区域性山地环境的地质灾害风险评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类的生存史上从未曾间断过与地质灾害的斗争。在全球板块构造活跃、气象条件异常和人类不断拓展生存空间的今天,地质灾害对人类造成的威胁仅次于地震,成为第二大自然灾害。地质灾害往往具有突发性、多发性和连续性的特点,为了提高对地质灾害的防御能力,需要掌握地质灾害的发育特征和发展规律,估算灾害造成的损失大小,这就是地质灾害风险评价研究的范畴。地质灾害风险的研究已开展多年,虽然对于其研究方法和技术体系等重要问题的看法仍有分歧,但各国学者均认同地质灾害风险评价是防灾减灾的重要一环,是风险管理和制定区域发展规划的前提和基础。
     对于区域地质灾害风险评价,评价结果是否合理,能否用于指导防灾减灾,主要决定于3个方面:首先是否建立了能够全面、系统地体现区域地质灾害风险特征的评价指标体系;其次,是否建立了合理的风险评价模型;第三,能否将指标因子和评价模型整合于一套平台以实现快速、准确地分析和决策。本文紧紧围绕区域地质灾害风险评价中的关键问题,立足于以“评价手段信息化、评价过程可视化、评价结果定量化、评价目的服务化”为趋势的国内外最新的研究动态,选择位于中国西部山区地质环境脆弱、地质灾害发育、社会经济落后的甘孜藏族自治州作为研究区,以地质灾害风险评价方法论为指导,针对风险评价中两大核心问题——概率和损失,分别以地质灾害危险性评估和易损性评估进行量化,通过构建的风险评估模型进行风险的量化分级。整个过程将专家知识经验融入风险评价的理论和方法,特别注重遥感技术在风险识别和信息提取、信息技术在空间分析与数据管理中的应用,取得的主要成果有:
     (1)较为全面地对地质灾害风险评价方法论进行了论述。方法论包括地质灾害风险评价研究中涉及的术语基本概念的详解;风险评价中常用的概率分布与统计方法的说明和对风险评价基本内容的论述。
     (2)初步建立了立足于GIS平台的地质灾害风险评价的技术体系。地质灾害风险评价中数据管理、获取和分析的复杂性使GIS的运用成为必然。文章论述了通过GIS进行地质灾害风险评价可遵循“建库→分析→开发→应用”这一流程。其中基础数据库包括区域地质环境数据、灾害体数据、社会经济数据和实时监测数据等;分析过程可采用空间叠加分析和邻域统计分析等方式;开发过程可针对需求在基于不同平台进行,方便灾害管理和数据更新。
     (3)根据致灾机理,选定13个对灾害形成和分布、发育具有重要“贡献率”的要素构建评价指标体系,采用适用于大区域评价的信息量法进行甘孜州的地质灾害危险性评价。通过风险识别和地质灾害危险性分析,初步掌握了甘孜州现阶段地质灾害的数量、类型、分布和发育特征,初步揭示了并依据地质灾害易发程度将甘孜州地质灾害危险性分为4个等级。
     (4)尝试在数据资料不完备的条件下进行区域地质灾害易损性评价。易损性评价的难点就在于评价数据难于获得,一是由于承灾体众多无法完全统计,二是因为某些承灾体无法进行量化,三是因为研究区工作基础薄弱,许多重要指标无数据记录。对于这一问题,一是利用已有数据对无法获取信息的单元通过插值的办法进行推导,或如本文采用定性分析结合定量评估的方法:对于无法获取的数据,选用具有相关性的可以获取的数据代替;对于无法量化的数据,采用定性的方式参与评价,很好地克服了空间尺度地质灾害系统的复杂性和对于信息获取的局限性,使在不完备信息条件下的易损性评价成为可能。
     (5)甘孜州地质灾害风险与分区评价。在现有风险评价模型的基础上,将区域防灾减灾能力作为一项因子参与评价,构建甘孜州地质灾害风险评价模型。风险分析的结果显示,甘孜州地灾风险具有东高西低,南高北低的总体特征。最高的风险源位于区域的东部和东南部等地质条件易于灾害发生、人口密集、社会经济条件相对较好的高山峡谷地区,而西部和西北部高平原和丘状高原则为低风险区。
     (6)通过“投资-收益”分析,以地质灾害风险分级管理为原则构建“治理、监测、搬迁”的综合风险管理方案。对具有高风险、对重要设施和大量人员构成威胁的灾害点投入资金进行工程治理;在具有中等风险的地区构建“群策群防”体系,在高风险设立地质灾害专业监测设施;对于风险级别较高且难于治理的灾害,建议以搬迁的方式规避风险。
The war between humans and geological hazards has nenvr interrupted during the long history of the human beings. Nowadays within the abnormal weather condition,the plate movement is activity, and we humans continued expanding our living space, geological hazards, the damage which it made is only a little bit lighter than the earthquake, has become the second serious nature hazards. Geological hazards has a characteristics of emergency, multiple and continuous, in order to enhance the ability of disasters prevention and reduction, it is very necessary to know the development characteristic and to learn the development rule of the geological hazards, foremore, to estimate what kinds of damage would be done by the hazards, that is what’s the risk assessement theories concerned. The geological hazards risk assessment has been studied for many years, though there are different opinions about the research mathods and technical systems, risk assessment is deemed as an importmant step for the hazards prevention and reduction by the scholars all over the world. And also it is been seen as the precondition and the basement of the risk management and make planning for the region.
     If the risk assessment result is reasonable enough or it could be used to guild the hazards prevention and reduction mainly decisioned by three factors. The first is to build an overall and systemic assessment index system that the characteristics of local geological hazards could be embadyed in it; The second is to build a precise assessment model; The third is to integrate the index and the model into a platform such as GIS in order to take rapid analysis and make correct decision. The paper focuses on the key issues about risk assessment, standing on the lastest research development both domestic and abroad, takes Garze, which has a sensitive geological environment, a number of geological disastersas and a backward social and economic condition region in the mountain area in western China as the instance, takes the Geological Hazards Assessment Methodology as a guide, directed towards the two core issues of the risk assessment– the probability and loss, respectively quantified by geological hazard assessment and vulnerability assessment, constructing a risk assessment model to quantitative risk and classification the risk. Throughout the process inegrate the expert knowledge and experience into the risk assessment theory and the methods, special focus on the application of remote sensing technology in risk identification and information extraction, information technology in spatial analysis and data management, the main results obtained is as follows:
     (1) More comprehensive methodology for risk assessment of geological hazards are discussed. Disaster risk assessment methodology, including the study of geological terms the basic concepts involved in Detailed; risk assessment and statistical probability distribution commonly used description of the method and the basic content of the discussion of risk assessment.
     (2) Initially established a platform based on GIS technology of geological disaster risk assessment system. The complexity of geological data management, retrieval and analysis makes the inevitable the use of GIS in the disaster risk assessment. The paper discusses the geological hazards risk assessment based on GIS could follow the way“Build database→Analysis→Redevelopment→Application”. The underlying database includes regional geological environment data, volume data disasters, socio-economic data and real-time monitoring data, etc. Analysis can be overlay analysis and statistical analysis of neighborhood, etc. Demand-driven development process can be carried out based on different platforms to facilitate disaster management, and data updates.
     (3) Choosing 11 cactors that are considered as have an important“contribution rate”of the disaster development according to disaster-causing mechanism and construction the assessment index system. Using information value model which is very suitable for a large scale to assess the geological hazards risk. By risk identification and hazards analysis, initially understand the quantify, tpyes, distribution and development features of Garze geological hazards. Find out the susceptibility degree of hazards and based on that calssify the hazard into four degree.
     (4) Try to assess the geological hazards vulnerability under an incomplete data condition. The difficulty of vulnerability assessment lies in the difficult to obtain the evaluation data. First, because there are too many elements at risk to statistics, and second some elements at risk cannot be quantified of their values. For this problem, a method of combining qualitative evaluation and quantitative evaluation is used in this paper, using relativity and available data to instead of unacquirable, using of qualitative methods if the data cannot be quantified of their values.
     (5) The risk assessment and divisional evaluation of Garze geological hazards. Based on the current risk assessment model, taking the capability of disaster prevention as a factor of the involved in the evaluation, building Ganzi Geological Hazards Assessment Model. The results indicated the geological hazards has a feature that lower in the north and west and higher in the south and east of Garze. The highest risk source located in the high-mountain gorge areas in the east and east-south where there have a feature that prone to hazards, densely populated, a better social and economic conditions, while the high plain and hilly Plateau in the west and west-north are suggested to be the low risk area.
     (6) By "investment - benefit" analysis and classification management principle, taking the "governance, monitoring, removal" as the geological hazards risk management scheme. The hazards that have a high level of risk and threat of impartment equipment and people are suggested to engineering treatment to eliminate the risk;“mass observation and mass preparedness”system should be constructed in the middle risk area and professional monitoring measures should be took into practice in high risk area; peoples who located in the high risk area and the hazards are difficult to control are suggest to move in order to avoid the risk.
引文
[1] AGS. Landslide risk management practice note[s]. Australian Aeromechanics Society. 2008. In press.
    [2] Aleotti P., Chowdhury R., 1999. Landslide hazard assessment: Summary review and new perspective, Bulletin of Engineering Geology of the Environment, (1999) 58: 21-44.
    [3] Artessa Saldivar-Sali, Herbert H. Einstein, 2007, A Landslide Risk Rating System for Baguio, Philippines. Engineering Geology, 91, 85– 99.
    [4] B. Calvo, F. Savi, 2009, A real-world application of Monte Carlo procedure for debris ?ow risk assessment. Computers & Geosciences, 35, 967–977.
    [5] Bell F G. G eological Hazards, Their Assessment, Avoidance and Mitigation [M] . E & FN S poon, London, 1999.
    [6] Blaikei P T, Cannon I Davis, B Wisner. At Risk: Natural Hazards. Peoples Vulnerability, and Disasters, Routledge [M] .London, 1994.
    [7] Brabb, Earl E.; Pampeyan, Earl H.; Bonilla, Manuel G. 1977. The Earthquake Engineering Online Archive Landslide susceptibility in San Mateo County, California.
    [8] Brabb, E.E., 1984. Proc. innovative approach to landslide risk mapping. Proc. 4th Int'l. Symp. On Landslides. Canad. Geotech.Soc. Toronto.
    [9] Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P., 1991. GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Landforms 16, 427–445.
    [10] Carrara, A., F. Guzzetti, M. Cardinali, P. Reichenbach. 1999. Use of GIS technology in the prediction and monitoring of landslide hazard natural disaster. Natural Hazards.
    [11] Cees J. van Westen, Enrique Castellanosa and Sekhar L. Kuriakose, 2008, spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102, 112-131.
    [12] Chung, C.F., Fabbri, A.G., 1999. Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering and Remote Sensing 65 (12), 1389– 1399.
    [13] Clarke, C., Munasinghe, M.Economic aspects of disasters and sustainable development: an introduction. In: Munasinghe, M., Clarke, C. (Eds.), Disaster Prevention for Sustainable Development, Economy and Policy Issues [M]. IDNDR and the World Bank, Washington, 1995. 1-10.
    [14] Crozier M.J., Glade T., 2004, Landslide hazard and risk: Issues, Concepts and approach, Landslide Hazard and Risk. Edited by Thomas Glade, Malcolm Anderson and Michael J. Crozier, 2004 Wiley, 2-40.
    [15] Einstein, H.H., 1997, Landslide Risk– Systematic approaches to assessment and management in Landslide Risk Assessment, Cruden and Fell (eds.), Balkema, Rotterdam, 25-50.
    [16] Einstein, H.H., 1988, Special Lecture, Landslide risk assessment. Proc. 5th Int. Symp. On Landslides, Lausanne, Switzerland. A.A. Balkema, Rotterdam, the Netherlands, Vol.2, 1075-1090.
    [17] F.C. Dai, C.F. Lee, Y.Y. Ngai. 2002, Landslide risk assessment and management: an overview. Engineering Geology, 64, 65-87.
    [18] Fell R., 1994, Landslide risk assessment and acceptable risk, Canadian Geotechnical Journal, 31, 261-272.
    [19] Fell R., Hartford, D., 1997. Landslide risk management. In: Cruden, D., Fell, R. (Eds.), Landslide Risk Assessment. Balkema, Rotterdam, pp. 51–109.
    [20] Fell R., Chapman, T.G., Maguire, P.K., 1991. A model for prediction of piezometric levels in landslides. In: Chandler, R.J. (Ed.), Slope Stability Engineering. Thomas Telford, London, pp. 73– 82.
    [21] Fell R., Ho K.K.S., Lacasse S., Leroi E., 2005, a framework for landslide risk assessment and management, Proceedings International Conference on Landslide Risk Management, London, Taylor & Francis, 3-25.
    [22] Glade, T., 2003. Vulnerability assessment in landslide risk analysis. Die Erde 134,121–138.
    [23] Gupta, R.P., Joshi, B.C., 1989. Landslide hazard zoning using the GIS approach—a case study from the Ramganga catchment, Himalayas. Engineering Geology 28, 119–131.
    [24] Han H.J et al. Climate Change Impact Assessment and Development of Adaptation Strategies in Korea. Vol-No.RE-01.2007
    [25] Hutchinson JN, 1995, Landslide hazard assessment. In: Proc VI Int Symp on Landslides, Christchurch, 1:1805-1842.
    [26] H. S. B. Duzgun, 2005. Analysis of roof fall hazards and risk assessment for Zonguldak coal basin underground mines. International Journal of Coal Geology, 64, 104-115.
    [27] H. S. B. Duzgun, H. H. Einstein, 2005. Assessment and management of roof fall risks in underground coal mines. Safety Science, 42, 23-41.
    [28] IUGS (International Union of Geological Sciences), 1997. Working group on landslides, committee on risk assessment, quantitative risk assessment for slopes and landslides: state of the art. In: Cruduen, D.M., Fell, R. (Eds.), Proceedings International Workshop on Landslides Risk Assessment. Balkema, Rotterdam, pp. 3–12.
    [29] J.L. Zêzere, R.A.C. Garcia, S.C. Oliveira, E. Reis, 2007, Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal). Geomorphology, 94, 467–495.
    [30] Jordi Corominas, JoséMoya, 2008, A review of assessing landslide frequency for hazard zoning purposes. Engineering Geology, 102, 193-213.
    [31] Kienholz, H., 1978. Geomorphology and natural hazards of Grindewald, Switzerland, scale 1:10,000. Artic and Alpine Research 10 (2), 169–184.
    [32] Leone, F., Aste, J.P., Leroi, E., 1996. Ulnerability assessment of elements exposed to mass-moving: working toward a better risk perception. In: Senneset, K. (Ed.), Landslides. Balkema, Rotterdam, pp. 263– 269.
    [33] Leroi, E., 1996, Landslide hazard– Risk maps at different scales: objectives, tools and developments. In Landslides, Proc. Int. Symp. On Landslides, Trondheim, (Ed. K. Senneset), 35-52.
    [34] Leroueil, S., Locat, J., 1998. Slope movements—geotechnical characterization, risk assessment and mitigation. In: Maric, B., Lisac, L., Szavits-Nossan, A. (Eds.), Geotechnical Hazards. Balkema, Rotterdam, pp. 95–106.
    [35] Lee E.M. and Jones DKC, 2004, Landslide risk assessment. Thomas Telford, London, 454p.
    [36] Graciela Metternicht, Lorenz Hurni, Radu Gogu, 2005, remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sensing of Environment, 98,284– 303.
    [37] M Panizza. Environmental Geomorphology [M].Amsterdam: Elsevier, 1996.1 - 268.
    [38] Michael R. Thomas. 2002. A gis-based decision support system for brown field redevelopment landscape and urban planning,58: 7– 22.
    [39] Morgan, G.C., Rawlings, G.E., Sobkowicz, J.C., 1992. Evaluating total risk to communities from large debris flows. Proceedings of 1st Canadian Symposium on Geotechnique and Natural Hazards. BiTech Publishers, Vancouver, BC, Canada, pp. 225– 236.
    [40] Morgenstern, N.R., 1997. Toward landslide risk assessment in practice. In: Cruden, D., Fell, R. (Eds.), Landslide Risk Assessment. Balkema, Rotterdam, pp. 15– 23.
    [41] Nakamura Takechro(UNEP ) and Chris Hutton (UNCHS). 2001.“Assessment of vulnerability to flood impacts and damages”[UNEP/UNCHS Assessment]. Third Meeting of the Expert Working Group on Flood Events and Their Impacts in the Yangtze River Basin. Beijing.
    [42] Nilsen.T.H. Wright, R. H., 1979. Relative slope stability and land use planning in the San Francisco Bay region. U.S.G.S. Prof. Paper, vol.994.
    [43] R.Anbalaganm, Bhawani Singh.1996. Landslide hazard and risk assessment mapping of mountainous terrains– a case study from Kumaun Himalaya, India. Engineering Geology 43,237–246.
    [44] Saeki Kawagoe, So Kazama, Priyantha Ranjan Sarukkalige, 2009, Assessment of snowmelt triggered landslide hazard and risk in Japan. Cold Regions Science and Technology 58,120–129.
    [45] Shunlin Liang. Advances in Land Remote Sensing [M]. springer.com, 2005.
    [46] SMITH K. Environment Hazards: Assessing Risk and Reducing Disaster [M] .London: Routledge, 1996.
    [47] Soeters, Rvan Westen, C J. LANDSLIDES: INVESTIGATION AND MITIGATION. CHAPTER 8 - SLOPE INSTABILITY RECOGNITION, ANALYSIS, AND ZONATION [M]. Transportation Research Board, 1996.
    [48] Thouret, J. C. Urban hazards and risks; consequences of earthquakes and volcanic eruptions: an introduction [J].Geo.Journal, 1999, 49 (2), 131-135.
    [49] Th.W.J. van Asch. 1984. Landslides: The deduction of strength parameters of materials from equilibrium analysis, CATENA 11,39–49.
    [50] United Nations Department of Humanitarian Affairs,1991. Mitigating Nature Disasters: Phenomena,Effects and Options A Manual for Policy Makers and Planners. New York: United Nations.1-16.
    [51] Varnes, D.J., 1978. Slope movement types and processes. Chapter 2: In: R.L. Schuster and R.J. Krizek (Editors), Landslide Analysis and Control. Spwial Report 176, Transportation Research Board, N.R.C., National Academy of Sciences, Washington, DC, pp. 11-33.
    [52] Varnes, D.J., 1984. Landslide hazard zonation: A review of principles and practice. IAEG Monograph, UNESCO, 59 p.
    [53] Varnes, D.J. and the International Association of Engineering Geology Commission on Landslides and Other Mass Movements, 1984, Landslide hazard zonation: A review of principles and practice. Natural Hazards, vol.3, Paris, France. UNESCO, 63p.
    [54] van Westen, C.J., Rengers, N., Terlien, M.T.J., Soeters, R., 1997. Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geologische Rundschau 86, 404– 414.
    [55] W. Neil Adger,2006. Vulnerability. Global Environmental Change 16,268–281.
    [56] Wong, C.K.L., 1998. The New Priority Classification Systems for Slopes and Retaining Walls. GEO Report No. 68. Geotechnical Engineering Office, Civil Engineering Department, The Government of the Hong Kong Special Administrative Region, Hong Kong Government Press, Hong Kong, 117 pp.
    [57] Wong, H.N., Ho, K.K.S., Chan, Y.C., 1997. Assessment of consequence of landslides. In: Cruden, R., Fell, R. (Eds.), Landslide Risk Assessment. Balkema, Rotterdam, pp. 111– 149.
    [58] Whitman, R.V., 1984, Evaluating calculated risk in geotechnical engineering. ASCE Journal of Geotechnical Engineering, 110(2), 145-188.
    [59] William J.Petak, Arthur A.Atkission;向立云,程晓陶等.译.自然灾害风险评价与减灾对策[M].北京:地震出版社, 1993,16-34.
    [60] Wu, T.H., Tang, W.H. and Einstein, H.H., 1996, Landslide Hazard and Risk Assessment in Landslides Investigation and Mitigation. Eds. K. Turner, R.L. Schuster. Transportation Research Board Special Report 247, Academy Press.
    [61] Zimmermann, M., Haeberli, W., 1992. Climatic change and debris ?ow activity in high mountain areas—a case studies in the Swiss Alps. Catena. Supplement Band 22.
    [62]陈毓川,赵逊,张之一,等.世纪之交的地球科学-重大地学领域进展[M].北京:地质出版社, 2000.
    [63]陈彦光.基于EXCEL的地理数据分析[M].北京:科学出版社,2010.
    [64]陈玉和,姜秀娟.风险评价[M].北京:中国标准出版社,2009.
    [65]崔鹏,杨坤,韦方强,等.泥石流灾情综合评估模式[J ] .自然灾害学报,2002 ,11 (1) :20 - 27.
    [66]邓国仕,郑万模,杨桂花,等.四川省丹巴县地质灾害及其防治对策[J].沉积与特提斯地质, 2006,26(4) :101 - 104.
    [67]邓康龄,?蔡建中,?陈在雄,?等.?甘孜地区地质的初步认识[J]?.地质论评,1960?:172?‐?176.
    [68]董颖,等.地质灾害风险评估理论与实践[M].北京:地质出版社, 2009.
    [69]杜军,杨青华.基于GIS与AHP耦合的汶川震后次生地质灾害风险评估[J].中国水土保持,2009, (11):14-16.
    [70]段丽萍,陈启国,唐业旗.四川省丹巴县滑坡地质灾害分布特征浅析[J].沉积与特提斯地质, 2007,27(4) :106 - 110.
    [71]傅广海.四川省甘孜州温泉类型、成因及旅游开发模式研究[D].成都理工大学: 2009.
    [72]樊杰,周成虎,顾行发,邓伟,张兵.国家汶川地震灾后重建规划资源环境承载能力评价[M].北京:科学出版社,2009.
    [73]范继跃,何政伟,赵银兵,等. GIS在四川九龙县地质灾害区划中的应用[J].成都理工大学学报(自然科学版), 2007,34(2) :180 - 184.
    [74]冯利华.基于神经网络的洪水预报研究[J ] .自然灾害学报. 2000 ,9 (2) :45 - 48.
    [75]《甘孜藏族自治州概况》编写组.甘孜藏族自治州概况[M].北京:民族出版社, 2009.
    [76]高吉喜,中村武洋,潘英姿,夏堃堡.洪水易损性评价——洞庭湖地区案例研究[M].北京:中国环境出版社,2004.
    [77]高华喜.滑坡灾害风险区划与预测研究综述[J].灾害学,2010,25(2):124-128.
    [78]高克昌,殷坤龙.区域滑坡灾害危险性时间预测研究J].湖南科技大学学报(自然科学版),2010,25(3):47-49.
    [79]高克昌,崔鹏,赵纯勇,韦方强.基于地理信息系统和信息量模型的滑坡危险性评价——以重庆万州为例[J].岩石力学与工程学报,2006,25(5):991-996.
    [80]高兴和.地质灾害承灾体易损性探究[J].中国地质矿产经济,2002, (4):28– 31.
    [81]高庆华,马宗晋,张业成,等.自然灾害评估[M].北京:气象出版社, 2007.
    [82]高职高专院校资源勘查类专业“十一五”规划教材编委会.地质灾害调查与评价[M].北京:地质出版社,2008.
    [83]葛全胜.中国自然灾害风险综合评估初步研究[M].北京:科学出版社,2008.
    [84]光磊.基于GIS的信息量法在滑坡危险性评价中的应用[J].地质与资源, 2005, 14 (3):231– 233.
    [85]郭跃.自然灾害的社会易损性及其影响因素研究[J].灾害学, 2010, 25 (1):84– 88.
    [86]郭跃.灾害易损性研究的回顾与展望[J].灾害学, 2005, 20 (4):92– 96.
    [87]国家减灾委员会,科学技术部抗震救灾专家组.汶川地震灾害综合分析与评估[M].北京:科学出版社, 2008.
    [88]海香.重庆市奉节县地质灾害风险评价及防灾减灾措施[D].西南大学: 2007.
    [89]何意平.基于GIS的地质灾害评价研究: [D].北京:中国地质大学, 2006.
    [90]何政伟,黄润秋,许强,姜琪文,赵银兵,刘少军.基于ARCGIS的地质灾害防治信息与决策支持系统的研制[J].吉林大学学报(地球科学版),2004,34(4):601-606.
    [91]胡焕校,张立明.三峡库区地质灾害易损性模糊综合评价[J].地质灾害与环境保护, 2008, 19(2): 57 - 61.
    [92]黄润秋.地质环境评价与地质灾害管理[M].北京:科学出版社,2008.
    [93]黄润秋,李曰国.三峡工程水库岸坡稳定性预测的逻辑信息模型[J].水文地质工程地质. 1992(01)
    [94]黄润秋.面向21世纪地质环境管理及地质灾害评价的信息技术[J].国土资源科技管理. 2001(03)
    [95]黄润秋.“5·12”汶川大地震地质灾害的基本特征及其对灾后重建影响的建议[J].中国地质教育.2008(02)
    [96]金晓东,罗云.区域社会经济“易灾性”综合评价实践[J] .灾害学, 1994, 8 (1) : 32-37.
    [97]姜彤,许朋柱,许刚.中国山地自然灾害易损性分析[A].山地资源开发与持续发展[C].成都:成都科技大学出版社,1997. 102- 109.
    [98]李京,蒋卫国,陈云浩,等.基于GIS多源栅格数据的模糊综合评价模型[J].中国图像图形学报, 2008,12(8) :1446 - 1450.
    [99]李明辉,郑万模,陈启国.丹巴县地质灾害发育特征及成因探讨[J].自然灾害学报, 2008,17(1) :49 - 53.
    [100]李明辉,郑万模,石胜伟,等.丹巴县甲居滑坡复活机制及其稳定性分析[J].山地学报, 2008,26(5) :577 - 582.
    [101]李娜.地质灾害危险性评估技术与防治规划编制及防治工程质量控制要点实用册[M].宁夏银川:宁夏大学音像出版社, 2004.
    [102]李清富,江见鲸.城市防洪工程风险决策方法[J].灾害学,1995,10 (1): 13-17.
    [103]李瑞敏,王祎萍,王轶,刘永生.中国主要环境地质问题[M].北京:地质出版社, 2007.
    [104]李为乐,唐川,杨武年,等. RS和GI S技术在县级区域泥石流危险区划中的应用研究——以四川省泸定县为例[J].灾害学, 2008,23(2) :71 - 75.
    [105]林义.社会保险[M].北京:中国金融出版社, 1998.
    [106]刘传正,等.长江三峡库区地质灾害成因与预测研究[M].北京:地质出版社, 2007.
    [107]刘芳.城市生态环境基础状况的遥感质量评价方法及模型研究[D].山东科技大学:2007.
    [108]刘连中,罗培.基于GIS的重庆市地质灾害风险评估系统[J].重庆师范大学学报(自然科学版), 2005, 22 (3): 105 - 108.
    [109]刘岁海.四川省康定县地质灾害危险性分区评价[J].资源环境与工程,2006,20(1) :39 - 43.
    [110]刘希林.区域泥石流易损性评价[J].中国地质灾害与防治学报, 2001, 12(2):7-12.
    [111]刘希林.陈宜娟.泥石流风险区划方法及其应用——以四川西部地区为例[J].地理科学.2010, (04) .
    [112]刘希林.苏鹏程.四川省泥石流风险评价[J].灾害学. 2004,19(02) :23-28.
    [113]刘希林.我国泥石流危险度评价研究:回顾与展望[J ] .自然灾害学报, 2002 ,11 (4) :1 - 8.
    [114]刘希林,莫多闻,王小丹.区域泥石流易损性评价[J].中国地质灾害与防治学报,2001,12 (2):7– 12.
    [115]刘希林.沟谷泥石流危险度计算公式的由来及其应用实例[J].防灾减灾工程学报.2010,(03) .
    [116]卢全中,彭建兵,赵法锁.地质灾害风险评估(价)研究综述[J].灾害学, 2003, 18(4):59-63.
    [117]罗培,况明生,光磊,等.重庆市地质灾害风险评估信息系统[J].自然灾害学报,2004 13(6):30-35.
    [118]罗元华.地质灾害风险评估方法[M].北京:地质出版社,1998.
    [119]罗元华,杨军.最新国内外地质调查与灾害灾情评估理论及实践手册[M].北京:地质出版社.2006.
    [120]茆诗松,等.概率论与数理统计[M].北京:中国统计出版社. 1999.
    [121]倪化勇.四川庐定县城后山泥石流灾害及其风险防御[J].中国地质, 2009, 36(1) :229 - 237.
    [122]倪化勇,李宗亮,巴仁基.四川泸定县泥石流灾害成因、特征与防治建议[J].工程地质学报,2010,18(1) :91 - 99.
    [123]宁宝坤,曲国胜,张宁,李亦纲. IKONOS卫星影像在城市防震减灾及震害评价中的应用研究[J].地震地质, 2004, 26(1): 161-168.
    [124]潘懋,李铁峰.灾害地质学[M].北京:北京大学出版社, 2002.
    [125]曲彦斌.自然灾害研究的人文社会科学探索视点[J]文化学刊. 2008,(04): 5-13.
    [126]《全国地质灾害通报》.中华人民共和国国土资源部. 2009.
    [127]任鲁川.区域自然灾害风险分析研究进展[J].灾害学, 1999, 14(3): 242-246.
    [128]阮沈勇,黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用[J].成都理工学院学报,2008,28 (1):89–92.
    [129]石莉莉,乔建平.基于GIS和贡献权重迭加方法的区域滑坡灾害易损性评价[J].灾害学,2009,24(3):46-50.
    [130]石菊松,石玲,吴树仁.滑坡风险评估的难点和进展[J].地质评论, 2007, 53(6):797-806.
    [131]石菊松,石玲,吴树仁,王涛.滑坡风险评估实践中的难点与对策[J].地质通报, 2009, 28(8):1020-1030.
    [132]石胜伟,谢忠胜,王军朝,等.丹巴甲居滑坡成因机制分析及防治对策建议[J].探矿工程(岩土钻掘工程), 2008,(9) :59 - 62.
    [133]史培军.论灾害研究的理论与实践[J].南京大学学报(自然科学版) , 1991 (11) : 37 - 42.
    [134]史培军.再论灾害研究的理论与实践[J].自然灾害学报, 1996, 5 (4) : 6 - 17.
    [135]史培军.三论灾害系统研究的理论与实践[J].自然灾害学报, 2002, 11 (3) : 01 - 09.
    [136]史培军.四论灾害系统研究的理论与实践[J].自然灾害学报, 2005, 14 (6) : 01 - 07
    [137]史培军.五论灾害系统的理论与实践[J] .自然灾害学报, 2009,18(5) : 1-9.
    [138]苏均和.概率论与数理统计[M].上海:上海财经大学出版社.1999.
    [139]苏小琴,朱静,凌昊平.四川省泸定县主要地质灾害区域危险性评价[J].山西建筑,2008,34(4) :123 - 124.
    [140]孙锡年.地质灾害风险评估研究[J].资源环境与工程, 2009, 23(4):436-439.
    [141]唐荣昌,韩渭宾.四川活动断裂与地震[M].北京:地质出版社, 1993.
    [142]唐川.城市泥石流易损性评价[J].灾害学,2005, 20 (2):11– 17.
    [143]唐小平,郑万模,杨学之.康定白土坎滑坡特征及防治对策[J].地质灾害与环境保护,1999,10(1) :29 - 33.
    [144]汪洋,郭跃,赵纯勇,等.基于3S技术的地质灾害易损性面评价研究[J].灾害学,2003,18(4):17-23.
    [145]王朝阳,许强,陈伟.滑坡灾害风险性评价研究现状与展望[J].路基工程,2009,147 (6):7-8.
    [146]王德伟,丁俊,魏伦武,等.四川康定城地质灾害易发分区评价[J].沉积与特提斯地质, 2006,26(2) :92 - 95.
    [147]王士革,钟敦伦,张小刚,谢洪.山地灾害及防灾减灾基础知识[M].成都:四川大学出版社,2005.
    [148]魏伦武,王德伟,丁俊,等.四川康定城地质灾害危险性分区评价[J].沉积与特提斯地质, 2006,26(2) :81 - 87.
    [149]吴柏清,何政伟,刘严松.基于GIS的信息量法在九龙县地质灾害危险性评价中的应用[J].测绘科学, 2008,33(4) :146 - 147.
    [150]吴树仁,石菊松,张春山,王涛.地质灾害风险评估技术指南初论[J].地质通报, 2009, 28(8):995-1005.
    [151]吴树仁,石菊松,王涛,汪华斌.地质灾害活动强度评估的原理、方法和实例[J].地质通报, 2009, 28(8):1127-1137.
    [152]吴越,陆新,李晓雷.信息量法在库岸地质灾害区域预测中的应用[J].后勤工程学院学报, 2008, 24(3):11-14.
    [153]万庆.洪水灾害系统分析与评估[M].北京:科学出版社, 1999 .74- 148.
    [154]向喜琼.区域滑坡地质灾害危险性评价与风险管理[D].成都理工大学:2005.
    [155]向喜琼,黄润秋.地质灾害风险评价与风险管理[J] .地质灾害与环境保护, 2000 ,11 (1) :38 - 41.
    [156]谢志刚.效用分析与保险定价决策研究[J].财经研究,1997,8:27-31.
    [157]小阿瑟·威廉姆斯.风险管理与保险[M].北京:中国商业出版社,1992.
    [158]许强,张一凡,陈伟.西南山区城镇地质灾害易损性评价方法——以四川省丹巴县城为例[J].地质通报, 2010,29(5) :729 - 738.
    [159]杨桂花,邓国仕,郑万模,等.浅谈丹巴县地质灾害的危害及防治建议[J].沉积与特提斯地质, 2006,26(3) :85 - 88.
    [160]杨江波,唐川,沈娜.四川康定师专前山危岩发育特征及应急治理对策[J].地质学报, 2009,29(1) :59 - 61.
    [161]尹江涛. RS和GIS支持下的大渡河上游地质灾害风险评价及预警-以丹巴县为例:[D].成都:成都理工大学, 2009.
    [162]殷坤龙,柳源.滑坡灾害区划系统研究[J] .中国地质灾害与防治学报, 2000, 11 (4): 28 - 32.
    [163]殷跃平,李廷强,唐军,等.四川省丹巴县城滑坡失稳及应急加固研究[J].岩石力学与工程学报, 2008,27(5) :971 - 978.
    [164]袁永旭,郑万模,郑勇,等.四川省康定城白土坎滑坡特征及其防治对策[J].中国地质灾害与防治学报, 1998,9(增刊) :235 - 241.
    [165]张春山.黄河上游地区地质灾害形成条件与风险评价研究[R]. 2003.
    [166]张春山.汶川地震重灾区地质灾害风险评价的重要意义和方法[J].四川行政学院学报,2010, (3):54-58.
    [167]张春山,张业成,马寅生等.区域地质灾害风险评价要素权值计算方法及应用——以黄河上游地区地质灾害风险评价为例[J].水文地质工程地质,2006, (6):44-88.
    [168]张春山,张业成,胡景江,等.中国地质灾害时空分布特征与形成条件[J] .第四纪研究, 2000 , 20 (6) :559 - 566.
    [169]张继权,冈田宪夫.综合自然灾害风险管理-全面整合的模式与中国的战略选择[J].自然灾害学报, 2006, 15(1) : 29-37.
    [170]张梁,张建军.地质灾害风险区划理论与方法[J].地质灾害与环境保护, 2000, 11 (4):323-328.
    [171]张梁,张业成,罗元华,等.地质灾害灾情评估理论与实践[M] .北京:地质出版社, 1998.
    [172]张立明.三峡工程库区地质灾害易损性评价与区划研究:[D].长沙:中南大学, 2008.
    [173]张茂省,唐亚明.地质灾害风险调查的方法与实践[J].地质通报,2008, 27(8): 1205-1216.
    [174]张明远.甘孜州地质灾害分布及重点地段地质灾害防治对策[J].四川地质学报, 2000, 20(4) : 298 - 302.
    [175]张艳,刘丹强,周璐红.地质灾害土地资源易损性评价定量探讨[J].水文地质工程地质, 2010, 37 (3) : 122 - 132.
    [176]张业成,胡景江,张春山,等.中国地质灾害危险性分析与灾变区划[J] .海洋地质与第四纪地质, 1995, 15 (3) :55 - 67.
    [177]张业成,张春山,张梁,等.中国地质灾害系统层次分析与综合灾度计算[J] .中国地质科学院院报,1993 , (27) :139 - 154.
    [178]赵银兵.面向矿产资源开发的地质生态环境研究[D].成都:成都理工大学, 2009.
    [179]郑万模,唐小平,王泉.雅砻江畔雅江县城区地质灾害特征及其防治对策[J] .地质灾害与环境保护,1997,8(3) :13 - 20.
    [180]郑万模,周东,王锦.四川省甘孜州地质灾害特征与防灾减灾对策[J].地质灾害与环境保护, 2000 11(2): 102 - 104.
    [181]宗恬,黄崇福.自然灾害风险评估中诸因素之间关系的初探[J].应用基础与工程科学学报, 2004 12(增刊):22-26.
    [182]周成虎.洪水灾情评估信息系统研究[J].地理学报,1993,48(1):1-18.
    [183]邹乐乐. SEN系统的易损性[M].北京:中国科学环境出版社,2010.
    [184]卓宝熙.工程地质遥感判释与应用[M].北京:中国铁道出版社,2002.
    [185]朱亮璞,承继成,潘德扬,范心圻.遥感图像地质解译教程[M].北京:地质出版社,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700