水文时间序列数据挖掘算法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水文时间序列数据挖掘是数据挖掘技术在水文领域的应用,它根据水文领域的数据特点和信息需求,选用高效的数据挖掘算法,从大量的水文数据中提取有用的信息和知识,为解决水文领域的突出问题提供新的分析方法和科学的决策支持。目前水文时间序列数据挖掘算法研究与应用还处于起步阶段,本文在对数据挖掘技术和水文时间序列数据特点深入分析的基础上,重点研究了应用数据挖掘技术进行水文时间序列模式描述、相似性度量、分类与预测等算法,并通过实测水文资料进行验证和评测。论文主要研究内容与成果如下:
     1.以水文时间序列局部极值点和形态特征为切入点,提出了一种基于要素特征的水文时间序列模式描述方法。解决了由于短期波动频繁、局部极值点多、数据点对应时刻不均匀等原因造成的分段描述算法不适用的难题。实验表明,这一方法简单、高效,适用性强。
     2.提出了一种改进动态时间扭曲距离公式——自适应分段动态时间扭曲(ASDTW)距离公式,从而构成了基于要素特征的水文时间序列相似性度量的完整算法,实验表明,该方法无论是对模式趋势的总体把握情况,还是与原始时间序列的拟合误差情况,均具有独特的优势,比较适合水文时间序列的数据特点。
     3.探索了利用数据挖掘算法进行水文时间序列分类问题。根据水文时间序列数据的特点,对模型树和基于实例学习算法进行改进。将支持向量回归与模型树等算法相融合,应用于等时隔的水文过程数据挖掘;从样本集提取、干扰样本处理和属性加权三个方向,对传统的基于实例学习算法进行改进,并与自适应分段动态时间扭曲(ASDTW)距离公式相结合,建立了不等时隔的水文要素摘录系列数据挖掘模型。
     4.选择一水文站流域作为实验区域,将基于支持向量回归的模型树算法进行了具体应用,建立了数据挖掘预测模型,并与新安江模型进行了对比分析,它具有输入数据少、过程简单、维护工作量小等优点,且精度能够得到保证。
     5.针对水文数据库水文要素摘录系列,利用改进实例学习算法,从数据准备开始、经数据预处理、初始实例集、样本集选取、属性权重赋值、相似属性度量,最终建立起水文要素摘录系列数据挖掘模型,通过与传统的降雨径流经验相关法进行比较分析,水文要素摘录系列数据挖掘模型具有操作简单、计算快、维护简单、成果可靠的优点,具有实用价值。
     本文主要创新点:在动态扭曲(DTW)距离基础上,适应水文时间序列数据特点,提出了自适应分段动态时间扭曲(ASDTW)距离公式,并与改进的基于实例学习算法相结合,解决了水文要素摘录系列数据挖掘问题;首次将支持向量回归与模型树等算法相融合应用于逐日径流预报,丰富了水文时间序列数据挖掘技术手段。
Hydrological Time Series Data Mining, namely applying Data Mining techniques to hydrological time series, can offer new analysis methods and scientific decision supports to solve outstanding problems in the field of hydrology, by extracting useful information and knowledge from large hydrologic data with high-efficiency algorithms of Data Mining according to the feather of data and information demands in the field of hydrology. However the research and application of its algorithms is still in its beginning stage. In this paper, Based on analysis of Data Mining techniques and the feather of hydrological time series the Research is made on Data Mining algorithms applied to hydrological time series of Pattern Representation, Similarity Measure, Classification and Prediction, which are validated and evaluated by hydrologic data of actual measurement. The main contents and achievements are as follows:
     1. Taking local extreme points and feathers of Hydrological Time Series as the breakthrough point, a Pattern Representation method based on the factor feathers of hydrological time series is put forward, which can solve unfitness of the piecewise linear Pattern Representation algorithm for a variety of reasons such as short-term frequent fluctuations, much more local extreme points, unequal time intervals corresponding to data points and so on. The experiment shows that this method is simple, high-efficiency and adaptive.
     2. A improved Dynamic Time Warping formula, Adaptive Segmented Dynamic Time Warping(ASDTW), is put forward and then the algorithms of factor-feather-based hydrological time series Similarity Measure are formed completely. The experiment shows that the method has its unique advantages in regardless of wholly controlling of Pattern trends or fitting error of primary time series, and therefore it more fits the characteristic features of hydrological time series.
     3. It is discussed how to classify hydrological time series with Data Mining algorithms. And algorithms of Model Trees and Support Vector Regression are improved according to feathers of hydrological time series. Support Vector Regression and Model Trees are fused and are applied to equal-interval hydrological processes Data Mining. Classical algorithms of Instance-based Learning is improved in three directions-samples extracting, disturbances controlling and attributes weighting-and combined with Adaptive Segmented Dynamic Time Warping(ASDTW) in order that a Data Mining Model of unequal-interval hydrologic factors Series extracted is established.
     4. The algorithm of Model Trees based on Support Vector Regression is applied to practice in a watershed with hydrology stations as study area. A Data Mining predicting model is made and compared with Xin'anjiang model. By contrast, it can be shown that the former has its merits such as less data input, simpler process, smaller amount of maintenance, etc, and ensures its accuracy at the same time.
     5. A Data Mining Model of hydrologic factors series extracted, in view of hydrologic factors series extracted in hydrological databases, is made passing through an continuous procedure from data preparing, data preprocessing, instances initializing, samples choosing, attributes weighting, and similarity measure. Comparing with the traditional method of flood forecasting Rainfall-runoff Experience Correlation, the former is simple, rapid, easy-maintenance and reliable and so it is of practical value.
     The main innovations in this paper are as follows:Adaptive Segmented Dynamic Time Warping (ASDTW) formula is put forward based on DTW according to feathers of Hydrological data. An improved algorithm of Instance-based Learning combined with ASDTW solves the problem of Data Mining for hydrologic factors series extracted. For the first time, Model Trees are fused with Support Vector Regression and applied to daily runoff predicting successfully, which enrich techniques of hydrological time series Data Mining.
引文
1.艾萍,倪伟新.我国水文数据挖掘技术研究的回顾与展望[J].计算机工程与应用,2003,(28):13-17.
    2.包为民.水文预报[M].北京:中国水利水电出版社,2006,28-30.
    3.陈南祥,黄强,曹连海等.径流序列的相空间重构神经网络预测模型[J].河海大学学报(自然科学版),2005,33(5):490-493.
    4.陈喜,陈永勤.日雨量随机解集模式研究[J].水利学报,2001,(4):47-52.
    5.丁晶,邓育仁.随机水文学[M].成都:成都科技大学出版社,1988:1-9.
    6.丁胜祥,董增川,张莉.基于决策树算法的洪水预报模型[J].水力发电,2011,(7):8-11.
    7.丁文荣,周跃,周晓路.用小波神经网络耦合模型预测流域年均产沙量[J].人民长江,2010,41(1):74-78.
    8.董丽丽,徐淑琴,刘杨等.小波随机耦合模型在查哈阳农场降雨量预测中应用[J].中国农村水利水电,2011,(4):26-29.
    9.董晓莉.时间序列数据挖掘相似性度量和周期模式挖掘研究[D].天津大学,2007.
    ]0.邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1996.
    11.冯平,杨鹏,李润苗.枯水期径流量的中长期预报模式[J].水利水电技术,1992,(2):6-9.
    12.付亚丽.基于R/S分析的昆明城区降水量枯水预测[J].中国农村水利水电,2011,(6):21-23.
    13.葛维亚.我国水文数据库建设回顾[J].水资源研究,2007,(2):40-43.
    14.何俊仕,刘恒.浑河洪水预报实时校正技术研究[J].人民黄河,2009,31(3):39-43.
    15.纪波林.水文时间序列基本算法组件及其柔性集成[D].河海大学,2004.
    16.金菊良.遗传算法在水资源工程中的应用研究[D].四川大学,2000.
    17.蓝永超,杨志怀,权建民等.灰色预测模型在径流长期预报中的应用[J].中国沙漠,1997,17(1):49-52.
    18.李凤玲,高瑞忠,冯国华等.两种改进的BP模型预报黄河内蒙段冰情信息及效果分析[J].中国农村水利水电,2011,(7):69-72.
    19.李荣峰,冀雅珍.水文时间序列分析计算方法的研究进展与展望[J].山西水利科技,2005,(4):4-6.
    20.李士进,张晓花,万定生等.基于DTW的测站水位影响关系估计[J].江南大学学报(自然科学版),2007,6(6):678-682.
    21.李彦彬,黄强,徐建新等.河川径流中长期预测的支持向量机模型[J].水力发电学报,2008,27(5):28-32.
    22.李致家.洪水预报误差置信限与误差评定方法研究[J].河海大学学报,2005(1),32-36.
    23.刘艳伟,闵惠学,郦英.支持向量机在湄池站洪峰水位预报中的应用[J].海洋预报,2011,28(1):72-76.
    24.柳卓.系统聚类方法在洪水预报中的应用研究[D].浙江大学,2007.
    25.吕安民,柯美忠等.灰色系统模型在时间序列模式中的应用研究[J].微机发展,2002,12(5):41-43.
    26.卢敏,张展羽,冯宝平.支持向量机在径流预报中的应用探讨[J].人民长江,2005,36(8):38-39.
    27.罗玉华,左军,李岩.SVM及其在文本分类中的应用[J].科技信息,2007,(3):441-442.
    28.马寅午,周晓阳等.防洪系统洪水分类预测优化调度方法[J].水利学报,1997,4:1-25.
    29.毛北平,梅军亚,张金辉等.洞庭湖三口洪道水沙输移变化分析[J].人民长江,2010,41(2):38-42.
    30.彭立,苏春江,徐云等.径流丰枯时间序列的分形特征及R/S分析[J].安徽农业科学,2007,35(1):4-5.
    31.邱云飞.面向不确定性数据的决策树分类方法研究[D].辽宁工程技术大学,2010.
    32.邵年华,沈冰,黄领梅等.KPCA-SVM水文时间序列预测模型的建立与应用[J].西北农林科技大学学报(自然科学版),2009,37(9):204-208.
    33.沈冰,李荣峰,黄领梅等.年径流预测的灰色自记忆模型[J].西北农林科技大学学报(自然科学版),2005,33(4):132-134.
    34.孙占东.水文时间序列数据挖掘研究与应用——以频繁序列研究为例[D].中国科学院南京地理与湖泊研究所,2003.
    35.覃光华,王顺久,缪韧.基于卡尔曼滤波技术的人工神经网络权重估算及应用[J].四川大学学报(工程科学版),2008,40(4):25-28.
    36.汤成友,缈韧.基于小波变换的水文时间序列分解及周期识别[J].人民长江,2006,37(12):32-34.
    37.唐国磊,周惠成,李宁宁等.一种基于决策树技术的中长期径流分级方法[J].水力发电学报,2011,30(3):45-49.
    38.田景环,王文君,徐建华.基于BP算法的龙门站含沙量预报模型[J].人民黄河,2008,30(3):26-27.
    39.王栋,朱元甡.基于MEM1谱分析的水文时间序列隐含周期特性研究[J].水文,2002,22(2):19-23.
    40.王光生,苏佳林,沈必成等.神经网络理论在河道洪水预报中的应用[J].水文,2009,29(5):55-58.
    41.王金忠,胡环.新安江模型在辽宁清河水库产流预报中的应用[J].东北水利水电,2001(9):35-36.
    42.王鹏.基于数据挖掘的洪峰预测系统的研究与实现[D].河海大学,2006.
    43.王文圣,袁鹏,丁晶.小波分析及其在日流量随机过程模拟中的应用[J].水利学报,2000(11):43-48.
    44.王宇丽,孟慧颖.新安江模型在辉发河流域的应用[J].《东北水利水电》2000(7),40-42.
    45.王兆礼,陈晓宏,黄国如,杨涛.东江流域汛期降雨序列的小波分析[J].人民长江,2010(2):52-55.
    46.吴德.水文时间序列相似模式挖掘的研究与应用[D].河海大学,2007.
    47.吴佳文,王丽学,汪可欣.粗糙集理论在年径流预测中的应用[J].节水灌溉,2008(4):35-37.
    48.夏军.中长期径流预报的一种灰关联模式与预测方法[J].水科学进展,1993,4(3):190-197.
    49.徐冬梅,赵晓慎.中长期水文预报方法研究综述[J].水利科技与经,2010,16(1):1-7.
    50.许惠君.数据挖掘技术及其在径流预报中的研究与应用[D].华中科技大学,2006.
    51.薛晔伟,沈竣毅,张云.一种编辑距离算法及其在网页搜索中的应用[J].西安交通大学学报,2008,12:1450-1454.
    52.杨敏.水文时间序列相似性模型的研究与应用[D].河海大学,2002.
    53.杨一鸣,潘嵘,潘嘉林等.时间序列分类问题的算法比较[J].计算机学报,2009,30(8):1259-1265.
    54.左吉昌,李承军,樊荣.水库优化调度函数的SVM方法研究[J].人民长江,2007,38(1):8-9.
    55.张弛.数据挖掘技术在水文预报和洪水调度中的应用研究[D].大连理工大学,2005.
    56.张弛,王本德,李伟.数据挖掘技术在水文预报中的应用及水文预报发展趋势研究[J].水文,2007,27(2):74-77.
    57.张俊,程春田,杨斌斌等.基于改进BP网络的日径流预报模型研究[J].水电能源科学,2008,26(6):14-16.
    58.张勇传.洪水分类预测及优化调度[J].水科学进展,1997,8(2):123-129.
    59.张利平,王德智,夏军等.R/S分析在洪水变化趋势预测中的应用研究[J].中国农村水利水电,2005,(2):38-40.
    60.张晓娟.数据挖掘技术在水资源领域的应用研究[D].中国水利水电科学研究院,2007.
    61.赵璀.灰色系统在瑞丽江长期水文预报中的应用[J].云南水力发电,2007,23(6):5-8.
    62.赵庆绪,侯宝灯,邢冰等.基于灰色关联分析的岷江上游流域震后水质综合评价[J].四川环境,2010,29(1):61-64.
    63.赵人俊.流域水文模拟[M].北京:水利电力出版社,1984.
    64.赵晓梅,盖美.基于等维新息灰色马尔可夫模型的大连城市用水量预测[J].水文,2011,31(1):67-70.
    65.朱明.数据挖掘[M].武汉:中国科技大学出版社,2002:35-36.
    66.朱兵,罗建东,王文圣.水文序列小波变换模数的关联维数研究[J].人民黄河,2007,29(10):36-37.
    67. Abrahart RJ, See LM. Multi-model data fusion for river flow forecasting:an evaluation of six alternative methods based on two contrasting catchments. Hydrology and Earth System Science, 2002,(6):655-670.
    68. Agrawal R, C Faloutsos, and A Swami,Efficient similarity search in sequence databases, In Int. Conference on Foundations of Data Organization (FODO),1993:69-84.
    69. Agrawal R, Lin K I, Sawhney H S,et al., Fast similarity search in the presence of noise, scaling, and translation in time-series databases, Proceeding 21st Int'l Conference Very Large Data Bases(VLDB'95),1995:490-501.
    70. Agrawal R., Psaila G, WimmersE.L., etal.QueryingShaPesofHistories[C].In Proc.of the 21st Int. Conference on very large databases.SanFrancisco:Morgan Kaufmann PublishersIne.1995:502-514.
    71. Agrawal R,Shafer J C, Parallel mining of association rules, IEEE Transactions on Knowledge and Data Engineering,1996,8(6):962-969.
    72. Bagnall AJ, Janacek GJ,Clustering time series from ARMA models with clipped data, Proceeding of the 10th ACM SIGKDD Int'l Conference on Knowledge Discovery and Data Mining, Seattle, U.S.A.,2004,49-58.
    73. Beker A. Kundzewicz, Z.W. nonlinear flood routing with multilinear models[J]. Water Resur.Res. 1987(23)1043-1048.
    74. Berndt D.J., Clifford J. Using Dynamic Time Warping to Find Patterns in Time Series[C].In Proceedings of the KDD Workshop, Seattle, WA.1994:359-370.
    75. Chan F K, A W Fu, Efficient time series matching by wavelets, In:Proceedings of the 15th IEEE International Conference on Data Engineering, Sydney, Australia, March,1999,126-133.
    76. Chen M-S, Han J, Yu P S, Data mining:An overview from a database perspective, IEEE Transactions on Knowledge and Data Engineering,1996,8(6):866-883.
    77. Chen S.T., Yu P.S..Pruning of Support Vector Networks on Flood Forecasting[J]. Journal of Hydrology,2007,347,67-78.
    78. Chang Fi-John, Chen Yen-Chang "Estuary water-stage forecasting by using radial basis function neural network" Journal of Hydrology.2003,270:128-166.
    79. Castelli Vittorio, Alexander Thomasian, Chung-Sheng Li, CSVD:Clustering and singular value decomposition for approximate similarity search in high-dimensional spaces, IEEE Transactions on Knowledge and Data Engineering, May/June,2003,15(3):671-685.
    80. Cigizoglu H.K. "Incorporation of ARMA models into flow forecasting by artificial neural networks" environmetrics 2003,14:417-427.
    81. Cigizoglu H K, Generalized Regression Neural Network in Monthly Flow Forecasting[J]. Civil Engineering and Environmental Systems,2005,22(2):71-84.
    82. Dasarathy B.V "Sensor fusion potential exploitation innovative architectures and illustrative applications" Proceedings of the IEEE 1997:85 (1),24-38.
    83. Das G, GunoPulos D. Mannila H. Finding Similar Time Series[C]. In Proceedings of Principles of Data Mining and Knowledge Diseovery. London:Springer-verlag.1997:88-300.
    84. Das G, Lin K, Mannila H, et al., Rule discovery from time series[C], Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, New York,U.S.A.,1998,16-22.
    85. Devore J L, Probability and statistics for engineering and sciences, New York:Duxbury Press,1995, 68-72.
    86. Fayyad U M, Data Mining and knowledge discovery:Making sense out of data, IEEE Expert,1996, 11(5):20-25.
    87. Hall DL, Linas J. An introduction to multisensor data fusion. Proceedings of the IEEE,1997,85(1): 6-23.
    88. Han Jiawei. Data Mining:Concepts and Techniques [M]. Morgan Kaufmann Publishers. Inc.2001.
    89. Kalpakis K, Gada D, Puttagunta V, Distance measures for effective clustering of ARIMA time-series, Proceedings of the 2001 IEEE International Conference on Data Mining, San Jose, U.S.A.,2001, 273-280.
    90. Kawagoe K, T Ueda, A similarity search method of time series data with combination of Fourier and Wavelet transforms, temporal representation and reasoning, Proceedings Ninth International Symposium, New York, U.S.A.,2002,86-92.
    91. Keogh E,M Paszani, An enhanced representation of time series which allows fast and accurate classification, clustering and releance feedback, Proceedings of the 4th International Conference of Knowledge Discovery and Data Mining, New York, U.S.A., Aug,1998,239-241.
    92. Keogh E,S Chu,M Pazzani,Ensemble-index:A new spproach to index large databases,In:SIGKDD 01, San Francisco, U.S.A.,2001a:117-125.
    93. Keogh E, Chakrabarti K, Pazzani M and Mehrotra S, Dimensionality reduction for fast similarity search in large time series databases, Journal of Knowledge and Information Systems,2001b,3 (3): 263-286.
    94. Keogh E, K Chakrabarti, M Pazzani et a I., Dimensionality reduction for fast similarity search in large time series databases, In Proceedings of the ACM SIGMOD International Conference on Management of Data Philadelphia,2001c:151-162.
    95. Keogh E, K Chakrabarti, S Mehmtra et al., Locally adaptive dimensionality reduction for indexing large time series databases, In ACM SIGMOD 2001,Santa Barbara, California,2001d:181-212.
    96. Keogh E, Chu S, Hart D Pazzani, An online algorithm for segmenting time series data mining, Proceedings IEEE International Conference 2001, Washington, U.S.A.,2001e:289-296.
    97. Keogh E.,Pazzani M. Derivative Dynamic Time Warping[C].In First SIAM international Conference on Data Mining,Chicago,2001f.589-687.
    98. Knorr E M, Ng R T, and Zamar R H, Robust space transformations for distance-based operations, KDD-01, San Francisco, U.S.A.,2001,126-135.
    99. Korn F, H Jagadish, C Faloutsos, Efficiently supporting ad hoc queries large datasets of time sequences, Proceeding ACM SIGMOD Int'l Conference Management of Data, U.S.A., May,1997, 289-300.
    100. Liu R, Tan T, A SVD-based watermarking scheme for protecting rightful ownership, IEEE Transactionson Multimedia,2002,4(1):121-128.
    101. Lin J, Keogh E, Lonardi S, Chiu BY, A symbolic representation of time series, with implications for streaming algorithms, In:Proceeding of the 8th SIGMOD Workshop on DMKD, San Diego, U.S.A., 2003,2-11.
    102. Luchetta A. "A real time hydrological forecasting system using a fuzzy clustering approach" computers & Geosciences 2003,29:1111-1117.
    103. Loh W.K., Kim S.W., Whang K.Y.. Index Interpolation:An Approach for Subsequence Matching Supporting Normalization Transform in Time Series Databases[C].Proceedings of the 9th Intemational Confereneeon Information and Knowledge Management. New York:ACM Press.2000:480-487.
    104. Megalooikonomou V, Q Wang, G Li, C Faloutsos, A multiresolution symbolic representation of time series, Proceedings of the 21st IEEE International Conference on Data Engineering (ICDE05), Tokyo, Japan, April,2005,668-679.
    105.Nilsson P, Uvo C B, Berndtsson R. Monthly runoff simulation:Comparing and Combining Conceptual and Neural Network Models[J]. Journal of Hydrology,2006,321(1-4):344-363.
    106. Park S., Kim S.W., Cho J.S., et al. Prefix-Querying:An Approch for Effective Subsequence Matching Under Time Warping in Sequence Databases [A].Proceedings of the 10th International Conference on Information and Knowledge Management[C]. NewYOrk:ACM Press.2001:255-262.
    107. Park S.,Chu W.W.,Yoon J. and Won J. Similarity Search of Time-Warped Subsequences via A Suffix Tree[J].Information Systems.2003,28(7):867-883.
    108. Peng C.S.,H. Wang,S Zhang et al., Landmarks:A new model for similarity-based pattern querying in time series databases. Data Enginering Proceedings 10th Intemational Conference, San Diego, U.S.A., 2000,33-42.
    109. Quinlian J.R.. Induction of decision trees[J]. Machine Learning,1986,(1):81-106.
    110. Quinlan. J.R.. learning with continuous classes[J]. Proceedings 5th Austrilian Joint conference on Artificial Intelligence. World scientific, Singapore.1992,343-348.
    111. See Linda, Stan Openshaw. Applying soft computing approaches to river level forecasting[J]. Hydrological Sciences Journal,1999,44(5):763-778.
    112. Sohail A, Watanabe K, Takeuchi S. Runoff Analysis for a Small Watershed of Tono Area Japan by Back Propagation Artificial Neural Network with Seasonal Data[J]. Water Resources Management, 2008,22(1):1-22.
    113. Solomatine D.P.. Applications of data-driven modeling and machine learning in control of water resources[J]. Computational intelligence in control 2002,197-217.
    114. Solomatine D. P., Dulal. Khada N. Model trees as an alternative to neural networks in rainfall-runoff modelling[J]. Hydrological Sciences, June 2003,48(3),399-411.
    115. Solomatine Siek M.B.. Modular learning models in forecasting natural phenomena[J]. Neural networks,2006,19,215-224.
    116. Solomatine D. P., Xue Yunpeng. M5 model trees and neural networks:application to flood forecasting in the upper reach of the huai river in china[J]. Hydrologic engineering, November 2004,1-10.
    117. Sudheer K.P., Nayak P.C., Ramasastri K.S. "Improving peak flow estimates in artificial neural network river flow models" Hydrological Processes 2003.17:677-686.
    118. Todini. E. hydrological catchment modelling:past, present and future [J]. Hydrology Earth system, 2007,11(1),468-482.
    119. Vapnik V. The Nature of Statistical Learning Theory [M]. New York:Springer,1995.
    120. Venckp V, Foufoula-Georgiou E. Energy decomposition of rainfall in the time-frequency-scale domain using wavelet packets [J]. Journal of Hydrology,1996,27(3):3-27.
    121. Wang K, Discovering patterns from large and dynamic sequential data, Journal of Intelligent Information Systems,1997,9(1):8-33.
    122. Witten Ian H.,Eibe Frank.Data Mining:Practical machine learning tool and techniques(second edition)[M].Morgan Kulfmann Publishers,2005.
    123. Wu Y L, D Agrawal, A E Abbadi, A comparison of DFT and DWT based similarity search in time-series databases, Proceedings of the Ninth International Conference on Information and Knowledge Management (CIKM 2000), Washington, U.S.A., November,2000,488-495.
    124. Xie. Y, Wiltgen, B. Adaptive Feature Based Dynamic Time Warping[J]. International Journal of Computer Science and Network Security,2010,10(1):264-273.
    125. Zhang B, Govindarayu S. Prediction of watershed runoff using Bayesian concepts and modular neural networks[J]. Water Resources Research 2000,36(3):753-762.
    126. Zheng D., Lu Z., similarity analysis of time series of reservoir water level and dam foundation uplift presure[J].Proceedings of 16th IAHR-APD congress and 3rd Symposium of IAHR-ISHS.2008,1531-1535.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700