13]洪有为,袁东星,2009。秋茄(Kandelia candel)幼苗对非和荧蒽污染的生理生态效应。生态学报29(1):445-455。
    [14]胡海波,康立新,1998。国外沿海防护林生态及其效益研究进展。世界林业研究2:18-25。
    [15]胡倩芳,叶勇,2009。不同滩面高程和光照条件下白骨壤幼苗的早期生长差异。福建林业科技36(1):106-110。
    [16]贾睿,郭跃伟,侯惠欣,2004。中国红树林植物白骨壤化学成分的研究。中国天然药物2(1):16-19。
    [17]咎启杰,王伯荪,于勇军,李鸣光,2003。深圳湾红树林引种海桑、无瓣海桑的生态评价。植物学报45(5):544-551。
    [18]靖元孝,李晓菊,杨丹菁,陈桂珠,2007。红树植物人工湿地对生活污水的净化效果。生态学报27(6):2365-2374。
    [19]刘荣成,2010。中国惠安洛阳江红树林。北京:中国林业出版社。
    [20]李玫,陈桂珠,2000。含油废水对秋茄幼苗的几个生理生态指标的影响。生态学报20(3):528-533。
    [21]李元跃,林鹏,2006。3种红树植物叶片结构及其生态适应。海洋科学30(7):53-57。
    [22]李柳强,丁振华,刘金铃,林慧娜,吴浩,2008。中国主要红树林表层沉积物中重金属的分布特征及其影响因素。海洋学报(中文版)30(5):159-164。
    [23]梁山,2007。角果木在盐胁迫下的基因表达及其适应性进化意义(博士学位论文)。中山大学。
    [24]梁山,周仁超,董穗穗,施苏华,2008。红树植物的盐适应性及其进化的研究进展。科学通报53(8):865-871。
    [25]雷安平,唐旭蔚,2004。不同盐度对红树林植物—秋茄的胚轴生长发育的影响.”广西林业科学23(2)·124-125。
    [26]廖宝文,邱凤英,谭凤仪,曾雯珺,徐大平,2009。红树植物秋茄幼苗对模拟潮汐淹浸时间的适应性研究。华南农业大学学报30(3):49-54。
    [27]廖宝文,郑松发,陈玉军,李玫,李意德,2004。外来红树植物无瓣海桑生物学特性与生态环境适应性分析。生态学杂志23(1):10-15。
    [28]廖岩,陈桂珠,2007。三种红树植物对盐胁迫的生理适应。生态学报27(6):2208-2214。
    [29]林慧娜,傅娇艳,吴浩,刘金玲,李柳强,虎贞贞,丁振华,2009。中国主要红树林湿地沉积物中硫的分布特征及影响因素。海洋科学33(12):79-82。
    [30]刘亚云,孙红斌,陈桂珠,2007。多氯联苯对桐花树幼苗生长及膜保护酶系统的影响。应用生态学报18(1):123-128。
    [31]陆志强,彭荔红,2002。红树林污染生态学研究进展。海洋科学26(7):26-29。
    [32]邵长伦,傅秀梅,王长云,韩磊,刘新,方玉春,李国强,刘光兴,管华诗,2009。中国红树林资源状况及其药用调查Ⅲ.民间药用与药物研究状况。中国海洋大学学报(自然科学版)39(4):712-718。
    [33]沈立茹,郭栋,尹宝伟,张青,赵雷,霍长虹,张嫚丽,史清文,王永利,2009。红树林植物木果楝化学成分的研究。中草药8:1201-1204。
    [34]田莹,江波,张涛,2007。药用红树植物老鼠簕多糖的抗氧化性研究。安徽农业科学35(30):9560-9562。
    [35]于文泉,张福锁,2001。高等植物厌氧适应的生理及分子机制。植物生理学通讯37(1):63-70。
    [36]王友绍,何磊,王清吉,张偲,2004。药用红树植物的化学成分及其药理研究进展。中国海洋药物23(2):26-31。
    [37]王佳,舒新前,2007。人工湿地植物的作用和选择。环境与可持续发展4:62-64。
    [38]闫中正,王文卿,黄伟滨,2004。红树胎生现象及其对潮间带生境适应性研究进展。生态学报24(10):2317-2323。
    [39]杨瑰丽,2007。盐胁迫下海生和陆生黄槿基因表达的芯片研究(博士学位论文)。中山大学。
    [40]叶勇,卢昌义,郑逢中,谭凤仪,2004。模拟海平面上升对红树植物秋茄的影响。生态学报24(10):2238-2244。
    [41]于凌杰,金国虔,叶波平,2009。环境因子对药用植物木榄遗传多态性及其分布的影响。海峡药学21(3):68-70。
    [42]张炎,邓志威,高天翔,付宏征,林文翰,2005。中匡红树植物角果木的化学成分。药学学报40(10):935-939。
    [43]张道敬,吴军,张偲,肖志会,黄建设,2005。红树药用植物桐花树化学成分的研究。中成药27(11):1308-1310。
    [44]张宜辉,王文卿,林鹏,2004。短时间和长时间盐度对木榄幼苗生长及叶片膜脂过氧化作用的研究。水生生物学报28(2):186-190。
    [45]张宜辉,王文卿,林鹏,2007。红树植物的盐分平衡机制。海洋科学31(11):86-90。
    [46]赵亚,郭跃伟,2004。真红树林植物化学成分及生物活性研究概况。中国天然药物2(3):135-140。
    [47]赵胡,郑文教,孙娟,林鹏,2004。红树植物桐花树生长发育过程的元素动态与抗盐适应性。海洋科学28(9):1-5。
    [48]赵可夫,冯立田,卢元芳,范海,1999。九龙江口秋茄和白骨壤的渗透调节剂及其贡献。海洋与湖沼30(1):58-61。
    [49]周涵韬,林鹏,2002。利用mRNA差异显示技术分离盐胁迫下红树植物白骨壤耐盐相关cDNA。生物工程学报18(1):51-54。
    [50]Afzal-Rafii Z., Dodd R.S., Fauvel M.T.,1999. A case of natural selection in Atlantic-East-Pacific Rhizophora. Hydrobiologia 413:1-9.
    [51]Andersen F.O., Kristensen E.,1998. Oxygen microgradients in the rhizosphere of the mangrove Avicennia marina. Marine ecology progress series 44:201-204.
    [52]Ashihara H., Wakahara S., Suzuki M., Kato A., Sasamoto H., Baba S.,2003. Comparison of adenosine metabolism in leaves of several mangrove plants and a poplar species. Plant Physiology and Biochemistry 41:133-139.
    [53]Ball M.C.,1988a. Ecophysiology of mangroves. Structure and Function 2:129-142.
    [54]Ball M.C.,1988b. Salinity tolerance in the mangrove Aegiceras corniculatum and Avicennia marina. I. Water use in relation to growth, carbon partition
    [55]Banzai T., Hershkovits G., Katcoff D.., Hanagata N., Dubinsky Z., Karube I.,2002. Identification and characterization of mRNA transcripts differentially expressed in response IO high salinity by means of differential display in the mangrove, Bruguiera gymnorrhiza. Plant Science 162(4):499-505.
    [56]Banzai T, Hanagata N., Dubinsky Z., Karube I.,2003. Fructose-2,6-bisphosphate contents were increased in response to salt, water and osmotic stress in leaves of Bruguiera gymnorrhiza by differential changes in the activity of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphate 2-phosphatase. Plant Molecular Biology 53(1):51-59.
    [57]Basyuni M., Baba S., Inafuku M., Iwasaki H., Kinjo K., Oku H.,2009. Expression of tcrpenoid synthase mRNA and terpenoid content in salt stressed mangrove. Journal of plant physiology 166(16):1786-1800.
    [58]Behera B., Das A.B., Mittra B.,2009. Changes in proteins and antioxidativc enzymes in tree mangroves Bruguiera parviflora and Bruguiera gymnorrhiza under high NaCl stress. Biological Diversity and Conservation 2(2):71-77.
    [59]Bosire J.O., Dahdouh-Guebas F., Walton M., Crona B.I., Lewis Iii R.R., Field C, Kairo J.G., Koedam N.,2008. Functionality of restored mangroves:A review. Aquatic Botany 89(2): 251-259.
    [60]Cheeseman J.M., Herendeen L.B., Cheeseman A.T., Clough B.F.,1997. Photosynthesis and photoprotection in mangroves under field conditions. Plant, Cell & Environment 20: 579-588.
    [61]Chen L.Z., Wang W.Q., Lin P.,2005. Photosynthetic and physiological responses of Kandelia candel L. Druce seedlings to duration of tidal immersion in artificial seawater. Environmental and Experimental Botany 54(3):256-266.
    [62]Correll D.L., ordan T.E., Weller D.E.,1992. Nutrient flux in a landscape:effects of coastal land use and terrestrial community mosaic on nutrient transport to coastal waters. Estuaries and Coasts 15(4):431-442.
    [63]Curran M.,1985. Gas movements in the roots of Avicennia marina (Forsk.) Vierh. Australian Journal of Plant Physiology 12:97-108.
    [64]Curran M., Cole M., Allaway W.G.,1986. Root aeration and respiration in young mangrove plants(Avicennia marina (Forsk.) Vierh.). Journal of Experimental Botany 37:1225-1233.
    [65]Datta P.N., Ghosh M.,2003. Estimation of osmotic potential and free amino acids in some mangroves of the Sundarbans, India. Acta Botanica Croatica 62:37-45.
    [66]Drennan P., Pammenter N.W.,1982. Physiology of salt secretion in the mangrove Avicennia marina (Forsk.) Vierh.. New Phytologist 91:597-606.
    [67]Dschida D.J., Platt-Aloia K.A., Thomson W.W.,1992. Epidermal peels of Avicennia germinans (L.) Stearn:a useful system to study the function of salt gland. Annals of Botany 70:501-509.
    [68]Elmqvist T., Cox P.A.,1996. The evolution of vivipary in flowering plants. Oikos 77:3-9.
    [69]Fu X.H., Huang Y.L., Deng SL., Zhou R.C., Yang G.L., Ni X.W., Li W.J., Shi S.H.,2005. Construction of a SSH library of Aegiceras corniculatum under salt stress and expression analysis of four transcripts. Plant Science 169:147-154.
    [70]Geigenberger P.,2003. Response of plant metabolism to too little oxygen. Current Opinion in Plant Biology 6(3):247-256.
    [71]He B., Lai T., Fan H., Wang W., Zheng H.,2007. Comparison of flooding-tolerance in four mangrove species in a diurnal tidal zone in the Beibu Gulf. Estuarine, Coastal and Shelf Science 74(1-2):254-262.
    [72]Hibino T., Meng Y. L., Kawamitsu Y., Uehara N., Matsuda N., Tanaka Y., Ishikawa H., Baba S., Takabe T., Wada K.,2001. Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk.) Vierh. Plant Molecular Biology 45(3):353-363.
    [73]Ho C.L., Nguyen P.D., Harikrishna J.A., Rahim R.A.,2008. Sequence analysis and characterization of vacuolar-type H+-ATPase proteolipid transcript from Acanthus ebracteatus Vahl. Mitochondrial DNA 19(1):73-77.
    [74]Hovenden M.J., Allaway W.G.,1994. Horizontal Structures on Pneumatophores of Avicennia marina (Forsk.) Vierh.-A New Site of Oxygen Conductance. Annals of Botany 73:377-383.
    [75]Huang W., Fang X. D., Li G.Y., Lin Q. F., Zhao W.M.,2003. Cloning and expression analysis of salt responsive gene from Kandelia candel. Biologia Plantarum 47(4):501-507.
    [76]Husain M., Satyanarayana B., Ibrahim R., Ibrahim S.,2008. Environmental control over the distribution of salt marsh foraminifera at Kapar mangrove ecosystem, West peninsular Malaysia. The International Journal of Environmental, Cultural, Economic and Social Sustainability 4(2):27-36.
    [77]Jithesh M.N., Prashanth S.R., Sivaprakash KR., Parida A.,2006. Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stress in the high salt toletant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Rep 25:865-876.
    [78]Kavitha K., George S., Venkataraman G., Parida A.,2010. A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92:1321-1329.
    [79]Kavitha K., Venkataraman G., Parida A.,2008. An oxidative and salinity stress induced peroxisomal ascorbate peroxidase from Avicennia marina:Molecular and functional characterization. Plant Physiology and Biochemistry 46:794-804.
    [80]Khan M.A., Aziz I.,2001. Salinity tolerance in some mangrove species from Pakistan. Wetlands Ecology and Management 9:219-223.
    [81]Krauss K.W., Cahoon D.R., Allen J.A., Ewel K.C., Lynch J.C., Cormier N.,2010. Surface elevation change and sSusceptibility of different mangrove zones to sea-level rise on Pacific High Islands of Micronesia. Ecosystems 13:129-143.
    [82]Krauss K.W., Lovelock C.E., McKee K.L., Lopez-Hoffman L., Ewe S.M.L., Sousa W.P., 2008. Environmental drivers in mangrove establishment and early development:a review. Aquatic Botany 89(2):105-127.
    [83]Kura-Hotta M., Mimura M., Tsujimura T., Washitani-Nemoto S., Mimura T.,2001. High salt-treatment-induced Na+extrusion and low salt-treatment-induced Na+accumulation in suspension cultured cells of the mangrove plant, Bruguiera sexangula. Plant, Cell & Environment 24:1105-1112.
    [84]Lewis Iii R.R.,2005. Ecological engineering for successful management and restoration of mangrove forests. Ecological Engineering 24(4):403-418.
    [85]Li N.Y., Chen S.L., Zhou X.Y., Li C.Y., Shao J., Wang R.G, Fritz E., Huettermann A., Polle A.,2008. Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorrhiza. Aquatic Botany 88: 303-310.
    [86]Loreti E., Poggi A., Novi G., Alpi A., Perata P.,2005. A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiology 137: 1130-1138.
    [87]Maathuis F.J.M., Prins H.B.A,1990. Patch clamp studies on root cell vacuoles of a salt-tolerant and a salt-sensitive Plantago species. Plant Physiology 92:23-28.
    [88]MacFarlane G.R., Pulkownik A., Burchett M.D.,2003. Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.) Vierh.:biological indication potential. Environmental Pollution 123(1):139-151.
    [89]McKee K.L., Mendelssohn I.A.,1987. Root metabolismin the black mangrove (Avicennia germinans L.):response to hypoxia. Environmental and Experimental Botany 27:147-156.
    [90]Mcleod E., Hinkel J., Vafeidis A.T., Nicholls R.J., Harvey N., Salm R.,2010. Sea-level rise vulnerability in the countries of the Coral Triangle. Sustainability Science 5(2):207-222.
    [91]Mehta P.A., Sivaprakash K., Parani M., Venkataraman G., Parida A.K.,2005. Generation and analysis of expressed sequence tags from the salt-tolerant mangrove species Avicennia marina (Forsk) Vierh. Theoretical and Applied Genetics 110(3):416-424.
    [92]Miller P.C., Hom J., Poole D.K.,1975. Water relations of three mangrove species in South Florida. Oecologia Plantarum 10:355-367.
    [93]Mimura T., Kura-Hotta M., Tsujimura T., Ohnishi M., Miura M., Okazaki Y., Mimura M., Maeshima M., Washitani-Nemoto S.,2003. Rapid increase of vacuolar volume in response to salt stress. Planta 216:397-402.
    [94]Mishra S., Das A.B.,2003. Effect of NaCl on leaf salt secretion and antioxidative enzyme level in roots of a mangrove, Aegiceras corniculatum. Indian Journal of Experimental Biology 41:160-166.
    [95]Miyama M., Shimizu H., Sugiyama M., Hanagata N.,2006. Sequencing and analysis of 14, 842 expressed sequence tags of burma mangrove, Bruguiera gymnorrhiza. Plant Science 171(2):234-241.
    [96]Miyama M., Hanagata N.,2007. Microarray analysis of 7029 gene expression patterns in Burma mangrove under high-salinity stress. Plant Science 172(5):948-957.
    [97]Miyama M., Tada Y.,2008. Transcriptional and physiological study of the response of Burma mangrove (Bruguiera gymnorrhiza) to salt and osmotic stress. Plant Molecular Biology 68: 119-129.
    [98]Nicholls R., Klein R.,2005. Climate change and coastal management on Europe's coast. Managing European Coasts:199-226.
    [99]Nguyen P.D., Ho C. L., Teo S.S., Harikrishna J.A., Rahim R.A.,2008. Sequence and transcript analyses of antioxidant genes from Acanthus ebracteatus Vahl. Tree Genetics & Genomes 4(4):705-713.
    [100]Parida A.K., Das A., Mohanty P.,2004a. Investigations on the antioxidative defence responses to NaCl stress in a mangrove, Bruguiera parviflora:Differential regula(?)ions of isoforms of some antioxidative enzymes. Plant Growth Regul 42:213-226.
    [101]Parida A.K., Das A.B., Mohanty P.,2004b. Defense potentials to NaCl in a mangrove, Bruguiera parviflora:differential changes of isoforms of some antioxidative enzymes. Journal of Plant Physiology 161(5):531-542.
    [102]Parida A.K., Jha B.,2010. Salt tolerance mechanisms in mangroves:a review. Trees-Structure and Function 24(2):199-217.
    [103]Patel N.T., Pandey A.N.,2009. Salinity tolerance of Aegiceras corniculatum (L.) Blanco from Gujarat coasts of India. Anales de biologia 31:93-104.
    [104]Perry C.T., Berkeley A., Smithers S.G.,2008. Microfacies characteristics of a tropical, mangrove-fringed shoreline, Cleveland Bay, Queensland, Australia:sedimentary and laphonomic controls on mangrove facies development. Journal of Sedimentary Research 78: 77-97.
    [105]Pczeshki S.R., Delaune R.D. Meeder JF.,1997. Carbon assimilation and biomass partitioning in Avicennia germinans and Rhizophora mangle seedlings in response to soil redox conditions. Environmental and Experimental Botany 37:161-171.
    [106]Pi N., Tam N.F.Y., Wu Y., Wong M.H.,2009. Root anatomy and spatial pattern of radial oxygen loss of eight true mangrove species. Aquatic Botany 90(3):222-230.
    [107]Prashanth S.R., Sadhasivam V., Parida A.,2008. Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic research 17(2):281-291.
    [108]Proffitt C.E., Travis S.E.,2010. Red mangrove seedling survival, growth, and reproduction: Effects of environment and maternal genotype. Estuaries and Coasts 33(4):890-901.
    [109]Rajesh A. Arumugam R., Venkatesalu V.,1999. Responses of Ceriops roxburghiana to NaCl stress. Biologia Plantarum 42:143-148
    [110]Satyanarayana B., Idris I.F., Mohamad K.A., Husain M.L., Shazili N.A.M., Dahdouh-Guebas F,2010.Mangrove species distribution and abundance in relation to local environmental settings:a case-study at Tumpat, Kelantan Delta, east coast of peninsular Malaysia. Botanica Marina 53(1):79-88.
    [111]Scholander P.F.,1968. How mangroves desalinate seawater. Physiology Plant 21:251-261.
    [112]Schumaker K.S., Sze H.,1987. Decrease of pH gradients in tonoplast vesicles by NO3 and Cl:evidence for H+-coupled anion transport. Plant Physiology 83:490-496.
    [113]Sobrado M.A.,2005. Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. Photosynthetica 43(2):217-221.
    [114]Soares M.L.G.,2009. A conceptual model for the responses of mangrove forests to sea level rise. Journal of Coastal Research Sl 267-271.
    [115]Suarez N., Medina E.,2006. Influence of salinity on Na+ and K+ accumulation, and gas exchange in Avicennia germinans. Photosynthetica 44:268-274.
    [116]Sugihara K., Hanagata N., Dubinsky Z., Baba S., Karube I.,2000. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant and cell physiology 41(11):1279-1285.
    [117]Takemura T., Hanagata N., Sugihara K., Baba S., Karube I., Dubinsky Z.,2000. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquatic Botany 68:15-28.
    [118]Takemura T., Hanagata N., Dubinsky Z., Karube I.,2002. Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza. Trees-Structure and Function 16(2):94-99.
    [119]Tam N.F.Y., Wong Y.S.,1997. Accumulation and distribution of heavy metals in a simulated mangrove system treated with sewage. Hydrobiologia 352(1):67-75.
    [120]Tomlinson P.B.,1986. The botany of mangroves. Cambridge University Press Cambridge: 1-403.
    [121]Tomlinson P.B., Cox PA.,2000. Systematic and functional anatomy of seedlings in mangrove Rhizophoraceae:vivipary explained? Botanical Journal of the Linnean Society 134:215-231.
    [122]Waditee R., Hibino T., Tanaka Y., Nakamura T., Incharoensakdi A., Hayakawa S., Suzuki S., Futsuhara Y, Kawamitsu Y., Takabe T.,2002. Functional characterization of betaine/proline transporters in betaine-accumulating mangrove. Journal of Biological Chemistry 277: 18373-18382.
    [123]Wang W.Q., Ke L., Tam N.F.Y., Wong Y.S.,2002. Changes in the main osmotica during the development of Kandelia candel hypocotyls and after mature hypocotyls were transplanted in solutions with different salinities. Marine Biology 141:1029-1034.
    [124]Wang W., Xiao Y, Chen L., Lin P.,2007. Leaf anatomical responses to periodical waterlogging in simulated semidiurnal tides in mangrove Bruguiera gymnorrhiza seedlings. Aquatic Botany 86(3):223-228.
    [125]Werner A., Stelzer R.,1990. Physiological responses of the mangrove Rhizophora mangle grown in the absence and presence of NaCl. Plant Cell Environment 13:243-255.
    [126]Xiao Y., Jie Z., Wang M., Lin G., Wang W.,2009. Leaf and stem anatomical responses to periodical waterlogging in simulated tidal floods in mangrove Avicennia marina seedlings. Aquatic Botany 91(3):231-237.
    [127]Yamada A., Sekiguchi M., Mimura T., Ozeki Y.,2002a. The role of plant CCT alpha in salt-and osmotic-stress tolerance. Plant Cell Physiology 43:1043-1048.
    [128]Yamada A., Saitoh T., Mimura T., Ozeki Y.,2002b. Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast and tobacco cells. Plant Cell Physiology 43:903-910.
    [129]Yanez-Espinosa L., Terrazas T., Angeles G.,2008. The effect of prolonged flooding on the bark of mangrove trees. Trees-Structure and Function 22(1):77-86.
    [130]Ye Y, Tam N.F.Y, Lu C.Y., Wong Y.S.,2005. Effects of salinity on germination, seedling growth and physiology of three salt-secreting mangrove species. Aquatic Botany 83: 193-205.
    [131]Ye Y, Tam N.F.Y, Wong Y.S., Lu C.Y.,2003. Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging. Environmental and Experimental Botany 49(3):209-221.
    [132]Ye Y., Gu Y.T., Gao H.Y., Lu C.Y.,2010. Combined effects of simulated tidal sea-level rise and salinity on seedlings of a mangrove species, Kandelia candel (L.) Druce. Hydrobiologia 641(1):287-300.
    [133]Ye Y, Tam N.F.Y., Wong Y.S., Lu C.Y.,2003. Growth and physiological responses of two mangrove species(Bruguiera gymnorrhiza and Kandelia candel) to waterlogging. Environmental and Experimental Botany 49(3):209-221.
    [134]Ye Y., Tam N.F.Y., Wong Y.S., Lu C.Y.,2004. Does sea level rise influence propagule establishment, early growth and physiology of Kandelia candel and Bruguiera gymnorrhiza? Journal of Experimental Marine Biology and Ecology 306(2):197-215.
    [135]Zheng W.J., Wang W.Q., Lin P,1999. Dynamics of elemental contents during the development of hypocotyls and leaves of certain mangrove species. Journal of Experimental Marine Biology and Ecology 233:247-257.
    [136]Zhong Y., Zhao Q., Shi S.H., Huang Y.L., Hasegawa M.,2002. Detecting evolutionary rate heterogeneity among mangroves and their close terrestrial relatives. Ecology Letters 5(3): 427-432.
    [1]陈玉军,廖宝文,郑松发,李玫,宋湘豫,2004。无瓣海桑、海桑、秋茄红树人工林群落动态及物种多样性研究。应用生态学报15(6):924-928。
    [2]池伟,陈少波,仇建标,曾国权,郑经和,仲伟,胡利华,谢起浪,李尚鲁,2008。红树林在低温胁迫下的生态适应性。福建林业科技35(04):146-148。
    [3]范航清,尹毅,劳丽荣,1993。广西海岸白骨壤红树植物地上部生物量的相关分析。广西科学院学报9(2):25-30。
    [4]廖宝文,李玫,郑松发,陈玉军,钟才荣,黄仲琪,2005。海南岛东寨港几种红树植物种间生态位的研究。应用生态学报16(3):403-407。
    [5]廖宝文,李玫,郑松发,陈玉军,郑馨仁,2003。外来种无瓣海桑种内、种间竞争关系的研究。林业科学研究16(4):418-422。
    [6]廖宝文,郑德璋,郑松发,1990。海桑林生物量的研究。林业科学研究3(1):47-54。
    [7]廖宝文,郑德璋,李云,郑松发,郑馨仁,黄仲琪,1999。不同类型海桑秋茄人工林地上部分生物产量及营养元素的积累与分布研究。林业科学研究10(1):11-15。
    [8]林鹏,沈瑞池,卢昌义,1994。六种红树植物的抗寒特性研究。厦门大学学报(自然科学 版)33(02):249-252。
    [9]王丽荣,李贞,蒲杨婕,廖文波,张乔民,余克服,2010。近50年海南岛红树林群落的变化及其与环境关系分析——以东寨港、三亚河和青梅港红树林自然保护区为例,热带地理。30(2):114-120。
    [10]吴沿友,杨晓勇,2009。道地中药材茅苍术的品种选育原理与技术,江苏大学出版社,48-77。
    [11]杨盛昌,李云波,林鹏,2003。冷胁迫下红树植物白骨壤和桐花树叶片热值的变化。台湾海峡22(1):46-52。
    [12]杨盛昌,林鹏,1998。潮滩红树植物抗低温适应的生态学研究。植物生态学报22(1):60-67。
    [13]杨盛昌,林鹏,1997。红树植物秋茄和桐花树抗寒力的越冬变化。应用生态学报8(6):561-565。
    [14]Ball M.C.,1988. Salinity tolerance in the mangrove Aegiceras corniculatum and Avicennia marina. I. Water use in relation to growth, carbon partitioning, and salt balance. Australian Journal of Plant Physiology 15:447-464.
    [15]Berger U., Rivera-Monroy V.H., Doyle T.W., Dahdouh-Guebas E, Duke N.C., Fontalvo-Herazo M.L., Hildenbrandt H., Koedam N., Mehlig U., Piou C.,2008. Advances and limitations of individual-based models to analyze and predict dynamics of mangrove forests:A review. Aquatic Botany 89(2):260-274.
    [16]Clough B.F., Dixon P., Dalhaus O.,1997. Allometric relationships for estimating biomass in multi-stemmed mangrove trees. Australian Journal of Botany 45:1023-1031.
    [17]Cue N.T.K., Ninomiya I.,2007. Allometric relations for young Kandelia candel (L.) Blanco plantation in northern Vietnam. Journal of Biological Sciences 7(3):539-543.
    [18]Comley B.W.T., McGuinness K.A.,2005. Above-and below-ground biomass, and allometry, of four common northern Australian mangroves. Australian Journal of Botany 53(5):431-436.
    [19]Fromard F., Puig H., Mougin E., Marty G, Betoulle J. L., Cadamuro L.,1998. Structure, above-ground biomass and dynamics of mangrove ecosystems:new data from French Guiana. Oecologia 115(1):39-53.
    [20]Khan M.A., Aziz I.,2001. Salinity tolerance in some mangrove species from Pakistan. Wetlands Ecology and Management 9:219-223.
    [21]Komiyama A., Ong J.E., Poungparn S.,2008. Allometry, biomass, and productivity of mangrove forests:A review. Aquatic Botany 89(2):128-137.
    [22]Liao W.B., Lan C.Y., Zan Q.J., Wong Y.S. Tam N.F.Y.,2004. Growth dynamics and self-thinning of the dominant populations in the mangrove community. Acta Botanica Sinica 46(5):522-532.
    [23]Luo Z., Sun O.J., Wang E., Ren H., Xu H.,2010. Modeling productivity in mangrove forests as impacted by effective soil water availability and its sensitivity to climate change using biome-BGC. Ecosystems 13:949-965.
    [24]Medeiros T.C.C., Sampaio E.,2008. Allometry of aboveground biomasses in mangrove species in Itamaraca, Pernambuco, Brazil. Wetlands Ecology and Management 16(4):323-330.
    [25]Parida A.K., Jha B.,2010. Salt tolerance mechanisms in mangroves:a review. Trees-Structure and Function 24(2):199-217.
    [26]Ross M.S., Ruiz P.L., Telesnicki G.J., Meeder J.F.,2001. Estimating above-ground biomass and production in mangrove communities of Biscayne National Park, Florida (USA). Wetlands Ecology and Management 9(1):27-37.
    [27]Saintilan N.,1997. Above-and below-ground biomass of mangroves in a sub-tropical estuary. Marine and Freshwater Research 48(7):601-604.
    [28]Seleznyova A.N.,2008. Dissecting external effects on logistic-based growth:equations, analytical solutions and applications. Functional Plant Biology 35:811-822.
    [29]Tam N.F.Y., Wong,Y.S., Lan, X.Y., Chen,G Z.,1995. Community structure and standing crop biomass of a mangrove forest in Futian Nature Reserve, Shenzhen, China. Hydrobiologia 295: 193-201.
    [30]Thi Ha H., Duarte C.M., Tri N.H., Terrados J., Borum J.,2003. Growth and population dynamics during early stages of the mangrove Kandelia candel in Halong Bay, North Viet Nam. Estuarine, Coastal and Shelf Science 58(3):435-444.
    [31]Tsoularis A., Wallace J.,2002. Analysis of logistic growth models. Mathematical Biosciences 179:21-25.
    [32]Twilley R.R., Rivera-Monroy V.H.,2005. Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. Journal of coastal research 40,79-93.
    [33]Wang W.Q., Ke L., Tam N.F.Y., Wong Y.S.,2002. Changes in the main osmolica during the development of Kandelia candel hypocotyls and after mature hypocotyls were transplanted in solutions with different salinities. Marine Biology 141:1029-1034.
    [34]Wu Y.Y., Li P. P., Liang Z., Yang X.Y., Mao H. P., Huang D. K.,2009. Acquiring the dynamic growth and development information on Atractylodes lancea. Procroceedings of the 2nd International Conference on BioMedical Engineering and Informatics (BMEI'09) pp. 1676-1679.
    [1]丁振华,刘金铃,李柳强,林慧娜,吴浩,虎贞贞,2009。中国主要红树林湿地沉积物中汞的分布特征。环境科学30(8):2210-2215。
    [2]林惠娜,傅娇艳,吴浩,刘金玲,李柳强,虎贞贞,丁振华,2009。中国主要红树林湿地沉积物中硫的分布特征及影响因素.。海洋科学33(12):79-82。
    [3]李柳强,丁振华,刘金铃,林慧娜,吴浩,2008。中国主要红树林表层沉积物中重金属的分布特征及其影响因素。海洋学报(中文版)30(05):159-164。
    [4]张乔民,温孝胜,宋朝景,刘韶,1996。红树林潮滩沉积速率测量与研究。热带海洋16(4):57-62。
    [5]Anisfeld S.C., Tobin M.J., Benoit G,1999. Sedimentation rates in flow-restricted and restored salt marshes in Long Island Sound. Estuaries 22:231-244.
    [6]Baumann R.H., Day J.J.W., Miller C.A.,1984. Mississippi deltaic wetland survival: sedimentation versus coastal submergence. Science 224:1093-1095
    [7]Ca/cnave A., Cabanes C., Dominh K., Gennero M.C. Le Provost C.,2003. Present, day sea level change:Observations and causes. Space Science Reviews 108:131-144.
    [8]Chmura G.L., Hung G.A.,2004. Controls on salt marsh accretion:a test in salt marshes of Eastern Canada. Estuaries 27:70-81.
    [9]Correll D.L., Jordan T.E., Weller D.E.,1992. Nutrient flux in a landscape:effects of coastal land use and terrestrial community mosaic on nutrient transport to coastal waters. Estuaries and Coasts 15(4):431-442.
    [10]Day Jr J.W., Rybczyk J., Scarton F., Rismondo A., Are D., Cecconi G.,1999. Soil accretionary dynamics, sea-level rise and the survival of wetlands in Venice Lagoon:A field and modelling approach. Estuarine, Coastal and Shelf Science 49:607-628.
    [11]Draut A.E., Kineke G.C., Huh O.K., Grymes III J.M., Westphal K.A., Moeller C.C.,2005. Coastal mudflat accretion under energetic conditions, Louisiana chenier-plain coast, USA. Marine Geology 214:27-47.
    [12]Goodman J.E., Wood M.E., Gehrels W.R.,2007. A 17-yr record of sediment accretion in the salt marshes of Maine (USA). Marine Geology 242:109-121
    [13]Haslett S.K., Strawbridge F., Martin N.A., Davies C.F.C.,2001. Vertical saltmarsh accretion and its relationship to sea-level in the Severn Estuary, U.K.:An investigation using Foraminifera as tidal indicators. Estuarine, Coastal and Shelf Science 52:143-153
    [14]Hatton R.S., De Laune R.D., Patrick Jr. W.H.,1983. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana. Limnology and Oceanography 28:494-502.
    [15]Howe A.J., Rodriguez J.F., Saco P.M.,2009. Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia. Estuarine, Coastal and Shelf Science 84:75-83
    [16]Krauss K.W., Cahoon D.R., Allen J.A., Ewel K.C., Lynch J.C., Cormier N.,2010. Surface elevation change and susceptibility of different mangrove zones to sea-level rise on Pacific High Islands of Micronesia. Ecosystems 13:129-143.
    [17]Kraussa K.W., Allena J.A., Cahoon D.R,2003, Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuarine, Coastal and Shelf Science 56:251-25.
    [18]Kumara, M. P., Jayatissa L. P., Krauss, K.W., Phillips, D.H., Huxham, M.,2010, High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 164(2):545-553.
    [19]Lorenzo F., Alonso A., Pages J.L.,2007. Erosion and accretion of beach and spit systems in northwest Spain:a response to human activity. Journal of Coastal Research 23(4):834-845.
    [20]McCaffrey R.J., Thomson J.,1980. A record of the accumulation of sediment and trace metals in a connecticut salt marsh. Advances in Geophysics 22:165-236.
    [21]Mitsch W.J., Gosselink J.G.,1984.Wetlands. Van Nostrand Reinhold, New York.
    [22]Montalto F.A., Steenhuis T.S.,2004. The link between hydrology and restoration of tidal marshes in the New York/New Jersey estuary. Wetlands 24:414-425.
    [23]Neubauer S.C.,2008. Contributions of mineral and organic components to tidal freshwater marsh accretion. Estuarine. Coastal and Shelf Science 78:78-88.
    [24]Nicholls R.J., Hoozemans F.M.J., Marchan M.,1999. Increasing flood risk and wetland losses due to global sea-level rise:regional and global analyses. Global Environmental Change 9: S69-S87.
    [25]Nyman J.A., Walters R. J., Delaune R.D., Patrick Jr. W.H.,2006. Marsh vertical accretion via vegetative growth. Estuarine, Coastal and Shelf Science 69:370-380.
    [26]Pasternack G.B., Brush G. S.,1998. Sedimentation cycles in a river-mouth tidal freshwater marsh. Estuaries and Coasts 21(3):407-415
    [27]Rooth J.E., Stevenson J.C., Cornwell J.C.,2003. Increased sediment accretion rates following invasion by Phragmites australis:The role of litter. Estuaries 26(2B):475-483.
    [28]Stoddart, D.R., Reed, D.J., French, J.R.,1989. Understanding salt-marsh accretion, Scolt Head Island, Norfolk. England. Estuaries 12:228-236.
    [29]Temmerman S., Govers G., Wartel S., Meire P.,2004. Modelling estuarine variations in tidal marsh sedimentation:response to changing sea level and suspended sediment concentrations. Marine Geology 212:1-4.
    [30]Wang F.C., Lu T., Sikora W.B.,1993. Intertidal marsh suspended sediment transport processes, Terrebonne Bay, Louisiana, U.S.A. Journal of Coastal Research 9:209-220.
    [31]Warren R.S., Niering W.,1993. Vegetation change on a northeast tidal marsh:interaction of sea-level rise and marsh accretion. Ecology 74:96-103.
    [32]Wolanski E.,1992. Mangrove hydrodynamics. In:Robertson A.I., Alongi D.M. (eds) Tropical mangrove ecosystems, pp 43-62. American Geophysical Union, Washington, DC.
    [11]何斌,温远光,刘世荣,2001.广西英罗港红树植物群落演替阶段的土壤化学性质.广西科学8(2):148-151,160.
    [2]林鹏,1997.中国红树林生态系.北京:科学出版社,pp.21-22.
    [3]温远光,1999.广西英罗港5种红树植物群落的生物量和生产力.广西科学6(2):142-147.
    [4]Ball M.C.,1988. Salinity tolerance in the mangrove Aegiceras corniculatum and Avicennia marina. I. Water use in relation to growth, carbon partitioning, and salt balance. Austrilian Journal of Plant Physiology 15:447-464.
    [5]Khan M.A., Aziz I.,2001. Salinity tolerance in some mangrove species from Pakistan. Wetland Ecology and Management 9:219-223.
    [6]Patterson C.S., Mendelssohn I.A.1991. A comparison of physicochemical variables across plant zones in a mangal/salt marsh community in Louisiana. Wetlands 11(1):139-161.
    [7]Wang H.Q., Hsieh Y.P., Harwell M.A., Huang W.R.,2007. Modeling soil salinity distribution along topographic gradients in tidal salt marshes in Atlantic and Gulf coastal regions. Ecological Modeling 201(3-4):429-439.
    [8]Wang W.Q., Ke L., Tam N.F.Y., Wong Y.S.2002. Changes in the main osmotica during the development of Kandelia candel hypocotyls and after mature hypocotyls were transplanted in solutions with different salinities. Marine Biology 141:1029-1034.
    [9]Wu Y.Y., Liu R.C., Zhao Y.G., Li P.P., Liu C.Q.,2009. Spatial and seasonal variation of salt ions under the influence of halophytes, in a coastal flat in eastern China, Environmental Geology 57:1501-1508.
    [10]Yang M., Liu S.L., Yang Z.F., Sun T., Beazley R.,2009. Multivariate and geostatistical analysis of wetland soil salinity in nested areas of the Yellow River Delta. Australian Journal of Soil Research 47(5):486-497.
    [1]鲍士旦,2000。土壤农化分析。北京:中国农业出版社。
    [2]盖海荣,李存东,李金才,2003。不同形态氮素比例对棉花苗期生长及物质积累的影响。河北农业大学学报26(1):9-12。
    [3]何斌源,戴培建,范航清,1996。广西英罗港红树林沼泽沉积物和大型底栖动物中重金属含量的研究。海洋环境科学15(1):35-41。
    [4]卢豪良,严重玲,2007。秋茄(Kandelia candel (L))根系分泌低分子量有机酸及其对重金属生物有效性的影响。生态学报27(10):4173-4181。
    [5]于菊英,张曼平,1992。重金属的存在形态与生态毒性。海洋湖沼通报(2):83-93。
    [6]吴沿友,韩建朝,李萍萍,吴春笃,2005。北固山湿地土壤金属元素空间分布与变化。江苏大学学报26(4):340-344。
    [7]章金鸿,陈桂珠,2001。重金属Cu、Pb、Zn、Cd在深圳福田红树林中的迁移、累积与循环。广州环境科学16(2):36-39。
    [8]Agoramoorthy G., Chen F.A., Hsu M.J.,2008. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Environmental Pollution 155(2):320-326.
    [9]Agren G.I.,2008. Stoichiometry and nutrition of plant growth in natural communities. Annual review of ecology, evolution, and systematics 39(1):153-170.
    [10]Amatangelo K.L., Vitousek P.M.,2008. Stoichiometry of ferns in Hawaii:implications for nutrient cycling. Oecologia 157(4):619-627.
    [11]Amusan A.A., Adeniyi I.F.,2005. Characterization and heavy metal retention capacity of soils in mangrove forest of the Niger Delta, Nigeria. Communications in Soil Science and Plant Analysis 36(15-16):2033-2045.
    [12]Boto K.G., Saffigna P., Clough B.F.,1985. The role of nitrate in nitrogen nutrition of the mangrove Aivfcennia marina. Marine Ecology Progress Series 21:259-265.
    [13]Chatterjee M., Massolo S., Sarkar S.K., Bhattacharya A.K., Bhattacharya B.D., Satpath K.K., Saha S.,2009. An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines. Environmental Monitoring and Assessment 150(1-4):307-322.
    [14]Chaudhuri S. Dinesh G.R., Sheeja T.E., Raja R., Jeykumar V., Srivastava R.C.,2009. Physico-chemical, biochemical and microbial characteristics of soils of mangroves of the Andamans:a post-tsunami analysis. Current Science 97(1):98-102.
    [15]Chauhan R. Ramanathan A.L.,2008. Evaluation of water quality of Bhitarkanika mangrove system, Orissa, east coast of India. Indian Journal of Marine Sciences 37(2):153-158.
    [16]Chen R.H., Twilley R.R.,1999. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River estuary, Florida. Estuaries 22(4):955-970.
    [17]Cheung K., Poon B.H.T., Lan C.Y., Wong M.H.,2003. Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere 52(9):1431-1440.
    [18]Chu H.Y., Tam N.F.Y., Lam S.K.S., Wong Y.S.,2000. Retention of pollutants by mangrove soil and the effects of pollutants on Kandelia candel. Environmental Technology 21(7): 755-764.
    [19]Elser J.J., Sterner R.W., Gorokhova E., Fagan W.F., Markow T.A., Cotner J.B., Harrison J.F., Hobbie S.E., Odell G.M. Weider L.W.,2000. Biological stoichiometry from genes to ecosystems. Ecology Letters 3(6):540-550.
    [20]Essien J.P., Essien V., Olajire A.A.,2009. Heavy metal burdens in patches of asphyxiated swamp areas within the Qua Iboe estuary mangrove ecosystem. Environmental Research 109(6):690-696.
    [21]Jickells T.D.,1998. Nutrient biogeochemistry of the coast a zone. Science 1998,281(10): 217-222.
    [22]Klausmeier C.A., Litchman E., Daufresne T., Levin S.A.,2008. Phytoplankton stoichiometry. Ecological Research 23(3):479-485.
    [23]Klausmeier C.A., Litchman E., Daufresne T., Levin S.A.,2004. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429(6988):171-174
    [24]Loladze I.,2002. Rising atmospheric CO2 and human nutrition:toward globally imbalanced plant stoichiometry. Trends in Ecology & Evolution 17(10):457-461.
    [25]Macfarlane G.R.,2002. Leaf biochemical parameters in Avicennia marina (Forsk.) Vierh as potential biomarkers of heavy metal stress in estuarine ecosystems. Marine Pollution Bulletin 44(3):244-256.
    [26]Macfarlane G.R., Burchett M.D.,2001. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Marine Pollution Bulletin 42(3):233-240.
    [27]MacFarlane G.R., Burchett M.D.,2000. Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh. Aquatic Botany 68(1):45-59.
    [28]Macfarlane G.R., Koller C.E., Blomberg S.P.,2007. Accumulation and partitioning of heavy metals in mangroves:A synthesis of field-based studies. Chemosphere 69(9):1454-1464.
    [29]Machado W., Santelli R.E., Carvalho M.F., Molisani M.M., Barreto R.C., Lacerda L.D.,2008. Relation of reactive sulfides with organic carbon, iron, and manganese in anaerobic mangrove sediments:implications for sediment suitability to trap trace metals. Journal of Coastal Research 24(4C):25-32.
    [30]Marchand C., Lallier-Verges E., Baltzer F., Alberic P., Cossa D., Baillif P.,2006. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Marine chemistry 98(1):1-17.
    [31]Nobi E.P., Dilipan E., Thangaradjou T., Sivakumar K., Kannan L.,2010. Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuarine Coastal and Shelf Science 87(2):253-264.
    [32]Otero X.L., Ferreira T.O., Huerta-Diaz M.A., Partiti C.S.M., Souza V., Vidal-Torrado P., Macias F.,2009. Geochemistry of iron and manganese in soils and sediments of a mangrove system, Island of Pai Matos Cananeia-SP, Brazil Geoderma148:318-35.
    [33]Pi N., Tam N.F.Y., Wu Y., Wong M.H.,2009. Root anatomy and spatial pattern of radial oxygen loss of eight true mangrove species. Aquatic Botany 90(3):222-230.
    [34]Price N.M.,2005. The elemental stoichiometry and composition of an iron-limited diatom. Limnology and Oceanography:1159-1171.
    [35]Proffitt C.E., Travis S.E.,2010. Red mangrove seedling survival, growth, and reproduction: effects of environment and maternal genotype. Estuaries and Coasts 33(4):890-901.
    [36]Quan W., Shi L., Han J., Ping X., Shen A., Chen Y.,2010. Spatial and temporal distributions of nitrogen, phosphorus and heavy metals in the intertidal sediment of the Chang jiang River Estuary in China. Acta Oceanologica Sinica.29:108-115.
    [37]Quigg A., Finkel Z.V., Irwin A.J., Rosenthal Y., Ho T.Y., Reinfelder J.R., Schofield O., Morel F.M.M., Falkowski P.G.,2003. The evolutionary inheritance of elemental stoichiometry in marine phytoplanklon. Nature.425(6955):291-294.
    [38]Ramose S.C., Oliveira S., Rego R.,2007. Mozeto, A. Dynamics of phosphorus and nitrogen through litter fall and decomposition in a tropical mangrove forest. Marine environmental research 64:524-534.
    [39]Ravikumar S., Williams G.P., Shanthy S., Gracelin N.A.A., Babu S., Parimala P.S.,2007. Effect of heavy metals (Hg and Zn) on the growth and phosphate solubilising activity in halophilic phosphobacteria isolated from Manakudi mangrove. Journal of Environmental Biology.28:109-114.
    [40]Reef R., Feller I.C., Lovelock C.E.,2010. Nutrition of mangroves. Tree Physiology. 30:1148-1160.
    [41]Saha M., Sarkar S., Bhattacharya B.S.K.,2006. Interspecific variation in heavy metal body concentrations in biota of Sunderban mangrove wetland, northeast India. Environment international 32(2):203-207.
    [42]Seralathan P., Rajkumar M.S., Sunilkumar V., Anandaraj N.,2006. Interstitial water chemistry of mangrove sediments, Kerala. Journal of the Geological Society of India 68(2):251-258.
    [43]Silva C.A.R.E., da Silva A.P., de Oliveira S.R.,2006. Concentration, stock and transport rate of heavy metals in a tropical red mangrove, Natal, Brazil. Marine chemistry 99(1-4):2-11.
    [44]Sundararajan M., Natesan U.,2010. Geochemistry of core sediments from Mullipallam creek, South East coast of India. Environmental Earth Sciences 61(5):947-961.
    [45]Tam N.F.Y., Wong Y.S.,1994. Nutrient and heavy-metal retention in mangrove sediment receiving waste-water. Water Science and Technology 29(4):193-200.
    [46]Tam N.F.Y., Wong Y.S.,1996a. Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environmental Pollution 94(3):283-291.
    [47]Tam N.F.Y., Wong Y.S.,1996b. Retention of wastewater-borne nitrogen and phosphorus in mangrove soils. Environmental Technology 17(8):851-859.
    [48]Yu Q., Chen Q., Else J.J., He R.N., Wu H., Zhang G., Wu J., Bai Y., Han X.,2010. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters 13:1390-1399.
    [1]褚素贞,张乃明,史静,毛昆明,2010。云南省设施栽培土壤脲酶活性变化趋势研究,土壤通报41(4):811-814
    [2]何斌,温远光,袁霞,梁宏温,刘世荣,2002。广西英罗港不同红树植物群落土壤理化性质与酶活性的研究。林业科学38(2):21-26。
    [3]黄宗国,2004。海洋河口湿地生物多样性。北京:海洋出版社。
    [4]贾新民,于泉林,沙永平,郑玉龙,赵萍,高彦彬,1995。大豆连作土壤多酚氧化酶研究.黑龙江八一农垦大学学报8(2):40-45。
    [5]廖铁军,黄云,1995。紫色土脲酶活性与土壤营养的研究。西南农业大学学报17(1):72-75。
    [6]秦燕,2007。贺兰山西坡不同草地类型土壤酶活性特征。兰州:兰州大学硕十学位论文45-46。
    [7]沈慧,姜凤岐,杜晓军,郭浩,王世忠,2000。水土保持林土壤肥力及其评价指标。水土保持学报14(2):60-65。
    [8]唐艳,杨林林,叶家颖,1999。银杏园土壤酶活性与土壤肥力的关系研究。广西植物19(3):277-281。
    [9]智晨,张亦默,潘晓云,马志军,陈家宽,李博,2006。冬季火烧与收割对互花米草地上部分生长与繁殖的影响。生物多样性14(4):275-283。
    [10]杨玉盛,何宗明,1998。格氏栲天然林与人工林根际土壤微生物及其生化特性的研究。生态学报18(2):198-202。
    [111赵鹏,陈阜,李莉,2010。秸秆还田对冬小麦农田土壤无机氮和土壤脲酶的影响。华北农学报25(3):165-169。
    [12]张成娥,陈小利,1997。黄土丘陵区不同撂荒年限自然恢复的退化草地土壤养分及酶活性特征。草地学报5(3):195-200。
    [13]张银龙,1996。九龙江口红树林土壤酶活性等性质及其细根的生态学研究。厦门:厦门大学博士学位论文。
    [14]张银龙,林鹏,1999。秋茄红树林土壤酶活性时空动态。厦门大学学报(自然科学版)38(1):129-136。
    [15]周礼恺,张志明,曹承绵,1983。土壤酶活性的总体在评价土壤肥力水平中作用,土壤学报20(4):413-418。
    [16]Boto K.G., Saffigna P., Clough B.F.,1985. The role of nitrate in nitrogen nutrition of the mangrove Avicennia marina. Marine Ecology Progress Series 21:259-265.
    [17]Corstanje R., Portier K.M., Reddy K.R.,2009. Discriminant analysis of biogeochemical indicators of nutrient enrichment in a Florida wetland. European Journal of Soil Science 60(6): 974-981.
    [18]Feller I.C., McKee K.L., Whigham D.F., O Neill J.P.,2003a. Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry 62(2):145-175.
    [19]Feller I.C., Whigham D.F., McKee K.L., Lovelock C.E.,2003b. Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida. Oecologia 134(3):405-414.
    [20]Frankenberger W.T., Dick W. A.,1983. Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America Journal 47:945-951.
    [21]Huang X., Morris J.T.,2003. Trends in phosphatase activity along a successional gradient of tidal freshwater marshes on the Cooper River South Carolina. Estuaries and Coasts 26(5): 1281-1290.
    [22]Jackson C.R., Liew K.C., Yule C.M.,2009. Structural and functional changes with depth in microbial communities in a tropical Malaysian Peat Swamp Forest. Microbial Ecology 57(3): 402-412.
    [23]Kandeler E., Tscherko D., Bardgett R.D., Hobbs P.J., Kampichler C., Jones T.H.,1998. The response of soil microorganisms and roots to elevated CO2 and temperature in a terrestrial model ecosystem. Plant and Soil 202(2):251-262.
    [24]Kang H., Freeman C.,2009. Soil enzyme analysis for leaf litter decomposition in global wetlands. Communications in Soil Science and Plant Analysis 40(21-22):3323-3334.
    [25]Kennedy B.F., De Filippis L.F.,1999. Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevillea arenaria. Journal of Plant Physiology 155(6):746-754.
    [26]Lin X., Li X.J., Sun T.H., Li P.J., Zhou Q.X., Sun L.N., Hu X.J.,2009. Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil.Bulletin of Environmental Contamination and Toxicology 83(4):542-547.
    [27]McClaugherty C.A., Linkins A.E.,1990. Temperature responses of enzymes in two forest soils. Soil Biology and Biochemistry 22(1):29-33.
    [28]Mclatchey G.P, Reddy K.R.,1998. Regulation of organic matter decomposition and nutrient release in a wetland soil. Journal of Environmental Quality 27 (5):1268-1274.
    [29]Naidoo G,1990. Effects of nitrate, ammonium and salinity on growth of the mangrove Bruguiera gymnorrhiza (L.) Lam. Aquatic Botany 38:209-219.
    [30]Otero X.L., Ferreira T.O., Huerta-Diaz M.A., Partiti C.S.M., Souza V., Vidal-Torrado P., Macias F.,2009. Geochemistry of iron and manganese in soils and sediments of a mangrove system, Island of Pai Matos (Cananeia-SP, Brazil). Geoderma 148:318-335.
    [31]Prenger J.P., Reddy K.R.,2004. Microbial enzyme activities in a freshwater marsh after cessation of nutrient loading. Soil Science Society of America Journal 68(5):1796-1804.
    [32]Reef R., Feller I.C., Lovelock C.E.,2010. Nutrition of mangroves. Tree Physiology.30: 1148-1160.
    [33]Robroek B.J.M., Adema E.B., Venterink H.O., Leonardson L., Wassen M.J.,2009. How nitrogen and sulphur addition, and a single drought event affect root phosphatase activity in Phalaris arundinacea. Science of the Total Environment 407(7):2342-2348.
    [34]Schloter M., Dilly O., Munch J.C.,2003. Indicators for evaluating soil quality, Agriculture, Ecosystems & Environment 98(1-3):255-262.
    [35]Shackle V.J., Freeman C., Reynolds B.,2000. Carbon supply and the regulation of enzyme activity in constructed wetlands. Soil Biology & Biochemistry 32(13):1935-1940.
    [36]Sinsabaugh R.L.,2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry 42(3):391-404.
    [37]Sinsabaugh R.L., Antibus R.K., Linkins A.E., McClaugherty C.A., Rayburn L., Repert D., Weiland T.,1993. Wood decomposition:nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology 74:1586-1593.
    [38]Taylor J.P., Wilson B., Mills M.S. Burns R.G.,2002. Comparison of microbial numbers and enzymatic activities in surface and subsoil using various technique. Soil Biology and Biochemistry 34:387-401.
    [39]Toberman H., Freeman C., Artz R.R.E., Evans CD., Fenner N.,2008b. Impeded drainage stimulates extracellular phenol oxidase activity in riparian peat cores. Soil Use and Management 24(4):357-365.
    [40]Turner B.L.,2010. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Applied and Environmental Microbiology 76(19):6485-6493.
    [41]Wang L.A., Yin C.Q., Wang W.D., Shan B.Q.,2010c. Phosphatase activity along soil C and P gradients in a reed-dominated wetland of North China. Wetlands 30(3):649-655.
    [42]Williams C.J., Shingara E.A., Yavitt J.B.,2000. Phenol oxidase activity in peatlands in New York State:Response to summer drought and peat type. Wetlands 20(2):416-421.
    [43]Wright A.L., Reddy K.R.,2001. Phosphorus loading effects on extracellular enzyme activity in everglades wetland soils. Soil Science Society of America Journal 65(2):588-595.
    [44]Yan J.L., Pan G.X.,2010. Effects of pulp wastewater irrigation on soil enzyme activities and respiration from a managed wetland. Soil & Sediment Contamination 19(2):204-216.
    [45]Yang Q., Tam N.F.Y., Wong Y.S., Luan T.G., Su W.S., Lan C.Y., Shin P.K.S., Cheung S.G., 2008. Potential use of mangroves as constructed wetland for municipal, sewage treatment in Futian, Shenzhen, China. Marine Pollution Bulletin 57(6-12):735-743.
    [46]Yue C.L., Chang J., Ge Y., Jiang H., Li H.P.,2008. Phosphatase and urease activities in constructed wetland and their relationship with purification of wastewater. Fresenius Environmental Bulletin 17(8A):992-996.
    [47]Zhang C.B., Wang J., Liu W.L., Zhu S.X., Liu D., Chang S.X., Chang J., Ge Y.,2010. Effects of plant diversity on nutrient retention and enzyme activities in a full-scale constructed wetland. Bioresource Technology 101(6):1686-1692.
    [1]林世青,许春辉,张其德,徐黎,毛大璋,匡廷云,1992.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的作用.植物学通报9(1):1-16.
    [2]张守仁,1999.叶绿素荧光动力学参数的意义及讨论.植物学通报16(4):444-448.
    [3]张雷明,上官周平,毛明策,于贵瑞,2003.长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响.应用生态学报14(5):695-698.
    [4]杨盛昌,林鹏,李振基,王文卿,中须贺常雄,1999.夜间低温对红树幼苗光合特性的影响.厦门大学学报(自然科学版)38(4):617-622.
    [5]缪绅裕,林海波,陈学梅,1997.大亚湾红树林研究Ⅱ.澳头港部分红树植物的生态生理.木本植物研究17(3):332-337.
    [6]缪绅裕,陈桂珠,1997.人工污水对温室中秋茄苗光合速率的影响.环境科学研究10(3):41-45.
    [7]Chen L., Wang W., Lin P.,2005. Photosynthetic and physiological responses of Kandelia candel L. Druce seedlings to duration of tidal immersion in artificial seawater. Environmental and Experimental Botany 54(3):256-266.
    [8]Kao W.Y., Tsai H.C.,1999. The Photosynthesis and chlorophyll a fluorescence in seedlings of Kandelia candel (L.) Druce grown under different nitrogen and NaCl controls. Photosynthetica 37(3):405-412.
    [9]Kao W.Y., Tsai H.C., Tsai T.T.,2001. Effect of NaCl and nitrogen availability on growth and photosynthesis of seedlings of a mangrove species, Kandelia candel (L.) Druce. Journal of Plant Physiology 158(7):841-846.
    [10]Kishitani S., Tsunoda S.,1982. Leaf thickness and Response of leaf photosynthesis to water stress in soybean varieties. Euphytica 31:657-664.
    [11]Koehn A.C., Roberds J.H., Doudrick R.L.,2003. Variation among slash pine families in chlorophyll fluorescence traits. Canadian Journal of Forest Research 33(6):1102-1109.
    [12]Li N., Chen S., Zhou X., Li C., Shao J., Wang R.,2008. Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorhiza. Aquatic Botany 88(4):303-310.
    [13]Naidoo G, Rogalla H., von Willert D.J.,1997. Gas exchange responses of a mangrove species, Avicennia marina, to waterlogged and drained conditions. Hydrobiologia 352(1):39-47.
    [14]Planchon C., Sarrafi A., Ecochard R.,1989. Chlorophyll fluorescence transient as a genetic marker of productivity in Barley. Euphytica 42:269-273.
    [15]Reynolds M.P., Singh R.P., Ibrahim A., Ageeb O.A.A., Larque-Saavedra A., Quick J.S.,1998. Evaluating physiological traits to complement empirical selection for wheat in warm environments. Euphytica 100:85-94.
    [16]Rohacek K., Bartak M.,1999. Technique of the modulated chlorophyll fluorescence:Basic concepts, useful parameters, and some applications. Photosynthetica 37:339-363.
    [17]Tuffers A., Naidoo G., Von Willert D.,2001. Low salinities adversely affect photosynthetic performance of the mangrove, Avicennia marina. Wetlands Ecology and Management 9(3): 235-242.
    [18]Van Kooten O., Snel J.F.H.,1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research 25:147-150.
    [1]黄宗国,2004.海洋河口湿地生物多样性。北京:海洋出版社pp.1-384.
    [2]林竑斌,2005.桐花树造林技术研究.中国城市林业2005,3(3):36-37.
    [3]林鹏,1994.中国红树林环境生态及经济利用.北京:高等教育出版社p.40-43
    [4]林鹏,1997.中国红树林生态系。北京:科学出版社pp.47-52.
    [5]刘荣成,洪志猛,叶功富,范少辉,崔丽娟,张建生.2004.泉州湾洛阳江滨海湿地的生态恢复与重建对策.福建林业科技,2004,31(3):75-78.
    [6]刘荣成,2008.红树林造林树种的选择——以洛阳江湿地为例.福建林业科技35(1):231-234.
    [7]卢昌义,林鹏,1999.从海参南岛向福建九龙江引种红树植物技术研究.见:林鹏.红树林研究论文集(第3集).厦门:厦门大学出版社pp.335-342.
    [8]郑文教,林鹏.1988.盐度对秋茄幼苗的生长和水分代谢的效应.台湾海峡7(3):264-267
    [9]Drennan P., Pammenter N.W.,1982. Physiology of salt secretion in the mangrove Avicennia marina (Forsk.) Vierh.. New Phytologist 91:597-606.
    [10]Khan M.A., Aziz I.,2001. Salinity tolerance in some mangrove species from Pakistan. Wetlands Ecology and Management 9:219-223.
    [11]Wang W.Q., Ke L., Tam N.F.Y., Wong Y.S.,2002. Changes in the main osmotica during the development of Kandelia candel hypocotyls and after mature hypocotyls were transplanted in solutions with different salinities. Marine Biology 141:1029-1034.
    [12]Ye Y., Tam N.F.Y., Lu C.Y., Wong Y.S.,2005. Effects of salinity on germination, seedling growth and physiology of three salt-secreting mangrove species. Aquatic Botany 83:193-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700