陆相断陷湖盆旋回沉积机理与成岩系统物质耦合关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在众多前人研究成果的基础上,以地层学、沉积学、地球化学、成岩学理论为指导,充分利用薄片观察、扫描电镜分析、稀土元素、常量元素、微量元素、流体包裹体、阴极发光、粘土矿物X衍射、镜质体反射率等分析测试资料,系统深入开展了济阳坳陷古近系孔店组旋回沉积机理与成岩系统物质耦合关系研究。取得如下成果认识:
     1.利用矿物成分、重矿物、岩石类型、沉积构造、矿物及碎屑、测井、地球物理等资料,在物质来源及沉积充填类型研究的基础上,详细研究孔店组各沉积时期坳陷中的物质宏观充填方式及规律,结果表明:1)孔店期物质来源重点为南北方向,其次为东西方向,具有多物质来源的特点。2)孔店组沉积物质充填类型主要包括冲积扇、河流-洪泛平原、近岸水下扇、扇三角洲、湖泊(盐湖-咸水湖)、滩坝、浊积扇等7种类型;3)孔店组地震相具有孔三段在各分区的相序都呈现相似的单向递变的规律,即由前积相过渡到充填,然后过渡到席状相,孔二段地震相平面分布在济阳坳陷湖心区以充填相和席状平行相为主,在断层处发育有前积相、杂乱相和波状相,孔一段地震相的平面分布的主要特点是以席状平行相为主,与孔二段相比较,孔一段在各洼陷湖心区的充填相范围明显缩小。4)孔三时期,惠民凹陷主要发育扇三角洲(冲积平原)-湖泊沉积组合,在局部地区发育冲积扇,东营凹陷的北部发育近岸水扇-湖泊沉积体系,而在博兴凹陷发育冲积平原;孔二时期,裂陷发育期,初期以玄武岩喷发为典型特征,局部地区有火山岩发育,到孔二段后期沉积时期湖盆基本形成。广泛发育冲积扇、辫状水系为,在东营凹陷和惠民凹陷,发育近岸水下扇-湖泊和扇三角洲-湖泊沉积体系组合;孔一时期,沉积充填类型主要为冲积扇、河漫、洪积平原沉积体系为主。最后,建立了孔店组沉积模式图。
     2.通过对大量录井资料及岩心观察,详细研究了不同尺度岩性地层旋回特征。研究表明,孔店组宏观尺度上颜色旋回具有红色-灰色-红色的地层旋回,微观尺度颜色旋回主要包括岩性变化与颜色同时变化、跨越多种岩性旋回变化、相同岩性的颜色自旋回变化三种类型;宏观尺度岩性旋回变化主要表现为正旋回岩性叠置和反旋回岩性叠置;微观旋回变化表现为砂岩和泥岩互层、粒度旋回变化、膏质泥岩与泥岩互层三种类型。旋回变化与沉积环境具有一定的相关性,指示不同的沉积环境变化,颜色变化指示水介质和物质来源的变化;利用地球化学手段,详细探讨了不同旋回沉积的形成机理。宏观旋回变化反应了干旱少雨的震荡性湖泊-相对潮湿的旋回-干旱少雨的震荡性湖泊。岩性变化与颜色变同时变化主要为干旱条件下的碎屑物质震荡变化,跨越多种岩性旋回变化主要跟沉积水介质和气候条件有关,相同岩性的颜色自旋回变化主要跟水介质条件和气候条件有关;宏观旋回变化跟沉积环境的改变有关,砂泥岩互层一般出现于滨浅湖,跟震荡水流作用和物质来源有关,膏岩与泥岩互层与间歇性盐湖的物质来源和气候条件有关。
     3.通过对旋回沉积矿物变化、常量元素变化、微量元素变化、稀土元素分配进行分析,重点选取样品完整的王100和郝科1井,详细研究了旋回变化过程中的物质聚集规律和分配方式。结果表明,总体上颜色旋回变化过程中,存在一定规律的矿物聚集响应特征。王100井纵向演化上,石英含量逐渐逐渐增加,钾长石含量逐渐增加,斜长石逐渐减少,方解石含量有所减少,硬石膏含量逐渐增加等变化,矿物变化旋回与颜色旋回的变化具有较好的耦合关系。部分矿物含量不稳定可能是由于后期成岩流体的改造作用。两口重点井位旋回变化研究表明旋回变化与元素富集也具有一定的耦合关系,郝科1井研究表明,元素变化除与颜色有关外,还跟岩性有关系。王100井研究表明,纵向演化上,常量元素中Al、Ca、Fe、Mg含量有增加的趋势。微量元素中Sr、Ba、Ga、Co四种元素有增加的趋势。旋回变化与元素比值也有较好的耦合关系,特别是Fe/Mn和V/Ni比值,呈现出多级次旋回变化的特征。微观颜色旋回变化与稀土元素配分方式也具有一定的耦合关系,王46井、王100井典型旋回与稀土元素配分方式显示,灰色粉砂岩总体较紫红色粉砂岩元素含量高,呈现正异常;紫红色粉砂岩或泥岩总体比灰色岩石稀土元素配分含量高,呈现正异常。
     4.利用薄片镜下鉴定、粘土矿物X颜色、岩石热解峰温、扫描电镜、流体包裹体等手段对孔店组成岩系统进行研究。结果表明:1)不同地区物质组成有差异,湖盆中央主要为长石砂岩、南部缓坡带主要为岩屑长石砂岩;2)成岩作用现象具有压实作用不明显、碳酸盐胶结物比较发育并呈基底式胶结、硬石膏发育湖盆中央、石英次生加大不发育、溶蚀作用较发育并发生填溶;3)成岩作用具有差异性,主要体现在地区成岩现象表现填隙物、压实作用、成岩环境方面,岩性旋回变化也具有成岩现象差异,尤其是岩性旋回变化导致的成岩作用差异。4)利用成岩演化阶段划分依据,对孔店组成岩阶段进行了划分,主要处于中成岩A期,不同埋藏深度和地区具有不同差异,并对孔店组成岩演化过程进行了恢复。5)孔店组具有局部地区为开放成岩环境,总体为封闭成岩环境的特征,成岩演化受原始沉积流体、深埋藏环境、构造-岩浆活动的影响;6)探讨孔店组岩石的水-岩作用机理和方解石胶结物、硬石膏胶结物、硅质胶结物、粘土矿物的沉淀机理。
     5.通过对不同旋回沉积机理及成岩系统进行研究,分析了旋回变化与成岩物质耦合关系。旋回变化与矿物的耦合:岩性旋回变化具有两种情况,第一种分选较差、结构成熟度较差的旋回地层由于成岩流体难以流动,导致物质继承性较好,与原始沉积物质耦合性较好;第二种分选较好、结构成熟度较好的砂岩,由于成岩流体改造相对较容易,流动性较好,旋回沉积的物质耦合性较差;颜色引起的地层旋回变化成因不同,但一般埋藏条件下旋回变化的原始沉积物质分配与当今岩石的物质耦合较好。旋回变化与元素的耦合关系主要跟岩性和成岩系统封闭性有关,砂岩耦合性较差、泥岩耦合性较好,开放系统耦合性较差,封闭系统耦合性较好。成岩流体对原始沉积机理和成岩系统物质耦合性具有关键的作用。
Based on make full use of the results of previous studies, take stratigraphy,sedimentology, geochemistry and diagenesis theory as guide. Using test data of thinsections, scanning electron microscope analysis, rare earth elements, majorelements, trace elements, Fluid inclusions,Cathodoluminescence,X-ray diffraction ofthe clay minerals, vitrinite reflectance etc. This paper carried out the study onmechanism of cyclic sedimentation and diagenetic system material couplingrelationship in Jiyang Depression Paleogene Kongdian formation. Made the followingunderstanding:
     The research of substance cyclic deposition mechanism and material gatheredregular is based on the research of palaeogeographic and sedimentary filling. Thischapter uses the mineral composition, heavy minerals, rock types, sedimentarystructures, minerals and debris, logging, geophysical to research material sources andsedimentary filling type; On this basis, the substances macro filling way and law inthe depression is investigated during the deposition of Kongdian formation. Studieshave shown that:1) The main material source in Kongdian formation is north-southdirection, then is east-west direction, has the characteristics of multi-material sources.2)The deposition material filling types in Kongdian formation main include alluvialfan, river-flood plains, nearshore subaqueous fan, fan delta lakes (Salt Lake-saltwater lake), beach bar and turbidite fan etc;3) The Kongdian formation seismicfacies is similar to the third section of Kongdian formatin are presented in eachpartition phase sequence the one-way graded law,namely foreset phase transition tothe filling, then transition to sheeted phase. The second section of Kongdian formationseismic facies plane distribution in Jiyang depression lake center area are mainlyfilling phase and sheeted parallel phase, fault developed foreset phase, messy phaseand wavy phase. The characteristic of the seismic facies plane distribution in the firstsection of Kongdian formation is mainly sheeted parallel facies. Compared with the second section of Kongdian formation, in the first section of Kongdian formation thefilling phase in each subsag lake center area significantly narrowed.4) In the thirdsection of Kongdian formatin period, Huimin depression mainly developed fan delta(alluvial plains)-combination of lake sediments, and alluvial fan in the local area; thenorthern Dongying Sag developed nearshore water fan-lacustrine depositionalsystem, and BoxingPlain developed alluvial depression;In the second section ofKongdian formation period, the rift developed period, typical characteristic of theearly is basalt eruption and local area developed volcanic rocks,to deposition periodof the late of the second section of Kongdian formation, the lake basin is basicallyformed. Extensive developed alluvial fan, braided river systems, DongyingDepression and Huimin depression developed nearshore subaqueous fan–lake andfan delta-lake sedimentary system combination; In the first section of Kongdianformation period, sedimentary filling types are mainly alluvial, river diffuse and thealluvial plains deposition system. Finally, based on the study of the structure andsedimentary, detailed study the depositional model of Kongdian formation andestablished Kongdian formation mode chart.
     Observed by a large number of logging data and core, then detailed study of thecharacteristics of the different scale lithologic and stratigraphic cycles. Studies showthat Kongdian formation color cycles have red-gray-red stratigraphic cycles inmacro-scale and color cycles mainly include the lithology changes and color changes,across a variety of lithologic cyclicity, the color of the same lithology cyclicity inmicro-scale. The macroscopic scale lithological cyclicity are mainly positive cyclesthe lithology superimposed and anti-cyclic lithology stacked. The microscopiccyclicity are mainly interbedded sandstone and mudstone, granularity cyclicity cream,interbedded shale and mudstone. Cyclicity and depositional environment has somecorrelation and indicates different sedimentary environments, the color depositionchanges indicate changes in water medium and material sources. Using geochemicalmeans, detailed discuss the formation mechanism of the different cyclic sedimentation.The macro cyclicity reacted the drought shock lakes-a relatively wet cycles-droughtshock lakes. Lithology changes occur simultaneously with the color change is mainlyclastic material concussion change under drought conditions. Across a variety oflithologic cyclicity are related to the deposited water medium and climatic conditions.The same lithology color cyclicity are associated with the aqueous medium andclimatic conditions. Macroeconomic cycles change with the change of thedepositional environment, such as interbedded sandstone and mudstone generally appear in the littoral and shallow lake. Macro cyclicity is related to shock action ofwater and material sources, such as interbedded cream rock and mudstone is related tomaterial sources and climatic conditions of intermittent the Salt Lake.
     By cyclic sedimentation minerals change, changes in the major elements, traceelements change, ree distribution analysis,emphasis selected Wang100well andHaoke1well for complete samples, detailed study of the material accumulation lawand distribution mode in the process of cyclicity. The results show that in the processof color cyclicity overall have some regular of mineral aggregation responsecharacteristics. In the longitudinal evolutionary of wang100well, have some changesof quartz content is gradually increased, K-feldspar content gradually increased,Plagioclase content gradually reduced, calcite content decreased, anhydrite contentgradually increased etc. The mineral cycles change and color cycles change has bettercoupling relationship. The instability of Part mineral content may be due to thetransformation effect of the late diagenetic fluid. The study of cyclicity of two keywells showed that cyclicity and element enrichment have some coupling relationship.Study of HaoKe1well show that, besides elements change is related to color,lithology is also accounts. Wang100well showed in the vertical evolution thatconstant elements of Al, Ca, Fe, Mg content, there is an increasing trend. Traceelements of Sr, Ba, Ga, Co content showed an increasing trend. Cyclicity and elementratio have better coupling relationship, especially Fe/Mn and V/Ni ratio showingthe changing characteristics of multi-level cyclicity. The microscopic color cyclicityand REE distribution way also has some coupling relationship, such as Wang46welland Wang100well typical cycle and REE distribution way showed that the graysiltstone overall is higher than mauve siltstone element content and showed a positiveanomaly; The rare earth elements (REE) content of purple siltstone or mudstoneoverall is higher than the gray rock that showed a positive anomaly.
     Using sheet microscopic identification, the clay mineral X color, rock pyrolysispeak temperature, scanning electron microscopy, fluid inclusions and other means toresearch diagenesis system in Kongdian formation. The results show that:1) Thematerial composition in different parts have some differences, the basin center mainlyis arkose and southern gentle slope with lithic arkose.2) Diagenesis phenomenon hascharacteristics of compaction is not obvious, carbonate cements is better developedand was presented as basal cementation, anhydrite developed in basin center, quartzovergrowth is not developed, dissolution relatively developed and occur fill dissolved.3) Diagenesis differences mainly reflected in the performance of regional diagenetic phenomenon interstitial material, compaction, diagenetic environment, lithologicalcyclicity also has differences in diagenetic phenomenon, especially lithologiccyclicity lead to diagenesis differences.4) Using diagenetic evolution stage aspartitioning standards to judge diagenetic stage of Kongdian formation mainly indiagenetic A period, different burial depth and regions have different differences, andbased on the recovery of Kongdian formation diagenetic evolution proposeddiagenetic evolution Kongdian formation reservoir has a certain influence.5)Kongdian formation have the characteristics of local area is open diageneticenvironment and the overall is closed diagenetic environments, diagenetic evolutioninfluenced by the original deposition fluid, deep buried environments, tectonic-magmatic activities.6) study on rock Kongdian water-rock interaction mechanismand precipitation mechanism of calcite cement, anhydrite cements, siliceous cement,clay mineral.
     By study on different mechanism of cyclic sedimentation and diagenetic systemto explore the coupled relationship between cyclicity and diagenetic material. Thecyclicity and minerals coupling, the lithological cyclicity has two cases: the firstcyclostratigraphy with poor sorting and poor structural maturity diagenetic fluid ishard to flow, so substances inheritance is relatively good and coupled better with theoriginal sedimentary material; the second sandstone with better sorting and bettertextural maturity, due to the transformation of the diagenetic fluid is relatively easyand good liquidity,so the cyclic sedimentation substance coupling is rrelatively poor.Stratigraphic cycles changes in color due to different causes, but original sedimentsdistribution cyclicity under general buried conditions is better coupled with today'srock substance. The coupling relationship between cyclicity and elements is mainlyrelated to sealing of lithology and diagenetic system, so sandstone with poor coupling,mudstone with good coupling, open systems with poor coupling, closed systemswhith good coupling. The diagenetic fluid play a key role in original depositionmechanism and diagenetic system substances coupling.
引文
[1] A.Gurel,S.Kadir,2010,Palaeoenvironmental approach to the geology, mineralogy andgeochemistry of an Early Miocene alluvial-fan to cyclic shallow-lacustrine depositionalsystem [J],Clay Minerals,45:51-75
    [2] A1-Ram adan K,Morad S,Pmust J N,.A1-Aasm I,2005,Distribution of diageneticalterations in silieielastic shoreface deposits within a sequence stratigraphic framework:evidence from the Upper Jurassic,Boulon-nais,NW France.Journal of SedimentaryResearch,75(5):943-959
    [3] Aplin A C,Warren E J,Grant S M,Robinson G,1993,Mechanisms of quartz cementation inNorth Sea reservoir sands:constraints from fluid compositions.In:Horbury A D,RobinsonG(eds),Diagenesis and basin development[J].AAPG studies in Geology,36:5-22
    [4] Bjorlykke K,Mo A and Palm E,1988,Modelling of thermal convection in sedimentarybasins and its relevance to diagenetic reactions[J].Marine and Petroleum Geology,5(4):338-351
    [5] Boles J R,Franks S G,1979,Clay diagenesis in Wileox sandstones of southwest Texas:implications of smeclite diagenesis on sandstone cementation[J].Journal ofSedimentaryPetrology,49:55-70
    [6] Burley S D, Kantorowicz J D, Waugh B,1985, Clastic diagenesis. In: Brenchley P,William B P B(eds), Sedimentary: recenl and applied aspects. Special Publication ofGeological Society of London18. Oxford: Blackwell Sandstone diagenesis: recent andancient. Blackwell Pub.649
    [7] Cari L. Johnson,Stephan A. Graham,2004,Cycles in Perilacustrine Facies of Late MesozoicRift Basins,Southeastern Mongolia[J],Journal of Sedimentary Research,74(6):786-804
    [8] Curtis C D,1978,Possible link between sandstone diagenesis and depth-ralate geochemicalreactions occurring in enclosing mudstone[J].J.Geol.Soc.Lond,135:107-114.
    [9]操应长,王健,高永进等,2011,济阳坳陷东营凹陷古近系红层—膏盐层沉积特征及模式[J].古地理学报,13(4):375-386
    [10]个Galloway W E,1984,Hydrogeologic regimes of sandstone diagenesis(in Clasticdiagenesis)[J].AAPG Memoir,37:3-13
    [11]龚一鸣,,杜远生,童金南等,2008,旋回地层学:地层学解读时间的第三里程碑[J].地球科学-中国地质大学学报,33(4):443-457
    [12] Harrison W J, Tempel R N,1993,Diagenetic pathways in sedimentary basins. In: Hobury AD, Robinson G(eds.). Diagenesis and Basin Development. AAPG Studies in Geology,36:69-86
    [13] Hinnov,L.A.,Ogg, J. G.,2007, Cyclostratigraphy and the astr onomical time scale[J].Stratigraphy,4:239-251
    [14] Horbury A d, Robinson G,1993, Diagenesis and Basin Development[J]. AAPG Studies inGeology,36:274
    [15]贾振远,蔡忠贤,1997,成岩地层学与层序地层学[J].地球科学,22(5):538-543
    [16]姜在兴,2003,沉积学[M].北京:石油工业出版社,1-539
    [17] Jia Z Y, Gai Z X.1997. Diagenetic stratigraphy and sequence stratigraphy[J]. Earth Science,22(5):538-543(in Chinese with English abstract)
    [18] John C. Tipper,2000,Research Articles Patterns of Stratigraphic Cyclicity[J], Journal ofSedimentary Research,70(6):1262-1279
    [19] John C. Tipper.2000,Research Articles Patterns of Stratigraphic Cyclicity[J], Journal ofSedimentary Research,70(6):1262-1279
    [20] Kuiper,K. F., Deino, A.,Hilg en,F.J.,et al,2008,Synchro nizing rock clocks of Earthhistory[J].Science,320:500-504
    [21]李熙喆,张满郎,谢武仁等,2007,鄂尔多斯盆地上古生界层序格架内的成岩作用[J].沉积学报,25(6):923-933
    [22]李忠,陈景山,关平,2006,含油气盆地成岩作用的科学问题及研究前言[J].岩石学报,22(8):2113-2122
    [23]李忠,韩登林,寿建峰等,2006,沉积盆地成岩作用系统及时空属性[J].岩石学报,22(8):2151-2164
    [24] Li Z,Li H,1994,An approach to genesis and evolution of secondary porosity in deeplyburied sandstone reservoirs, Dongpu depression[J]. Scientia Geologica Sinica,29(3):267-275(in Chinese with English abstract)
    [25] Li Z,1998,A research on diagenesis in sedimentary basin scale[J]. Earth Science Frontiers,5(3):157-158(in Chinese)
    [26] Li Z,1998,A research on diagenesis in sedimentary basin scale[J]. Earth Science Frontiers,5(3):157-158(in Chinese)
    [27] Li Z. Fei W H, Shou J F,2003,Overpressure and fluid flow in the Dongpu depression, NorthChina: their constraints on diagenesis of reservoir sandstones[J]. Acta Geologica Sinica,77(1):126-134(in Chinese with English abstract)
    [28] Liu Y Q, Yuan M S, Zhou D W, Feng Q, Jian J,2001, New progresses on geothermalhistory of Turpan-Hami Basin, Xingjiang[J], China. Ser. D,31(3):257-264(in Chinese)
    [29]陆水潮,向才富,陈平等,1999,层序地层学在碎屑岩成岩作用研究中的应用一以YA13-1气田古近系为例[J].石油实验地质,20(2):100-118
    [30]吕明才,张立强,史文东等,2004,东营凹陷南斜坡孔店组冲积体系碎屑岩储层特征及评价[J].西安石油大学学报,19(6):5-9
    [31]吕明才,张立强,史文东等,2004,东营凹陷南斜坡孔店组冲积体系碎屑岩储层特征及评价[J].西安石油大学学报,19(6):5-9
    [32]罗忠,罗平,张兴阳等,2007,层序界面对砂岩成岩作用及储层质量的影响-以鄂尔多斯盆地延河露头上三叠统延长组为例[J].沉积学报,25(6):903-914
    [33] Meng Y L, Wang Z G, Yang J S,2003, Comprehensive process-oriented simulation ofdiagenesis and its application[J]. Expermental Petroleum Geology,25(2):211-215
    [34] Morad S,Ketzer J M,De Ros L F,2000,Spatial and temporal distribution of diageneticalterations in silieielastic rocks: implications for mass trans-fer in sedimentarybasins.Sedimentology,47(s1):95-120
    [35]梅冥相,1992,碳酸盐台地的层序地层格架及旋回地层级次[J].岩相古地理,(2);44-50
    [36]梅冥相,1993,碳酸盐岩米缎旋回层序的成因类型及识别标志[J].岩相古地理,(6):34-45
    [37]梅冥相,1994,苏巷辰硅酸盐异成因复台海平面变化旋回层序.桂林冶金地质学院学报,(2);l45-l53
    [38]梅冥相,1995,碳酸盐旋回与层序[M].贵阳:贵州科技出版社,1-206.
    [39]孟祥化,葛铭,2004,中朝板块层序事件演化[M].北京:科学出版社.1-483
    [40]邱桂强,2007,东营凹陷古近系成岩层序特征与储集差异性分析[J].沉积学报,25(6):28-40
    [41] Schmidt V and McDonald D A,1979,The role of secondary porosity in the courseofsandstone diagenesis (in Aspects of diagenesis)[J].Special Publication-Society ofEconomic Paleontologists and Mineralogists,(26):175-207a)是Surdam R C,Boese S W and Crossey L J,1984,The chemistry of secondary porosity(inClastic diagenesis)[J].AAPG Memoir,37:127-149
    [42] Surdam R C,Crossey L J,Hagen E S,et al,1989,Organic-inorganic and sandstonediagenesis[J].AAPG Bulletin,73:1-23
    [43]孙萍,罗平,阳正熙,2009,基准面旋回对砂岩成岩作用的控制[J].岩石矿物学杂志,28(2):179-184
    [44]孙永传,李蕙生,1995,层序地层学在成岩作用研究中的应用[J].地学前缘,2(34):154-157
    [45]覃建雄,张长俊,王成善,1995,全球旋回地层学[J].地质科技情报,14(1):17-22
    [46]谭先锋,田景春,陈兰等,2010,陆相断陷湖盆层序对成岩演化控制作用探讨[J].中国地质,37(5):1257-1271
    [47]谭先锋,田景春,李祖兵等,2010,东营凹陷古近系孔店组成岩特征及储层控因[J].煤田地质与勘探,38(6):27-32
    [48]谭先锋,田景春,李祖兵等,2011,济阳坳陷古近系孔店组层序界面特征及时空属性[J].(待刊)
    [49]谭先锋,田景春,林小兵等,2010,陆相断陷盆地深部碎屑岩成岩演化及控制因素-以东营断陷盆地古近系孔店组为例[J].现代地质,24(5):934-944
    [50]田景春,谭先锋,孟万斌等,2008,箕状断陷湖盆陡坡带层序地层格架内成岩演化研究
    [M].地质出版社
    [51]王建伟,赵勇生,田海芹,2001,东营一惠民凹陷孔店组层序地层学研究[J].石油大学学报,25(6):1-5
    [52]王义才,蒋祖国,蔡必金等,2000,碎屑岩成岩系统与孔隙演化[J].吐哈石油,5(1):9-12
    [53]吴智平,李伟,任拥军等,2003,济阳坳陷中生代盆地演化及其与新生代盆地叠合关系探讨[J].地质学报,77(2):280-285
    [54]吴智勇,姜衍文,1996,全球旋回地层学述评[J].石油与天然气地质,17(1):15-21
    [55]谢武仁,邓宏文,王洪亮等,2008,渤中凹陷古近系层序格架内的成岩作用[J].断块油气田,15(2):23-26
    [56]杨伟利,陈义宝,2008,八面河地区孔店组河流一冲积相层序地层学研究[J].西安石油大学学报,23(4):26-29
    [57]杨伟利,陈义宝,2008,八面河地区孔店组河流一冲积相层序地层学研究[J].西安石油大学学报,23(4):26-29
    [58]尹兵祥,王尚旭,杨国权等,2004,渤海湾盆地东营一惠民凹陷古近系孔店组孔二段地震相与沉积相[J].古地理学报,6(1):50-56
    [59]尹兵祥,王尚旭,杨国权等,2004,渤海湾盆地东营一惠民凹陷古近系孔店组孔二段地震相与沉积相[J].古地理学报,6(1):50-56
    [60]应凤祥,罗平,何东博,2004,中国含油气盆地碎屑岩储集层成岩作用于成岩数值模拟
    [M].北京:石油工业出版社,1-285
    [61]岳志鹏,曾俊,高志卫等,2006,惠民凹陷孔店组—沙四段“膏盐岩”层沉积机理—以MS1井“膏盐岩”层分析为例[J].石油勘探与开发,33(5):591-594
    [62]曾溅辉,2000,东营凹陷热流体活动及其对水-岩相互作用的影响[J].地球科学,25(2):133-142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700