城市洪水风险管理及应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来随着城市化的快速发展,我国城市洪涝灾害系统从孕灾环境、致灾因子、承灾体到防灾力均在发生着急剧的变化,城市洪涝灾害风险呈现出上升的趋势,城市防洪治涝和减灾体系建设工作面临着新的压力与挑战。为了科学应对与缓解当前日益加剧的城市型水灾害问题,加大洪水风险管理战略的推进力度势在必行。同时,随着基于水力学原理的洪水模拟技术不断发展,其日益增强的预测分析功能为辅助城市洪水风险管理策略的制定与实施提供了有效的技术手段,成为提升城市防洪决策科学化水平和综合防灾减灾能力的新途径。
     本文基于国内外洪水风险管理的研究现状,将洪水风险管理策略划分为针对洪水危险性的调控性策略、针对人类对洪水自适应能力的适应性策略和应急性策略。为了在城市防洪治涝中推进洪水风险管理的三大策略,研究工作以福州市为例建立了城市洪涝仿真模型,针对洪水风险管理的分类措施进行了信息需求分析,据此为应用洪水仿真模拟系统开展城市洪涝风险分析与评估择定计算方案与计算条件,从而显著提高了城市洪水风险仿真技术的实用化水平。通过将洪水风险分析实用技术与典型城市改进洪水风险管理的具体实践相结合,研究探讨了与城市发展新形势相适宜的洪涝风险处置措施和减灾对策,为我国城市开展洪水风险管理提供可借鉴的样板。主要的研究方法与研究结论如下:
     (1)基于国内外在雨洪产汇流基础理论与计算方法方面的研究进展,应用美国农业部水土保持局提出的SCS模型和中国水利水电科学研究院自主开发的城市洪涝模拟技术为福州市建立了精细的城市雨洪仿真模型,并利用福州市2005、2006年相继遭受龙王、碧利斯台风暴雨袭击时的雨洪实测资料对仿真模型进行了率定和验证。分别按照最可能与最不利原则制定福州市暴雨与外江洪水的组合方案,应用建立的雨洪仿真模型对各方案设计洪水情景进行模拟。研究结果表明:模型可计算出洪水在城区演进过程中各水力学要素值(包括淹没水深、洪水流速、淹没历时等)的详细变化情况,同时亦有良好的运算稳定性。基于实际资料与合理假定,文中对5个不同年份(1989,1994,2001,2006和2010)福州市的防洪排涝标准、地面高程、河网水系等信息做了还原处理,据此建立了福州市各时期的雨洪仿真模型,对城市化进程中福州市洪水特性的演变规律作定量化研究。计算表明:随城市化发展,相同暴雨与洪水组合情景在福州市造成的总受淹面积呈增大趋势,不同等级水深淹没面积的平均变化率与城市不透水面积的平均变化率呈正相关关系。
     (2)针对我国对洪水风险图的多元化需求,本文从不同服务目的(包括加强洪水管理、辅助防汛指挥、规范人类行为、提高公众风险意识)出发对洪水风险图编制工作进行研究。提出了洪水风险图分层编制技术,将洪水风险图划分为实际洪水淹没图、洪水风险预测图和水灾风险评价信息等3个层次,并根据分层设计原则对编制不同类型洪水风险图所需的既往洪水信息、洪水风险预测信息、水灾风险评价信息做了详细论述。提出将洪涝仿真模拟技术应用于城市洪水风险图编制工作之中,针对洪水风险图的应用目的合理选定计算模型的初始条件、边界条件与运行控制方式等,经模拟计算获取编制洪水风险图所需的洪水风险信息。文中以福州市制定排涝工程规划为例对洪水风险图编制作实例研究,针对不同的暴雨与外江洪水组合方案,应用福州市雨洪仿真模型分析了福州市在现状排涝工程条件下和2020年规划排涝工程条件下可能形成的洪水风险,根据洪水风险分析成果编制了现状与规划排涝工程下福州市洪水风险图,并据此对规划排涝工程运用前后的减灾效益做了对比分析。
     (3)在快速的城市化进程中,城市面对水灾的脆弱性日益显现,为有效提高城市预防与应对洪涝灾害的能力,本文对洪水管理应急性策略在城市的实施进行研究。研究以编制城市防洪应急预案为主要内容,将城市洪涝仿真技术应用于城市防洪预警体系和应急响应体制建设之中,以求借助于精确的洪水风险分析手段提高城市防洪应急预案的适用性和可操作性。文中结合国内外在城市防洪预警方面的研究成果,为福州市提出了全城戒备预警和城区积水空间洪水预警的建议启动标准,分别按照最可能与最不利原则制定福州市暴雨与外江洪水的组合方案,应用福州市雨洪仿真模型对福州市在各方案下可能形成的洪水风险进行模拟计算,根据各设定情景洪水风险的模拟结果开展防洪预警和应急响应研究工作,并为各方案布置合理的防洪应急处置措施。
     (4)以福州市防洪减灾对策研究为例,对雨洪利用和内涝积滞水调控措施的实施效果进行评价。结合我国《建筑与小区雨水利用工程技术规范》,研究了适宜于福州市的屋顶雨水收集系统,借助于洪涝仿真模拟技术对设计雨水收集系统的实施效果进行评价;应用福州市雨洪仿真技术对琴亭湖的调蓄能力、水库调度方案的实施效果进行模拟分析与评价。评价结果具有较高的准确性,可为城市制定减灾对策提供定量化的技术支持。
Along with the rapid urbanization in China in recent decades, urban flood disaster system, involving disaster-forming environment, hazards, receptors and prevention capacities, is being sharply changed. Some new features of flood disaster appear in urbanized areas, which bring a series of challenges to urban flood control and disaster mitigation. In order to cope wisely with the new urban flood disaster, it is necessary to carry forward flood risk management strategies. Meanwhile, flood simulation model would serve as a useful tool in formulating and implementing the flood risk management strategies.
     According to current situation in flood risk management researches, the current flood risk management strategies can be divided into three categories, i.e. regulating and controlling strategies for flood hazard, adapting strategies and emergency response strategies for adaptive capacities of human being against flooding. In order to comprehensively promote the three major strategies of urban flood risk management, Fuzhou city of China was taken as a pilot city to make the study in this thesis. A numerical model had been established for urban flood simulation at first, and then information requirements analysis were carried on for different categories of flood risk management measures. Based on which, simulating schemes and corresponding calculation conditions could be selected more effectively for urban flood risk analysis and assessment, that improved the practicability of the urban flood simulation model in flood risk management. Finally, combining with the practical techniques of flood risk analysis and specific practices of improving urban flood management in the pilot city, proper flood risk disposal and mitigation measures were studied and discussed to cope with new challenges in urban flood disaster, which provides a referential example for other cities in carring out flood risk management. The main research methods and conclusions are as follows:
     (1) Based on recent advances in runoff yield and conflux research, SCS model proposed by U.S. SWCB (Soil and Water Conservation Bureau) and urban flood simulation technique developed by IWHR were combined to establish a numerical model for urban flood simulation. The model was calibrated and validated by means of the observed data of heavy rainstorm and flooding in Fuzhou caused by typhoon Longwang and Bilis in2005and2006, respectively. Several calculation schemes, involving flood scenarios with high possibility or the most dangerous situations, were designed in the study. The calculation schemes were simulated by using the numerical model, and the results show that the model can provide the flooding information in urban area, such as extent of the inundated areas and duration, distribution of the maximum water depth and velocities; and the proposed model also has been proved with acceptable accuracy and good stability. The underlying surface data and hydrological data of five different years (1989,1994,2001,2006and2010) in Fuzhou city were obtained according to the observation data and reasonable assumptions, and urban flood numerical models of five different years were set by utilizing the obtained data. Evolution of flood characteristics during the five different periods was analyzed quantificationally by using the simulated results of five years. The total inundated areas of the designed scheme showed a trend of increase, and the average change rate of inundated areas with different levels of water depth was positively correlated with the average change rate of the urban impermeable surface areas.
     (2) In view of diversified demands from flood hazard mapping in China, study of flood hazard mapping that serve different purposes (such as flood risk management, flood prevention direction, human activities normalization and risk awareness of public) was carried out. A multi-layer mapping method was proposed in the study, and flood hazard mapping was divided into three layers, which include the inundated mapping, flood hazard forecasting mapping and flood risk assessment information. The informations that were used for making flood hazard mapping, involving past inundation information, flood hazard forecasting information and flood risk assessment information, were discussed according to the design principle of multi-layer flood mapping. Urban flood simulation model was used to make information for the flood hazard mapping, and caculation conditions of the model, including initial conditions, boundary conditions and run control mode, could be properly selected according to the purpose of flood hazard mapping. Fuzhou city was taken as the case to make study of flood hazard mapping for drainage plan in the thesis, and flood risk analysis of current drainage system and planning drainage system in2020was carried out by using the numerical model, and then flood hazard mapping of current drainage system and planning drainage system in2020were made on the basis of flood risk analysis. Benefit assessment of planning drainage system in2020was carried out depending on flood hazard mapping.
     (3) Vulnerability of urban receptors in flood prevention is rising during the rapid urbanization, and emergency response strategies were introduced to strengthen the capacity of urban flood prevention and flood disaster response. Emergency plan for flood control, which is considered as one of the most important emergency response strategies, was studied in this thesis, and flood simulation technique was applied in urban flood warning and emergency response to improve the practicability and operability of the Emergency plan. Referring to achievements of flood warning at home and abroad, a set of proposed flood warning standard that involves early flood warning standard and flood warning standard of inundated area was made and introduced to Fuzhou city in this study. Several calculation schemes, involving flood scenarios with high possibility or the most dangerous situations,, were designed for the case study, and then the calculation schemes were simulated by using the numerical model, and study of flood warning and emergency response was carried out on the basis of flood simulation results; and proper flood risk mitigation and emergency disposal measures were designed in the emergency plan.
     (4) Fuzhou city was taken as the case to make countermeasures study on flood control and disaster mitigation in the thesis, and the countermeasures that involve rainwater harvesting, rainwater utilization and urban waterlogging regulation, were introduced to Fuzhou city in the study. According to the standard of national flood retention, a set of roof rainwater harvesting system was designed for Fuzhou city, and effect evaluation of rainwater harvesting was carried out by using urban flood simulation model. Urban pluvial flood regulation measures that include flood storage of Qinting Lake and reservoir regulation were designed for Fuzhou city, and effect evaluation of the measures was carried out by using urban flood simulation model. The evaluation results could be served as technical support for flood disaster mitigation.
引文
[1]程晓陶,李帅杰,王珊.城市型水灾害及其应对方略[J].中国水利,2010(13):5-6.
    [2]中国水利水电科学研究院.城市防洪工作现状、问题及其对策(送审稿)[R].2011年水利重大课题,2012.
    [3]周丽英,杨凯.上海降水百年变化趋势及其城郊的差异[J].地理学报,2001,56(4):467-476.
    [4]周淑贞,张超等.城市气候学导论[M].上海:华东师范大学出版社,1985.
    [5]程晓陶.关于洪水管理基本理念的探讨[J].中国水利水电科学研究院学报,2004,2(1):36-43.
    [6]Allison H Roy,Seth J Wenger,Tim D Fletcher,et al.Impediments and Solutions to Sustainable,Watershed-Scale Urban Stormwater Management:Lessons from Australia and the United States,Environmental Management,2008,42:344-359.
    [7]White G F. Human adjustment to floods[D]. University of Chicago,1943.
    [8]White G F. Choice of adjustment to floods. Research Paper No.93, University of Chicago Press.1946.
    [9]程晓陶,吴玉成,王艳艳,等.洪水管理新理念与防洪安全保障体系的研究[M].北京:中国水利水电出版社,2004.
    [10]芮孝芳.水文学原理[M].北京:中国水利水电出版社,2004.
    [11]王栋,朱元甡.防洪系统风险分析的研究评述[J].水文,2003,23(2):15-20.
    [12]Heiko Apel, Annegret H, Thieken, et al. A probabilistic modeling system for assessing flood risks[J]. Natural Hazards,2006,38:79-100.
    [13]左其亭,吴泽宁,赵伟.水资源系统中的不确定性及风险分析方法[J].干旱区地理,2003,26(2):116-121.
    [14]刘树坤,沈振明.利用洪水风险图指导洪泛区及城市建设[J].灾害学,1991,6(4):26-31.
    [15]Bruno Merz, Annegret H. Flood risk curves and uncertainty bounds[J]. Natural Hazards, 2009,51:437-458.
    [16]万庆.洪水灾害系统分析与评估[J].北京:科学出版社,1999.
    [17]Francisco Nunes Correia, Maureen Fordham, Maria Dagraca Saraiva, et al. Flood hazard assessment and management:Interface with the public [J]. Water Resources Management, 12:209-227.
    [18]Crichton D. The Risk Triangle. In:Ingleton, J.(Ed.):Natural Disaster Management, Tudor Rosse, London,1999:102-103.
    [19]Institution of Civil Engineers (ICE) (2001), Learning to Live with Rivers. Final Report of the ICE's Presidential Commission the Review the Technical Aspects of Flood Risk Management in England and Wales, London, http://www.ice.org/uk/rtfpd/ficeflooding.pdf.
    [20]J.Schanze et al. (eds.), Flood Risk Management:Hazards, Vulnerability and Mitigation Measures. Earth and Environmental Sciences.2006,67:1-20.
    [21]The cycle of integrated risk management. National Platform for Natural Hazards. http://www.planat.ch/en/specialists/risk-management/
    [22]Erich J Plate. Flood risk and flood management [J]. Journal of Hydrology,2002,267:2-11.
    [23]Associated Programme on Flood Management. Urban Flood Risk Management-A tool for integrated flood management.2008(3):28-33.
    [24]程晓陶.新时期大规模的治水活动迫切需要科学理论的指导——一论有中国特色的洪水风险管理[J].水利发展研究,2001(4):1-6.
    [25]程晓陶.风险分担,利益共享,双向调控,把握适度——三轮有中国特色的洪水风险管理[J].水利发展研究,2003,3(9):8-12.
    [26]澳大利亚GHD公司,中国水利水电科学研究院.中国洪水管理战略研究[M].郑州:黄河水利出版社,2006.
    [27]金菊良,魏一鸣,付强,等.洪水灾害风险管理的理论框架探讨[J].水利水电技术,2002,33(9):40-42.
    [28]夏军.水文非线性系统理论与方法[M].武汉:武汉大学出版社,2002.
    [29]徐宗学.水文模型[M].北京:科学出版社,2009.
    [30]董艳萍,袁晶瑄.流域水文模型的回顾与展望[J].水力发电,2008,34(3):20-23.
    [31]胡伟贤,何文华,黄国如,等.城市雨洪模拟技术研究进展[J].水科学进展,2010,21(1):137-144.
    [32]Kawaike K, Inoue K, Toda K. Inundation flow modeling in urban area based on the unstructured meshes[J]. Hydraulic Engineering Software,2000(Ⅷ):457-466.
    [33]Dushmanta D, Seikantha H, Katumi M. A mathematical model for flood loss estimation[J]. Journal of Hydrology,2003(277):24-49.
    [34]Venkatesh M, Aaron C, Julie C. GIS techniques for creating river terrain models for hydrodynamic modeling and flood inundation mapping[J]. Environmental Modelling&Software,2008(23):1300-1311.
    [35]Mark O, Weesakul S, Apirumanekul C, et al. Potential and limitations of 1D modeling of urban flooding[J]. Journal of Hydrology,2004,299(3/4):284-299.
    [36]Schmitt T G, Thomas M, Ettrich N. Analysis and modeling of flooding in urban drainage systems[J]. Journal of Hydrology,2004,299(3/4):300-311.
    [37]Toda K, Kawaike K, Yoneyama N, et al. Underground Inundation Analisys by Integrated Urban Flood Model[C]//Proceedings of 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS. Beijing:Tsinghua University Press,2008:107-112.
    [38]程晓陶,仇劲卫,陈喜军.深圳市洪涝灾害的数值模拟与分析[J].自然灾害学报,1995,7(4):202-209.
    [39]程晓陶,仇劲卫,李娜,等.城市洪涝仿真模型开发研究总结报告[R].国家自然科学基金重大项目“城市与工程建在基础研究”502子题,1997.
    [40]仇劲卫,李娜,程晓陶,等.天津市城区暴雨沥涝仿真模拟系统[J].水利学报,2000,(11):34-42.
    [41]王静,李娜,程晓陶.城市洪涝仿真模型的改进与应用[J].水利学报,2010,41(12):1393-1400.
    [42]张新华,隆文非,谢和平,等.任意多边形网格2D FVM模型及其在城市洪水淹没中的应用[J].四川大学学报(工程科学版),2007,39(4):6-11.
    [43]程晓陶.我国推进洪水风险图编制工作基本思路的探讨[J].中国水利,2005(17):11-13.
    [44]李娜,向立云,程晓陶.国外洪水风险图制作比较及对我国洪水风险图制作的建议[J].中国水利发展研究,2005(6):28-32.
    [45]张旭,万群志,程晓陶,等.关于全国推广洪水风险图的认识与设想[J].自然灾害学报,1997,6(4):61-67.
    [46]日本建设省河川局治水课监修.洪水灾害地图绘制手册及使用说明(日文).1997-01.
    [47]岑国平,沈晋,范荣生.马斯京根法在雨水管道流量演算中的应用[J].西安理工大学学报,1995,11(4):275-278.
    [48]张大伟.堤坝溃决水流数学模型及其应用研究[D].清华大学,2008.
    [49]赵昭晒,陈佳源.福建省地理[M].福州:福建人民出版社,1993.
    [50]水利水电工程设计洪水计算规范[S].SL-2006. 中华人民共和国水利部,2006.
    [51]陈兴伟.闽江下游白岩潭潮位站洪水位研究[J].福建师范大学学报(自然科学版),2002,18(2):89-93.
    [52]陈兴伟.闽江下游河道洪水运动的数值模拟[J].水利科技,1993(01),4-7.
    [53]曹慧霞.闽江下游河道设计洪水水面线的起始水位推求方法的探讨[J].水利科技,1991(01),39-52.
    [54]李怀银.闽江下游洪潮遭遇分析[J].水利科技,1990(02),11-18.
    [55]陈兴伟.白岩潭洪水位频率的组合概率法分析[J].水利科技,1991(01),53-55.
    [56]Danish Hydraulic Institute (DHI). MIKE II:A Modeling System for Rivers and Channels Reference Manual[R]. DHI.2005.
    [57]Crichton D, Mounsey C. How the Insurance Industry will use its flood research. In: Proceedings of the third MAFF Conference of Coastal and River Engineers,1997,131-134.
    [58]Price R, Vojinovic Z. Urban flood disaster management. Urban Water Journal, 2008,4(3),259-276.
    [59]Vojinovic Z, Tutulic D. On the use of 1D and coupled 1D-2D modeling approaches for assessment of flood damage in urban areas. Urban Water Journal,2009,6(3),183-199.
    [60]王静.未来洪水情景遇见方法及风险对策研究[D].中国水利水电科学研究院,2010.
    [61]杨士弘.城市生态环境学[M].北京:科学出版社,1996:56-61.
    [62]程晓娟.福州市非点源总磷污染负荷研究[D].硕士学位论文,福州:福州市范大学,2009.
    [63]刘国维.论防洪减灾非工程措施的定义与分类[J].水科学进展,2003,14(1):98-103.
    [64]付湘,王丽萍,边玮.洪水风险管理与保险[M].北京:科学出版社
    [65]Masatoshi Shidawara. Flood hazard map distribution[J]. Urban Water 1,1999:125-129.
    [66]毛德华,何梓霖,贺新光等.洪灾风险分析的国内外研究现状与展望(I)—洪水危害风险分析研究现状[J].自然灾害学报,2009,18(1),140-149.
    [67]方创琳.论区域与城市发展规划编制与实施的一体化[J].城市规划,2002,26(4):15-17.
    [68]D.B.Stephenson, I.T.Jolliffe, C.A.T. Ferro. White Paper Review on the Verification of Warnings, http://www.metoffice.gov.uk/media/pdf/e/n/FRTR546.pdf,4-22.
    [69]Michael Pitt. Learning Lessons from the 2007 Floods. http://archive.defra.gov.uk/.
    [70]英国环境署http://www.environment-agency.gov.uk/homeandleisure/floods/31620.aspx.
    [71]Parker D J, Priest S J, Tapsell S.2008. Modelling the Damage Reducing Effects of Flood Warnings, EU Floodsite Research Project Report, T10-07-12.
    [72]程晓陶,李娜,王艳艳等.防汛预警指标与等级划分的比较研究[J].中国防汛抗旱,2010(3):26-31.
    [73]Price R, Vojinovic Z. Urban flood disaster management. Urban Water Journal, 2008,4(3),259-276.
    [74]《福州市防洪防台风应急预案》http://www.fuzhou.gov.cn/zfb/xxgk/yj gl/yj ya/200912/t20091209_71681.htm
    [75]MunichRe. Megacities-Megarisks:Trends and Challenges for Insurances and Risk Management,2005, http://www.munichre.com/publications/302-04271_en.pdf.
    [76]曹书珍,郭爱枫.浅析城市雨水利用的发展[J].水土保持应用技术,2008(2):23-24.
    [77]张书函,丁跃元,陈建刚.德国的雨水收集利用与调控技术[J].北京水利,2002(3):39-41.
    [78]Mentens J, Raes D, Hermy M,2006. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc. Urban Plann.77,217-226.
    [79]Mentens J, Raes D, Hermy M. Effect of orientation on the water balance of green roofs. Greening rooftops for sustainable communities[A]. Proceedings of the First North American Green Roofs Conference[C]. Chicago, Toronto:The Cardinal Group,2003.
    [80]Takakura T, Kitade S, Goto E,2000. Cooling effect of greenery cover over a building. Energy Build.31,1-6.
    [81]Wong N H, Chen Y, Ong G L, Sia, A,2003. Investigation of thermal benefits of rooftop garden in the tropical environment. Build. Environ.38,261-270.
    [82]魏艳,赵慧恩.我国屋顶绿化建设的发展研究—以德国、北京为例对比分析[J].林业科学,2007,43(4):95-101.
    [83]Emily H, Tom L.2003. Plant survival findings in the pacific northwest. Chicago:First Annual Greening Rooftops for Sustainable Communities Conference, Awards and Trade Show.
    [84]李喆.屋顶绿化植物根系阻拦的必要性[J].中国花卉园艺,2004(18):13.
    [85]李谦盛.屋顶绿化栽培基质的选择[J].安徽农业科学,2005,33(1):84-85.
    [86]郭世荣.无土栽培学[M].北京:中国农业出版社,2003.
    [87]Steven Peck, Monica Kuhn. Design guidelines for green roofs[M].Ontario Association of Architects,2004.
    [88]邢禹贤.新编无土栽培原理与技术[M].北京:中国农业出版社,2002.
    [89]黄金倚.屋顶花园设计与营造[M].北京:中国林业出版社,1994.
    [90]陈习之,贾立人.屋顶绿化配套技术研究[J].中国建筑防水,2004,(4):19-21.
    [91]Nektarios P, Tsiotsiopoulou P, Chronopoulos I. Comparison of different roof garden substrates and their impact on plant growth[J]. Acta Hort,2004, (643):311-313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700