基于多肽构建的微/纳米结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用NCA开环聚合法得到聚氨基酸型多肽的研究已经有数十年之久的历史,研究的领域也从早期的嵌段共聚物和相分离结构转向各类应用,比如作为微纳米功能性载体、药物载体、DNA载体、响应性凝胶等等。但是,这些体系大部分仅限于线型的多肽嵌段共聚物。本文在前人工作的基础上,合成了不同内核和支臂的超支化多肽嵌段共聚物,并研究了基于多肽构建微/纳米结构的方法,研究的领域涉及超支化多肽嵌段共聚物的合成与表征、以多肽为模板的生物矿化、在无机材料表面接枝多肽以及多肽稳定的金纳米粒子的制备和组装行为。具体研究内容和主要结论概括如下:
     (1)具有超支化内核的含多肽嵌段共聚物的合成和生物相容性研究。
     利用超支化PEI作为引发剂,使ZLys‐NCA,BLG‐NCA、Phe‐NCA和BAsp‐NCA开环聚合,得到四类具有亲水性的PEI内核,不同臂长的疏水臂的超支化多肽嵌段共聚物。通过脱除多肽侧链的保护基团,又进一步得到三类双亲水型的超支化多肽嵌段共聚物。通过1H NMR谱和FT‐IR光谱,对这些超支化多肽嵌段共聚物的结构进行了表征,并利用1H NMR谱计算了分子量、EI/多肽段百分含量等参数。
     利用商品化的超支化聚酯Boltorn H_20/H40和Boc保护的苯丙氨酸,通过DCC缩合和保护基团脱除反应,得到了含部分端氨基的超支化聚酯H_20‐NH_2和H40‐NH_2。使用它们作为大分子引发剂,令ZLys‐NCA和BAsp‐NCA开环聚合,并进一步脱除保护基团,分别得到三类疏水内核,亲水臂的超支化多肽嵌段共聚物。通过1H NMR谱和FT‐IR光谱,对这些超支化多肽嵌段共聚物的结构进行了表征,并分别利用GPC法和NMR法表征了它们的分子量、分子量分布和多肽臂长等参数。
     对超支化多肽嵌段共聚物的生物相容性进行了表征,结果显示聚合物的生物相容性与聚合物中可携带正电荷的基团相关,这类基团越多,生物相容性越差。通过引入含有羧基的适当长度的PGlu段和PAsp段,可以得到具备生物相容性的超支化嵌段聚合物。
     (2)聚赖氨酸为模板的碳酸钙生物矿化研究。
     以PLys为模板,通过气相扩散法制备了不同形貌的碳酸钙晶体,其中长有“腰带”的双球形碳酸钙晶体是首次报道。用SEM对长有“腰带”的双球形碳酸钙晶体形貌进行分析,结果表明,“腰带”的宽度大约为2~3纳米,球体表面覆盖着具有分形结构的晶片,组成“腰带”的晶片也与之类似。LM‐Raman光谱分析结果表明,长有“腰带”的双球形碳酸钙晶体属于球文石。通过改变模板分子PLys浓度、初始pH值、钙离子浓度和反应时间等条件,还得到了双球形、扁球形、六边形和中空圆环状等一系列特殊形貌的碳酸钙晶体,它们也属于球文石。
     PLys控制碳酸钙矿化的过程中,分子链中存在的α螺旋起到重要的作用:在一定的pH值下,PLys吸附钙离子,并利用分子链中存在的α螺旋为模板,形成碳酸钙纳米晶。这些带有纳米晶的PLys分子链再组装成赤道平面对称的大晶核,并在不同的条件下生长成形貌各异的碳酸钙大晶体。当[Ca~(2+)]和[PLys]较低时,晶核生长为无腰带的双球形晶体。[PLys]增加到一定值后,生成的是赤道区较宽的双球形晶体,随着体系pH值增加,原来的生长方向被抑制,但沿着赤道区垂直于球体方向和球体的切线(指向赤道面)方向继续诱导生长出柏树叶状,具有分形结构的晶片,最终形成长有“腰带”的双球形碳酸钙晶体。起始pH值较高,或者PLys浓度较大时,生成扁球状碳酸钙晶体,这是因为α螺旋的浓度也较高,对晶体沿极轴方向的生长有抑制作用。当钙离子浓度较高,矿化时间延长时,生成六边形碳酸钙晶体,钙离子浓度进一步提高则生成中空环状结构的碳酸钙。该研究结果表明,在自然界中,碳酸钙的矿化可能不仅仅依靠那些含有可变为负离子的残基(如天冬氨酸或谷氨酸)的多肽,多肽的二级结构在控制碳酸钙矿化中也起到非常重要的作用。
     (3)超支化多肽嵌段共聚物为模板的碳酸钙矿化研究。
     以不同聚谷氨酸段链长的PEI—PGlu分子为模板,通过气相扩散法获得了不同形貌的碳酸钙晶体。按照模板分子的差别进行了相应的研究。当以PGlu段较短的PEI‐PGlu1分子为模板时,改变模板分子和钙离子浓度,得到的是以梭状晶为主的碳酸钙晶体。随着钙离子浓度不同,晶体的形貌变化不大,随聚合物浓度不同,在聚合物含量较少时,可以得到晶面较为明显的晶体,形貌更接近拉伸菱方晶。用XRD和LM‐Raman光谱研究了晶体结构,这些晶体均为方解石。当以PGlu段长度适中的PEI‐PGlu2分子为模板时,钙离子的浓度对碳酸钙晶体的形貌可以产生很大影响。随着钙离子浓度的增加,晶体的形貌从拉伸菱方晶转化为兼具拉伸菱方晶和双球晶特征的过渡型晶体,再变为双球形晶体,最后变成球状或半球状晶体。聚合物的浓度对碳酸钙形貌的影响较小,在实验的范围内,聚合物浓度越高,越难以生成明显的大晶面。用XRD和LM‐Raman光谱研究了晶体结构,这些晶体均为方解石,伴生有一些球状的文石晶体。镁离子存在时,可以干扰方解石晶型的生成。使用不同混合溶剂也会对碳酸钙的形貌产生很大影响。这可能是溶剂对不同嵌段的溶解能力、溶剂化效应、混合溶剂对二氧化碳的溶解性以及混合溶剂对模板的形貌的影响造成的。
     PEI‐PGlu作为模板进行碳酸钙矿化时,PEI‐PGlu分子类似一个三维的“纳米反应器”。PEI段和PGlu段都可以对碳酸钙的形貌产生影响,以PGlu段的影响更大,它的侧链羧基可以和钙离子通过电荷复合和络合形成碳酸钙矿化的模板,而PEI的作用是吸附二氧化碳/碳酸根。PEI‐PGlu作为模板可能的机理如下:最初的诱发碳酸钙晶体生长的模板由数个被钙离子联系在一起的PEI‐PGlu分子组成,当分子为谷氨酸残基含量较少的PEI‐PGlu1时,由于Glu含量太低,无论钙离子浓度如何变化,也只能产生倾向于生成梭状的晶体的模板。当分子为谷氨酸残基含量适中的PEI‐PGlu2时,通过改变钙离子的浓度,可以改变PEI‐PGlu分子之间“交联”的程度,并依据“交联”程度的不同得到形貌不同的模板,进而生成形貌截然不同的晶体。当模板分子的PGlu比例进一步增大时,由于PGlu链段足够长,这时更倾向于把钙离子吸附在分子内,而不是在分子间共享钙离子,这种模板倾向于形成球状的碳酸钙。
     (4)用Graft‐From法在无机纳米材料表面修饰多肽。
     利用酸化和氨基化反应,得到氨基化的多壁碳纳米管MWNT‐NH_2,再用MWNT‐NH_2引发BLG‐NCA开环聚合,得到表面接枝多肽的多壁碳纳米管MWNT‐PBLG。运用透射电镜对MWNT‐PBLG进行表征,证明多肽已经接枝到多壁碳纳米管上,多肽层的厚度为4.50~22 nm。采用热重分析计算了多肽的接枝量并估算了接枝多肽的平均链长,随着投料比的不同,多肽的接枝量为3.74gPBLG/ g碳管到6.04g PBLG / g碳管不等,平均链长则在8.13~13.2个BLG残基之间。红外光谱和XPS谱显示了与普通的PBLG相比,接枝在碳纳米管表面的PBLG的氢键作用力更弱,这可能是因为后者的一端固定在碳纳米管表面,难以形成分子间氢键造成的。溶解度测试则表明MWNT‐PBLG在强极性溶剂中分散得更好。
     利用硅烷偶联剂进行表面改性,得到氨基化的二氧化硅纳米微球SiO_2‐NH_2,再用它引发ZLys‐NCA开环聚合,得到表面接枝多肽的二氧化硅纳米微球SiO_2‐PZlys。运用透射电镜对SiO_2‐PZlys进行表征,证明多肽已经接枝到二氧化硅纳米微球上,多肽层的厚度为14.7~26.8 nm不等。采用热重分析计算了多肽的接枝量,随着投料比不同,多肽的接枝量为0.36g PZLys/g SiO_2~0.23gPZLys/g SiO_2不等。
     两种无机纳米粒子表面接枝多肽的热重分析和透射电镜表征结果显示,接枝多肽的量并不能随着NCA:无机纳米粒子的投料比线性变化,这意味着接枝时发生的NCA开环聚合反应并非活性聚合。由于碳纳米管的比表面积比二氧化硅纳米微球大得多,而且碳纳米管还是中空的,因此单位质量的碳纳米管能够比二氧化硅纳米微球接枝更多的多肽。
     (5)多肽稳定的金纳米粒子的研究。
     使用巯基乙胺三氟乙酸盐引发ZLys‐NCA开环聚合,得到端巯基的多肽衍生物PZLys‐SH,利用不同长度的PZLys‐SH作为稳定剂,在DMF溶液中使用硼氢化钠还原法得到油溶性的金纳米粒子Au@PZLys‐SH,UV‐Vis光谱分析表明,在使用同样的PZLys‐SH时,金氯酸的量越多,所得的金纳米粒子尺寸越大,溶液的颜色越偏向蓝紫色。TEM分析表明所得的金纳米粒子尺寸为5~10nm,拥有较为完美的晶格。以分子量较小的PZLys‐SH1为稳定剂得到的金纳米粒子还可能在水中组装为直径为数十纳米的囊泡。此外,Au@PZLys‐SH表面带有正电荷,可以与经强酸处理过,表面带有羧基的单壁碳纳米管复合。TEM照片证实这种复合物最常见的形态是多颗金纳米粒子富集于多根碳纳米管上,或是出现在碳纳米管的交汇处。
     使用聚赖氨酸直接在水相中还原金氯酸,得到聚赖氨酸稳定的金纳米粒子Au@PLys。这种金纳米粒子的直径为10nm左右。Au@PLys可以与侧链带有羧基的超支化多肽嵌段共聚物H40‐Phe‐PAsp复合生成胶束,胶束的直径随着Au@PLys的增加变大,增长到一定程度后,变为随着Au@PLys的增加而减小,这是胶束内增多的正电荷对胶束外壳的羧基吸引力增加的结果。同样,Au@PLys也可以与HsDNA形成复合胶束,随着Au@PLys的增多,胶束的粒径可由一百多纳米增加到七百多纳米。用TEM观察这两种胶束发现,胶束内均包含了一定量的金纳米粒子,胶束的尺度与动态光散射法测得的胶束粒径基本吻合。这两种复合胶束有望应用于生物医疗等方面的用途。
Polypeptides prepared via N‐carboxyanhydride (NCA) ring‐opening polymerization have receivedintensive concern for decades. Up to date, these polypeptides and their block copolymers have beenreported to be applied as micro/nano functional carriers, bio‐compatible materials and responsivegels due to their unique properties. However, most of the reported works focused on linearpolypeptides and block polypeptide copolymers. In this dissertation, a series of hyperbranchedpolypeptide with different cores and arms were prepared, and some micro/nano structures based onpolypeptides were further constructed. The studies included the synthesis and characterization of thehyperbranched polypeptide copolymers (HPCs), the mineralization of calcium carbonate directed bypolypeptides, polypeptides modification of multiwalled carbon nanotubes and silica nanoparticles bygraft‐from approach, and the gold nanoparticles stabilized by polypeptides and their chargecomplexes. The details and key conclusions are summarized as follows:
     (1) The preparation of hyperbranch cored, polypeptide armed block copolymers and the study oftheir biocompatibilities.
     In this chapter, hydrophilic hyperbranched polyethyleneimide (PEI) was used as initiator toprepare four kinds of HPCs with different hydrophobic polypeptide arms by ring‐openingpolymerization of N‐ε‐carbobenzoxy‐L‐Lysine NCA (ZLys‐NCA),γ‐benzyl‐L‐glutamate NCA (BLG‐NCA),β‐benzyl‐L‐aspartate NCA (BAsp‐NCA) and phenylalanine NCA (Phe‐NCA). Three kinds of HPCs withdifferent hydrophilic polypeptide arms can also be obtained after deprotection. Their structures werecharacterized by FT‐IR and 1H NMR. The molecular weights and EI/peptide contents were calculatedwith the assistance of 1H NMR.
     Hydrophobic hyperbranched polyester Boltorn H_20/40 were reacted with N‐butoxycarbonyl‐Lphenylalaninein the presence of dicyclohexylcarbodiimide, and then the butoxycarbonyl wasdeprotected to obtain the amino‐terminated hyperbranched polyester Boltorn H_20‐NH_2 /H40‐NH_2.The two compounds initiated ZLys‐NCA and BAsp‐NCA ring‐opening polymerization, and then theprotective groups were removed to prepare three kinds of hydrophobic cored, hydrophilic armed HPCs.They were also characterized by FT‐IR and 1H NMR, and the molecular weights, peptide contents wereobtained by GPC and 1H NMR.
     The biocompatibility tests of some HPCs showed that the cytotoxicities were increased withpositive charge content. HPCs with good biocompatibility should contain proper amounts of Aspblock or Glu block, which carries carboxyl side groups.
     (2) The study of calcium carbonate mineralization directed by poly‐L‐Lysine.In this chapter, the novel calcium carbonate (CaCO_3) morphology, twin‐sphere with an equatorialgirdle, had been obtained under the control of poly(L‐lysine) (PLys) through gas‐diffusion method. TEM images showed the“girdle”width is 2~3 nm, and the surface of the twin‐sphere are covered withfractal crystal pieces. The effect of the concentration of calcium ion and PLys, the reaction time, andthe initial pH value were investigated, and various interesting morphologies, including twin‐sphere,discus‐like, hexagonal plate and hallow structure were observed by using scanning electronicmicroscopy (SEM). Laser microscopic Raman (LM‐Raman) spectroscopy studies indicated that all theseCaCO_3 are vaterite.
     This work found that PLys with side amine groups can control the mineralization of CaCO_3 just likethe acidic polypeptides. A reasonable process for forming the morphologies was discussedpreliminarily. At first, the anisotropic vaterite nanocrystals were formed under the direction of thePLys chains which contained partlyα‐helix, then the nanocrystals assembled to form a nuclear plate,and the growth from both sides of the nuclear plate resulted in the twin‐sphere. With theenvironmental pH value increasing to stronger alkaline, the conformation change of PLys chains leadto the CaCO_3 tangential oriented growth on the sphere surface and vertical oriented growth on theequatorial zone. Finally, the twin‐sphere with equatorial girdle morphology was generated. Itsuggested that alkaline polypeptide or protein may also play a suitable role in the biomineralizationprocess in nature.
     (3) The study of calcium carbonate mineralization directed by hyperbranched polypeptidecopolymers.
     In this chapter, various calcium carbonate morphologies had been obtained via gas‐diffusionmethod by the direction of PEI‐PGlu HPCs with different PGlu section length. When the template wasPEI‐PGlu1, which contained short PGlu section, the products were mainly fusiform calcite crystals.When the template was PEI‐PGlu2, which contained medium PGlu section, the morphologies ofcalcium carbonate were significantly affected by the concentration of Ca2+. At lower Ca2+concentration, the morphology of the calcium carbonate was elongated rhombohedral crystal. Withthe Ca2+concentration increasing, the morphology of the calcium carbonate turned to transitionalcrystal posses both the characters of elongated rhombohedral and twin‐sphere. If theCa2+concentration were further increased, the twin‐sphere calcium carbonate macrocrystal wasobtained. Finally, the calcium carbonate macrocrystal showed sphere morphology at highest Ca2+concentration. All these macrocrystals were determined calcite by XRD and LM‐Raman spectra. Themorphology of calcium carbonate could also be affected by Mg2+ or other mixed solvents.
     PEI‐PGlu served as“3D nanoreactor”in the mineralization of calcium carbonate. PEI section couldabsorb CO_2; PBLG section could conjugate with Ca2+, and“crosslink”with them to construct thetemplate. Both the two sections could affect the morphology of calcium carbonate. A possiblemechanism was described as following: the initial templates are some PEI‐PGlu molecules crosslinkedby Ca2+. The templates absorb CO_2 themselves via PEI section to generate the CaCO_3 nanocrystal. Themorphologies of the templates are determined by the length of PGlu section. PEI‐PGlu1, whichcontains short PGlu section, can only form the template to generate fusiform calcite crystals;PEI‐PGlu2, which contains medium PGlu section, can form various templates to construct CaCO_3morphologies from elongated rhombohedra crystal to sphere macrocrystal relying on the concentration of Ca~(2+). PEI‐PGlu3, which contains long PGlu section and tends to absorb Ca~(2+)in onemolecular rather than share Ca~(2+) inter molecules, is a template for produce spherical macrocrystals.
     (4) Polypeptide modification of inorganic nanomaterials by“Graft From”approach.
     Covalent surface functionalization of carbon nanotubes with polypeptides is promising in possiblemedical applications. This work presented a graft‐from approach to perform the polypeptidemodification of multiwalled carbon nanotubes (MWNTs). The raw MWNTs were amine‐functionalizedat first, then MWNT‐NH_2 was used as the initiator to initiate the ring‐opening polymerization ofBLG‐NCA, resulting in the polypeptide‐grafted MWNTs. FTIR, XPS and TGA data demonstrated that thefunctionalization was successful. The TEM images of the products showed that the thickness of thepolypeptide shell of the PBLG‐MWNT was about 4.5~22 nm. TGA analysis showed that thepolypeptide contents were 3.74~6.04 g PBLG/g MWNTs. The average graft lengths are 8.13~13.2 BLGsections. The polypeptide modified carbon naaotubes showed better solubility in polar solutions.According to the facile route developed here, the functionalized carbon nanotubes with other types ofpolypeptides can be fabricated easily using the corresponding NCAs.
     Silica nanospheres were modified by coupling agent to obtained SiO_2‐NH_2 at first, then theSiO_2‐NH_2 initiated ZLys‐NCA ring‐opening reaction, resulting in the polypeptide grafted silicananosphere SiO_2‐PZLys. TEM images showed that the thickness of the polypeptide shell is about14.7~26.8nm. Polypeptide contents were calculated 0.23~0.36 g PZlys/g SiO_2 by TGA.
     The results of TGA and TEM showed that the grafted polypeptides can not increase linearly withthe NCA feed ratio. It investigated that the grafting reaction was not living polymerization. Besides,equal weight of MWNTs can graft more polypeptide than SiO_2 nanoparticles, because that the specificarea of the MWNTs is much larger than SiO_2 nanoparticles, and the MWNTs are hollow.
     (5) The study of gold nanoparticles stabilized by polypeptides.
     The mercaptoethylamine trifluoroacetate initiated ZLys‐NCA ring‐opening polymerization toobtain thiol terminated polypeptide PZLys‐SH. PZLys‐SHs with different molecular weights were usedto prepare gold nanoparticles (GNPs) Au@PZLys‐SH in DMF with HAuCl4 by the reduction of NaBH4.UV‐Vis spectra indicated that the size of GNPs grew up with the amount of HAuCl4. TEM imagesshowed the diameter of GNPs was 5~10nm and the lattice of GNPs were perfect. GNPs stabilized byPZly‐SH1, Au@PZly‐SH1 may self‐assemble to small vesicles with tens of nanometers diameter inwater. Besides, Au@PZly‐SH can also combine with single walled carbon nanotubes (SWNTs) treatedby nitric acid because the Au@PZly‐SH possess positive charges, and the SWNTs possess carboxyl. TEMimages confirmed that the GNPs in the complexes are most absorbed on the SWNTs bundles, or thecross block of the SWNTs.
     HAuCl4 was reduced in situ by PLys in aqueous solution for preparing the GNPs stabilized by PLys,Au@PLys. The diameter of the Au@PLys is about 10 nm. Au@PLys can combine with hyperbranchedpolypeptide copolymer H40‐Phe‐PAsp, which contains carboxyl in arms, and form complex micelles.The diameters of the micelles are increasing with the adding of Au@PLys firstly, and then decreasewith the adding of Au@PLys. It contributes to the added positive charges carried by Au@PLys attractthe carboxyl in the micelle shell. Au@PLys can also bind with HsDNA to build complex micelles, the diameters of the micelles are increased from about 150nm to about 700nm with the adding ofAu@PLys. TEM images showed the two kinds of micelles contained several GNPs, and the diameters ofthe micelles are accorded with the results of dynamic light scatting. The two kinds of complex micellesshould be applied in biomedical in the future.
引文
[1]王克夷,蛋白质导论,科学出版社,2007年第一版。
    [2] N.休厄德,H. D.贾库布克著,刘克良,何军林等译,肽:化学与生物学,科学出版社,2005年第一版。
    [3] H. R. Kricheldorf, Polypeptides and 100 Years of Chemistry of a‐Amino Acid N‐Carboxyanhydrides,Angew. Chem. Int. Ed., 2006, 45, 5752‐5784.
    [4] E. R. Blout, R. H. Karlson, Polypeptide III The synthesis of high molecular weightpoly‐γ‐boly‐L‐glutamic acid: preparation and optical rotation changes. J. Am. Chem. Soc., 1956, 78,941‐946.
    [5] M. Idelson, E. R. Blout, High molecular weight poly‐L‐glutamic acid: preparation and opticalrotation changes. J. Am. Chem. Soc., 1955, 77, 4631‐4634.
    [6] G. D. Fasman, M. Idelson, E. R. Blout, Synthesis and conformation of high molecular weightpoly‐γ‐carbobenzyloxy‐L‐lysine and poly‐L‐lysine?HCl, J. Am. Chem. Soc., 1961, 83, 709‐712.
    [7] E. Katchalski, Advances in protein chemistry, Vol. VI, Academic Press, Inc., NewYork, N. Y., 1951,pp.123‐185.
    [8] R. B. Woodward, C. H. Schramm, Synthesis of Protein analogs, J. Am. Chem. Soc., 1947, 69,1551‐1552.
    [9]曹田,尹静波,罗坤等,高分子量的聚‐L‐谷氨酸的合成与表征,高等学校化学学报,2006,27,369~371。
    [10] Y. Yao, W. Y. Dong, S. M. Zhu, et al., Novel Morphology of Calcium Carbonate Controlled byPoly(L‐lysine), Langmuir, 2009, 25, 13238‐13243.
    [11] H. Hirabayashi, M. Nishikawa, Y. Takakura, et al., Development and pharmacokinetics ofgalactosylated poly‐L‐glutamic acid as a biodegradable carrier for liver‐specific drug delivery, Pharm.Res. 1996,13, 881‐884.
    [12] K. Hoste, E. Schacht, L. Seymour, New derivatives of polyglutamic acid as drug carrier systems, J.Controlled Release, 2000, 64, 53‐61.
    [13] G. Giammona, G. Pitarresi, V. Tomarchio, et al., Swellable microparticles containing Suprofen:evaluation of in vitro release and photochemical behavior, J. Controlled Release, 1998, 51, 249.
    [14] B. Zore, D. Magsing, I. Kalcic, et al., Macromolecular prodrugs .5. polymer‐broxuridine conjugates,Int. J. Pharm., 1995, 123, 65.
    [15]T. J. Deming, Polypeptide and Polypeptide Hybrid Copolymer Synthesis via NCA Polymerization,Adv. Polym. Sci., 2006, 202, 1‐18.
    [16] A. Koide, A. Kishimura, K. Osada, et al., Semipermeable Polymer Vesicle (PICsome)Self‐Assembled in Aqueous Medium from a Pair of Oppositely Charged Block Copolymers:Physiologically Stable Micro‐/Nanocontainers of Water‐Soluble Macromolecules, J. Am. Chem. Soc.,2006, 128, 5988‐5989.
    [17] A. Kishimura, A. Koide, K. Osada, et al., Encapsulation of Myoglobin in PEGylated Polyion ComplexVesicles Made from a Pair of Oppositely Charged Block Ionomers: A Physiologically Available OxygenCarrier, Angew. Chem. Int. Ed., 2007, 46, 6085–6088.
    [18] Y. Bae, N. Nishiyama, K.Kataoka, In vivo antitumor activity of the folate‐conjugated pH‐sensitivepolymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug.Chem., 2007, 18, 1131‐1139.
    [19] Y. Lee, S. Fukushima, Y. Bae, et al., A Protein Nanocarrier from Charge‐Conversion Polymer inResponse to Endosomal pH, J. Am. Chem. Soc. 2007, 129, 5362‐5362.
    [20] S. Takae, K. Miyata, M. Oba, et al., PEG‐Detachable Polyplex Micelles Based on Disulfide‐LinkedBlock Catiomers as Bioresponsive Nonviral Gene Vectors, J. Am. Chem. Soc., 2008, 130, 6001–6009.
    [21] K. Miyata, M. Oba, M. Nakanishi, et al., Polyplexes from Poly(aspartamide) Bearing1,2‐Diaminoethane Side Chains Induce pH‐Selective, Endosomal Membrane Destabilization withAmplified Transfection and Negligible Cytotoxicity, J. Am. Chem. Soc., 2008, 130, 16287‐16294.
    [22] W. F. Dong, A. Kishimura, Y. Anraku, et al., Monodispersed Polymeric Nanocapsules: SpontaneousEvolution and Morphology Transition from Reducible Hetero‐PEG PICmicelles by ControlledDegradation, J. Am. Chem. Soc., 2009, 131, 3804‐3805.
    [23] S. Matsumoto, R. J. Christie, N. Nishiyama, et al., Environment‐Responsive Block CopolymerMicelles with a Disulfide Cross‐Linked Core for Enhanced siRNA Delivery, Biomacromolecules 2009, 10,119‐127.
    [24] N. Nishiyama, Y. Nakagishi, Y. Morimoto, et al., Enhanced photodynamic cancer treatment bysupramolecular nanocarriers charged with dendrimer phthalocyanine, J. Controlled Release, 2009, 133,245‐251.
    [25] K. Osada, K. Kataoka, Drug and Gene Delivery Based on Supramolecular Assembly ofPEG‐Polypeptide Hybrid Block Copolymers, Adv. Polym. Sci., 2006, 202, 113–153.
    [26] G. Z. Rong, M. X. Deng, C. Deng, et al., Synthesis ofpoly(ε‐Caprolactone)‐b‐poly(γ‐Benzyl‐L‐Glutamic Acid) block copolymer using amino organic calciumcatalyst, Biomacromolecules, 2003, 4, 1800‐1804.
    [27] C. Deng, X. S. Chen, J. Sun, et al., RGD peptide grafted biodegradable amphiphilic triblockcopolymer poly(glutamic acid)‐b‐poly(L‐lactide)‐b‐poly(glutamic acid): Synthesis and self‐assembly, J.Polym. Sci. Part A. PolymChem., 2007, 45, 3218‐3230.
    [28]邓超,聚乳酸的氨基酸改性和生物智能化,中国科学院长春应用化学研究所博士论文,2006。
    [29] J. Sun, C. Deng, X. S. Chen, et al., Self‐Assembly of Polypeptide‐Containing ABC‐Type TriblockCopolymers in Aqueous Solution and Its pH Dependence, Biomacromolecules, 2007, 8, 1013‐1017.
    [30]孙静,含有聚氨基酸的嵌段共聚物的合成、自组装和应用,中国科学院长春应用化学研究所博士论文,2008。
    [31] C. Deng, X. S. Chen, H. J. Yu, et al., A biodegradable triblock copolymerpoly(ethyleneglycol)‐b‐poly(L‐lactide)‐b‐poly(L‐lysine): Synthesis, self‐assembly, and RGD peptidemodification, Biomacromolecules, 2008, 9, 376‐380.
    [32] C. Deng, H. Y. Tian, P. B. Zhang, et al., Synthesis and Characterization of RGD Peptide GraftedPoly(ethylene glycol)‐b‐Poly(L‐lactide)‐b‐Poly(L‐glutamic acid) Triblock Copolymer, Biomacromolecules,2006, 7, 590‐596.
    [33] J. Sun X. S. Chen, J. S. Guo, et al., Synthesis and self‐assembly of a novel Y‐shaped copolymer witha helical polypeptide arm, Polymer, 2009, 50, 455‐461.
    [34] P. Degée, P. Dubois, R. Jerome, et al., Synthesis and characterization of biocompatible andbiodegradable poly([epsilon]‐caprolactone‐b‐[gamma]‐benzylglutamate) diblock copolymers, J. Polym.Sci. Part A. PolymChem., 1993, 31, 275.
    [35] S. Caillol, S. Lecommandoux, A. F. Mingotaud, et al., Synthesis and self‐assembly properties ofpeptide‐ Polylactide block copolymers, Macromolecules, 2003, 36, 1118.
    [36] M. L. Hellaye, N. Fortin, J. Guilloteau, et al., Biodegradable Polycarbonate‐b‐polypeptide andPolyester‐b‐polypeptide Block Copolymers: Synthesis and Nanoparticle Formation TowardsBiomaterials, Biomacromolecules, 2008, 9, 1924‐1933.
    [37] J. Emami , H. Hamishehkar, A. R. Najafabadi, et al., A novel approach to prepare insulin‐loadedpoly(lactic‐co‐glycolic acid) microcapsules and the protein stability study, J. Pharm. Sci., 2009, 98,1712‐1731.
    [38] E. S. Lee, K. Na, Y. H. Bae, Super pH‐sensitive multifunctional polymeric micelle, Nano. Lett., 2005,5, 325‐329.
    [39]张国林,吴秋华,宋溪明等,聚氨基酸共聚物合成研究进展,高分子材料科学与工程,2006,22,10‐14。
    [40] H. A. Klok, S. Lecommandoux, Solid‐state structure, organization and properties of peptide‐Synthetic hybrid block copolymers, Solid‐State Structure, Organization and Properties ofPeptide‐Synthetic Hybrid Block Copolymers, Adv. Polym. Sci., 2006, 202, 113–153.
    [41] B. Perly, A. Douy, B. Gallot, Block copolymers polybutadiene/poly(benzyl‐L‐glutamate) andpolybutadiene/poly(N5‐hydroxypropylglutamine). Preparation and structural study by x‐ray andelectron microscopy, Makromol. Chem., 1976, 177, 2569‐2589.
    [42] R. Yoda, S. Komatsuzaki, E. Nakanishi, et al., Microheterophase structure of A‐B‐A type blockcopolymer consisting of poly(γ‐benzyl‐L‐glutamate) as the a component and polyisoprene as the Bcomponent, Eur. Polym. J. 1995, 31, 335.
    [43] R. Yoda, S. Komatsuzaki, T. Hayashi, Membrane properties of A‐B‐A type block copolymerconsisting of poly(γ‐benzyl‐L‐glutamate) as the a component and polyisoprene as the B component,Eur. Polym. J., 1996, 32, 233.
    [44] R. Yoda, M. Shimoda, S. Komatsuzaki, et al., Morphology study of poly(gamma‐benzyl L‐glutamate)and polyisoprene copolymer by pulsed proton NMR, Eur. Polym. J., 1997, 33, 815.
    [45] R. Yoda, S. Komatsuzaki, T. Hayashi, Surface‐properties and biocompatibility of a‐b‐a‐typeblock‐copolymer membranes consisting of poly(gamma‐benzyl‐l‐glutamate) as the a‐component andpolyisoprene as the b‐component , Biomaterials, 1995, 16, 1203.
    [46] R. Yoda, S. Komatsuzaki, E. Nakanishi, Preparation and properties of a‐b‐a‐type block‐copolymermembranes consisting of poly(n‐hydroxypropyl‐L‐glutamine) as the a‐component and polyisoprene asthe b‐component, Biomaterials, 1994, 15, 944.
    [47] J. P. Billot, A. Douy, B. Gallot, Preparation, fractionation, and structure of block copolymerspolystyrene‐poly(carbobenzoxy‐L‐lysine) and polybutadiene‐poly(carbobenzoxy‐L‐lysine), Makromol.Chem. 1977, 178, 1641‐1650.
    [48] T. Kumaki, M. Sisido, Y. Imanishi , Antithrombogenicity and oxygen permeability of block and graftcopolymers of polydimethylsiloxane and poly(alpha‐amino acid). J. Biomed. Mater. Res., 1985, 19, 785.
    [49] I. K. Kang, Y. Ito, M. Sisido, et al., Adsorption of plasma‐proteins and platelet‐adhesion on topolydimethylsiloxane poly(gamma‐benzyl l‐glutamate) block copolymer films, Biomaterials, 1988, 9,138.
    [50] I. K. Kang, Y. Ito, M. Sisido, et al., Gas‐permeability of the film of block and graft‐copolymers ofpolydimethylsiloxane and poly(gamma‐benzyl l‐glutamate), Biomaterials, 1988, 9, 349.
    [51] K. Kugo, H. Nishioka, J. Nishino, Synthesis and gas permeability of A‐B‐A tri‐block copolymersconsisting of poly(γ‐benzyl L‐glutamate) and poly(dimethyl siloxane), Chemistry Express, 1987, 2,21‐24.
    [52] R. Sigel, M. ?osik, H. Schlaad, pH Responsiveness of Block Copolymer Vesicles with a PolypeptideCorona, Langmuir, 2007, 23, 7196‐7199.
    [53]贺超良,双结晶性PEG‐PCL两嵌段共聚物的合成、结晶行为和形态,中国科学院长春应用化学研究所博士学位论文,2006。
    [54] C. L. He, C. W. Zhao, X. S. Chen, et al., Novel pH‐ and Temperature‐Responsive Block Copolymerswith Tunable pH‐Responsive Range, Macromol. Rapid Commun., 2008, 29, 490‐497.
    [55] C. L. He, C. W. Zhao, X. H. Guo, et al., Novel temperature‐ and pH‐responsive graft copolymerscomposed of poly(L‐glutamic acid) and poly(N‐isopropylacrylamide), J. Polym. Sci. Part A. PolymChem.,2008, 46, 4140‐4150.
    [56] C. W. Zhao, X. L. Zhuang, C. L. He, Synthesis of Novel Thermo‐ and pH‐ResponsivePoly(L‐lysine)‐Based Copolymer and its Micellization in Water, Macromol. Rapid Commun., 2008, 29,1810‐1816.
    [57] Y. Lee and K. Kataoka, Biosignal‐sensitive polyion complex micelles for the delivery ofbiopharmaceuticals, Soft Matter, 2009, 5, 3810‐3817.
    [58] I. Dimitrov, H. Schlaad, Synthesis of nearly monodisperse polystyrene–polypeptide blockcopolymers via polymerisation of N‐carboxyanhydrides, Chem. Commun., 2003, 2944‐2945.
    [59] I. Dimitrov, H. Kukula, H. Coffen, et al., Advances in the synthesis and characterization ofpolypeptide‐based hybrid block copolymers, Macromol. Symp., 2004, 215, 383‐393.
    [60] H. Schlaad, B. Smarsly, M. Losik, The Role of Chain‐Length Distribution in the Formation ofSolid‐State Structures of Polypeptide‐Based Rod‐Coil Block Copolymers, Macromolecules, 2004, 37,2210‐2214.
    [61] S. Ludwigs, G. Krausch, G. Reiter, et al., Structure Formation of Polystyrene‐block‐poly(γ‐benzylL‐glutamate) in Thin Films, Macromolecules, 2005, 38, 7532‐7535.
    [62] H. Schlaad, B. Smarsly, I. Below, Solid‐State Structure of Polystyrene‐block‐poly(γ‐benzylL‐glutamate): Helix Folding vs Stretching, Macromolecules, 2006, 39, 4631‐4632.
    [63] M. Losik, S. Kubowicz, B. Smarsly, et al., Solid‐state structure of polypeptide‐based rod‐coil blockcopolymers: Folding of helices, Eur. Phys. J. E, 2004, 15, 407‐411.
    [64]H. Schlaad, Solution Properties of Polypeptide‐based Copolymers, Adv. Polym. Sci., 2006, 202,53‐73.
    [65] D. W. P. M. Lowik, L. Ayres, J. M. Smeenk, et al., Synthesis of Bio‐InspiredHybrid Polymers UsingPeptide Synthesis and Protein Engineering, Adv. Polym. Sci., 2006, 19‐52.
    [66] T. J. Deming, Facile synthesis of block copolypeptides of defined architecture, Nature, 1997, 390,386.
    [67] T. J. Deming, Amino acid derived nickelacycles: Intermediates in nickel‐mediated polypeptidesynthesis, J. Am. Chem. Soc., 1998, 120, 4240.
    [68] T. J. Deming, Cobalt and iron initiators for the controlled polymerization of alpha‐aminoacid‐N‐carboxyanhydrides, Macromolecules, 1999, 32, 4500.
    [69] T. J. Deming, Methodologies for preparation of synthetic block copolypeptides: materials withfuture promise in drug delivery, Adv. Drug Delivery Rev., 2002, 54, 1145‐1155.
    [70] T. J. Deming, Synthetic polypeptides for biomedical applications, Prog. Polym. Sci., 2007, 32,858‐875.
    [71] E. G. Bellomo, M. D. Wyrsta, L. Pakstis, et al., Stimuli‐responsive polypeptide vesicles byconformation‐specific assembly, Nat. Mater., 2004, 3, 244‐248.
    [72] E. P. Holowka, D. J. Pochan, T. J. Deming, Charged Polypeptide Vesicles with Controllable Diameter,J. Am. Chem. Soc., 2005, 127, 12423‐12428.
    [73] E. P. Holowka, V. Z. Sun, D. T. Kamei, et al., Polyarginine segments in block copolypeptides driveboth vesicular assembly and intracellular delivery, Nat. mater., 2006, 6, 52‐57.
    [74] J. A. Hanson, C. B. Chang, S. M. Graves, et al., Nanoscale double emulsions stabilized bysingle‐component block copolypeptides, Nature, 2008, 455, 85‐88.
    [75] J. Rodriguez‐Hernandez, S. Lecommandoux, Reversible inside‐out micellization of pH‐responsiveand water‐soluble vesicles based on polypeptide diblock copolymers., J. Am. Chem. Soc., 2005, 127,2026‐2027.
    [76] J. Sun, X. S. Chen, C. Deng, et al., Direct formation of giant vesicles from synthetic polypeptides,Langmuir, 2007, 23, 8308‐8315.
    [77] A. P. Nowak, V. Breedveld, L. Pakstis, et al., Rapidly recovering hydrogel scaffolds fromself‐assembling diblock copolypeptide amphiphiles, Nature, 2002, 417, 424‐428.
    [78] A. P Nowak, V. Breedveld, D. J. Pine, et al., Unusual saltstability in highly charged diblockcopolypeptide hydrogels, J. Am. Chem. Soc., 2003, 125, 15666‐15670.
    [79] T. J. Deming, Polypeptide hydrogels via a unique assembly mechanism, Soft Matter 2005, 1,28‐35.
    [80] L. Pakstis, B. Ozbas, A. P. Nowak, et al., The effect of chemistry and morphology on thebiofunctionality of self‐assembling diblock copolypeptide hydrogels, Biomacromolecules, 2004, 5,312‐318.
    [81] A. P. Nowak, J. Sato, V. Breedveld, Hydrogel Formation in Amphiphilic Triblock Copolypeptides,Supramol. Chem., 2006, 18, 423‐427.
    [82] H. R. Kricheldorf, C. Lossow, G. Schwarz, J. Polym. Sci. Part A, Polym. Chem. 2006, 44, 4680‐4695.
    [83] H. R. Kricheldorf, C. Lossow, G. Schwarz, Primary Amine and Solvent‐Induced Polymerizations of LorD,L‐Phenylalanine N‐Carboxyanhydride, Macromol. Chem. Phys., 2005, 206, 282–290.
    [84] H. R. Kricheldorf, C. Lossow, G. Schwarz, Chain extension and cyclization of telechelicpolysarcosines , Macromol. Chem. Phys., 2005, 206, 1165‐1170.
    [85]田华雨,两亲性超支化多臂共聚物PEI‐PBLG的合成与研究,中国科学院长春应用化学研究所博士论文,2005。
    [86] H. Y. Ti an, X. S. Chen, H. Lin, et al., Micellization and reversible pH‐sensitive phase transfer of thehyperbranched multiarm PEI‐PBLG copolymer, Chem. Euro. J., 2006, 12, 4305‐4312.
    [87] H. Y. Tian, W. Xiong, J. Z. Wei, et al., Gene transfection of hyperbranched PEI grafted byhydrophobic amino acid segment PBLG, Biomaterials, 2007, 28, 2899‐2907.
    [88] H. Y. Tian, C. Deng, H. Lin, et al., Biodegradable cationic PEG‐PEI‐PBLG hyperbranched blockcopolymer: synthesis and micelle characterization, Biomateroials, 2005, 26, 4209‐4217.
    [89] Z. P. Guo, Y. H. Li, H. Y. Tian, et al., Self‐Assembly of Hyperbranched Multiarmed PEG‐PEI‐PLys(Z)Copolymer into Micelles, Rings, and Vesicles, Langmuir, 2009, 25, 9690‐9696.
    [90] C. Ozawa, H. Hojo, Y. Nakahara, et al., Synthesis of glycopeptide dendrimer by a convergentmethod, Tetrahedron, 2007, 63, 9685‐9690.
    [91] H. Klok, J. R. Hernadez, Dendritic‐Graft Polypeptides, Macromolecules, 2002, 35, 8718‐8723.
    [92] C. Johannessen, J. Kapitan, H. Collet, et al., Poly(L‐proline) II Helix Propensities in Poly(L‐lysine)Dendrigraft Generations from Vibrational Raman Optical Activity, Biomacromolecules, 2009, 10,1662–1664.
    [93] H. Cottet, M. Martin, A. Papillaud, et al., Determination of Dendrigraft Poly‐L‐Lysine DiffusionCoefficients by Taylor Dispersion Analysis, Biomacromolecules, 2007, 8, 3235‐3243.
    [94] I. Tsogas, T. Theodossiou, Z. Sideratou, et al., Interaction and Transport of Poly(l‐lysine)Dendrigrafts through Liposomal and Cellular Membranes: The Role of Generation and SurfaceFunctionalization, Biomacromolecules, 2007, 8, 3263–3270.
    [95] M. Scholl, T. Q. Nguyen, B. Bruchmann, et al., Controlling Polymer Architecture in the ThermalHyperbranched Polymerization of L‐Lysine, Macromolecules, 2007, 40, 5726‐5734.
    [96] N. Canilho, M. Scholl, H. A. Klok, et al., Thermotropic Ionic Liquid Crystals via Self‐Assembly ofCationic Hyperbranched Polypeptides and Anionic Surfactants, Macromolecules, 2007, 40, 8374‐8383.
    [97] M. Scholl, T. Q. Nguyen, B. Bruchmann, et al., The thermal polymerization of amino acids revisited;Synthesis and structural characterization of hyperbranched polymers from L‐lysine, J. Polym. Sci. PartA Polym. Chem., 2007, 45, 5494‐5508.
    [98] G. P. Vlasov, A. P. Filippov, I. I. Tarasenko, et al., Hyperbranched Poly(L‐lysine) Modified withHistidine Residues via Lysine Terminal Amino Groups: Synthesis and Structure, Polym. Sci. Ser. A, 2008,50, 374‐381.
    [99] A. A. Shpyrkov, I. I. Tarasenko, G. A. Pankova, et al., Molecular mass characteristics andhydrodynamic and conformational properties of hyperbranched poly‐L‐lysines, Polym. Sci. Ser. A, 2009,51, 250‐258.
    [100] B. I. Voit, A. Lederer, Hyperbranched and Highly Branched Polymer ArchitecturessSyntheticStrategies and Major Characterization Aspects, Chem. Rev. 2009, 109, 5924‐5973.
    [101] G. P. Vlasov, I. I. Tarasenko, G. A. Pankova, et al., Hyperbranched Polylysines: Mechanism ofFormation, Polym. Sci. Ser. B, 2009, 51, 296‐302.
    [102] V. Scheper, M. Wolf, M. Scholl, et al., : Potential novel drug carriers for inner ear treatment:hyperbranched polylysine and lipid nanocapsules, Nanomedcine, 2009, 4, 623‐635.
    [103] P. Chi, J. Wang, C. S. Liu, Synthesis and characterization of polycationic chitosan‐graft‐poly(l‐lysine), Mater. Lett., 2008, 62, 147‐150.
    [104] H. J. Yu, X. S. Chen, T. C. Lu, et al., Poly(L‐lysine)‐Graft‐Chitosan Copolymers: Synthesis,Characterization, and Gene Transfection Effect, Biomacromolecules, 2007, 8, 1425‐1435.
    [105] M. A. Mintzer, E. E. Simanek, Nonviral Vectors for Gene Delivery, Chem. Rev., 2009, 109, 259‐302.
    [106] N. Hadjichristidis, H. Iatrou, M. Pitsikalis, et al., Synthesis of Well‐Defined Polypeptide‐BasedMaterials via the Ring‐Opening Polymerization of alpha‐Amino Acid N‐Carboxyanhydrides, Chem. Rev.,2009, 109, 5528‐5578.
    [107] M. S. Wong, J. N. Cha, K. S. Choi, et al., Assembly of Nanoparticles into Hollow Spheres UsingBlock Copolypeptides, Nano. Lett., 2002, 2, 583‐587.
    [108] M. S. Wong, J. N. Cha, K. S. Choi, et al., Microcavity Lasing from Block Peptide HierarchicallyAssembled Quantum Dot Spherical Resonators, Nano. Lett., 2003, 3, 907‐911.
    [109] L. E. Euliss, S. G. Grancharov, S. O’Brien, et al., Cooperative Assembly of Magnetic Nanoparticlesand Block Copolypeptides in Aqueous Media, Nano. Lett., 2003, 3, 1489‐1493.
    [110] V. S. Murthy, J. N. Cha, G. D. Stucky, et al., Charge‐Driven Flocculation of Poly(L‐lysine)s GoldNanoparticle Assemblies Leading to Hollow Microspheres, J. Am. Chem. Soc., 2004, 126, 5292‐5299.
    [111] Q. Dai, J. G. Worden, J. Trullinger, et al., A“Nanonecklace”Synthesized from MonofunctionalizedGold Nanoparticles, J. Am. Chem. Soc., 2005, 127, 8008‐8009.
    [112] W. F. Sun, Q. Dai, J. G. Worden, et al., Optical Limiting of a Covalently Bonded GoldNanoparticle/Polylysine Hybrid Material, J. Phys. Chem. B., 2005, 109, 20854‐20857.
    [113] L. E. Russell, A. A. Galyean, S. M. Notte, et al., Stable Aqueous Nanoparticle Film Assemblies withCovalent and Charged Polymer Linking Networks, Langmuir , 2007, 23, 7466‐7471.
    [114] N.Higashi , J. Kawahara, M. Niwa, Preparation of helical peptide monolayer‐coated goldnanoparticles, J. Colloid Interface Sci., 2005, 288, 83‐87.
    [115] M. Higuchi, K. Ushiba, M. Kawaguchi, Structural control of peptide‐coated gold nanoparticleassemblies by the conformational transition of surface peptides, J. Colloid Interface Sci., 2007, 308,356‐363.
    [116]崔福斋等,生物矿化,清华大学出版社,2007年第一版,P1‐P10。
    [117] K. Naka, Delayed Action of Synthetic Polymers for Controlled Mineralization of CalciumCarbonate, Top. Curr. Chem., 2007, 271, 119–154.
    [118]蔡国斌,郭晓辉,俞书宏,聚合物控制模拟生物矿化,化学进展,2008,20,1001‐1014。
    [119] S. H. Yu, Bio‐inspired Crystal Growth by Synthetic Templates, Top. Curr. Chem., 2007, 271,79‐118.
    [120] A. Berman, J. Hanson, L. Leiserowitz, et al., Crystal‐protein interactions: controlled anisotropicchanges in crystal microtexture, J. Phys. Chem., 1993, 97, 5162‐ 5170.
    [121] B. A. Gotliv, N. Kessler, J. L. Sumerel, et al., Asprich: A Novel Aspartic Acid‐Rich Protein Familyfrom the Prismatic Shell Matrix of the Bivalve Atrina rigida, ChemBioChem, 2005, 6, 304‐314.
    [122] B. A. Gotliv, L. Addadi, S. Weiner, Mollusk shell acidic proteins: In search of individual functions,ChemBioChem, 2003, 4, 522.
    [123] Y. Politi, J. Mahamid, H. Goldberg, et al., Asprich mollusk shell protein: in vitro experimentsaimed at elucidating function in CaCO3 crystallization, CrystEngComm, 2007, 12, 1171‐1177.
    [124] H. C?lfen, Bio‐inspiredMineralization Using Hydrophilic Polymers, Top. Curr .Chem. 2007, 271,1‐77.
    [125] Il W. Kim, E. DiMasi, J. S. Evans, Identification of Mineral Modulation Sequences within theNacre‐Associated Oyster Shell Protein, n16, Cryst. Growth Des., 2004, 4, 1113‐1118.
    [126] Il W. Kim, D. E. Morse, J. S. Evans, Molecular Characterization of the 30‐AA N‐Terminal MineralInteraction Domain of the Biomineralization Protein AP7, Langmuir, 2004, 20, 11664‐11673.
    [127] S. Collino, Il W. Kim, J. S. Evans, Identification of an“Acidic”C‐Terminal Mineral ModificationSequence from the Mollusk Shell Protein Asprich, Cryst. Growth Des., 2006, 6, 839‐842.
    [128] R. A. Metzler, Il W. Kim, K. Delak, et al., Probing the Organic‐Mineral Interface at the MolecularLevel in Model Biominerals, Langmuir, 2008, 24, 2680‐2687.
    [129] A. S. Deshpande, E. Beniash, et al., Bioinspired Synthesis of Mineralized Collagen Fibrils, Cryst.Growth Des., 2008, 8, 3084‐3090.
    [130] C. Cheng, Z. Z. Shao, F. Vollrath, Silk Fibroin‐Regulated Crystallization of Calcium Carbonate, Adv.Funct. Mater., 2008, 18, 2172‐2179.
    [131] L. A. Gower, D. A. Tirrell, Calcium carbonate Tlms and helices grown in solutions ofpoly(aspartate), J. Cryst. Growth, 1998, 191, 193‐160.
    [132] L. B. Gower, D. J. Odom, Deposition of calcium carbonate films by a polymer‐inducedliquid‐precursor (PILP) process, J. Cryst. Growth, 2000, 210, 719.
    [133] N. Gehrke, N. Nassif, N. Pinna, et al., Retrosynthesis of Nacre via Amorphous Precursor Particles,Chem. Mater., 2005, 17, 6514‐6516.
    [134] X. G. Cheng, P. L. Varona, M. J. Olszta, et al., Biomimetic synthesis of calcite films by apolymer‐induced liquid‐precursor (PILP) process1. Influence and incorporation of magnesium, J. Cryst.Growth, 2007, 307, 395‐404.
    [135] S. Elhadj, E. A. Salter, A. Wierzbicki, et al., Peptide Controls on Calcite Mineralization:Polyaspartate Chain Length Affects Growth Kinetics and Acts as a Stereochemical Switch onMorphology, Cryst. Growth Des., 2006, 6, 197‐201.
    [136] Zhang, ZP; Gao, DM; Zhao, H, et al., Biomimetic assembly of polypeptide‐stabilized CaCO3nanoparticles, J. Phys. Chem. B, 2006, 110, 8613‐8618.
    [137] X. R. Liu, B. H. Liu, Z. Y. Wang, et al., Oriented vaterite CaCO3 tablet‐like arrays mineralized atair/water interface through cooperative regulation of polypeptide and double hydrophilic blockcopolymer, J. Phys. Chem. C, 2008, 112, 9632‐9636.
    [138] M. M. Tomczak, D. D. Glawe, L. F. Drummy, et al., Polypeptide‐Templated Synthesis of HexagonalSilica Platelets, J. Am. Chem. Soc., 2005, 127, 12577‐12582.
    [139] L. Y. Li, J. G. Wang, P. C. Sun, et al., Microporous Silica Hollow Nanospheres Templated by AnionicPolypeptide, Acta Physico‐Chimica Sinica, 2008, 24, 359?363.
    [140] E. G. Bellomo, T. J. Deming, Monoliths of Aligned Silica‐Polypeptide Hexagonal Platelets, J. Am.Chem. Soc., 2006, 128, 2276‐2279.
    [141] B. J. McKenna, H. Birkedal, M. H. Bartl, et al., Micrometer‐Sized Spherical Assemblies ofPolypeptides and Small Molecules by Acid–Base Chemistry, Angew. Chem. Int. Ed., 2004, 43,5652‐5655.
    [142] H. C?lfen, Double‐Hydrophilic Block Copolymers: Synthesis and Application as Novel Surfactantsand Crystal Growth Modifiers, Macromol. Rapid Commun., 2001, 22, 219‐252.
    [143] X. H. Guo, S. H. Yu, G. B. Cai, Crystallization in a mixture of solvents by using a crystal modifier:Morphology control in the synthesis of highly monodisperse CaCO3 microspheres, Angew. Chem. Int.ed., 2006, 45, 397‐3981.
    [144] X. H. Guo, A. W. Xu, S. H. Yu, Crystallization of Calcium Carbonate Mineral with HierarchicalStructures in DMF Solution under Control of Poly(ethylene glycol)‐b‐poly(L‐glutamic acid): Effects ofCrystallization Temperature and Polymer Concentration, Cryst. Growth Des., 2008, 8, 1233‐1242.
    [145] L. E. Euliss, M. H. Bartla, G. D. Stucky, Control of calcium carbonate crystallization utilizingamphiphilic block copolypeptides, J. Cryst. Growth, 2006, 286, 424‐430.
    [146] L. E. Euliss, T. M. Trnka, T. J. Deming, et al., Design of a doubly‐hydrophilic block copolypeptidethat directs the formation of calcium carbonate microspheres, Chem. Commum., 2004, 1736‐1737.
    [147] L. E. Euliss, T. M. Trnka, T. J. Deming, et al., Biomimetic synthesis of ordered silica structuresmediated by block copolypeptides, Nature, 2000, 403, 289‐292.
    [148] F. C. Meldrum, H. C?lfen, Controlling Mineral Morphologies and Structures in Biological andSynthetic Systems, Chem. Rev. 2008, 108, 4332‐4432.
    [149] N. Ueyama, K. Takahashi, A. Onoda, et al., Inorganic‐Organic Calcium Carbonate Composite ofSynthetic Polymer Ligands with an Intramolecular NH‐O Hydrogen Bond, Top. Curr. Chem., 2007, 271,155‐193.
    [150] H. C?lfen, S. Mann, Higher‐Order Organization by Mesoscale Self‐Assembly and Transformationof Hybrid Nanostructures, Angew. Chem. Int. Ed., 2003, 42, 2350‐2365.
    [151] E. B?uerlein, Biomineralization of Unicellular Organisms: An Unusual Membrane Biochemistryfor the Production of Inorganic Nano‐ and Microstructures, Angew. Chem. Int. Ed., 2003, 42, 614‐641.
    [1] H. R. Kricheldorf, Polypeptides and 100 Years of Chemistry of a‐Amino Acid N‐Carboxyanhydrides,Angew. Chem. Int. Ed., 2006, 45, 5752‐5784.
    [2] E. R. Blout, R. H. Karlson, Polypeptide III The synthesis of high molecular weightpoly‐γ‐boly‐L‐glutamic acid: preparation and optical rotation changes. J. Am. Chem. Soc., 1955, 80,4631‐4634.
    [3] M. Idelson, E. R. Blout, High molecular weight poly‐L‐glutamic acid: preparation and opticalrotation changes. J. Am. Chem. Soc., 1955, 80, 4631‐4634.
    [4] G. D. Fasman, M. Idelson, E. R. Blout, Synthesis and conformation of high molecular weightpoly‐γ‐carbobenzyloxy‐L‐lysine and poly‐L‐lysine?HCl, J. Am. Chem. Soc., 1961, 83, 709‐712.
    [5] E.Katchalski, Advances in protein chemistry, Vol. VI, Academic Press, Inc., NewYork, N. Y., 1951,pp.123‐185.
    [6] Y. Shalitin,“N‐Carboxy‐α‐Amino Acid Anhydrides”in Ring Opening Polymerization, Vol. 2, K. C. Frishand S. L. Reegen, ed., Marcel Dekker, NewYork, 1969, 421.
    [7] H.Block, Poly(γ‐Benzyl‐L‐Glutamate) and Other Glutamic Acid Containing Polymers, PolymerMonogrphs, Gordon and Breach, New York, 1983, 23.
    [8] W. D. Fuller, M. S. Velander, M.Goodman, Temperature or the content of pKt block in the polymer,Biopolymers, 1976, 15, 1869.
    [9] H. Collet, C. Bied, L. Mion, et al., A new simple and quantitative synthesis ofα‐aminoacid‐N‐carboxyanhydrides (oxazolidines‐2,5‐diones). Tetrahedron Lett., 1996, 37, 9043–9046.
    [10] A. Nagai, D. Sato, J. Ishikawa, et al., A facile synthesis of N‐carboxyanhydrides and poly(a‐aminoacid) using di‐tert‐butyltricarbonate, Macromolecules, 2004, 37, 2332‐2334.
    [11] W. H. Daly, D. Poché, The preparation of. N‐carboxyanhydrides ofα‐amino acids usingbis(trichloromethyl)carbonate, Tetrahedron let, 1988, 29, 5859‐5862.
    [12] D. Poché, M. J. Moore, J. L. Bowles, An unconventional method for purifying theN‐carboxyanhydrides ofγ‐alkyl‐L‐glutamates, Synth. Commun., 1999, 29, 843‐854.
    [13] L. C. Dorman, W. R. Shiang, Purification ofγ‐methyl L‐glutamate N‐carboxyanhydrides byrephosgenation, Synth. Commun., 1992, 22, 3257‐3262.
    [14] W. Vayaboury, O. Giani, H. Cottet, et al., Living polymerization ofα‐amino acidN‐carboxyanhydride upon decreasing the reaction temperature. Macromol. Rapid Commun., 2004, 25,1221‐1224.
    [15] H. R. Kricheldorf,α‐Aminoacid‐N‐carboxyanhydrides and Related Materials, Springer, New York,1987.
    [16] M. A. Stahmann, L. H. Graf, E. L. Patterson, et al., The inhibition of tobacco mosaic virus bysynthetic lysine polypeptides, J. Biol. Chem., 1951, 189, 45.
    [17] H. R. Kricheldorf, In models of biopolymers by ring‐opening polymerization. Penczek S. Ed., CRCPress: Boca Raton, FL, 1990, Chapter 1.
    [18] Y. Imanish, In ring‐opening polymerization. K. J. Ivin, I. Saegusa, Eds., Elsevier:London, 1984: Vol2,Chapter 8.
    [19] T. J. Deming, Facile synthesis of block copolypeptides of defined architecture, Nature, 1997, 390,386‐389.
    [20] T. J. Deming, Cobalt and iron initiators for the controlled polymerization ofα‐aminoacid‐N‐carboxyanhydrides, Macromolecules, 1999, 32, 4500‐4502.
    [21] I. Dimitrov, H. Schlaad, Synthesis of nearly monodisperse polystyrene‐polypeptide blockcopolymers via polymerisation of N‐carboxyanhydrides. Chem. Commun., 2003, 23, 2944‐2946.
    [22] T. Aliferis, H. Iatrou, N. Hadjichristidis, Living polypeptides, Biomacromolecules, 2004, 5, 1653.
    [23] W. Vayaboury, O. Giani, H. Cottet, et al., Living polymerization ofα‐amino acidN‐carboxyanhydride upon decreasing the reaction temperature, Macromol. Rapid Commun., 2004, 25,1221‐1224.
    [24] J. J. Chen, J. W. Ziller, T. J. Deming, Synthesis of optically activeα‐amino acid N‐carboxyanhydrides,Organ. Lett., 2000, 2, 1943‐1946.
    [25]田华雨,两亲性超支化多臂共聚物PEI‐PBLG的合成与研究,中国科学院长春应用化学研究所博士论文,2005。
    [26]邓超,聚乳酸的氨基酸改性和生物智能化,中国科学院长春应用化学研究所博士论文,2006。
    [27]孙静,含有聚氨基酸的嵌段共聚物的合成、自组装和应用,中国科学院长春应用化学研究所博士论文,2008。
    [28] E. Zagar, M. Zigon, S. Podzimek, Characterization of commercial aliphatic hyperbranchedpolyesters, Polymer, 2006, 47, 166–175.
    [29] E. Zagar, M. Zigon, Characterization of a Commercial Hyperbranched Aliphatic PolyesterBased on2,2‐Bis(methylol)propionic Acid, Macromolecules, 2002, 35, 9913‐9925.
    [1] H. C?ffen, Bio‐inspired mineralization using hydrophilic polymers. , Top. Curr. Chem., 2007, 271, 1.
    [2] S. H. Yu, Bio‐inspired crystal growth by synthetic templates,Top. Curr. Chem., 2007, 271, 79.
    [3] K. Naka, Delayed action of synthetic polymers for controlled mineralization of calcium carbonate,Top. Curr. Chem., 2007, 271, 119.
    [4] N. Ueyama, K. Takahashi, A. Onoda, et al. Inorganic‐organic calcium carbonate composite ofsynthetic polymer Ligands with an intramolecular NH center dot center dot center dot O hydrogenbond ,Top. Curr. Chem., 2007, 271, 155.
    [5] C. M. Niemeyer, Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science.,Angew Chem Int Ed, 2001, 40, 4128.
    [6] H C?ffen, S Mann, Higher‐Order Organization by Mesoscale Self‐Assembly and Transformation ofHybrid Nanostructures, Angew Chem Int Ed, 2003, 42, 2350.
    [7] E. B?uerlein, Biomineralization of unicellular organisms: An unusual membrane biochemistry forthe production of inorganic nano‐ and microstructures , Angew Chem Int Ed, 2003, 42, 614.
    [8] S. H. Yu, H. C?ffen, Bio‐inspired crystal morphogenesis by hydrophilic polymers., J. Mater. Chem,.2004, 14, 2124.
    [9] L. A. Gower, D. A. Tirrell, D A.Calcium carbonate films and helices grown in solutions of poly, J. Cryst.Growth, 1998, 191, 153.
    [10] L. B. Gower, D. J. Odom, Deposition of calcium carbonate films by a polymer‐inducedliquid‐precursor (PILP) process ,J. Cryst. Growth, 2000, 210, 719.
    [11] X. R. Liu, B. H. Liu, Z. Y. Wang, et al.,Oriented Vaterite CaCO3 Tablet‐Like Arrays Mineralized atAir/Water Interface through Cooperative Regulation of Polypeptide and Double Hydrophilic BlockCopolymer, J. Phys. Clhem. C 2008, 112, 9632.
    [12] Z. P. Zhang, D. A. Gao, H. Zhao, et al., Biomimetic assembly of polypeptide‐stabilized CaCO3nanoparticles , J. Phys. Chem. B 2006, 110, 8613.
    [13] P Ka?parová, M Antonietti, H C?ffen, Double hydrophilic block copolymers with switchablesecondary structure as additives for crystallization control. , J. Colloid Interface Sci., 2004, 250, 153.
    [14] X. G. Chen, P. L. Varona, M. J. Olszta, Biomimetic synthesis of calcite films by a polymer‐inducedliquid‐precursor (PILP) process 1. Influence and incorporation of magnesium, J. Cryst. Growth, 2007,307, 395.
    [15] X. H. Gao, S. H. Yu, G. B. Cai, Crystallization in a mixture of solvents by using a crystal modifier:Morphology control in the synthesis of highly monodisperse CaCO3 microspheres., Angew Chem Int Ed,2006, 45, 3977.
    [16] X. H. Guo, A. W. Xu, S. H. Yu, crystallization of calcium carbonate mineral with hierarchicalstructures in DMF solution under control of poly(ethylene glycol)‐b‐poly(L‐gultamic acid): effects ofcrystallization temperature and polymer concentration. , Cryst. Growth Des., 2008, 8, 1233.
    [17] L. E. Euliss, M. H. Bartl, G. D. Stucky, Control of Calcium Carbonate Crystallization UtilizingAmphiphilic Block Copolypeptides , J. Cryst. Growth, 2006, 286, 424.
    [18] L. E. Euliss, T. M. Trnka, T. J. Deming, et al., Design of a doubly‐hydrophilic block copolypeptidethat directs the formation of calcium carbonate microspheres, Chem. Commun., 2004, 1736.
    [19] T. Sugawara, Y. Suwa, K. Ohkawa, et al., Chiral biomineralization: Mirror‐imaged helical growth ofcalcite with chiral phosphoserine copolypeptides., Macromol. Rapid Commun., 2003, 24, 847.
    [20] A. S. Deshpande, E. Benish, Bioinspired Synthesis of Mineralized Collagen Fibrils , Cryst. GrowthDes., 2008, 8, 3084.
    [21] C. Cheng, Z. Z. Shao, F. Vollrath, Silk fibroin‐regulated crystallization of calcium carbonate, Adv.Funct. Mater., 2008, 18, 2172.
    [22] II W. Kim, E. DiMasi, J. S. Evans, Identification of mineral modulation sequences within thenacre‐associated oyster shell protein, Cryst. Growth Des., 2004, 4, 1113.
    [23] S. Collino, II W. Kim, J. S. Evans, Identification of an“acidic”C‐terminalmineral modification sequence from the mollusk shell protein, Cryst. Growth Des., 2006, 6, 839.
    [24] G. Falini, S. Fermani, M. Gazzano, et al., Oriented crystallization of vaterite in collagenousmatrixes , Chem. Eur. J., 1998, 4, 1048.
    [25] A. Berman, J. hanson, L. Leiserowitz, et al., Crystal‐protein interactions: controlled anisotropicchanges in crystal microtexture, J. Phys. Chem., 1993, 97, 5162.
    [26] B. Gotliv, N. Kessler, J. L. Sumerel, et al., Asprich: A Novel Aspartic Acid‐Rich Protein Family fromthe Prismatic Shell Matrix of the Bivalve Atrina rigida, ChemBioChem, 2005, 6, 304.
    [27] N. Nassif, N. Gehrke, N. Pinna, et al., Synthesis of stable aragonite superstructures via abiomimetic crystallization pathway, Angew Chem Int Ed, 2005, 44, 6004.
    [28] C. Gabrielli, R. Jaouhari, S. Joiret, et al., In situ Raman spectroscopy applied to electrochemicalscaling. Determination of the structure of vaterite, J. Raman Spectrosc., 2000, 31, 497.
    [29] M. M. Tlili, M. B. Amor, C. Gabrielli, et al., Characterization of CaCO3 Hydrates by Micro‐RamanSpectroscopy., J. Raman Spectrosc., 2001, 33, 10.
    [30] A. Shibata, M. Yamamoto, T. Yamashita, et al., Biphasic effects of alcohols on the phase transitionof poly(L‐lysine) betweenα‐helix andβ‐sheet conformations., Biochemistry, 1992, 31, 5728.
    [31] Y. X. Gao, S. H. Yu, H Cong, et al., Block‐copolymer‐controlled growth of CaCO3 microrings., J. Phys.Chem B., 2006, 110, 6432.
    [1] H. C?ffen, Bio‐inspired mineralization using hydrophilic polymers., Top. Curr. Chem., 2007, 271, 1.
    [2] S. H. Yu, Bio‐inspired crystal growth by synthetic templates,Top. Curr. Chem., 2007, 271, 79.
    [3] K. Naka, Delayed action of synthetic polymers for controlled mineralization of calcium carbonate,Top. Curr. Chem., 2007, 271, 119.
    [4] N. Ueyama, K. Takahashi, A. Onoda, et al. Inorganic‐organic calcium carbonate composite ofsynthetic polymer Ligands with an intramolecular NH center dot center dot center dot O hydrogenbond , Top. Curr. Chem., 2007, 271, 155.
    [5] G. B. Cai, X. H. Guo, S. H. Yu, Advances in the Research of Microcapsular Reactor., Prog. Chem.,2008, 20, 1001.
    [6] S. Forster, T. Plantenberg, From self‐organising polymers to nanohybrid and biomaterials., Angew.Chem. Int. ed., 2002, 41, 689.
    [7] J. W. Kriesel, M. S. Sander, T. D. Tilley, Block Copolymer Assisted Synthesis of Mesoporous,Multicomponent Oxides by Non‐hydrolytic, Thermolytic Decomposition of Molecular Precursors inNonpolar Media., Chem. Mater. , 2001, 13, 3554.
    [8] S. H. Yu, H. C?ffen, Bio‐inspired crystal morphogenesis by hydrophilic polymers, J. Mater. Chem.,2004, 14, 2124.
    [9] M. Antonietti, Surfactants for novel templating applications., Curr. Opin. Colloid Interface Sci., 2001,6, 244.
    [10] S. H. Yu, H. C?ffen, Y. Mastai, Formation and Optical Properties of Gold Nanoparticles Synthesizedin the Presence of Double‐Hydrophilic Block Copolymers. , J. Nanosci. Nanotecho., 2004, 4, 291.
    [11] S. H. Yu, H. C?ffen, J. Hartmann, et al., Biomimetic crystallization of calcium carbonate spheruleswith controlled surface structures and sizes by double‐hydrophilic block copolymers., Adv. Funct.Mater., 2002, 12, 541.
    [12] H. C?ffen, L. M. Qi, A Systematic Examination of the Morphogenesis of Calcium Carbonate in thePresence of a Double‐Hydrophilic Block Copolymer, Chem. Euro. J., 2001, 7, 106.
    [13] Y. X. Gao, S. H. Yu, X. H. Guo, Double hydrophilic block copolymer controlled growth andself‐assembly of CaCO3 multilayered structures at the air/water interface , Langumir, 2006, 22,6125.
    [14] X. H. Guo, S. H. Yu, G. B. Cai, Crystallization in a mixture of solvents by using a crystal modifier:Morphology control in the synthesis of highly monodisperse CaCO3 microspheres, Angew Chem Int Ed,2006, 45, 3977.
    [15] X. H. Guo, A. W. Xu, S. H. Yu, Crystallization of calcium carbonate mineral with hierarchicalstructures in DMF solution under control of poly(ethylene glycol)‐b‐poly(L‐gultamic acid): Effects ofcrystallization temperature and polymer concentration. , Cryst. Growth Des., 2008, 8, 1233.
    [16] L. M. Qi, J. Li, J. M. Ma, Biomimetic morphogenesis of calcium carbonate in mixed solutions ofsurfactants and double‐hydrophilic block copolymers., Adv. Mater., 2002, 14, 300.
    [17] Y. Politi, J. Mhamid, H. Goldberg, et al., Asprich mollusk shell protein: in vitro experiments aimedat elucidating function in CaCO3 crystallization., CrystEngComm., 2007, 9, 1171.
    [18] X. G. Chen, P. L. Varona, M. J. Olszta, et al., Biomimetic synthesis of calcite films by apolymer‐induced liquid‐precursor (PILP) process: 1. Influence and incorporation of magnesium., J.Cryst. Growth, 2007, 307, 395.
    [19] Z. P. Zhang, D. M. Gao, H. Zhao, et al., Biomimetic assembly of polypeptide‐stabilized CaCO3nanoparticles., J. Phys. Chem. B, 2006, 110, 8613.
    [20] L. A. Gower, D. A. Tirrell, Calcium carbonate Tlms and helices grown in solutions ofpoly(aspartate)., J. Cryst. Growth, 1998, 191, 153.
    [21] L. A. Gower, D. J. Odom, Deposition of calcium carbonate films by a polymer‐inducedliquid‐precursor (PILP) process., J. Cryst. Growth, 2000, 210, 719.
    [22] X. R. Liu, B. H. Liu, Z. Y. Wang, et al., Oriented Vaterite CaCO3 Tablet‐Like Arrays Mineralized atAir/Water Interface through Cooperative Regulation of Polypeptide and Double Hydrophilic BlockCopolymer., J. Phys. Chem. C 2008, 112, 9632.
    [23] Z. P. Zhang, D. A. Gao, H. Zhao, et al., Biomimetic assembly of polypeptide‐stabilized CaCO3nanoparticles ., J. Phys. Chem. B 2006, 110, 8613.
    [24] P Ka?parová, M Antonietti, H C?ffen, Double hydrophilic block copolymers with switchablesecondary structure as additives for crystallization control., J. Colloid Interface Sci., 2004, 250, 153.
    [25] L. E. Euliss, M. H. Bartl, G. D. Stucky, Control of Calcium Carbonate Crystallization UtilizingAmphiphilic Block Copolypeptides ., J. Cryst. Growth, 2006, 286, 424.
    [26] L. E. Euliss, T. M. Trnka, T. J. Deming, et al., Design of a Doubly‐Hydrophilic Block CopolypeptideThat Directs the Formation of Calcium Carbonate Microspheres., Chem. Commun., 2004, 1736.
    [27] T. Sugawara, Y. Suwa, K. Ohkawa, et al., Chiral biomineralization: Mirror‐imaged helical growth ofcalcite with chiral phosphoserine copolypeptides., Macromol. Rapid Commun., 2003, 24, 847.
    [28] N.Nassif, N. Gehrke, N. Pinna, et al., Synthesis of stable aragonite superstructures by a biomimeticcrystallization pathway., Angew. Chem. Int. Ed., 2005, 44, 6004.
    [29] Y. Yao, W. Y. Dong, S. M. Zhu, et al., Novel morphology of calcium carbonate controlled bypoly(L‐lysine)., Langmuir, 2009, 25, 13238.
    [30] R. K. Pai, S. Pillai, Divalent Cation‐Induced Variations in Polyelectrolyte Conformation andControlling Calcite Morphologies: Direct Observation of the Phase Transition by Atomic ForceMicroscopy J. Am. Chem. Soc., 2008, 130, 13074.
    [31] K. Naka, Y. Tanaka, Y. Chujo, et al., The effect of an anionic starburst dendrimer on thecrystallization of CaCO3 in aqueous solution., Chem. Commun., 1999, 1931.
    [32] F. Nudelman, H. H. Chen, H. A. Goldberg, et al., Spiers Memorial LectureLessons from biomineralization: comparing the growth strategies of mollusc shell prismatic andnacreous layers in Atrina rigida., Faraday Disscus., 2007, 136, 9.
    [33] J. J. Donners, B. R. Heywood, E. W. Meijer, et al., Amorphous calcium carbonatestabilized by poly(propylene imine) dendrimers., Chem. Commun., 2000, 1937.
    [34] J. J. Donners, B. R. Heywood, E. W. Meijer, et al., Control over calcium carbonate phase formationby dendrimer/surfactant templates., Chem. Euro. J., 2002, 8, 2561.
    [35] C. Gabrielli, R. Jaouhari, S. Joiret, et al., In situ Raman spectroscopy applied to electrochemicalscaling. Determination of the structure of vate′rite., J. Raman Spectrosc., 2000, 31, 497.
    [36] M. M. Tlili, M. B. Amor, C. Gabrielli, et al., Characterization of CaCO3 hydrates by micro‐Ramanspectroscopy J. Raman Spectrosc., 2001, 33, 10.
    [37]崔福斋,生物矿化,清华大学出版社,2007.5第一版,P144.
    [38] S. Raz, S. Weiner, L. Addadi, Building Blocks for N‐Type Molecular and Polymeric ElectronicsPerfluoroalkyl‐ versus Alkyl‐Functionalized Oligothiophenes (nTs; n = 2‐6). Systematic Synthesis,Spectroscopy, Electrochemistry, and Solid‐State Organization., Adv. Funct. Mater., 2003, 13,480.
    [39] F. C. Muldram, AlGaN photodetectors grown on Si(111) by molecular beam epitaxy., J. Cryst.Growth, 2001, 231, 544.
    [40] L. Zhang, L. H. Yue, F. Wang, et al., Divisive Effect of Alcohol?Water Mixed Solvents on GrowthMorphology of Calcium Carbonate Crystals., J. Phys. Chem. B, 2008, 112,10668.
    [1] D. Tasis, N. Tagmatarchis, A. Bianco, et al., Chemistry of Carbon Nanotubes, Chem. Rev., 2006, 106,1105‐1136.
    [2] Y. P. Sun, K. F. Fu, Y. Lin, et al., Functionalized Carbon Nanotubes: Properties and Applications, Acc.Chem. Res. 2002, 35, 1096‐1104.
    [3] W. Senaratne, L. Andruzzi, C. K. Ober, et al., Self‐Assembled Monolayers and Polymer Brushes inBiotechnology: Current Applications and Future Perspectives, Biomacromolecules 2005, 6, 2427‐2448.
    [4] J. J. Ge, D. Zhang, Q. Li, et al., Multiwalled Carbon Nanotubes with Chemically GraftedPolyetherimides, J. Am. Chem. Soc., 2005, 127, 9984‐9985.
    [5] H. Kong, C. Gao, D. Y. Yan, Controlled Functionalization of Multiwalled Carbon Nanotubes by in SituAtom Transfer Radical Polymerization, J. Am. Chem. Soc. 2004, 126, 412‐413.
    [6] H. Kong, C. Gao, D. Y. Yan, Constructing amphiphilic polymer brushes on the convex surfaces ofmulti‐walled carbon nanotubes by in situ atom transfer radical polymerization, J. Mater. Chem., 2004,14, 1401‐1405.
    [7] H. Kong, C. Gao, D. Y. Yan, Functionalization of multiwalled carbon nanotubes by atom transferradical polymerization and defunctionalization of the products, Macromolecules, 2004, 37, 4022‐4030.
    [8] H. Kong, W. W. Li, C. Gao, Poly(N‐isopropylacrylamide)‐coated carbon nanotubes:Temperature‐sensitive molecular nanohybrids in water, Macromolecules, 2004, 37, 6683‐6686.
    [9] Y. Y. Xu, C. Gao, H. Kong, et al., Growing multihydroxyl hyperbranched polymers on the surfaces ofcarbon nanotubes by in situ ring‐opening polymerization, Macromolecules, 2004, 37, 8846‐8853.
    [10] Y. Gao, X. P. Gao, Y. F. Zhou, et al., Preparation of poly(methyl methacrylate) grafted titanatenanotubes by in situ atom transfer radical polymerization, Nanotechnology, 2008, 19, 495604.
    [11] Y. Gao, Y. F. Zhou, D. Y. Yan, Preparation of polystyrene‐grafted titanate nanotubes by in situ atomtransfer radical polymerization, Sci. China, Ser. B, 2009, 52, 344‐350.
    [12] Y. Gao, Y. F. Zhou, D. Y. Yan, Temperature‐sensitive and highly water‐soluble titanate nanotubes,Polymer, 2009, 50, 2572‐2577.
    [13]高嫄,钛酸纳米管材料的改性及其组装行为的研究,上海交通大学博士论文,2009。
    [14]史增谦,生物可降解空腔结构的制备,上海交通大学博士论文,2008。
    [15] Z. Q. Shi, Y. F. Zhou, D. Y. Yan, Preparation of poly(beta‐hydroxybutyrate) and poly(lactide) hollowspheres with controlled wall thickness, Polymer, 2006, 47, 8073‐8079.
    [16] Z. Q. Shi, X. P. Gao, D. Y. Song, et al., Preparation of poly(epsilon‐caprolactone) grafted titanatenanotubes, Polymer, 2007, 48, 7516‐7522.
    [17] Z. Q. Shi, Y. F. Zhou, D. Y. Yan, Facile fabrication of pH‐responsive and size‐controllable polymervesicles from a commercially available hyperbranched polyester, Macromol. Rapid Commun., 2008, 29,412‐418.
    [18] D. Pantarotto, C. D. Partidos, J. Hoebeke, et al., Immunization with Peptide‐Functionalized CarbonNanotubes Enhances Virus‐Specific Neutralizing Antibody Responses, Chem. & Biol., 2003, 10,961‐966.
    [19] A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery, Curr. Opin.Chem. Biol., 2005, 9, 674‐679.
    [20] Z. P. Xu, Q. H. Zeng, G. Q. Lu, et al., Inorganic nanoparticles as carriers for efficient cellular delivery,Chem. Eng. Sci., 2006, 61, 1027‐1040.
    [21] H. Hu, Y. C. Ni, V. Montana, et al., Chemically Functionalized Carbon Nanotubes as Substrates forNeuronal Growth, Nano. Lett., 2004, 4, 507‐511.
    [22] M. A. Herrero, F. M. Toma, K. T. Al‐Jamal, et al., Synthesis and Characterization of a CarbonNanotube‐Dendron Series for Efficient siRNA Delivery, J. Am. Chem. Soc., 2009, 131, 9843‐9848.
    [23] C. Gaillard, G. Cellot, S. P. Li, et al., Carbon Nanotubes Carrying Cell‐Adhesion Peptides do notInterfere with Neuronal Functionality, Adv. Mater., 2009, 21, 2903‐+.
    [24] D. Pantarotto, J. P. Briand, M. Prato, et al., Translocation of bioactive peptides across cellmembranes by carbon nanotubes, Chem. Commun., 2004, 16‐17.
    [25] D. Pantarotto, R. Singh , D. McCarthy, et al., Functionalized carbon nanotubes for plasmid DNAgene delivery, Angew. Chem. Int. Ed., 2004, 43, 5242‐5246.
    [26] V. Zorbas, A. L. Smith, H. Xie, et al., Importance of Aromatic Content for Peptide/Single‐WalledCarbon Nanotube Interactions, J. Am. Chem. Soc., 2005, 127, 12323‐12328.
    [27] Y. J. Zhang, J. Li, Y. F. Shen, et al., Poly‐L‐lysine Functionalization of Single‐Walled CarbonNanotubes, J. Phys. Chem. B, 2004, 108, 15343‐15346.
    [28] G. R. Dieckmann, A. B. Dalton, P. A. Johnson, et al., Controlled Assembly of Carbon Nanotubes byDesigned Amphiphilic Peptide Helices, J. Am. Chem. Soc., 2003, 125, 1770‐1777.
    [29] A. Ortiz‐Acevedo, H. Xie, V. Zorbas, et al., Diameter‐Selective Solubilization of Single‐WalledCarbon Nanotubes by Reversible Cyclic Peptides, J. Am. Chem. Soc., 2005, 127, 9512‐9517.
    [30] N. Hadjichristidis, H. Iatrou, M. Pitsikalis, et al., Synthesis of Well‐Defined Polypeptide‐BasedMaterials via the Ring‐Opening Polymerization of r‐Amino Acid N‐Carboxyanhydrides, Chem. Rev.,2009, 109, 5528‐5578.
    [31]曹田,尹静波,罗坤等,高分子量的聚‐L‐谷氨酸的合成与表征,高等学校化学学报,2006,27,369~371。
    [32] E. R. Blout, R. H. Karlson, Polypeptide III The synthesis of high molecular weightpoly‐γ‐boly‐L‐glutamic acid: preparation and optical rotation changes. J. Am. Chem. Soc., 1955, 80,4631‐4634.
    [33] H. R. Kricheldorf, In models of biopolymers by ring‐opening polymerization. Penczek S. Ed., CRCPress: Boca Raton, FL, 1990, Chapter 1.
    [34] Y. Imanish, In ring‐opening polymerization. K. J. Ivin, I. Saegusa, Eds., Elsevier:London, 1984: Vol2,Chapter 8.
    [1]江明,艾森伯格,刘国军等,大分子自组装,科学出版社,2006年9月,P369.
    [2] N. L. Rosi, C. A. Mirkin, Nanostructures in Biodiagnostics, Chem. Rev., 2005, 105, 1547‐1562
    [3] C. Burda, X. B. Chen, R. Narayanan, et al., Chemistry and Properties of Nanocrystals of DifferentShapes, Chem. Rev., 2005, 105, 1025‐1102.
    [4] R. M. Crooks, M. Q. Zhao, Li Sun, et al., Dendrimer‐Encapsulated Metal Nanoparticles: Synthesis,Characterization, and Applications to Catalysis, Acc. Chem. Res., 2001, 34, 181‐190.
    [5] M. C. Daniel, D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry,Quantum‐Size‐Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,Chem. Rev., 2004, 104, 293‐346.
    [6] J. Turkevitch, P. C. Stevenson, J. Hillier, Nucleation and Growth Process in the Synthesis of ColloidalGold, Discuss. Faraday Soc., 1951, 11, 55‐75.
    [7] G. Frens, Controlled Nucleation for the Regulation of the Particle Size in Monodisperse GoldSuspensions. Nature: Phys. Sci. 1973, 241, 20‐22.
    [8] M. Brust, M. Walker, D. Bethell, et al., Synthesis of Thiol‐Derivatized Gold Nanoparticles in a Twophase Liquid‐Liquid System. J. Chem. Soc., Chem. Commun., 1994, 801‐802.
    [9] M. Brust, J. Fink, D. Bethell, et al., Synthesis and Reactions of Functionalised Gold Nanoparticles. J.Chem. Soc., Chem. Commun., 1995, 1655‐1656.
    [10] M. Giersig, P. Mulvaney, Preparation of ordered colloid monolayers by electrophoretic deposition,Langmuir, 1993, 9, 3408‐3413.
    [11] M. Hasan, D. Bethell, M. Brust, The Fate of Sulfur‐Bound Hydrogen on Formation ofSelf‐Assembled Thiol Monolayers on Gold: 1H NMR Spectroscopic Evidence from Solutions of GoldClusters, J. Am. Chem. Soc., 2003, 125, 1132‐1133.
    [12] M. D. Zhu, L. Q. Wang, G. J. Exarhos, et al., Thermosensitive gold nanoparticles, J. Am. Chem. Soc.,2004, 126, 2656‐2657.
    [13] A. B. Lowe, B. S. Sumerlin, M. S. Donovan, et al., Facile Preparation of Transition MetalNanoparticles Stabilized by Well‐Defined (Co)polymers Synthesized via Aqueous ReversibleAddition‐Fragmentation Chain Transfer Polymerization, J. Am. Chem. Soc., 2002, 124, 11562‐11563.
    [14] S. Nuβ, H. B?ttcher, H. Wurm, et al., Gold Nanoparticles with Covalently Attached Polymer Chains,Angew. Chem. Int. Ed., 2001, 4016‐4018.
    [15] K. Ohno, K. Koh, Y. Tsujii, et al., Fabrication of Ordered Arrays of Gold Nanoparticles Coated withHigh‐Density Polymer Brushes, Angew. Chem. Int. Ed., 2003, 2751‐2754.
    [16] D. Aili, K. Enander, J. Rydberg, et al., Aggregation‐Induced Folding of a De Novo DesignedPolypeptide Immobilized on Gold Nanoparticles, J. Am. Chem. Soc., 2006, 2194‐2195.
    [17] A. G. Tkachenko, H. Xie, D. Coleman, et al., Multifunctional Gold Nanoparticle‐Peptide Complexesfor Nuclear Targeting, J. Am. Chem. Soc., 2003, 125, 4700‐1701.
    [18] R. Levy, N. T. K. Thanh, R. C. Doty, et al., Rational and Combinatorial Design of Peptide CappingLigands for Gold Nanoparticles, J. Am. Chem. Soc., 2004, 126, 10076‐10084.
    [19] Z. X. Wang, R. Levy, D. G. Fernig, et al., The Peptide Route to Multifunctional Gold Nanoparticles,Bioconjugate Chem. 2005, 16, 497‐500.
    [20] V. S. Murthy, J. N. Cha, G. D. Stucky, et al., Charge‐Driven Flocculation of Poly(L‐lysine)s GoldNanoparticle Assemblies Leading to Hollow Microspheres, J. Am. Chem. Soc., 2004, 126, 5292‐5299.
    [21] N.Higashi , J. Kawahara, M. Niwa, Preparation of helical peptide monolayer‐coated goldnanoparticles, J. Colloid Interface Sci., 2005, 288, 83‐87.
    [22] M. Higuchi, K. Ushiba, M. Kawaguchi, Structural control of peptide‐coated gold nanoparticle 308,356‐363.
    [23] Q. Dai, J. G. Worden, J. Trullinger, et al., A“Nanonecklace”Synthesized from MonofunctionalizedGold Nanoparticles, J. Am. Chem. Soc., 2005, 127, 8008‐8009.
    [24] M. S. Wong, J. N. Cha, K. S. Choi, et al., Assembly of Nanoparticles into Hollow Spheres UsingBlock Copolypeptides, Nano. Lett., 2002, 2, 583‐587.
    [25] I. Dimitrov, H. Schlaad, Synthesis of nearly monodisperse polystyrene–polypeptide blockcopolymers via polymerisation of N‐carboxyanhydrides, Chem. Commun., 2003, 2944‐2945.
    [26]洪海燕响应性超支化多臂共聚物的可控合成和自组装研究,博士论文,上海交通大学,2009。
    [27]张永文超支化聚酰胺胺的合成及其功能化研究,博士论文,上海交通大学,2008。
    [28] K. Osada, K. Kataoka, Drug and Gene Delivery Based on Supramolecular Assembly ofPEG‐Polypeptide Hybrid Block Copolymers, Adv. Polym. Sci., 2006, 202, 113–153.
    [29] R. Elghanian, J. J. Storhoff, R. C. Mucic, et al., Selective Colorimetric Detection of PolynucleotidesBased on the Distance‐Dependent Optical Properties of Gold Nanoparticles, Science, 1997, 277,1078‐1081.
    [30] R. C. Mucic, J. J. Storhoff, C. A. Mirkin, et al., DNA‐Directed Synthesis of Binary NanoparticleNetwork Materials, J. Am. Chem. Soc., 1998, 120, 12674‐12675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700