响应性超支化多臂共聚物的可控合成及自组装研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超支化聚合物是一类具有准球形结构的高度支化大分子,在其不规则的分子结构中含有大量内部空穴和末端官能团。由于超支化聚合物独特的结构和性能特点,目前它已成为高分子领域的研究热点。经过近20年的发展和探索,人们在超支化聚合物的合成、结构表征、功能化改性等方面已经取得了重要进展,尤其是超支化聚合物的合成方法已经趋于全面和成熟,这为超支化聚合物的应用开发奠定了坚实的基础。但是,在超支化聚合物的研究中还有许多问题亟待解决,如基础理论的完善、未知性能的挖掘、新颖现象的解释、应用领域的拓展等等。本文在综述前人有关超支化聚合物工作的基础上,在超支化聚合物的功能化及自组装方面做了一些新的探索和研究。将具有环境响应性的聚合物链段通过活性聚合的方法引入超支化聚醚表面,设计合成了两类功能性的基于超支化聚醚的多臂共聚物,并且研究了其环境响应性和自组装行为,进一步开展了应用的研究。研究工作中,通过活性聚合的方法制备得到了两类不同臂链段的响应性两亲超支化多臂共聚物HBPO-g-PDMAEMA和HBPO-g-PDEAEMA;前者可在水中直接自组装形成大胶束,且具有良好的温度响应性,将其作为药物载体实现了温度响应的药物释放;后者在二氧六环/水混合溶剂中组装时,随水含量的变化而产生了一系列的形貌转变,并在溶剂挥发诱导作用下发生了多种形貌变化,并且具有良好的pH值响应性,将其组装液同时作为稳定剂和还原剂,分别在水相和油相中制备得到了具有胶体金纳米粒子分散液。主要研究内容和结论概括如下:
     1.HBPO-g-PDMAEMA的可控合成及水中直接自组装行为研究;
     采用原子转移自由基聚合法,成功在HBPO表面接枝PDMAEMA链段,合成了一系列不同臂长的超支化多臂共聚物HBPO-g-PDMAEMA。多臂共聚物的臂长可通过调节单体DMAEMA的加入量来很好地控制。臂平均聚合度为5到77的HBPO-g-PDMAEMA均可在水中经直接溶解法组装成10 nm的球形小胶束和100 nm的球形大胶束。且大胶束的尺寸随着多臂共聚物中PDMAEMA臂聚合度的增加而减小,小的单分子胶束基本保持不变。核磁表征证明所形成的胶束为核-壳结构,在水中溶解性良好的PDMAEMA伸展为壳,而溶解性不好的HBPO卷曲成核。透射电镜的直观证据证明大的多胶束聚集体由很多5 nm左右的小基元构成。在此基础上,提出了单分子胶束经PDMAEMA链段间的疏水相互作用聚集形成多分子胶束聚集体的多胶束聚集机理(MMA机理)。该机理的提出,为高度支化聚合物形成大球形胶束的体系提供了理论参考。
     2. HBPO-g-PDMAEMA的环境响应性研究及其在药物释放方面的应用;
     HBPO-g-PDMAEMA在纯水中具有离子响应性和pH值响应性。动态光散射测试表明,在其水溶液中加入氯化钠至一定浓度时,组装体发生聚集形成微米级的聚集体;随着水溶液pH值的增加,逐渐聚集形成大的聚集体。尼罗红为荧光探针的临界胶束浓度(CMC)测试表明,随着pH值的增加,共聚物的CMC增大。HBPO-g-PDMAEMA同时也具有温度敏感性,且发现其分子量分布对温敏性能有较大影响。分子量单分散的HBPO-g-PDMAEMA具有可逆的温敏特性,在高于LCST的温度下很快达到热力学稳定。动态光散射和变温核磁分析表明,随着温度的升高,首先发生壳层PDMAEMA链段的脱水,塌缩在多胶束聚集体表面,使组装体尺寸小幅下降,接着组装体间由于壳层PDMAEMA链段间疏水相互作用增加而发生进一步聚集,多胶束聚集体的尺寸增加。在此基础上,提出了分子量单分散的HBPO-g-PDMAEMA温敏响应组装的机理。而分子量分布宽的HBPO-g-PDMAEMA在温度高于LCST时,达到热力学稳定需非常长的时间。这也导致其在加热-冷却循环下的温度响应行为受热历史的影响。作者认为分子量分布宽的HBPO-g-PDMAEMA中PDMAEMA长链和短链的选择性排列是造成这种现象的原因。药物释放的探索性研究表明:HBPO-g-PDMAEMA对药物吲哚美辛有较好的包裹特性,包裹效率可达68%,在pH值为7.4的磷酸盐缓冲溶液中体外释放实验发现,温度对药物的释放有一定影响。
     3. HBPO-g-PDEAEMA的可控合成及溶液中自组装行为研究;
     同样采用原子转移自由基聚合法成功制备得到臂聚合度可控的HBPO-g-PDEAEMA共聚物。HBPO-g-PDEAEMA在诸多混合溶剂如二氧六环/水、乙醇/水、丙酮/水、四氢呋喃/水、DMF/水中均可发生聚集。聚合物在各混合溶剂中发生聚集的临界聚集水浓度与有机溶剂的溶解度参数有关。冷冻透射电镜分析表明,臂平均聚合度为11的POPE3在二氧六环/水混合溶剂中随着水含量的变化而发生了一系列的形貌转变:囊泡——单分子胶束和囊泡共存——多分子聚集体胶束和囊泡共存——多分子聚集体——空心球——空心球聚集体。核磁分析表明这种多阶段的形貌变化由PDEAEMA臂多阶段的溶解性变化引起。第一阶段中,由于PDEAEMA臂溶解性上升,导致囊泡中部分分子解离出来形成单分子胶束;第二阶段中,由于PDEAEMA臂溶解性的下降,导致单分子胶束聚集形成多胶束聚集体;第三阶段中,PDEAEMA臂溶解性继续下降,导致PDEAEMA分子塌缩,多胶束聚集体结构向外围收缩,形成中空球结构;第四阶段,PDEAEMA臂溶解性继续下降,导致臂塌缩程度增加,空心球壁厚下降,而后PDEAEMA间的疏水相互作用增加,导致空心球间聚集,形成较大的聚集体。另外,丹磺酰氯标记的HBPO-g-PDEAEMA的荧光分析可以很好地反应体系中其所处微环境的变化,从而为组装形貌的转变提供了另一强有力的证据。
     4. HBPO-g-PDEAEMA响应性研究及其在还原稳定纳米金方面应用;
     HBPO-g-PDEAEMA具有一定的pH值响应性。随着pH值的升高发生了聚集。NMR、DLS、冷冻透射电镜等分析表明:在低pH值下,形成了具有核壳结构的粒径较小的单分子胶束及多胶束聚集体;随着pH值的增加,发生形貌转变,形成囊泡结构;而pH值进一步升高导致组装体沉积。以HBPO-g-PDEAEMA为还原剂和稳定剂,可分别在水相和油相中成功制备纳米金胶体粒子。在水相中制备纳米金粒子时,溶液pH值对金纳米粒子的制备有很大影响,pH较小的溶液中不能实现金纳米粒子的有效还原,制备稳定纳米金分散溶液的条件为pH大于6.15以及N/Au高于10。且在低pH下制备时所得金颗粒为球形颗粒和棒状颗粒的混合物,而高pH时为球形颗粒。在油相中制备纳米金粒子时,通过改变溶剂中二氧六环和水的配比可控制生成的纳米金颗粒的大小和形貌。水含量较低的二氧六环和水混合溶剂中不能实现金粒子的有效还原,使用水含量为32.4wt%的POPE3组装液作为还原剂时,在N/Au为20和10的条件下均可获得稳定性良好的胶体球形金颗粒分散液;使用水含量为42.8 wt%的POPE3组装液作为还原剂时,在N/Au为20的条件下可获的稳定的粒径为22 nm金颗粒分散液,该条件下获得的金颗粒形貌丰富而将N/Au由20降至10后,所得金颗粒粒径较大,沉积在容器底部。
     5. HBPO-g-PDEAEMA溶剂诱导组装行为研究——囊泡的不对称分裂、薄壁空心球的粘连及网络状结构的形成;
     首先发现在溶剂挥发过程诱导下,囊泡内外溶剂渗透压的驱动下,HBPO-g-PDEAEMA囊泡发生由双分子层母囊泡分裂为单分子层子囊泡的不对称分裂。整个过程中HBPO-g-PDEAEMA的超支化特性为单分子层子囊泡的稳定提供了可能,这也是成功分裂的关键。另外,溶剂的挥发还会导致组装体间粘连、缔合的发生。不同挥发时间下的冷冻透射电镜表明,水含量为10 wt%的二氧六环/水混合溶剂中形成的囊泡间在溶剂挥发的驱动下发生粘连,而水含量为50 wt%的二氧六环/水混合溶剂中形成的薄壁空心球在溶剂挥发的驱动下,经PDEAEMA链间的疏水相互作用发生空心球的缔合。而对于水含量更高的混合溶剂中形成的空心球,其间的疏水相互作用因PDEAEMA溶解性的下降而表现的更为明显,即使在无溶剂挥发的驱动下,仍能形成大的缔合体。而后发现空心结构的组装体可作为模板制备得到网络状结构。用液氮冷冻的方法,将较高水含量下形成的薄壁空心球状组装体固定,经真空干燥,可获得纳米孔径的微观网络状结构。另外低水含量下的组装体在溶剂挥发作用下发生聚集,待溶剂挥发后形成介观网络状结构。
Hyperbranched polymers are a novel kind of three dimensional torispherical irregular macromolecules possessing highly branched architectures, many inner cavities and a large amount of terminal functional groups. Due to their unique molecular structures and properties, hyperbranched polymers have become the hot topics in many research fields. Up to now, great progresses have been made in the synthesis, characterization, modification, and application of hyperbranched polymers. However, many problems still need to be resolved, such as the exploration of the unknown features, the explanation of new phenomena and the spread of the application fields. In this dissertation, based on the summarization of previous research works of hyperbranched polymers, some creative investigations are conducted in the modification and self-assembly of hyperbranched polymers. Two novel kinds of functional star copolymers based on hyperbranched polyethers with stimuli responsibilities were synthesized successfully, their stimuli responsibilities and self-assembly behaviors in solution were investigated detailedly, their potential use in drug delivery and the stabilization of gold nanoparticles were explored. The detailed main results are shown as follows.
     1. The controll synthesis and self-assembly of HBPO-g-PDMAEMA in water;
     The PDMAEMA chains were grafted to HBPO surface by graft-from method, through atom transfer radical polymerization. By altering the amount of DMAEMA monomer, the DParm of HBPO-g-PDMAEMA can be controlled easily. And HBPO-g-PDMAEMAs with DParm varied from 5 to 77 were synthesized successfully. The HBPO-g-PDMAEMAs can form aggregates in water as confirmed by pyrene and Nile Red probe fluorescence spectrometry, and the CMC value of HBPO-g-PDMAEMAs rises with the increase of PDMAEMA arm length (DParm values). These star copolymers can self-assembly into small unimolecular micelles with particle size of approximately 10 nm and large spherical micelles with particle size of approximately 100 nm simultaneously. With the increase of the PDMAEMA chain length, the dimension of the large spherical micelles decreased, but the size of the small unimolecular micelles changes slightly. The solution-state NMR studies show that the aggegates hold a core-shell structure, the hydrophobic HBPOs aggregate together to form the solid-like core while the hydrophilic PDMAEMA arms form the shell. TEM measurements have provided direct evidence that the large micelles are multimolecular aggregates with the basic building units of unimolecular micelles. Then a self-assembly mechanism named as multimicellar aggregates was presented, it is the first demonstration of the self-assembly mechanism for the large multimolecular micelles generated from the solution self-assembly of hyperbranched copolymers.
     2. The stimuli-responsibilities of HBPO-g-PDMAEMA copolymer and potential use in drug delivery;
     Aqueous HBPO-g-PDMAEMA solution is sensitive to ionic strength, pH value and temperature. The DLS studies for HBPO-g-PDMAEMA solution with different amount of NaCl shows that large aggregates can be formed when the amount of NaCl is large enough. The DLS and CMC stuides for HBPO-g-PDMAEMA solution with different pH value shows that the aggregate behavior happened with the increase of pH value, and the CMC at pH 1.97 water is larger than that at neutral water. HBPO-g-PDMAEMA copolymers with narrow molecular weight distribution have reverse temperature responsibilities. The quantitative variable temperature NMR studies show that the PDMAEMA arms dehydrated by heating, so the MMAs aggregate together to form large aggregates as detected by the DLS analysis, driving by the increased hydrophobic interactions between PDMAEMA shells. Based on these studies, a proposed mechanism of heating-induced aggregation was presented. But the thermosensitivity of copolymers with broad molecular weight distribution are quite different from the above ones. Several heating experiments including transmttance and DLS mesurements show that they need more time to achieve the stable thermodynamics state. It is supposed that the broad molecular weight distribution plays an important role in the heating-history-influenced thermosensitivities. The selective arrangements of the longer and the shorter PDMAEMA chains are thought to be the main reason. The drug loading and temperature-dependent release properties of HBPO-g-PDMAEMA micelles were also investigated by using indomethacin as a model drug. The indomethacin-loaded micelles display a rapid drug release at temperature around LCST.
     3. The controllable synthesis of HBPO-g-PDEAEMA star copolymers and the self-assembly behavior in mixture of dioxane and water;
     The HBPO-g-PDEAEMAs with different length of PDEAEMA arms were also synthesized successfully by ATRP methods. The transmittance vs water content studies show that POPE3 sample with DParm of 11 can aggregate in various mixture of solvent, such as dioxane/water, THF/water, DMF/water, acetone/water and ethanol/water. The Cryo-TEM results show that the self-assembly behavior of POPE3 in dioxane/water mixture is very complicated. Solvent-induced multistage morphology transitions were observed. As the increase of water content, the morphology of the aggregates changed from vesicles to unimolecular micelles and vesicles, then to MMAs and vesicles, then to MMAs, then to hollow spheres, the wall of the hollow spheres narrowed and then they aggregated together to form large objects as the further increase of water content. Moreover, the solution state NMR studies show that this morphology transitions are induced by the multistage change of the solubility of PDEAEMA arms. In addition, the fluorescence studies on DNS-labelled HBPO-g-PDEAEMA with DParm of 11 also provided strong evidence for the morphology transition.
     4. The stimuli-responsibilities of HBPO-g-PDEAEMA and their use in autoreduction and stablization of gold nanoparticles;
     HBPO-g-PDEAEMAs have certain pH responsibility. As the increase of the pH value of solution, aggregation happen. At low pH, core-shell micelles including unimolecular micelles and large micelles are formed. As the increase of pH value, the aggregates transfered into vesicles., and further increase of pH value induced the precipitation of the aggregates. By using HBPO-g-PDEAEMA as the dioxidizer and stablizer, stable gold naopaticles were synthesized successfully in water and organic solvent. When using HBPO-g-PDEAEMA aqueous solution, pH value is the main parameter which has big influences on the synthesis of gold nanoparticles. At low pH, the dioxide of AuCl4- can not be achieved. Effective preparations were carried out at pH value larger than 6.15, N/Au molar ratio larger than 10. And when using HBPO-g-PDEAEMA solution in dioxane-riched dioxane/water mixture, gold nanoparticles can also be synthesied successfully. The N/Au molar ratio and water content in dioxane/water mixture are parameters which give effects on the resultant gold nanoparticles.
     5. The solvent-evaporation induced behavior of the aggregates formed by HBPO-g-PDEAEMA in dioxane/water mixture.
     Firstly, an asymmetrical budding and fission transition of single-component HBPO-g-PDEAEMA vesicle induced by the solvent evaporation, and a very special bilayer-to-monolayer molecular movement was found in the process. Secondly, the adhesion behaviors of the hollow structures were investigated by TEM and cryo-TEM. At last, by using the hollow spheres as the templet, irreglar porous networks with pores of 170 nm and walls of 15 nm were prepared by the cryo-fix of hollow spheres and the in-situ evaporation of enwrapped solvents. And large irreglar porous networks with porous of 800 nm and walls of 280 nm were prepared by the spontaneous aggregation of the self-assembly objects induced by natural solvent evaporation.
引文
1. Kim, Y.H.; Webster, O.W. Hyperbranched polyphenylenes. Macromolecules 1992, 25, 5561-5572.
    2. Kim, Y.H.; Webster, O.W. Hyperbranched polyphenylenes. Polym. Prepr. 1988, 29(2), 310-311.
    3. Voit, B. New developments in hyperbranched polymers. J. Polym. Sci., Polym. Chem. 2000, 38, 2505-2525.
    4. Kim, Y.H.; Webster, O.W. Water-soluble hyperbranched polyphenylene,“a unimolecular micelle?”. J. Am. Chem. Soc. 1990, 112, 4592-4593.
    5. Spindler, R.; Fréchet, J.M.J. Synthesis and characterization of hyperbranched polyurethanes prepared from blocked isocyanate monomers by step-growth polymerization. Macromolecules 1993, 26, 4809-4813.
    6. Kumar, A.; Ramakrishnan, S. A novel one-pot synthesis of hyperbrached polyurethanes. J. Chem. Soc., Chem. Commun. 1993, (18), 1453-1454.
    7. Fréchet, J.M.J.; Henmi, M.; Gitsov, I.; Aoshima, S.; Leduc, M.; Grubbs, R.B. Self-condensing vinyl polymerization, An approach to dendritic materials. Science 1995, 269, 1080-1083.
    8. Desimone, J.M. Branching out into new polymer markets. Science 1995, 269, 1060-1061.
    9. Kim, Y.H. Hyperbranched polymers 10 years after. J. Polym. Sci., Polym. Chem. 1998, 36, 1685-1698.
    10. Bednarek, M.; Biedron, T.; Helinski, J.; Kaluzynski, K.; Kubisa, P.; Penczek, S. Branched polyether with multiple primary hydroxyl groups, polymerization of 3-ethyl-3-hydroxymethyloxetane. Macromol. Rapid Commun. 1999, 20, 369-372.
    11. Chang, H.T.; Fréchet, J.M.J. Proton-transfer polymerization: A new approach to hyperbranched polymers. J. Am. Chem. Soc. 1999, 121, 2313-2314.
    12. Gong, C.G.; Fréchet, J.M.J. Proton-transfer polymerization in the preparation of hyperbranched polyesters with epoxide chain-ends and internal hydroxyl functionalities. Macromolecules 2000, 33, 4997-4999.
    13. Inoue, K. Functional dendrimers, hyperbranched and star polymers. Prog. Polym. Sci. 2000, 25, 453-571.
    14. Fujishige, S.; Kubota, K.; Ando, I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J Phys. Chem. 1989, 93 (8), 3311-3313.
    15. Dautzenberg, H.; Gao, Y.; Hahn, M. Formation, structure, and temperature behavior of polyelectrolyte complexes between ionically modified thermosensitive polymers. Langmuir 2000, 16 (23), 9070-9081.
    16. Rochas, C.; Br?let, A.; Guenet, J.-M. Thermoreversible gelation of agarose in water/dimethyl sulfoxide mixtures. Macromolecules 1994, 27 (14), 3830-3835.
    17. Fazel, N.; Br?let, A.; Guenet, J.-M. Molecular structure and thermal behavior of poly(methyl methacrylate) thermoreversibie gels and aggregates. Macromolecules 1994, 27(14), 3836-3842.
    18. Soutar, I.; Swanson, L.; Thorpe, F.G.; Zhu, C. Fluorescence studies of the dynamic behavior of poly(dimethylacrylamide) and its complex with poly(methacrylic acid) in dilute solution. Macromolecules 1996, 29 (3), 918-924.
    19. Garay, M.T.; Llamas, M.C.; Iglesias, E. Study of polymer-polymer complexes and blends of poly(N-isopropylacrylamide) with poly(carboxylic acid): 1. Poly(acrylic acid) and poly(methacrylic acid). Polymer 1997, 38 (20), 5091-5096.
    20. Brown, W.; Schillén, K.; Hvidt, S. Triblock copolymers in aqueous solution studied by static and dynamic light scattering and oscillatory shear measurements. Influence of relative block sizes. J Phys. Chem. 1992, 96 (14), 6038-6044.
    21. Schild, H.G. Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 1992, 17 (2), 163-249.
    22. Shibayama, M.; Tanaka, T. Volume phase transition and related phenomena of polymer gels. Adv. Polym. Sci. 1993, 109, 1-62.
    23. Chen, G.; Hoffman, A.S. Graft copolymers that exhibit temperature-induced phase transition over a wide range of pH. Nature 1996, 373, 49-52.
    24. Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliver. Rev. 2001, 53(3), 321-339.
    25. Aoyagi, T.; Ebara, M.; Sakai, K.; Sakurai, Y.; Okano, T. Novel bifunctional polymer with reactivity and temperature sensitivity. J Biomater. Sci. Polym. Ed. 2000, 11 (1), 101-110.
    26. Aoki, T.; Muramatsu, M.; Torii, T.; Sanui, K.; Ogata, N. Thermosensitive phase transition of an optically active polymer in aqueous milieu. Macromolecules 2001, 34, 3118-3119.
    27. Gan, L.H.; Gan, Y.Y.; Deen, G.R. Poly(N-acryloyl-N'-propylpiperazine): A new stimuli-responsive polymer. Macromolecules 2000, 33(21), 7893-7897.
    28. Gan, L.H.; Roshan Deen, G.; Loh, X.J.; Gan, Y.Y. New stimuli-responsive copolymers of N-acryloyl-N'-alkyl piperazine and methyl methacrylate and their hydrogels. Polymer 2001, 42, 65-69.
    29. Yuk, S.H.; Cho, S.H.; Lee, S.H. pH/temperature-responsive polymer composed of poly((N,N-dimethylamino)ethyl methacrylate-co-ethylacrylamide). Macromolecules 1997, 30(22), 6856-6859.
    30. Cho, S.H.; Jhon, M.S.; Yuk, S.H.; Lee, H.B. Temperature-induced phase transition of poly(N,N-dimethylaminoethyl methacrylate-co-acrylamide). J Polym. Sci., Polym. Phys. 1997, 35(4), 595-598
    31. Bütün, V.; Armes, S.P.; Billingham, N.C. Selective quaternization of 2-(dimethylamino) ethyl methacrylate residues in tertiary amine methacrylate diblock copolymers. Macromolecules 2001, 34 (5), 1148-1159.
    32. Weaver, J.V.M.; Bannister, I.; Robinson, K.L.; Bories-Azeau, X.; Armes, S.P.; Smallridge, M.; Mckenna, P. Stimulus-responsive water-soluble polymers based on2-hydroxyethyl methacrylate. Macromolecules 2004, 37 (7), 2395-2403.
    33. Bütün, V.; Armes, S.P.; Billingham, N.C. Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer 2001, 42 (14), 5993-6008.
    34. Forder, C.; Patrickios, C.S.; Armes, S.P.; Billingham, N.C. Synthesis and aqueous solution characterization of dihydrophilic block copolymers of methyl vinyl ether and methyl triethylene glycol vinyl ether. Macromolecules 1996, 29 (25), 8160-8169.
    35. Meeussen, F.; Nies, E.; Berghmans, H.; Verbrugghe, S.; Goethals, E.; Du Prez, F. Phase behaviour of poly(N-vinyl caprolactam) in water. Polymer 2000, 41 (24), 8597-8602.
    36. Bromberg, L.E.; Ron, E.S. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv. Drug Deliv. Rev. 1998, 31, 197-221.
    37. Malmsten, M.; Lindman, B. Self-assembly in aqueous block copolymer solution. Macromolecules 1992, 25, 5446-5450.
    38. Mortensen, K.; Perdersen, S. Structural study on micelle formation of poly(ethyleneoxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution. Macromolecules 1993, 26, 805-812.
    39. Alejandro, S.; Daniel, C. Ethoxysilane-capped PEO-PPO-PEO triblocks: a new family of reverse thermo-responsive polymers. Biomaterials 2004, 25(14 ), 2851-2858.
    40. Li, H.; Yu, G.; Price, C.; Booth, C.; Hecht, E.; Hofmann, H. Concentrated aqueous micellar solutions of diblock copoly(oxyethylene/oxybutylene): a study of phase behavior. Macromolecules 1997, 30, 1347-1354.
    41. Jeong, B.; Bae, Y.H.; Lee, D.S.; Kim, S.W. Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997, 388, 860-862.
    42. Jeong, B.; Bae, Y.H.; Kim, S.W. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 1999, 32, 7064-7069.
    43. Pinkrah, V.T.; Snowden, M.J.; Mitchell, J.C.; Seidel, J.; Chowdhry, B.Z.; Fern, G.R. Physicochemical properties of poly(N-isopropylacrylamide-co-4-vinylpyridine) cationic polyelectrolyte colloidal microgels. Langmuir 2003, 19 (3), 585-590.
    44. Yoshizawa, T.; Shin-ya, Y.; Hong, K.-J.; Kajiuchi, T. pH- and temperature-sensitive permeation through polyelectrolyte complex films composed of chitosan and polyalkyleneoxide-maleic acid copolymer. J Membrane Sci. 2004, 241 (2), 347-354.
    45. Cho, S.H.; Jhon, M.S.; Yuk, S.H. Temperature-sensitive swelling behavior of polymer gel composed of poly (N,N-dimethylaminoethyl methacrylate) and its copolymers. Eur. Polym. J 1999, 35 (10), 1841-1845.
    46. Philippova, O.E.; Hourdet, D.; Audebert, R.; Khokhlov, A.R. pH-responsive gels of hydrophobically modified poly(acrylicacid). Macromolecules 1997, 30, 8278-8285.
    47. Shin, H.; Hitoshi, O.; Yasunari, M. Thermo- and pH-sensitive gel membranes based on poly-(acryloyi-L-proline methyl ester)-graft-poly(acrylic acid) for selective permeation of metalions. Radiat. Phys. Chem. 2005, 72(5), 595-600.
    48. Sousa, R.G.; Prior-Cabanillas, A.; Quijada-Garrido, I.; Barrales-Rienda, J.M.Dependence of copolymer composition, swelling history, and drug concentration on the loading of diltiazem hydrochloride into poly[(N-isopropylacrylamide)-co-(methacrylicacid)] hydrogels and its release behaviour from hydrogel slabs. J Control. Release 2005, 102(3), 595-606.
    49. Tonge, S.R.; Tighe, B.J. Responsive hydrophobically associating polymers: a review of structure and properties. Adv. Drug Deliv. Rev. 2001, 53, 109-112.
    50. Murthy, N.; Robichaud, J.R.; Tirrell, D.A.; Stayton, P.S.; Hofman, A.S. The design and synthesis of polymers foreukaryotic membrane disruption. J Control. Release 1999, 61, 137-143.
    51. Kang, S.I.; Bae, Y.H. A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. J Control. Release 2003, 86, 115-121.
    52. Dai, S.; Ravi, P.; Tan, C.H.; Tam, K.C. Self-assembly behavior of a stimuli-responsive water-soluble [60]fullerene-containing polymer. Langmuir 2004, 20 (20), 8569-8575.
    53. Mu?oz-Bonilla, A.; Fernández-García, M.; Haddleton, D.M. Synthesis and aqueous solution properties of stimuli-responsive triblock copolymers. Soft Matter 2007, 3 (6), 725-731.
    54. Vamvakaki, M.; Palioura, D.; Spyros, A.; Armes, S.P.; Anastasiadis, S.H. Dynamic light scattering vs 1H NMR investigation of pH-responsive diblock copolymers in water. Macromolecules 2006, 39 (15), 5106-5112.
    55. Li, X.; Zuo, J.; Guo, Y.; Yuan, X. Preparation and characterization of narrowly distributed nanogels with temperature-responsive core and pH-responsive shell. Macromolecules 2004, 37 (26), 10042-10046.
    56. Wahlund, P.-O.; Galaev, I.Y.; Kazakov, S.A.; Lozinsky, V.I.; Mattiasson, B. "Protein-like" copolymers: Effect of polymer architecture on the performance in bioseparation process. Macromol. Chem. Phys. 2002, 203 (2), 33-42.
    57. Karmalkar, R.N.; Kulkarni, M.G.; Mashelkar, R.A. Pendent chain linked delivery systems: I facile hydrolysis through anchimeric effect. J Control. Release 1996, 42 (2), 185-193.
    58. Ramkissoon-Ganorkar, C., Liu, F., Baudy?, M., Kim, S.W. Modulating insulin-release profile from pH/thermosensitive polymeric beads through polymer molecular weight. J Control. Release 1999, 59(3), 287-298.
    59. Yoshizawa, T.; Shin-ya, Y.; Hong, K.-J.; Kajiuchi, T. pH- and temperature-sensitive permeation through polyelectrolyte complex films composed of chitosan and polyalkyleneoxide-maleic acid copolymer. J Membrane Sci. 2004, 241 (2), 347-354.
    60. Victor, S.P.; Sharma, C.P. Stimuli sensitive polymethacrylic acid microparticles (PMAA) - Oral insulin delivery. Journal of Biomater. Appl. 2002, 17 (2), 125-134.
    61. Traitel, T.; Cohen, Y.; Kost, J. Characterization of gluco-sesensitive insulin release systems in simulated in vivo conditions. Biomaterials 2000, 21(16), 1679-1687.
    62. You, L.; Lu, F.; Li, Z.; Zhang, W.; Li, F. Glucose-sensitive aggregates formed by poly(ethylene oxide)-block-poly(2-glucosyl-oxyethyl acrylate) with concanavalin A in dilute aqueous medium. Macromolecules 2003, 36, 1-4.
    63. Miyata, T.; Jikihara, A.; Nakamae, K. Preparation of poly(2-glucosyloxyethylm ethacrylate)- concanavalin A complex hydrogel and its glucose-sensitivity. Macromol. Chem. Phys. 1996, 197, 1135-1146.
    64. Miyata, T.; Asami, N.; Uragami, T. A reversibly antigenresponsive hydrogel. Nature 1999, 399, 766-776.
    65. Nagarsekar, A.; Crissman, J.; Crissman, M.; Ferrari, F.; Cappello, J.; Ghandehari, H. Genetic engineering of stimuli-sensitive silkelastin-like protein block copolymers. Biomacromolecules 2003, 4(3), 602-607.
    66. Kope?ek, J. Smart and genetically engineered biomaterials and drug delivery systems. Eur. J Pharm. Sci. 2003, 20 (1), 1-16.
    67. Cohn, D.; Sosnik, A.; Levy, A. Improved reverse thermo-responsive polymeric systems. Biomaterials 2003, 24 (21), 3707-3714.
    68. Nonaka, T.; Hanada, Y.; Watanabe, T.; Ogata, T.; Kurihara, S. Formation of Thermosensitive water-soluble copolymers with phosphinic acid groups and the thermosensitivity of the copolymers and copolymer/metal complexes. J Appl. Polym. Sci. 2004, 92(1), 116-125.
    69. Yi, C.; Xu, Z. Synthesis and characterization of thermosensitive composite microsphere latex. J Appl. Polym. Sci. 2005, 96 (3), 824-828.
    70. Kaetsu, I.; Uchida, K.; Sutani, K.; Sakata, S. Intelligent biomembrane obtained by irradiation techniques. Radiat. Phys. Chem. 2000, 57 (3-6), 465-469.
    71. Yang, B.; Yang, W. Thermo-sensitive switching membranes regulated by pore-covering polymer brushes. J Membrane Sci. 2003, 218(1-2), 247-255.
    72. Erbil, C.; Kazancio?lu, E.; Uyanik, N. Synthesis, characterization and thermoreversible behaviours of poly(dimethyl siloxane)/poly(N-isopropyl acrylamide) semi-interpenetrating networks. Eur. Polym. J 2004, 40(6), 1145-1154.
    73. Szwarc, M.; Levy, M.; Mikovich, J. Polymerization initated by electron transfer to monomer. A new method of formation of block polymers. J. Am. Chem. Soc. 1956, 78, 2656-2657.
    74. Szwarc, M. Living polymers. Nature 1956, 178, 168-169.
    75. Miyamoto, M.; Sawamoto, M.; Higashimura, T. Living polymerization of isobutyl vinyl ether with hydrgen iodide/iodine initiating system. Macromolecules 1984, 17, 265-267.
    76. Yoshida, T.; Kanaoka, S.; Watanabe, H.; Aoshima, S. Stimuli-responsive reversible Physical networks. II. Design and Properties of homogeneous pysical networks consisting of periodic copolymers synthesized by living cationic polymerization. J. Polym. Sci., Polym. Chem. 2005, 43, 2712-2722.
    77. Magnusson, H.; Malmstrom, E; Hult, A. Influence of reaction conditions on degree of branching in hyperbranched aliphatic polyethers from 3-ethyl-3-(hydroxymethyl)oxetane. Macromolecules 2001, 34, 5786-5791.
    78. Bednarek, M.; Kubisa, P.; Penczek, S. Multihydroxyl branched polyethers. 2. Mechanistic aspects of cationic polymerization of 3-ethyl-3-(hydroxylmethyl)oxetane. Macromolecules 2001, 34, 5112-5119.
    79. Hou, J.; Yan, D.Y. Synthesis of a star-shaped copolymer with a hyperbranched poly(3 -methyl-3-oxetanemethanol) core and tetrahydrofuran arms by one-pot copolymerization. Macromol. Rapid Comm. 2002, 23, 456-459.
    80. Webster, O.W.; Hertler, W.R.; Sogah, D.Y.; Fanham, W.B.; RajanBabu, T.V. Group-transfer polymerization. 1. A new concept forp addition polylmerization with organosilicon initiators. J. Am. Chem. Soc. 1983, 105, 5706-5708.
    81. Moad, G.; Rizzardo, E.; Solomon, H.J. Selectivity of the reaction of free radicals with styrene. Macromolecules 1982, 15(3), 909-914.
    82. George, M.K; Veregin, R.P.N.; Kazmaier, P.M.; Hamer, G.K. Narrow molecular-weight resins by a free-radical polymerization process. Macromolecules 1993, 26, 2987-2988.
    83. Veregin, R.R.N.; Georges, M.K; Kazmaier, P.M.; Hamer, G. K. Free-radical polymerizations for narrow polydispersity resins- electron-spin-responance studies of the kinetics and mechanism. Macromolecules 1993, 26, 5316-5320.
    84. Hawker, C.J. Molecular-weight control by a living free-radical polymerization process. J. Am. Chem. Soc. 1994, 116, 11185-11186.
    85. Hawker, C.J.; Barclay, G.G.; Orellana, A.; Dao, J.; Devonport, W. Initiating systerms for nitroxide-mediated“living”free radical polymerizations, synthesis and evaluation. Macromolecules 1996, 29, 5245-5254.
    86. Mansky, P.; Liu, Y.; Huang, E; Russell, T.P.; Hawker, C. Controlling polymer- surface interactions with random copolymer brushes. Science 1997, 275, 1458 -1460.
    87. Mardare, D.; Matyjaszewski, K. Living radical po1ymenzation of vinyl-acetate. Macromolecules 1994, 27, 645-649.
    88. Creszta, D.; Matyjaszewski, K. Mechanism of colllrolled/living radical polymerization of styrene in the presence of nitroxyl radicals. Kinetics and simulations. Macromolecules 1996, 29, 7661-7670.
    89. Malmstrom, E.E; Hawker, C.J. Macromolecular engineeing via living free radical polymerizations. Macromol. Chem. Phys. 1998, 199, 923-935.
    90. Frechet, J.M.J.; Henmi, M.; Gitsov, I.; Aoshima, S.; Leduc, M.R.; Grubbs, R.B. Self-condensing vinyl polymerization-an approach to dendritic materials. Science 1995, 269, 1080-1083.
    91. Corpart, P.; Charmot, D.; Biadatti, T.; Zard, S.Z.; Michelet, D. Patent WO 98/58974 1998.
    92. Wang, J.S.; Matyjaszewski, K. Cotrolled living radical polymerization-atom transfer radical polymerization in the presence of transition-meta1 complexes. J Am. Chem. Soc. 1995, 117, 5614-5615.
    93. Wang, J.S.; Matyjaszewski, K. Living controlled radical polymerization-transition- metal-catalyzed atom-transfer radical polymerization in the presence of a conventional radical initiator. Macromolecules 1995, 28, 7572-7573.
    94. Percec, V.; Barboiu, B. Living radical polymerization of styrene initiated by arenesulfonyl chlorides and Cu?(bpy)nCl. Macromolecules 1995, 25, 7970-7972.
    95. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashlimura, T. Polymerization of methyl-methacrylate with the carbon-tetrachloride dichlorotris(triphenylphosphine) Ruthenium (Ⅱ) methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system-posssibility of livingradical polymerization. Macromolecules 1995, 28, 1721-1723.
    96. Patten, T.E.; Matyjaszewski, K. Atom transfer radical polymerization and the synthesis of polymeric materials. Adv. Mater. 1998, 10, 901-915.
    97. Matyjaszewski, K. Transition metal catalysis in controlled radical polymerization: Atom transfer radical polymerization. Chem. Eur. 1999, 5, 3095-3102
    98. Rettig, H.; Krause, E.; Borner, H.G. Atom transfer radical polymerization with polypeptide initiators: A general approach to block copolymers of sequence-defined polypeptides and synthetic polymers. Macromol. Rapid Commun. 2004, 25, 1251-1256
    99. Parvole, J.; Laruelle, G.; Guimon, C.; Francois, J.; Billon, L. Initiator-Grafted Silica Particles for Controlled Free Radical Polymerization: Influence of the Initiator Structure on the Grafting Density. Macromol. Rapid Commun. 2003, 24, 1074-1078
    100. Ding, S.J.; Yang, J.; Radosz, M.; Shen, Y. Atom transfer radical polymerization of methyl methacrylate via reversibly supported catalysts on silica gel via self-assembly. Polym. Sci., Polym. Chem. 2004, 42, 22-30.
    101. Pintauer, T.; Matyjaszewski, K. Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes. Chem. Soc. Rev. 2008, 37 (6), 1087-1097.
    102. Tsarevsky, N.V.; Matyjaszewski, K. "Green" atom transfer radical polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials. Chem. Rev. 2007, 107 (6), 2270-2299.
    103. Gao, Z.; Varshney, S.K.; Wong, S.; Eisenberg, A. Block copolymer "Crew-Cut" micelles in water. Macromolecules 1994, 27 (26), 7923-7927.
    104. Zhang, L.; Eisenberg, A. Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution. Macromolecules 1999, 32 (7), 2239-2249.
    105. Burke, S.E.; Eisenberg, A. Kinetics and mechanisms of the sphere-to-rod and rod-to-sphere transitions in the ternary system PS310-b-PAA52/dioxane/water. Langmuir 2001, 17 (21), 6705-6714.
    106. Shen, H.; Zhang, L.; Eisenberg, A. Multiple pH-induced morphological changes in aggregates of polystyrene- block-poly(4-vinylpyridine) in DMF/H2O mixtures. J Am. Chem. Soc. 1999, 121 (12), 2728-2740.
    107. Zhang, L.; Eisenberg, A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polym. Adv. Tech. 1998, 9 (10-11), 677-699.
    108. Yu, Y.; Zhang, L.; Eisenberg, A. Morphogenic effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers. Macromolecules 1998, 31 (4), 1144-1154.
    109. Shen, H.; Zhang, L.; Eisenberg, A. Thermodynamics of crew-cut micelle formation of polystyrene-b-poly(acrylic acid) diblock copolymers in DMF/H2O mixtures. J Phys. Chem. B 1997, 101 (24), 4697-4708.
    110. Zhang, L.; Shen, H.; Eisenberg, A. Phase separation behavior and crew-cut micelle formation of polystyrene-b-poly(acrylic acid) copolymers in solutions. Macromolecules 1997, 30 (4), 1001-1011.
    111. Yu, Y.; Eisenberg, A. Control of morphology through polymer-solvent interactions in crew-cut aggregates of amphiphilic block copolymers. J Am. Chem. Soc. 1997, 119 (35), 8383-8384.
    112. Khougaz, K.; Zhong, X.F.; Eisenberg, A. Aggregation and critical micelle concentrations of polystyrene-b-poly(sodium acrylate) and polystyrene-b-poly(acrylic acid) micelles in organic media. Macromolecules 1996, 29 (11), 3937-3949.
    113. Zhang, L.; Eisenberg, A. Multiple morphologies and characteristics of 'crew-cut' micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J Am. Chem. Soc. 1996, 118 (13), 3168-3181.
    114. Zhang, L.; Eisenberg, A. Multiple morphologies of 'crew-cut' aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 1995, 268 (5218), 1728-1745.
    115. F?rster, S.; Zisenis, M.; Wenz, E.; Antonietti, M. Micellization of strongly segregated block copolymers. J Chem. Phys. 1996, 104 (24), 9956-9970.
    116. Qin, A.; Tian, M.; Ramireddy, C.; Webber, S.E.; Munk, P.; Tuzar, Z. Polystyrene-poly(methacrylic acid) block copolymer micelles. Macromolecules 1994, 27 (1), 120-126
    117. Eckert, A.R.; Webber, S.E. Naphthalene-tagged copolymer micelles based on polystyrene-alt-maleic anhydride-grafi-poly(ethylene oxide). Macromolecules 1996, 29 (2), 560-567.
    118. Voulgaris, D.; Tsitsilianis, C.; Grayer, V.; Esselink, F.J.; Hadziioannou, G. Amphiphile micelles formed by polystyrene/poly(2-vinyl pyridine) heteroarm star copolymers in toluene. Polymer 1999 40 (21), 5879-5889.
    119. Antonietti, M.; F?rster, S. Vesicles and Liposomes: A Self-Assembly Principle Beyond Lipids. Adv. Mater. 2003, 15 (16), 1323-1333.
    120. Cai, Y.; Armes, S.P. A zwitterionic ABC triblock copolymer that forms a "trinity" of micellar aggregates in aqueous solution. Macromolecules 2004, 37 (19), 7116-7122.
    121. Liu, F.; Eisenberg, A. Preparation and pH triggered inversion of vesicles from poly(acrylic Acid)-block-polystyrene-block-poly(4-vinyl pyridine). J. Am. Chem. Soc. 2003, 125, 15059-15064.
    122. Tezuka, Y.; Oile, H. Topological Polymer Chemistry. Prog. Polym, Sci. 2002, 27, 1069-1122.
    123. Ishizu, K.; Uchida, S. Synthesis and microphase-separated structures of star-block copolymers. Prog. Polym, Sci. 1999, 24 (10), 1439-1480.
    124. Mountrichas, G.; Mpiri, M.; Pispas, S. Micelles of star block (PSPI)8 and PSPI diblock copolymers (PS = polystyrene, PI = polyisoprene): Structure and kinetics of micellization. Macromolecules 2005, 38, 940-947
    125. Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Pispas, S.; Avgeropoulos, A. Linear andnon-linear triblock terpolymers. Synthesis, self-assembly in selective solvents and in bulk. Prog. Polym. Sci. 2005, 30 (7), 725-782.
    126. Pispas, S.; Avgeropoulos, A.; Hadjichristidis, N.; Roovers, J. Hydrodynamic properties of A8B8 type miktoarm (Vergina) stars. J Polym. Sci., Polym. Phys. 1999, 37 (12), 1329-1335.
    127. Floudas, G.; Pispas, S.; Hadjichristidis, N.; Pakula, T.; Erukhimovich, I. Microphase separation in star block copolymers of styrene and isoprene. Theory, experiment, and simulation. Macromolecules 1996, 29 (11), 4142-4154.
    128. Pispas, S.; Poulos, Y. Hadjichristidis, N. Micellization behavior of (PS)8(PI)8 miktoarm (Vergina) star copolymers. Macromolecules 1998, 31 (13), 4177-4181.
    129. Heise, A.; Hedrick, J.L.; Frank, C. W.; Miller, R.D. Starlike block copolymers with amphiphilic arms as models for unimolecular micelles. J. Am. Chem. Soc. 1999, 121, 8647-8648.
    130. Yoo, M.; Heise, A.; Hedrick, J.L.; Miller, R.D.; Frank, C. W. Photophysical characterization of conformational rearrangements for amphiphilic 6-arm star block copolymers in selective solvent mixtures. Macromolecules 2003, 36, 268-271.
    131. Jin, R.-H. Self-assembly of porphyrin-centered amphiphilic star block copolymer into polymeric vesicular aggregates. Macromol. Chem. Phys. 2003, 204(3), 403-409.
    132. Jin, R.-H. Controlled location of porphyrin in aqueous micelles self-assembled from porphyrin centered amphiphilic star poly(oxazolines). Adv. Mater. 2002, 14, 889-892
    133. Jin, R.-H. Functional Polymeric Micelles Formed from a Novel Cationic Star Block Copolymer. Chem. Phys. Chem. 2003, 4 (10), 1118-1121.
    134. Voulgaris, D.; Tsitsilianis, C.; Esselink, F.J.; Hadziioannou, G. Polystyrene/poly(2-vinyl pyridine) heteroarm star copolymer micelles in toluene: Morphology and thermodynamics. Polymer 1998, 39 (25), 6429-6439.
    135. Voulgaris, D.; Tsitsilianis, C.; Grayer, V.; Esselink, F.J.; Hadziioannou, G. Amphiphile micelles formed by polystyrene/poly(2-vinyl pyridine) heteroarm star copolymers in toluene. Polymer 1999, 40 (21), 5879-5889.
    136. Tsitsilianis, C.; Voulgaris, D.; ?těpánek, M.; Podhájecká, K.; Procházka, K.; Tuzar, Z.; Brown, W. Polystyrene/poly(2-vinylpyridine) heteroarm star copolymer micelles in aqueous media and onion type micelles stabilized by diblock copolymers. Langmuir 2000, 16 (17), 6868-6876.
    137. Voulgaris, D.; Tsitsilianis, C. Aggregation behavior of polystyrene/poly(acrylic acid) heteroarm star copolymers in 1,4-dioxane and aqueous media. Macromol. Chem. Phys. 2001, 202 (17), 3284-3292.
    138. Tsitsilianis, C.; Sfika, V. Heteroarm star-like micelles formed from polystyrene-block- poly(2-vinyl pyridine)-block-poly(methyl methacrylate) ABC triblock copolymers in toluene. Macromol. Rapid Commun. 2001, 22 (8), 647-651.
    139. Kiriy, A.; Gorodyska, G.; Minko, S.; Stamm, M.; Tsitsilianis, C. Single molecules and associates of heteroarm star copolymer visualized by atomic force microscopy. Macromolecules 2003, 36 (23), 8704-8711.
    140. Yun, J.; Faust, R.; Szilágyi, L.S.; Kéki, S.; Zsuga, M. Effect of architecture on themicellar properties of amphiphilic block copolymers: Comparison of AB linear diblock, A1A2B, and A2B heteroarm star block copolymers. Macromolecules 2003, 36 (5), 1717-1723.
    141. Sfika, V.; Tsitsilianis, C.; Kiriy, A.; Gorodyska, G.; Stamm, M. pH responsive heteroarm starlike micelles from double hydrophilic ABC terpolymer with ampholitic A and C blocks. Macromolecules 2004, 37 (25), 9551-9560.
    142. ?těpánek, M.; Matějí?ek, P.; Humpolí?ková, J.; Havránková, J.; Podhájecká, K.; ?pírková, M.; Tuzar, Z.; Tsitsilianis, C.; Procházka, K. New insights on the solution behavior and self-assembly of polystyrene/poly(2-vinylpyridine) 'hairy' heteroarm star copolymers with highly asymmetric arms in polar organic and aqueous media. Polymer 2005, 46 (23), 10493-10505.
    143. Havránková, J.; Limpouchová, Z.; ?těpánek, M.; Procházka, K. Self-assembly of heteroarm star copolymers - A Monte Carlo study. Macromol. Theory Simul. 2007, 16 (4), 386-398.
    144. Stavrouli, N.; Kyriazis, A., Tsitsilianis, C. Reversible hydrogels from an ampholytic An(B-b-C)n heteroarm star block terpolymer. Macromol. Chem. Phys. 2008, 209 (21), 2241-2247.
    145. Teng, J.; Zubarev, E.R. Synthesis and self-assembly of a heteroarm star amphiphile with 12 alternating arms and a well-defined core. J Am. Chem. Soc. 2003, 125 (39), 11840-11841.
    146. Genson, K.L.; Hoffman, J.; Teng, J.; Zubarev, E.R.; Vaknin, D.; Tsukruk, V.V. Interfacial micellar structures from novel amphiphilic star polymers. Langmuir 2004, 20 (21), 9044-9052.
    147. Peleshanko, S.; Gunawidjaja, R.; Jeong, J.; Shevchenko, V.V.; Tsukruk, V.V. Surface behavior of amphiphilic heteroarm star-block copolymers with asymmetric architecture. Langmuir 2004, 20 (22), 9423-9427.
    148. Xu, J.; Zubarev, E.R. Supramolecular assemblies of starlike and V-shaped PB-PEO amphiphiles. Angew. Chem. In. Ed. 2004, 43 (41), 5491-5496.
    149. Chang, Y.; Chen, W.-C.; Sheng, Y.-J.; Jiang, S.; Tsao, H.-K. Intramolecular Janus segregation of a heteroarm star copolymer. Macromolecules 2005, 38 (14), 6201-6209.
    150. Nandan, B.; Lee, C.-H.; Chen, H.-L.; Chen, W.-C. Molecular architecture effect on microphase separation in supramolecular comb - Coil complexes of polystyrene-block-poly(2- vinylpyridine) with dodecylbenzenesulfonic Acid: AnBn heteroarm star copolymer. Macromolecules 2006, 39 (13), 4460-4468.
    151. Chiang, W.-S.; Lin, C.-H.; Nandan, B.; Yeh, C.-L.; Rahman, M.H.; Chen, W.-C.; Chen, H.-L. Molecular architecture effect on the self-assembly behavior of comb-coil block copolymers displaying lamellae-within-lamellae morphology. Macromolecules 2008, 41 (21), 8138-8147.
    152. Ge, Z.; Xu, J.; Wu, D.; Narain, R.; Liu, S. pH-switchable complexation between double hydrophilic heteroarm star copolymers and a cationic block polyelectrolyte. Macromol. Chem. Phys. 2008, 209 (7), 754-763.
    153. Du, J.; Chen, Y. Preparation of poly(ethylene oxide) star polymers and poly(ethylene oxide)-polystyrene heteroarm star polymers by atom transfer radical polymerization. J Polym Sci., Polym. Chem. 2004, 42 (9), 2263-2271.
    154. Hudson, S.D.; Jung, H.-T.; Percec, V.; Cho, W.-D.; Johansson, G.; Ungar, G.; Balagurusamy, V.S.K. Direct visualization of individual cylindrical and spherical supramolecular dendrimers. Science 1997, 278, 449-452.
    155. Percec, V.; Ahn, C.-H.; Barboiu, B. Self-encapsulation, acceleration and control in the radical polymerization of monodendritic monomers via self-assembly. J. Am. Chem. Soc. 1997, 119, 12978-12980.
    156. Percec, V.; Ahn, C.-H.; Ungar, G.; Yeardley, D.J.P.; M?ller, M.; Sheiko, S.S. Controlling polymer shape through the self-Assembly of dendritic side-groups. Nature 1998, 398, 161-165.
    157. Percec, V.; Cho, W.-D.; Ungar, G. Increasing the diameter of cylindrical and spherical supramolecular dendrimers by decreasing the solid angle of their monodendrons via periphery functionalization. J. Am. Chem. Soc. 2000, 122, 10273-10278.
    158. Zeng, X.; Ungar, G.; Liu, Y.; Percec, V.; Dulcey, A.E.; Hobbs, J.K. Supramolecular dendritic liquid quasicrystals. Nature 2004, 428, 157-161.
    159. Schenning, A.P.H.J.; Elissen-Román, C.; Weener, J.-W.; Baars, M.W.P.L.; van der Gaast, S.J.; Meijer, E.W. Amphiphilic dendrimers as building blocks in supramolecular assemblies. J. Am. Chem. Soc. 1998, 120, 8199-8129.
    160. Román, C.; Fischer, H.R.; Meijer, E.W. Microphase separation of diblock copolymers consisting of polystyrene and acid-functionalized poly(propylene imine) dendrimers. Macromolecules 1999, 32, 5525-5529.
    161. Tsuda, K.; Dol, G.C.; Gensch, T.; Hofkens, J.; Latterini, L.; Weener, J.W.; Meijer, E.W.; De Schryver, F.C. Fluorescence from azobenzene functionalized poly(propylene imine) dendrimers in self-assembled supramolecular structures. J. Am. Chem. Soc. 2000, 122, 3445-3456.
    162. Weener, J.-W.; Meijer, E. W. Photoresponsive dendritic monolayers. Adv. Mater. 2000, 12, 741-747.
    163. Wang, B.; Zhang, X.; Jia, X.; Luo, Y.; Sun, Z.; Yang, L.; Ji, Y.; Wei, Y. Poly(amidoamine) dendrimers with phenyl shells: fluorescence and aggregation behavior. Polymer 2004, 45, 8395-8398.
    164. Wang, B.; Zhang, X.; Jia, X.; Li, Z.; Ji, Y.; Yang, L.; Wei, Y. Fluorescence and aggregation behavior of poly(amidoamine) dendrimers peripherally modified with aromatic chromophores: the effect of dendritic architectures. J. Am. Chem. Soc. 2004, 126, 15180-15194.
    165. Ornatska, M.; Peleshanko, S.; Genson, K.L.; Rybak, B.; Bergman, K.N.; Tsukruk V.V. Assembling of amphiphilic highly branched molecules in supramolecular nanofibers. J Am. Chem. Soc. 2004, 126, 9675-9684.
    166. Yan, D.Y.; Zhou, Y.F.; Hou, J. Supramolecular self-Assembly of macroscopic tubes. Science 2004, 303 (5654), 65-67.
    167. Mai, Y.Y.; Zhou, Y.F.; Yan, D.Y. Real-time hierarchical self-assembly of large compound vesicles from an amphiphilic hyperbranched multiarm copolymer. Small 2007, 3 (7), 1170-1173.
    168. Zhang, Y.W; Huang, W.; Zhou, Y.F.; Yan, D.Y. A physical gel made from hyperbranched polymer gelator. Chem. Commun. 2007, (25), 2587-2589.
    169. Jia, Z.F.; Zhou, Y.F.; Yan, D.Y. Amphiphilic star-block copolymers based on a hyperbranched core: Synthesis and supramolecular self-assembly. J Polym. Sci., Polym. Chem. 2005, 43 (24), 6534-6544.
    170. Mai, Y.F.; Zhou, Y.F.; Yan, D.Y. Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether. Macromolecules 2005, 38 (21), 8679-8686.
    171. Zhou, Y.F.; Yan, D.Y. Supramolecular self-assembly of giant polymer vesicles with controlled sizes. Angew. Chem. In. Ed. 2004, 43 (37), 4896-4899.
    172. Shi, Z.Q.; Zhou, Y.F.; Yan, D.Y. Facile fabrication of pH-responsive and size-controllable polymer vesicles from a commercially available hyperbranched polyester. Macromol. Rapid Commun. 2008, 29 (5), 412-418.
    173. Liu, C.H.; Gao, C.; Yan, D.Y. Honeycomb-patterned photoluminescent films fabricated by self-assembly of hyperbranched polymers. Angew. Chem. In. Ed. 2007, 46 (22), 4128-4131.
    174. Mao, J.; Ni, P.H.; Mai, Y.Y.; Yan, D.Y. Multicompartment micelles from hyperbranched star-block copolymers containing polycations and fluoropolymer segment. Langmuir 2007, 23(9), 5127-5134.
    1. Wang, R.; Wang, W.Z.; Yang, G.Z.; Liu, T.X.; Yu, J.S.; Jiang, Y.D. Synthesis and characterization of highly stable blue-light-emitting hyperbranched conjugated polymers. J Polym. Sci., Polym. Chem. 2008, 46(3), 790-802.
    2. Taniguchi, Y.; Ogawa, M.; Gang, W.; Saitoh, H.; Fujiki, K.; Yamauchi, T.; Tsubokawa, N. Preparation of hyperfunctional carbon black by grafting of hyperbranched polyester onto the surface. Materials Chem. Phys. 2008, 108(2-3), 397-402.
    3. Kou, Y.X.; Wan, A. Synthesis of novel N-diazeniumdiolates based on hyperbranched polyethers. Bioorg. Med. Chem. Lett. 2008, 18(7), 2337-2341.
    4. Wu, D.C.; Liu, Y.; Jiang, X.; He, C.B.; Goh, S.H.; Leong, K.W. Hyperbranched poly(amino ester)s with different terminal amine groups for DNA delivery. Biomacromolecules 2006, 7(6), 1879-1883.
    5. Gao, C.; Yan, D.Y. Hyperbranched polymers: from synthesis to applications. Prog. Polym. Sci. 2004, 29(3), 183-275.
    6. Hartmann-Thompson, C.; Hu, J.; Kaganove, S.N.; Keinath, S.E.; Keeley, D.L.; Dvornic, P.R. Hydrogen-bond acidic hyperbranched polymers for surface acoustic wave (SAW) sensors. Chem. Mater. 2004, 16(25), 5357-5364.
    7. Ziemer, A.; Azizi, M.; Pleul, D.; Simon, F.; Michel, S.; Kreitschmann, M.; Kierkus, P.; Voit, B.; Grundke, K. Influence of hyperbranched polyesters on the surface tension of polyols. Langmuir 2004, 20(19), 8096-8102.
    8. Baskaran, D. Hyperbranched polymers from divinylbenzene and 1,3-diisopropenylbenzene through anionic self-condensing vinyl polymerization. Polymer 2003, 44(8), 2213-2220.
    9. Gao, C.; Xu, Y.M.; Yan, D.Y.; Chen W. Water-soluble degradable hyperbranched polyesters: Novel candidates for drug delivery? Biomacromolecules 2003, 4(3), 704-712.
    10. Kolhe, P.; Misra, E.; Kannan, R.M.; Kannan, S.; Lieh-Lai, M. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Inter. J Pharm. 2003, 259(1-2), 143-160.
    11. Stiriba, S.E.; Frey, H.; Haag, R. Dendritic polymers in biomedical applications: From potential to clinical use in diagnostics and therapy. Angew. Chem. In. Ed. 2002, 41(8), 1329-1334.
    12. Fang, J.H.; Kita, H; Okamoto, K. Gas permeation properties of hyperbranched polyimide membranes. J Membrane Sci. 2001, 182(1-2), 245-256.
    13. Jikei, M.; Kakimoto, M. Hyperbranched polymers: a promising new class of materials. Prog. Polym. Sci. 2001, 26(8), 1233-1285.
    14. Inoue, K. Functional dendrimers, hyperbranched and star polymers. Prog. Polym. Sci. 2000, 25(4), 453-571.
    15. Voit, B. New developments in hyperbranched polymers. J Polym. Sci., Polym. Chem. 2000, 38(14), 2505-2525.
    16. Sunder, A.; Hanselmann, R.; Frey, H.; Mulhaupt, R. Controlled synthesis ofhyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 1999, 32(13), 4240-4246.
    17. Schlüter, A.D.; Rabe, J.P. Dendronized polymers: synthesis, characterization, assembly, at interfaces, and manipulation. Angew. Chem. Int. Ed. 2000, 39, 864-883.
    18. Emrick, T.; Fréchet, J.M.J. Self-assembly of dendritic structures. Curr. Opin. Colloid Interface Sci. 1999, 4, 15-23.
    19. Fischer, M.; V?gtle, F. Dendrimers: from design to application-A progress report. Angew. Chem. Int. Ed. 1999, 38, 884-905.
    20. Kim, Y.H. Hyperbranchecs polymers 10 years after. J Polym. Sci., Polym. Chem. 1998, 36(11), 1685-1698.
    21. Patten, T.E.; Matyjaszewski, K. Atom transfer radical polymerization and the synthesis of polymeric materials. Adv. Mater. 1998, 10(12), 901.
    22. Zeng, F.; Zimmerman, S.C. Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly. Chem. Rev. 1997, 97, 1681-1712.
    23. Uhrich, K. Hyperbranched polymers for drug delivery. Trends Polym. Sci. 1997, 5, 388-393.
    24. Hawker, C.J.; Lee, R.; Frechet, J.M.J. One-step synthsis of hyperrbranched dendritic polyesters. J Am. Chem. Soc. 1991, 113(12), 4583-4588.
    25. Hedrick, J.L.; Trollsas, M.; Hawker, C.J.; Atthoff, B.; Claesson, H.; Heise, A.; Miller, R.D.; Mecerreyes, D.; Jerome, R.; Dubois, P. Dendrimer-like star block and amphiphilic copolymers by combination of ring opening and atom transfer radical polymerization. Macromolecules 1998, 31(25), 8691-8705.
    26. Trollsas, M.; Hedrick, J.L. Dendrimer-like star polymers. J Am. Chem. Soc. 1998, 120(19), 4644-4651.
    27. Hawker, C.J.; Frechet J.M.J.; Grubbs, R.B.; Dao, J. Preparation of hyperbranched and star polymers by a living, self-condending free-radical polymerization. J Am. Chem. Soc. 1995, 117(43), 10763-10764.
    28. Connal, L.A.; Li, Q.; Quinn, J.F.; Tjipto, E.; Caruso, F.; Qiao, G.G. pH-responsive poly(acrylic acid) core cross-linked star polymers: Morphology transitions in solution and multilayer thin films. Macromolecules 2008, 41(7), 2620-2626.
    29. Gao, H.F.; Matyjaszewski, K. Structural control in ATRP synthesis of star polymers using the arm-first method. Macromolecules 2006, 39(9), 3154-3160.
    30. Zhang, X.; Xia, J.H.; Matyjaszewski, K. End-functional poly(tert-butyl acrylate) star polymers by controlled radical polymerization. Macromolecules 2000, 33, 2340-2345.
    31. Baek, K.Y.; Kamigaito, M.; Sawamoto, M. Star poly(methyl methacrylate) with end-functionalized arm chains by ruthenium-catalyzed living radical polymerization. J. Polym. Sci. Polym. Chem. 2002, 40, 1972-1982.
    32. Gao, H.F.; Matyjaszewski, K. Synthesis of star polymers by a new "Core-First" method: Sequential polymerization of cross-linker and monomer. Macromolecules 2008, 41(4), 1118-1125.
    33. Liu, C.; Zhang, Y.; Huang, J.L. Well-defined star polymers with mixed-arms by sequential polymerization of atom transfer radical polymerization and reverse addition-fragmentation chain transfer on a hyperbranched polyglycerol core. Macromolecules 2008, 41(2), 325-331.
    34. Gottschalk, C.; Wolf, F.; Frey, H. Multi-arm star poly(L-lactide) with hyperbranched polyglycerol core. Macromol. Chem. Phys. 2007, 208(15), 1657-1665.
    35. Chen, Y.; Shen, Z.; Barriau, E.; Kautz, H.; Frey, H. Crystallization behavior and morphology of star polyesters with poly(epsilon-caprolactone) arms. Biomacromolecules 2006, 7(3), 919-926.
    36. Knischka, R.; Lutz, P.J.; Sunder, A.; Mulhaupt, R.; Frey, H. Functional poly(ethylene oxide) multiarm star polymers: Core-first synthesis using hyperbranched polyglycerol initiators. Macromolecules 2000, 33(2), 315-320.
    37. Haba, Y.; Kojima, C.; Harada, A.; Kono, K. Control of temperature-sensitive properties of poly(amidoamine) dendrimers using peripheral modification with various alkylamide groups. Macromolecules 2006, 39(21), 7451-7453.
    38. Xu, H.; Luo, S.H.; Shi, W.F.; Liu, S.Y. Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir 2006, 22(3), 989-997.
    39. Zheng, Q.; Pan, C.Y. Preparation and characterization of dendrimer-star PNIPAAM using dithiobenzoate-terminated PPI dendrimer via RAFT polymerization. Eur. Polym. J 2006, 42(4), 807-814.
    40. Zheng, Q.; Pan, C.Y. Synthesis and characterization of dendrimer-star polymer using dithiobenzoate-terminated poly(propylene imine) dendrimer via reversible addition-fragmentation transfer polymerization. Macromolecules 2005, 38(16), 6841-6848.
    41. You, Y.Z.; Hong, C.Y.; Pan, C.Y.; Wang, P.H. Synthesis of a dendritic core-shell nanostructure with a temperature-sensitive shell. Adv. Mater. 2004, 21(16), 1953-1957.
    42. Haba, Y.; Harada, A.; Takagishi, T.; Kono, K. Rendering poly(amidoamine) or poly(propylenimine) dendrimers temperature sensitive. J Am. Chem. Soc. 2004, 126(40), 12760-12761.
    43. Kimura, M.; Kato, M.; Muto, T.; Hanabusa, K.; Shirai, H. Temperature-sensitive dendritic hosts: Synthesis, characterization, and control of catalytic activity. Macromolecules 2000, 33(4), 1117-1119.
    44. Wang, J.S.; Matyjaszewski, K. Controlled living radical polymerization– atom-transfer radical polymerization in the presence of transition-metal complexes. J Am. Chem. Soc. 1995, 117(20), 5614-5615.
    45. Wang, J.S.; Matyjaszewski, K. Controlled/"living" radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 1995, 28 (23), 7901-7910.
    46. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II) /methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: Possibility of living radicalpolymerization. Macromolecules 1995, 28 (5), 1721-1723.
    47. Pintauer, T.; Matyjaszewski, K. Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes. Chem. Soc. Rev. 2008, 37 (6), 1087-1097.
    48. Tsarevsky, N.V.; Matyjaszewski, K. "Green" atom transfer radical polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials. Chem. Rev. 2007, 107 (6), 2270-2299.
    49. Braunecker, W.A.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32 (1), 93-146.
    50. Min, K., Matyjaszewski, K. Atom transfer radical polymerization in microemulsion. Macromolecules 2005, 38 (20), 8131-8134
    51. Pintauer, T.; Matyjaszewski, K. Structural aspects of copper catalyzed atom transfer radical polymerization. Coordin. Chem. Rev. 2005, 249 (11-12), 1155-1184.
    52. Pyun, J.; Kowalewski, T.; Matyjaszewski, K. Synthesis of polymer brushes using atom transfer radical polymerization. Macromol. Rapid Commun. 2003, 24 (18), 1043-1059.
    53. Davis, K.A.; Matyjaszewski, K.; H?cker, H. Statistical, gradient, block, and graft copolymers by controlled/living radical polymerizations. Adv. Polym. Sci. 2002, 159, 1-169.
    54. Matyjaszewski, K. From atom transfer radical addition to atom transfer radical polymerization. Curr. Org. Chem. 2002, 6(2), 67-82.
    55. Pyun, J.; Matyjaszewski, K. Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/"living" radical polymerization. Chem. Mater. 2001, 13 (10), 3436-3448.
    56. Matyjaszewski, K.; Xia, J.H. Atom transfer radical polymerization. Chem. Rew. 2001, 101(9), 2921-2990.
    57. Coessens, V.; Pintauer, T.; Matyjaszewski, K. Functional polymers by atom transfer radical polymerization. Prog. Polym. Sci. 2001, 26(3), 337-377.
    58. Matyjaszewski, K., Miller, P.J., Fossum, E., Nakagawa, Y. Synthesis of block, graft and star polymers from inorganic macroinitiators. Appl. Organomet. Chem. 1998, 12(10-11), 667-673.
    59. Nagarajan, R.; Ganesh, K. Block copolymer self-assembly in selective solvents: Spherical micelles with segregated cores. J Chem. Phys. 1989, 90 (10), 5843-5856.
    60. Nagarajan, R.; Ganesh, K. Block copolymer self-assembly in selective solvents: Theory of solubilization in spherical micelles. Macromolecules 1989, 22(11), 4312-4325.
    61. Wei, H.; Zhang, X.Z.; Zhou, Y.; Cheng, S.X.; Zhuo, R.X. Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate). Biomaterials 2006, 27(9), 2028-2034.
    62. He, Y.; Li, Z.; Simone, P.; Lodge, T.P. Self-assembly of block copolymer micelles in an ionic liquid. J Am. Chem. Soc. 2006, 128 (8), 2745-2750.
    63. Liu, Y.; Cao, X.; Luo, M.; Le, Z.; Xu, W. Self-assembled micellar nanoparticles of a novel star copolymer for thermo and pH dual-responsive drug release. J Colloid Interf. Sci. 2009, 329 (2), 244-252.
    64. Hammer, D.A.; Robbins, G.P.; Haun, J.B.; Lin, J.J.; Qi, W.; Smith, L.A.; Peter Ghoroghchian, P.; Bates, F.S. Leuko-polymersomes. Faraday Discuss 2008, 139, 129-141.
    65. Jain, S.; Bates, F.S. On the origins of morphological complexity in block copolymer surfactants. Science 2003, 300 (5618), 460-464.
    66. Discher, D.E.; Eisenberg, A. Polymer vesicles. Science 2002, 297 (5583), 967-973.
    67. Lee James, C.-M.; Bermudez, H.; Discher, B.M.; Sheehan, M.A.; Won, Y.-Y.; Bates, F.S.; Discher, D.E. Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnol. Bioeng. 2001, 73 (2), 135-145.
    68. Discher, B.M.; Won, Y.-Y.; Ege, D.S.; Lee, J.C.-M.; Bates, F.S.; Discher, D.E.; Hammer, D.A. Polymersomes: Tough vesicles made from diblock copolymers. Science 1999, 284(5417), 1143-1146.
    69. Shen, H.; Zhang, L.; Eisenberg, A. Multiple pH-induced morphological changes in aggregates of polystyrene- block-poly(4-vinylpyridine) in DMF/H2O mixtures. J Am. Chem. Soc. 1999, 121 (12), 2728-2740.
    70. Kabanov, A.V.; Bronich, T.K.; Kabanov, V.A.; Yu, K.; Eisenberg, A. Spontaneous formation of vesicles from complexes of block ionomers and surfactants. J Am. Chem. Soc. 1998, 120 (38), 9941-9942.
    71. Yu, Y.; Zhang, L.; Eisenberg, A. Morphogenic effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers. Macromolecules 1998, 31 (4), 1144-1154.
    72. Wang, Y.; Zou, S.; Kim, K.T.; Manners, I.; Winnik, M.A. Organometallic-polypeptide block copolymers: Synthesis and self-assembly of poly(ferrocenyldimethylsilane)-b-poly(ε- benzyloxycarbonyl-L-lysine). Chem. Eur. J 2008, 14 (28), 8624-8631.
    73. Kroeger, A.; Deimede, V.; Belack, J.; Lieberwirth, I.; Fytas, G.; Wegner, G. Equilibrium length and shape of rodlike polyelectrolyte micelles in dilute aqueous solutions. Macromolecules 2007, 40(1), 105-115.
    74. Gohy, J.-F.; Lohmeijer, B.G.G.; Alexeev, A.; Wang, X.-S.; Manners, I.; Winnik, M.A., Schubert, U.S. Cylindrical micelles from the aqueous self-assembly of an amphiphilic poly(ethylene oxide)-b-poly(ferrocenylsilane) (PEO-b-PFS) block copolymer with a metallo-supramolecular linker at the block junction. Chem. Eur. J 2004, 10 (17), 4315-4323.
    75. Terreau, O.; Bartels, C.; Eisenberg, A. Effect of poly(acrylic acid) block length distribution on polystyrene-b-poly(acrylic acid) block copolymer aggregates in solution. 2. A partial phase diagram. Langmuir 2004, 20 (3), 637-645.
    76. Resendes, R.; Massey, J.A.; Temple, K.; Cao, L.; Power-Billard, K.N.; Winnik, M.A.; Manners, I. Supramolecular organometallic polymer chemistry: Multiple morphologies and superstructures from the solution self-assembly of polyferrocene-block-polysiloxane -block-polyferrocene triblock copolymers. Chem. Eur. J 2001, 7 (11), 2414-2424.
    77. Burke, S.; Eisenberg, A. Physico-chemical investigation of multiple asymmetric amphiphilic diblock copolymer morphologies in solution. High Perform. Polym. 2000, 12 (4), 535-542.
    78. Zhang, L.; Eisenberg, A. Thermodynamic vs kinetic aspects in the formation andmorphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution. Macromolecules 1999, 32 (7), 2239-2249.
    79. Shen, H.; Zhang, L.; Eisenberg, A. Multiple pH-induced morphological changes in aggregates of polystyrene- block-poly(4-vinylpyridine) in DMF/H2O mixtures. J Am. Chem. Soc. 1999, 121 (12), 2728-2740.
    80. Jian, W.M.; Li, X.; Tang, P.; Yang, Y. Self-assembly of amphiphilic ABC star triblock copolymers and their blends with AB diblock copolymers in solution: Self-consistent field theory simulations. J Phys. Chem. B 2007, 111 (7), 1552-1558.
    81. Vijayan, K.; Discher, D.E. Block copolymer worm micelles in dilution: Mechanochemical metrics of robustness as a basis for novel linear assemblies. J Polym. Sci., Polym. Phys. 2006, 44 (24), 3431-3433.
    82. Strandman, S.; Hietala, S.; Aseyev, V.; Koli, B.; Butcher, S.J.; Tenhu, H. Supramolecular assemblies of amphiphilic PMMA-block-PAA stars in aqueous solutions. Polymer 2006, 47 (19), 6524-6535.
    83. Flood, C.; Dreiss, C.A.; Croce, V.; Cosgrove, T.; Karlsson, G. Wormlike micelles mediated by polyelectrolyte. Langmuir 2005, 21 (17), 7646-7652.
    84. Jerke, G.; Pedersen, J.S.; Egelhaaf, S.U.; Schurtenberger, P. Flexibility of charged and uncharged polymer-like micelles. Langmuir 1998, 14 (21), 6013-6024.
    85. Riess, G. Micellization of Block Copolymers. Prog. Polym. Sci. 2003, 28(7), 1107-1170.
    86. Zhang, L.; Eisenberg, A. Multiple morphologies of 'crew-cut' aggregates of polystyrene-b- poly(acrylic acid) block copolymers. Science 1995, 268 (5218), 1728-1745.
    87. Lin, Y.; Liu, X.; Dong, Z.; Li, B.; Chen, X.; Li, Y.-S. Amphiphilic core-shell nanocarriers based on hyperbranched poly(ester amide)-g-PCL: Synthesis, characterization, and potential as efficient phase transfer agent. Biomacromolecules 2008, 9 (10), 2629-2636.
    88. Kainthan, R.K.; Mugabe, C.; Burt, H.M.; Brooks, D.E. Unimolecular micelles based on hydrophobically derivatized hyperbranched polyglycerols: Ligand binding properties. Biomacromolecules 2008, 9 (3), 886-895.
    89. Stavrouli, N.; Triftaridou, A.I.; Patrickios, C.S.; Tsitsilianis, C. Multi-compartment unimolecular micelles from (ABC)n multi-arm star triblock terpolymers. Macromol. Rapid Commun. 2007, 28 (5), 560-566.
    90. Xu, H.; Xu, J.; Zhu, Z.; Liu, H.; Liu, S. In-situ formation of silver nanoparticles with tunable spatial distribution at the poly(N-isopropylacrylamide) corona of unimolecular micelles.Macromolecules 2006, 39 (24), 8451-8455.
    91. Kim, Y.H.; Webster, O.W. Water-soluble hyperbranched polyphenylene: "A unimolecular micelle"? J Am. Chem. Soc. 1990, 112 (11), 4592-4593.
    92. Newkome, G.R.; Moorefield, C.N.; Baker, G.R.; Saunders, M.J.; Grossman, S.H. Unimolecular micelles. Angew. Chem. In. Ed. 1991, 30 (9), 1178-1180.
    93. Zhou, Y.F.; Yan, D.Y. Real-time membrane fusion of giant polymer vesicles. J Am. Chem. Soc. 2005, 127 (30), 10468-10469.
    94. Zhou, Y.F.; Yan, D.Y. Real-time membrane fission of giant polymer vesicles. Angew. Chem. In. Ed. 2005, 44 (21), 3223-3226.
    95. Zhou, Y.F.; Yan, D.Y. Supramolecular self-assembly of giant polymer vesicles with controlled sizes. Angew. Chem. In. Ed. 2004, 43 (37), 4896-4899.
    96. Yan, D.Y.; Zhou, Y.F.; Hou, J. Supramolecular Self-Assembly of Macroscopic Tubes. Science 2004, 303 (5654), 65-67.
    97. Hawker, C.J.; Lee, R.; Fréchet, J.M.J. One-Step Synthesis of Hyperbranched Dendritic Polyesters. J. Am. Chem. Soc. 1991, 113, 4583.
    98. Goto, A.; Fukuda, T. Kinetics of living radical polymerization. Prog. Ploym. Sci. 2004, 29(4), 329-385.
    99. Barner-Kowollik, C.; Buback, M.; Egorov, M.; Fukuda T.; Goto, A.; Olaj, O.F.; Russell, G.T.; Vana, P.; Yamada, B.; Zetterlund, P.B. Critically evaluated termination rate coefficients for free-radical polymerization: Experimental methods. Prog. Ploym. Sci. 2005, 30(6), 605-643.
    100. Hawker, C.J.; Malmstrom, E.E.; Frank, C.W.; Kampf, J.P. Exact linear analogs of dendritic polyether macromolecules: Design, synthesis, and unique properties. J Am. Chem. Soc. 1997, 119 (41), 9903-9904.
    101. Malmstr?m, E.; Johansson, M.; Hult, A. Hyperbranched aliphatic polyesters. Macromolecules 1995, 28 (5), 1698-1703.
    102. Uhrich, K.E.; Hawker, C.J.; Fréchet, J.M.J.; Turner, S.R. One-pot synthesis of hyperbranched polyethers. Macromolecules 1992, 25 (18), 4583-4587.
    103. Astafieva, I.; Zhong, X.F.; Eisenberg, A. Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 1993, 26 (26), 7339-7352.
    104. Kabanov, A.V.; Nazarova, I.R.; Astafieva, I.V.; Batrakova, E.V.; Alakhov, V.Yu.; Yaroslavov, A.A.; Kabanov, V.A. Micelle formation and solubilization of fluorescent probes in poly(oxyethylene-b-oxypropylene-b-oxyethylene) solutions. Macromolecules 1995, 28(7), 2303-2314.
    105. Zhao, C.-L.; Winnik, M.A.; Riess, G.; Croucher, M.D. Fluorescence probe techniques used to study micelle formation in water-soluble block copolymers. Langmuir 1990, 6 (2), 514-516.
    106. Astafieva, I.; Khougaz, K.; Eisenberg, A. Micellization in block polyelectrolyte solutions. 2. Fluorescence study of the critical micelle concentration as a function of soluble block length and salt concentration. Macromolecules 1995, 28 (21), 7127-7134.
    107. Nizri, G.; Magdassi, S. Solubilization of hydrophobic molecules in nanoparticles formed by polymer-surfactant interactions. J Colloid Interf. Sci. 2005, 291 (1), 169-174.
    108. Stuart, M.C.A.; Van De Pas, J.C.; Engberts, J.B.F.N. The use of Nile Red to monitor the aggregation behavior in ternary surfactant-water-organic solvent systems. J Phys. Org. Chem. 2005, 18 (9), 929-934.
    109. Miskolczy, Z.; Seb?k-Nagy, K.; Biczók, L.; G?ktürk, S. Aggregation and micelle formation of ionic liquids in aqueous solution. Chem. Phys. Lett. 2004, 400 (4-6), 296-300.
    110. Maiti, N.C.; Krishna, M.M.G.; Britto, P.J.; Periasamy, N. Fluorescence dynamics of dye probes in micelles. J Phys. Chem. B 1997, 101 (51), 11051-11060.
    111. Ma, Q.; Remsen, E.E.; Kowalewski, T.; Wooley, K.L. Two-dimensional, shell-cross- linked nanoparticle arrays. J Am. Chem. Soc. 2001, 123(19), 4627-4628.
    112. Tu, Y.F.; Wan, X.H.; Zhang, H.L.; Fan, X.H.; Chen, X.F.; Zhou, Q.F.; Chau, K.C. Self-assembled nanostructures of rod-coil diblock copolymers with different rod lengths. Macromolecules 2003, 36(17), 6565-6569.
    113. Mai, Y.Y.; Zhou, Y.F.; Yan, D.Y. Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether. Macromolecules 2005, 38(21), 8679-8686.
    114. Jia, Z.F.; Zhou, Y.F.; Yan, D.Y. Amphiphilic star-block copolymers based on a hyperbranched core: Synthesis and supramolecular self-assembly. J. Polym. Sci., Polym. Chem. 2005, 43, 6534-6544.
    115. Tian, H.Y.; Deng, C.; Lin, H.; Sun, J.; Deng, M.; Chen, X.; Jing, X. Biodegradable cationic PEG-PEI-PBLG hyperbranched block copolymer: Synthesis and micelle characterization. Biomaterials 2005, 26, 4209-4217.
    116. Jiang, G.; Wang, L.; Chen, T.; Dong, X.; Haojie, Y.; Wang, J.; Chen, C. Synthesis and self-assembly of hyperbranched polymers with benzoyl terminal arms. J. Polym. Sci., Polym. Chem. 2005, 43(22), 5554-5561.
    117. Jiang, G.; Wang, L.; Chen, T.; Yu, H.; Dong, X.; Chen, C. Synthesis and self-assembly of hyperbranched polyester peripherally modified by touluene-4-sulfonyl groups. Polymer 2005, 46 (22), 9501-9507.
    118. Kr?mer, M.; Stumbé, J.-F.; Türk, H.; Krause, S.; Komp, A.; Delineau, L.; Prokhorova, S.; Kautz, H.; Haag, R. pH-responsive molecular nanocarriers based on dendritic core-shell architectures. Angew. Chem.Int. Ed. 2002, 41 (22), 4252-4256.
    119. Jiang, G.; Wang, L.; Chen, T.; Chen, C.; Yu, H. Synthesis of multi-arm star polystyrene with hyperbranched polyester initiators by atom transfer radical polymerization. J. Appl. Polym. Sci. 2006, 99 (3), 728-733.
    120. Zhang, L.; Eisenberg, A. Multiple morphologies and characteristics of 'crew-cut' micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J Am. Chem. Soc. 1996, 118 (13), 3168-3181.
    121. Gohy, J.-F.; Creutz, S.; Garcia, M.; Mahltig, B.; Stamm, M.; Jér?me, R. Aggregates formed by amphoteric diblock copolymers in water. Macromolecules 2000, 33(17), 6378 -6387.
    1. Bajpai, A.K.; Shukla, S.K.; Bhanu, S.; Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 2008, 33 (11), 1088-1118.
    2. York, A.W.; Kirkland, S.E.; Mccormick, C.L. Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: Stimuli-responsive drug and gene delivery. Adv. Drug Deliv. Rev. 2008, 60 (9), 1018-1036.
    3. Mano, J.F. Stimuli-responsive polymeric systems for biomedical applications. Adv. Eng. Mater. 2008, 10 (6), 515-527.
    4. Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control. Release 2008, 126 (3), 187-204.
    5. Ten Brinke, G.; Ruokolainen, J.; Ikkala, O. Supramolecular materials based on hydrogen-bonded polymers. Adv. Polym. Sci. 2007, 207 (1), 113-177.
    6. Singh, P.K.; Singh, V.K.; Singh, M. Zwitterionic polyelectrolytes: A review. E-Polymers 2007, 1-34.
    7. Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 2006, 58 (15), 1655-1670.
    8. Alexander, C. Temperature- and pH-responsive smart polymers for gene delivery. Expert Opin. Drug Deliv. 2006, 3 (5), 573-581.
    9. Bag, D.S.; Rao, K.U.B. Smart polymers and their applications. J Polym. Mater. 2006, 23 (3), 225-248.
    10. Nakayama, M.; Okano, T. Intelligent thermoresponsive polymeric micelles for targeted drug delivery. J Drug Deliv. Sci. Tech. 2006, 16 (1), 35-44.
    11. De Las Heras Alarcón, C.; Pennadam, S.; Alexander, C. Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 2005, 34 (3), 276-285.
    12. Gil, E.S.; Hudson, S.M. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci. 2004, 29 (12), 1173-1222.
    13. Bromberg, L. Intelligent polyelectrolytes and gels in oral drug delivery. Curr. Pharm. Biotechnol. 2003, 4 (5), 339-349.
    14. Jeong, B.; Gutowska, A. Lessons from nature: Stimuli-responsive polymers and their biomedical applications. Trends in Biotech. 2002, 20 (7), 305-311.
    15. Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 2001, 53 (3), 321-339.
    16. Galaev, I.Y.; Mattiasson, B. 'Smart' polymers and what they could do in biotechnology and medicine. Trends Biotechnol. 1999, 17 (8), 335-340.
    17. Bütün, V.; Armes, S.P.; Billingham, N.C. Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer 2001, 42(14), 5993-6008.
    18. Liu, Q.Q.; Yu, Z.Q.; Ni, P.H. Micellization and applications of narrow-distribution poly[2-(dimethylamino)ethyl methacrylate]. Colloid Polym. Sci. 2004, 282(4), 387-393.
    19. Li, Y.; Ryan, A.J.; Armes, S.P. Synthesis of well-defined branched copolymers by quaternization of near-monodisperse homopolymers. Macromolecules 2008, 41 (15), 5577-5581.
    20. Schatz, C.; Smith, E.G.; Armes, S.P.; Wanless, E.J. Reversible pH-triggered encapsulation and release of pyrene by adsorbed block copolymer micelles. Langmuir 2008, 24 (15), 8325-8331.
    21. Zhu, Z.; Armes, S.P.; Liu, S. pH-induced micellization kinetics of ABC triblock copolymers measured by stopped-flow light scattering. Macromolecules 2005, 38(23), 9803-9812.
    22. Amalvy, J.I.; Wanless, E.J.; Li, Y.; Michailidou, V.; Armes, S.P.; Duccini, Y. Synthesis and characterization of novel pH-responsive microgels based on tertiary amine methacrylates. Langmuir 2004, 20 (21), 8992-8999.
    23. Li, Y.; Armes, S.P.; Jin, X.; Zhu, S. Direct synthesis of well-defined quaternized homopolymers and diblock copolymers via ATRP in protic media. Macromolecules 2003, 36 (22), 8268-8275.
    24. Tang, Y.; Liu, S.Y.; Armes, S.P.; Billingham, N.C. Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers. Biomacromolecules 2003, 4 (6), 1636-1645.
    25. Liu, S.; Armes, S.P. Synthesis and aqueous solution behavior of a pH-responsive schizophrenic diblock copolymer. Langmuir 2003, 19 (10), 4432-4438.
    26. Rungsardthong, U.; Ehtezazi, T.; Bailey, L.; Armes, S.P.; Garnett, M.C.; Stolnik, S. Effect of polymer ionization on the interaction with DNA in nonviral gene delivery systems. Biomacromolecules 2003, 4 (3), 683-690.
    27. Webber, G.B.; Wanless, E.J.; Butun, V.; Armes, S.P.; Biggs, S. Self-Organized Monolayer Films of Stimulus-Responsive Micelles. Nano Lett. 2002, 2 (11), 1307-1313.
    28. Lee, A.S.; Bütün, V.; Vamvakaki, M.; Armes, S.P.; Pople, J.A.; Gast, A.P. Structure of pH-dependent block copolymer micelles: Charge and ionic strength dependence.Macromolecules 2002, 35 (22), 8540-8551.
    29. Liu, S.; Weaver, J.V.M.; Tang, Y.; Billingham, N.C.; Armes, S.P.; Tribe, K. Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers.Macromolecules 2002, 35 (16), 6121-6131.
    30. Wesley, R.D.; Cosgrove, T.; Thompson, L.; Armes, S.P.; Baines, F.L. Structure of polymer/surfactant complexes formed by poly(2-(dimethylamino)ethyl methacrylate) and sodium dodecyl sulfate. Langmuir 2002, 18 (15), 5704-5707.
    31. Bütün, V.; Armes, S.P.; Billingham, N.C. Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer 2001, 42 (14), 5993-6008.
    32. Bütün, V.; Armes, S.P.; Billingham, N.C. Selective quaternization of 2-(dimethylamino) ethyl methacrylate residues in tertiary amine methacrylate diblock copolymers. Macromolecules 2001, 34 (5), 1148-1159.
    33. De Paz Bá?ez, M.V.; Robinson, K.L.; Vamvakaki, M.; Lascelles, S.F.; Armes, S.P.Synthesis of novel cationic polymeric surfactants. Polymer 2000, 41 (24), 8501-8511.
    34. Bütün, V.; Wang, X.-S.; De Paz Bá?ez, M.V.; Robinson, K.L.; Billingham, N.C.; Armes, S.P.; Tuzar, Z. Synthesis of shell cross-linked micelles at high solids in aqueous media. Macromolecules 2000, 33 (1), 1-3.
    35. Lee, A.S.; Gast, A.P.; Bütün, V.; Armes, S.P. Characterizing the structure of pH dependent polyelectrolyte block copolymer micelles. Macromolecules 1999, 32 (13), 4302-4310.
    36. Lowe, A.B.; Billingham, N.C.; Armes, S.P. Synthesis and characterization of zwitterionic block copolymers. Macromolecules 1998, 31 (18), 5991-5998.
    37. Patrickios, C.S.; Lowe, A.B.; Armes, S.P.; Billingham, N.C. ABC triblock polymethacrylates: Group transfer polymerization synthesis of the ABC, ACB, and BAC topological isomers and solution characterization. J Polym. Sci., Polym. Chem. 1998, 36 (4), 617-631.
    38. Lowe, A.B.; Billingham, N.C.; Armes, S.P. Synthesis and aqueous solution properties of novel zwitterionic block copolymers. Chem. Commun. 1997, (11), 1035-1036.
    39. Baines, F.L.; Armes, S.P., Billingham, N.C., Tuzar, Z. Micellization of poly(2-(dimethylamino)ethyl methacrylate-block-methyl methacrylate) copolymers in aqueous solution. Macromolecules 1996, 29 (25), 8151-8159.
    40. Baines, F.L.; Billingham, N.C.; Armes, S.P. Synthesis and solution properties of water-soluble hydrophilic-hydrophobic block copolymers. Macromolecules 1996, 29(10), 3416-3420.
    41. Terreau, O.; Bartels, C.; Eisenberg, A. Effect of poly(acrylic acid) block length distribution on polystyrene-b-poly(acrylic acid) block copolymer aggregates in solution. 2. A partial phase diagram. Langmuir 2004, 20 (3), 637-645.
    42. Chécot, F.; Lecommandoux, S.; Gnanou, Y.; Klok H.-A. Water-soluble stimuli-responsive vesicles from peptide-based diblock copolymers. Angew. Chem. Int. Ed. 2002, 41, 1340-1345.
    43. Kwon, G.; Naito, M.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K. Block copolymer micelles for drug delivery: Loading and release of doxorubicin. J. Control. Release 1997, 48(2-3), 195-201.
    44. Kim, S.Y.; Shin, I.G.; Lee, Y.M.; Cho, C.S.; Sung, Y.K. Methoxy poly(ethylene glycol) andε-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours. J. Control. Release 1998, 51(1), 13-22.
    45. Alakhov, V.Y.; Moskaleva, E.Y.; Batrakova, E.V.; Kabanov, A.V. Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer. Bioconj. Chem. 1996, 7(2), 209-216.
    46. La, S.B.; Okano, T.; Kataoka, K. Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(β-benzyl L-aspartate) block copolymer micelles. J. Pharm. Sci. 1996, 85(1), 85-90.
    47. Gref, R.; Minamitake, Y.; Peracchia, M.T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science 1994, 263(5153),1600-1603.
    48. Peracchia, M.T.; Gref, R.; Minamitake, Y.; Domb, A.; Lotan, N.; Langer, R. PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: Investigation of their drug encapsulation and release characteristics. J. Control. Release 1997, 46(3), 223-231.
    49. Barakat, I.; Dubois, P.; Grandfils, C.; Jér?me R. Macromolecular engineering of polylactones and polylactides. XXV. Synthesis and characterization of bioerodible amphiphilic networks and their use as controlled drug delivery systems. J Polym. Sci., Polym. Chem. 1999, 37(14), 2401-2411.
    50. Shabat, D. Self-immolative dendrimers as novel drug delivery platforms. J Polym. Sci., Polym. Chem. 2006, 44(5), 1569-1578.
    51. Haag, R. Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angew. Chem. Int. Ed. 2004, 43(3), 278-282.
    52. Lee, C.C.; Grayson, S.M.; Fréchet, J.M.J. Synthesis of narrow-polydispersity degradable dendronized aliphatic polyesters. J Polym. Sci., Polym. Chem. 2004, 42(14), 3563-3578.
    53. Stiriba, S.E.; Frey, H., Haag, R. Dendritic polymers in biomedical applications: From potential to clinical use in diagnostics and therapy. Angew. Chem. Int. Ed. 2002, 41(8), 1329-1334.
    54. Liu, M.J.; Kono, K.J.; Fréchet, J.M.J. Water-soluble dendritic unimolecular micelles: Their potential as drug delivery agents. J control. Release 2000, 65(1-2), 121-131.
    55. Liu, M.J.; Kono, K.; Fréchet, J.M.J. Water-soluble dendrimer-poly(ethylene glycol) starlike conjugates as potential drug carriers. J Polym. Sci., Polym. Chem. 1999, 37(17), 3492-3503.
    1. Chen, L.; Shen, H.; Eisenberg, A. Kinetics and mechanism of the rod-to-vesicle transition of block copolymer aggregates in dilute solution. J Phys. Chem. B 1999, 103 (44), 9488-9497.
    2. Shen, H.; Eisenberg, A. Morphological phase diagram for a ternary system of block copolymer PS310-b-PAA52/dioxane/H2O. J Phys. Chem. B 1999, 103 (44), 9473-9487.
    3. Burke, S.E.; Eisenberg, A. Kinetic and mechanistic details of the vesicle-to-rod transition in aggregates of PS310-b-PAA52 in dioxane-water mixtures. Polymer 2001, 42 (21), 9111-9120.
    4. Zhang, L.; Eisenberg, A. Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution. J Polym. Sci., Polym. Phys. 1999, 37 (13), 1469-1484.
    5. Zhang, L.; Eisenberg, A. Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution. Macromolecules 1999, 32 (7), 2239-2249.
    6. Shen, H.; Zhang, L.; Eisenberg, A. Multiple pH-induced morphological changes in aggregates of polystyrene-block-poly(4-vinylpyridine) in DMF/H2O mixtures. J Am. Chem. Soc. 1999, 121 (12), 2728-2740.
    7. Yu, Y.; Zhang, L.; Eisenberg, A. Morphogenic effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers. Macromolecules 1998, 31 (4), 1144-1154.
    8. Shen, H.; Zhang, L.; Eisenberg, A. Thermodynamics of crew-cut micelle formation of polystyrene-b-poly(acrylic acid) diblock copolymers in DMF/H2O mixtures. J Phys. Chem. B 1997, 101 (24), 4697-4708.
    9. Zhang, L.; Eisenberg, A. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions. Macromolecules 1996, 29 (27), 8805-8815.
    10. Zhang, L.; Yu, K.; Eisenberg, A. Ion-induced morphological changes in 'crew-cut' aggregates of amphiphilic block copolymers. Science 1996, 272 (5269), 1777-1779.
    11. Zhang, L.; Eisenberg, A. Multiple morphologies and characteristics of 'crew-cut' micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J Am. Chem. Soc. 1996, 118 (13), 3168-3181.
    12. Walther, A.; Goldmann, A.S.; Yelamanchili, R.S.; Drechsler, M., Schmalz, H., Eisenberg, A., Müller, A.H.E. Multiple morphologies, phase transitions, and cross-linking of crew-cut aggregates of polybutadiene-block-poly(2-vinylpyridine) diblock copolymers. Macromolecules 2008, 41 (9), 3254-3260.
    13. Schillén, K.; Brown, W.; Johnsen, R.M. Micellar sphere-to-rod transition in an aqueous triblock copolymer system. A dynamic light scattering study of translational and rotational diffusion. Macromolecules 1994, 27 (17), 4825-4832.
    14. Hu, Z.; Jonas, A.M.; Varshney, S.K.; Gohy, J.-F. Dilution-induced spheres-to-vesicles morphological transition in micelles from block copolymer/surfactant complexes. J Am. Chem. Soc. 2005, 127 (18), 6526-6527.
    15. Battaglia, G.; Ryan, A.J. Effect of amphiphile size on the transformation from a lyotropic gel to a vesicular dispersion. Macromolecules 2006, 39 (2), 798-805.
    16. Yang, J.; Pi?ol, R.; Gubellini, F.; Lévy, D.; Albouy, P.-A.; Keller, P.; Li, M.-H. Formation of polymer vesicles by liquid crystal amphiphilic block copolymers. Langmuir 2006, 22 (18), 7907-7911.
    17. Bartzatt, R. Fluorescent labeling of drugs and simple organic compounds containing amine functional groups, utilizing dansyl chloride in Na2CO3 buffer. J Pharm. Toxicolog. Methods 2001, 45 (3), 247-253.
    18. Bartzatt, R. Dansylation of hydroxyl and carboxylic acid functional groups. J Biochem. Biophys. Methods 2001, 47 (3), 189-195.
    19. Ikeda, H.; Nakamura, M.; Ise, N.; Toda, F.; Ueno, A. NMR studies of conformations of N-dansyl-L-leucine-appended and N-Dansyl-D-leucine-appendedβ-cyclodextrin as fluorescent indicators for molecular recognition. J Org. Chem. 1997, 62 (5), 1411-1418.
    20. Ikeda, H.; Nakamura, M.; Ise, N.; Oguma, N.; Nakamura, A.; Ikeda, T.; Toda, F.; Ueno, A. Fluorescent cyclodextrins for molecule sensing: Fluorescent properties, NMR characterization, and inclusion phenomena of N-dansylleucine-modified cyclodextrins. J Am. Chem. Soc. 1996, 118 (45), 10980-10988.
    21. Miao, R.; Zheng, Q.-Y.; Chen, C.-F.; Huang, Z.-T. A C-linked peptidocalix[4]arene bearing four dansyl groups: A highly selective fluorescence chemosensor for fluoride ions. Tetrahedron Letters 2004, 45 (25), 4959-4962.
    22.程能林.溶剂手册.第3版,化学工业出版社, 2002, 85.
    23. V?gtle, F.; Gestermann, S.; Kauffmann, C.; Ceroni, P.; Vicinelli, V.; de Cola, L.; Balzani, V. Poly(propylene amine) dendrimers with peripheral dansyl units: protonation, absorption spectra, photophysical properties, intradendrimer quenching, and sensitization processes. J. Am. Chem. Soc. 1999, 121, 12161-12168.
    24. He, X.H.; Schmid, F. Spontaneous formation of complex micelles from a homogeneous solution. Phys. Rev. Lett. 2008, 137802.
    25. V?gtle, F.; Gestermann, S.; Kauffmann, C.; Ceroni, P.; Vicinelli, V.; Balzani, V. Coordination of Co2+ ions in the interior of poly(propylene amine) dendrimers containing fluorescent dansyl units in the periphery. J. Am. Chem. Soc. 2000, 122, 10398-10403.
    26. Grabowski, Z.R.; Rotkiewicz, K.; Rettig, W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 2003, 103, 3899-3907.
    27. Capek, I. Fate of excited probes in micellar systems. Adv. Colloid Interface Sci. 2002, 97, 91-99.
    1. Daniel, M.C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104(1), 293-346.
    2. Caruso, F.; Caruso, R.A.; Mohwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998, 282(5391), 1111-1114.
    3. Elghanian, R.; Storhoff, J.J.; Mucic, R.C. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277(5329), 1078-1081.
    4. Sun, Y.G.; Xia, Y.N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298(5601), 2176-2179.
    5. Link, S.; El-Sayed, M.A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys. Chem. B 1999, 103(40), 8410-8426.
    6. Storhoff, J.J.; Elghanian, R.; Mucic, R.C. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am. Chem. Soc. 1998, 120(9), 1959-1964.
    7. Hostetler, M.J.; Wingate, J.E.; Zhong, C.J. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size. Langmuir 1998, 14(1), 17-30.
    8. Kelly, K.L.; Coronado, E.; Zhao, L.L. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J Phys. Chem. B 2003, 107(3), 668-677.
    9. Manna, L.; Scher, E.C.; Alivisatos, A.P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am. Chem. Soc. 2000, 122(51), 12700-12706
    10. Crooks, R.M.; Zhao, M.Q.; Sun, L. Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis. Accounts Chem. Res. 2001, 34(3), 181-190.
    11. Kamat, P.V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys. Chem. B 2002, 106(32), 7729-7744.
    12. Katz, E.; Willner, I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem. In. Ed. 2004, 43(45), 6042-6108.
    13. Chen, S.W.; Ingram, R.S.; Hostetler, M.J. Gold nanoelectrodes of varied size: Transition to molecule-like charging. Science 1998, 280(5372), 2098-2101.
    14. Sanchez, C.; Soler-Illia, G.J.D.A.; Ribot, F. Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks. Chem. Mater. 2001, 13(10), 3061-3083.
    15. Wang, Z.L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys. Chem. B 2000, 104(6), 1153-1175.
    16. Boal, A.K.; Ilhan, F.; Derouchey, J.E. Self-assembly of nanoparticles into structuredspherical and network aggregates. Nature 2000, 404(6779), 746-748.
    17. Kiely, C.J.; Fink, J.; Brust, M. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 1998, 396(6710), 444-446.
    18. Nikoobakht, B.; El-Sayed, M.A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15(10), 1957-1962.
    19. Jana, N.R.; Gearheart, L.; Murphy, C.J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Commun. 2001, (7), 617-618.
    20. Kim, F.; Song, J.H.; Yang, P.D. Photochemical synthesis of gold nanorods. J Am. Chem. Soc. 2002, 124(48), 14316-14317.
    21. Hyeon, T. Chemical synthesis of magnetic nanoparticles. Chem. Commun. 2003, (8), 927-934.
    22. Turkevitch, J.; Stevenson, P.C.; Hillier, J. Nucleation and growth process in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55-75.
    23. Giersig, M.; Mulvaney, P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 1993, 9, 3408-3413.
    24. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R.J. Synthesis of thiol-derivatized gold nanoparticles in a two phase liquid-liquid system. J. Chem. Soc., Chem. Commun. 1994, 801-802.
    25. Heath, J.R.; Knobler, C.M.; Leff, D.V. Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size sistribution, and surface passivant. J.Phys. Chem. B 1997, 101, 189-197.
    26. Gomez, S.; Philippot, K.; Collière, V.; Chaudret, B.; Senocq, F.; Lecante, P. Gold nanoparticles from self-assembled gold (I) amine precursors. Chem. Commun. 2000, 1945-1946.
    27. Bardaji, M.; Uznanski, P.; Amiens, C.; Chaudret, B.; Laguna, A. Aurophilic complexes as gold atom sources in organic media. Chem. Commun. 2002, 598-599.
    28. Heath, J.R.; Brandt, L.; Leff, D.V. Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir 1996, 12, 4723-4730.
    29. Cheng, W.; Dong, S.; Wang, E. Iodine-induced gold nanoparticle fusion/ fragmentation/aggregation and iodine-linked nanostructured assemblies on a glass substrate. Angew. Chem., Int. Ed. 2003, 42, 449-452.
    30. Li, G.; Lauer, M.; Schulz, A.; Boettcher, C.; Li, F.; Fuhrhop, J.-H. Spherical and planar gold (0) nanoparticles with a rigid gold(I)-anion or a fluid gold-(0)-acetone surface. Langmuir 2003, 19, 6483-6491.
    31. Joo, S.-W.; Kim, W.-J.; Yoon, W.S.; Choi, I.S. Adsorption of 4,4-biphenyl diisocyanide on gold nanoparticle surfaces investigated by surface-enhanced raman scattering. J. Raman Spectrosc. 2003, 34, 271-275.
    32. Kim, H.S.; Lee, S.J.; Kim, N.H.; Yoon, J.K.; Park, H.K.; Kim, K. Adsorption characteristics of 1,4-phenylene diisocyanide on gold nanoparticles: infrared and raman spectroscopy study. Langmuir 2003, 19, 6701-6710.
    33. Yamamoto, M.; Nakamoto, M. New type of monodispersed gold nanoparticles capped by myristate and PPh3 ligands prepared by controlled thermolysis of [Au(C13H27-COO)(PPh3)]. Chem. Lett. 2003, 32, 452-453.
    34. Weare, W.W.; Reed, S.M.; Warner, M.G.; Hutchison, J.E. Improved synthesis of small (dCORE 1.5 nm) phosphine-stabilized gold nanoparticles. J. Am. Chem. Soc. 2000, 122, 12890-12891.
    35. Kuo, P.-L.; Chen, C.-C.; Jao, M.-W. Effects of polymer micelles of alkylated polyethylenimines on generation of gold nanoparticles. J Phys. Chem. B 2005, 109 (19), 9445-9450.
    36. Oishi, M.; Hayashi, H.; Uno, T.; Ishii, T.; Iijima, M.; Nagasaki, Y. One-pot synthesis of pH-responsive PEGylated nanogels containing gold nanoparticles by autoreduction of chloroaurate ions within nanoreactors. Macromol. Chem. Phys. 2007, 208 (11), 1176-1182.
    37. Ishii, T.; Otsuka, H.; Kataoka, K.; Nagasaki, Y. Preparation of functionally PEGylated gold nanoparticles with narrow distribution through autoreduction of auric cation byα-Biotinyl-PEG-block-[poly(2-(N,N-dimethylamino)ethyl methacrylate)]. Langmuir 2004, 20 (3), 561-564.
    38. Basu, N.; Bhattacharya, R.; Mukherjee, P. Protein-mediated autoreduction of gold salts to gold nanoparticles. Biomed. Mater. 2008, 3 (3), art. no. 034105
    39. Liz-Marzán, L.M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006, 22 (1), 32-41.
    40. Kuo, P.L.; Chen, C.C.; Jao, M.W. Effects of polymer micelles of alkylated polyethylenimines on generation of gold nanoparticles. J. Phys. Chem. B 2005, 109, 9445-9450
    41. Chen, C.C.; Hsu, C.H.; Kuo, P.L. Effects of alkylated polyethylenimines on the formation of gold nanoplates. Langmuir 2007, 23, 6801-6806
    42. Selvakannan, P.R.; Kumar, P.S.; More, A.S.; Shingte, R.D.; Wadgaonkar, P.P.; Sastry, M. One pot, spontaneous and simultaneous synthesis of gold nanoparticles in aqueous and nonpolar organic solvents using a diamine-containing oxyethylene linkage. Langmuir 2004, 20, 295-298
    43. Selvan S.T. Novel nanostructures of gold-polypyrrole composites. Chem. Commun. 1998, 351-352
    44. Dai, J.; Bruening, M.L. Catalytic nanoparticles formed by reduction of metal Ions in multilayered polyelectrolyte films. Nano Lett. 2002, 2, 497-501
    45. Zhou, Y.; Itoh, H.; Uemura, T.; Naka, K.; Chujo Y. Synthesis of novel stable nanometer-sized metal (M = Pd, Au, Pt) colloids protected by a-conjugated polymer. Langmuir 2002, 18, 277-283
    1. Luisi, P.L.; Walde, P. Giant vesicles, perspectives in supramolecular chemistry, John Wiley & Sons Ltd., Chichester, 2000.
    2. Lehn, J.-M. Toward self-organization and complex matter. Science 2002, 295(5564), 2400-2403.
    3. Ringsdorf, H.; Schlarb, B.; Venzmer, J. Molecular architecture and function of polymeric oriented systems: Models for the study of organization, surface recognition, and dynamics of biomembrnaes. Angew. Chem. Int. Ed. 1988, 27(1), 113-158.
    4. Blumenthal, R.; Clague, M.J.; Durell, S.R.; Epand, R.M. Membrane fusion. Chem. Rev. 2003, 103 (1), 53-69.
    5. Menger, F.M.; Cabrielson, K.D. Chemically-induced aggregation, budding, and fusion in giant vesicles: direct observation by light microscopy. J. Am. Chem. Soc. 1992, 114(14), 5862-5863.
    6. Menger, F.M.; Gabrielson, K.D. Cytomimetic organic chemistry: early evelopments. Angew. Chem. Int. Ed. 1995, 34(19), 2091-2106.
    7. Menger, F.M.; Keiper, J.S. Electrostatic layering of giant vesicles. Angew. Chem. Int. Ed. 1997, 36(22), 2489-2491.
    8. Menger, F.M.; Keiper, J.S. Chemistry and physics of giant vesicles as biomembrane models. Curr. Opin. Chem. Biol. 1998, 2 (6), 726-732.
    9. Menger, F.M.; Keiper, J.S. Giant vesicles: micromanipulation of membrane bilayers. Adv. Mater. 1998, 10(11), 888-890.
    10. Menger, F.M.; Keiper, J.S. Digitonin as a chemical trigger for the selective transformation of giant vesicles. Angew. Chem. Int. Ed. 1999, 37(24), 3433-3435.
    11. Menger, F.M.; Keiper, J.S.; Caran, K.L. Depth-profiling with giant vesicle membranes. J. Am. Chem. Soc. 2002, 124(40),11842-11843.
    12. Menger, F.M.; Seredyuk, V.A.; Kitaeva, M.V.; Yaroslavov, A.A.; Melik-Nubarov, N. S. Migration of poly-L-lysine through a lipid bilayer. J. Am. Chem. Soc. 2003, 125(10), 2846-2847.
    13. Menger, F.M.; Seredyuk, V.A. Internally catalyzed separation of adhered lipid membranes. J. Am. Chem. Soc. 2003, 125(39), 11800-11801.
    14. Lipowsky, R. The conformation of membranes. Nature 1991, 349 (6309), 475-481.
    15. Inaoka, Y.; Yamazaki, M. Vesicle fission of giant unilamellar vesicles of liquid-ordered-phase membranes induced by amphiphiles with a single long hydrocarbon chain.Langmuir 2007, 23 (2), 720-728.
    16. Allain, J.-M.; Ben Amar, M. Budding and fission of a multiphase vesicle. Eur. Phys. J E 2006, 20 (4), 409-420.
    17. Roux, A.; Uyhazi, K.; Frost, A.; De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 2006, 441 (7092), 528-531.
    18. Rogerson, M.L.; Robinson, B.H.; Bucak, S.; Walde, P. Kinetic studies of the interaction of fatty acids with phosphatidylcholine vesicles (liposomes). Colloids Surface B 2006, 48 (1),24-34.
    19. Baumgart, T.; Das, S.; Webb, W.W.; Jenkins, J.T. Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J 2005, 89 (2), 1067-1080.
    20. Roux, A.; Cuvelier, D.; Nassoy, P.; Prost, J.; Bassereau, P.; Goud, B. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J 2005, 24 (8), 1537-1545.
    21. Sriwongsitanont, S.; Ueno, M. Effect of freeze-thawing and polyethylene glycol (PEG) lipid on fusion and fission of phospholipid vesicles. Chem. Pharm. Bull. 2004, 52 (5), 641-642.
    22. Baumgart, T.; Hess, S.T.; Webb, W.W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 2003, 425 (6960), 821-824 .
    23. Bǒtjaňek, S.S. Shape behavior of lipid vesicles as the basis of some cellular processes. Anat. Rec. 2002, 268 (3), 215-225
    24. Sackmann, E., Feder, T. Budding, fission and domain formation in mixed lipid vesicles induced by lateral phase separation and macromolecular condensation. Mol. Membr. Biol. 1995, 12 (1), 21-28.
    25. Sackmann, E. Membrane bending energy concept of vesicle- and cell-shapes and shape-transitions. FEBS Lett. 1994, 346 (1), 3-16.
    26. Berclaz, N.; Müller, M.; Walde, P.; Luisi, P.L. Growth and transformation of vesicles studied by ferritin labeling and cryotransmission electron microscopy. J. Phys. Chem. B 2001, 105(4), 1056-1064.
    27. Berclaz, N.; Bl?chliger, E.; Müller, M.; Luisi, P.L. Matrix effect of vesicle formation as investigated by cryotransmission electron microscopy. J. Phys. Chem. B 2001, 105(5), 1065-1071.
    28. Szostak, J.W.; Bartel, D. P.; Luisi, P.L. Synthesizing life. Nature 2001, 409(6818), 387-390.
    29. Vriezema, D.M.; Hoogboom, J.; Velonia, K.; Takazawa, K.; Christianen, P. C. M.; Maan, J. C.; Rowan, A. E.; Nolte, R. J. M. Vesicles and polymerized vesicles from thiophene-containing rod-coil block copolymers. Angew. Chem. Int. Ed. 2003, 42(7), 772-776.
    30. Sommerdijk, N.A.J.M.; Hoeks, T.H.L.; Synak, M.; Feiters, M.C.; Nolte, R.J.M.; Zwanenburg, B. Stereodependent fusion and fission of vesicles: calcium binding of synthetic gemini phospholipids containing two phosphate groups. J. Am. Chem. Soc. 1997, 119(19), 4338-4344.
    31. Discher, D. E.; Eisenberg, A. Polymer vesicles. Science 2002, 297(5583), 967-973.
    32. K?s, J.; Sackmann, E. Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume chages. Biophys. J. 1991, 60(4), 825-844.
    33. D?bereiner, H.-G.; K?s, J. ; Noppl, D.; Sprenger, I.; Sackmann, E. Budding and fission of vesicles. Biophys. J. 1993, 65(4),1396-1403.
    34. D?bereiner, H.-G.; Evans, E.; Kraus, M.; Seifert, U.; Wortis, M. Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory. Phys. Rev. E 1997, 55(4), 4458-4474.
    35. Seifert, U. Configurations of fluid membranes and vesicles. Adv. Phys. 1997, 46(1),13-137.
    36. D?bereiner, H.-G. Properties of giant vesicles. Curr. Opin Coll. Int. Sci. 2000, 5(3-4), 256-263.
    37. Kitamura, N.; Sekiguchi, N.; Kim, H.-B. Optical transformation and fission of single giant vesicles in water by radiation pressure. J. Am. Chem. Soc. 1998, 120(8), 1942-1943.
    38. Zhou, Y.F.; Yan, D.Y. Real-time membrane fission of giant polymer vesicles. Angew. Chem. Int. Ed. 2005, 44(21), 3223-3226.
    39. Seifert, U.; Berndl, K.; Lipowsky, R. Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. Phys. Rew. A 1991, 44(2), 1182-1202.
    40. Miao, L.; Seifert, U.; Wortis, M.; D?bereiner, H.G. Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity. Phys. Rev. E 1994, 49(6), 5389-5407.
    41. Allain, J. M.; Amar, M. B. Budding and fission of a multiphase vesicle. Eur. Phys. J. E. 2006, 20, 409-420.
    42. Gumbiner, B.M. Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell 1996, 84 (3), 345-357.
    43. Hynes, R.O. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 1992, 69 (1), 11-25.
    44. Lüthgens, E.; Herrig, A.; Kastl, K.; Steinem, C.; Reiss, B.; Wegener, J.; Pignataro, B.; Janshoff, A. Adhesion of liposomes: A quartz crystal microbalance study. Meas. Sci. Technol. 2003, 14 (11), 1865-1875.
    45. Nam, J.; Santore, M.M. The adhesion kinetics of sticky vesicles in tension: The distinction between spreading and receptor binding. Langmuir 2007, 23 (21), 10650-10660.
    46. Hammer, D.A.; Robbins, G.P.; Haun, J.B.; Lin, J.J.; Qi, W.; Smith, L.A.; Peter Ghoroghchian, P.; Bates, F.S. Leuko-polymersomes. Faraday Discuss. 2008, 139, 129-141.
    47. Purrucker, O.; G?nnenwein, S.; F?rtig, A.; Jordan, R.; Rusp, M.; B?rmann, M.; Moroder, L.; Bates, F.S.; Tanaka, M. Polymer-tethered membranes as quantitative models for the study of integrin-mediated cell adhesion. Soft Matter 2007, 3 (3), 333-336.
    48. Lin, J.J.; Bates, F.S.; Hammer, D.A.; Silas, J.A. Adhesion of polymer vesicles. Phys. Rev. Lett. 2005, 95 (2), 1-4.
    49. Lin, J.J.; Silas, J.A.; Bermudez, H.; Milam, V.T.; Bates, F.S.; Hammer, D.A. The effect of polymer chain length and surface density on the adhesiveness of functionalized polymersomes. Langmuir 2004, 20 (13), 5493-5500.
    50. Dean, J.M.; Grubbs, R.B.; Saad, W.; Cook, R.F.; Bates, F.S. Mechanical properties of block copolymer vesicle and micelle modified epoxies. J Polym. Sci., Polym. Phys. 2003, 41 (20), 2444-2456.
    51. Boulbitch, A.; Guttenberg, Z.; Sackmann, E. Kinetics of membrane adhesion mediated by ligand-receptor interaction studied with a biomimetic system. Biophys. J 2001, 81 (5), 2743-2751.
    52. Lee James, C.-M.; Bermudez, H.; Discher, B.M.; Sheehan, M.A.; Won, Y.-Y.; Bates, F.S.; Discher, D.E. Preparation, stability, and in vitro performance of vesicles made with diblockcopolymers. Biotechnol. Bioeng. 2001, 73 (2), 135-145.
    53. Kloboucek, A.; Behrisch, A.; Faix, J.; Sackmann, E. Adhesion-induced receptor segregation and adhesion plaque formation: A model membrane study. Biophys. J 1999, 77 (4), 2311-2328.
    54. Fang, N.; Wee, J.T.; Leong, K.W.; Mao, H.-Q.; Chan, V. pH responsive adhesion of phospholipid vesicle on poly(acrylic acid) cushion grafted to poly(ethylene terephthalate) surface.Colloid Surface 2005, 42 (3-4), 245-252.
    55. Boulbitch, A.; Guttenberg, Z.; Sackmann, E. Kinetics of membrane adhesion mediated by ligand-receptor interaction studied with a biomimetic system. Biophys. J 2001, 81(5), 2743-2751.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700