TiC基金属陶瓷界面结合的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cermets的综合性能主要取决于金属和陶瓷两相的界面结合性能。由于金属与陶瓷在物理及化学性质上的截然不同,使得二者的界面结合性能受多方面因素的制约,主要有界面润湿性、界面结合强度、界面缺陷、界面应力等。其中,润湿性是最关键的影响因素之一。因此,对金属/陶瓷结合界面的研究一直以来都是金属陶瓷领域里热点科学问题之一。
     有关金属陶瓷界面的研究分为实验研究和理论研究两个方面。但是,两方面的研究对金属陶瓷界面润湿性和结合性等界面行为的微观作用机制的把握都仍有不足。而界面结合性对第三相在界面上的富集和界面缺陷等界面行为非常敏感。因此,第三相添加剂和界面缺陷等界面行为对金属陶瓷界面性能的微观影响机制是金属陶瓷界面领域里需待探索的重要课题。
     本研究从单相金属和陶瓷的晶体结构参数入手,把计算材料学用于含第三相和界面缺陷的金属/陶瓷界面的研究,借助计算机模拟研究金属陶瓷界面结合的微观机制以及影响界面性能的本质。主要对本征TiC/Fe的界面、缺陷界面、掺杂界面、TiC(Al2O3)/Ti-Al(Fe-Al)金属/陶瓷体系的界面结构、电子构型和界面结合性作了深入研究,揭示了金属陶瓷界面结合和润湿的微观机制,主要内容包括以下四个方面:
     首先,对本征TiC/Fe的理想金属陶瓷界面的电子结构和成键进行了研究。发现纯体相TiC中主要存在两种强成键类型,TiC之间形成的pda共价键和Tid-Tid形成的ddδ金属键。纯体相Fe晶体中主要存在成键类型为Fed-Fed形成的dd金属键。两相中各晶相表面的表面能大小排序如下:
     TiC(100)     Fe(100)     对理想TiC/Fe界面结合的研究发现,本征TiC(100)/Fe(100)界面上以Fe-C联结时界面粘附功最大:2400mJ/m2。另外,界面陶瓷相的层数会影响TiC/Fe界面的结合性,随着TiC层数由1至3层变化,界面粘附功逐步减小,分别为3.325J/m2,2.106J/m2,1.770J/m2,界面润湿性变差。
     其次,考察了界面周围点空位缺陷类型和空位分布对界面性能的影响,进而重点考察了C空位含量对体相和界面电子结构、界面成键和界面结合性的影响规律。对点空位缺陷类型和位置的研究表明,C空位和Ti空位两种点空位缺陷的空位形成能相比,前者为后者的1/10。C空位、Ti空位和Fe空位三种空位的空位形成能均与其在晶体中的位置有关,由表面层向晶体体相内部,空位形成能逐渐增大,C空位、Ti空位的存在均有利于界面润湿性和结合性地的改善。对TiCx(x=0.75-1.0)中有序C空位对TiC体相电子结构和成键类型的影响规律以及TiC/Fe界面的结合性和润湿性研究发现,有序C空位的存在使得TiC中化学键产生变化,形成新的Vcp-Tid pdK键;与不含有序C空位的理想界面相比,TiCx/Fe界面上Ti-C共价键性、有序C空位周围的Ti-Ti金属键性有所加强,而体相内部的离子键性有所增加。这些电子结构的变化有利于TiC/Fe两相润湿性的改善,增强界面的结合性。TiC0.75/Fe比TiC/Fe界面的润湿性更好,主要原因在于含C空位的界面在费米能级以下的成键态增加,费米能级以上的反键态有所减少,另外,界面体系的beta-PDOS中发现存在三个空位峰(-0.567eV,-3.985eV,-4.745eV),前者为d轨道特征,后两者为p-d成键轨道特性。
     再次,研究了过渡金属元素添加剂Me=Mo、W、V、Nb、Co、Ni、Cd、Ag对TiC/Fe界面结合性能的影响,发现添加Mo、W、V、Ni、Co元素取代复合材料中的金属元素均能有效改善TiC/Fe复相陶瓷界面的润湿性,Cd、Ag则不利于界面性能的改善。这些添加剂既能进入金属相也能进入陶瓷相形成固溶体,由于其形成固溶体的难易程度不同。Mo、W、Co王要以碳化物形式固溶进TiC相晶格,少量以合金的形式固溶进Fe相,但是,对改善界面润湿性起关键作用的是后者;Ni、V,虽然其主要以固溶进入Fe相晶格形成MeFe合金的形式存在于金属陶瓷复合材料中,但是,对改善界面润湿性起关键作用的是以碳化物形式固溶进TiC相的少部分过渡金属元素。过渡金属元素改善金属陶瓷界面润湿性的本质在于,界面上C原子的p轨道与Me原子的d轨道态电子发生了重叠杂化,形成了强的C-Me极性共价键,同时,强化了界面C-Fe和C-Ti的共价键性,另外,Me-Fe和Me-Ti形成了d-d金属键。
     最后,对原位SHS法合成的Ti-Al/Al2O3陶瓷的XRD物相和结构进行了实验研究,确定了其主晶相为Al2O3,y-TiAl和a2-Ti3Al三种物相,且Ti-Al合金位为(γ+α2)两相层状结构。并利用第一性原理对TiAl-Ti3Al-Al2O3界面的电子结构和成键类型分析表明,界面上的O原子与Ti和A1结合成键,以O-Al, O-Ti离子键的形式形成界面键合,与纯A1203陶瓷体相内的O-Al相比,复合陶瓷界面上形成的O-Al共价键性有所增加,界面结合增强。计算了TiC/Ti-Al(Fe-Al)界面电子结构和界面性能,结果发现,TiC/FeAl和TiC/Ti3Al界面均有强极性共价键形成,TiC/FeAl界面主要为C-Fe键;TiC/Ti3Al界面主要为C-Ti和C-Al两种键。界面上金属间化合物与陶瓷间形成的共价键性比TiC晶体内部的共价键性略有增强。而且,界面金属性增强也是界面结合性增强的主要原因之一。
The comprehensive properties of cermets critically depend on the interficial binding properties of metals and ceramics within one device. Due to a large dissimilarity in physical and chemical properties of both phases, the interficial binding properties are influenced by such factors as wetting of metals to ceramics and interfacial stesses, especially the former. Therefore, the study on interfacial of metal/ceramics have been one of the hot topics in cermets field.
     Generally speaking, there are two aspects of studies on interfaces of cermets, i.e. experimental and theoretical. However, both of them give less microscopic view to wetting and bonding behavior of metal/ceramic interfaces. Especially enrichment of the third phase and defects at metal/ceramic interfaces would have great infulence on the interfacial behaviors and properties of materials. It is therefore very important to explore the microscopic mechanisms of the impact of additives and defects on interfacial properties of cermets.
     First principles studies of bulk metal Fe and ceramic TiC, pure TiC/Fe interfaces,TiC/Fe interfaces with additives and point defects, TiC(Al2O3)/Ti-Al(Fe-Al) interfaces were made. The interfacial atom structures, electronic structures and interfacial bonding/binding were thoroughly analysized. The thesis are mainly devided into four parts:
     Firstly, electronic structure and bonding of intrinsic structre of bulk TiC, Fe and their interfaces were studied. Results showed that two main bonding types were formed in bulk TiC, i.e. pdσ covalent bond between Cp-Tid and dda metallic bond between Tid-Tid, while, there are mainly dd metallic bond between Fed-Fed in bulk Fe. The surface energies of both phases show as follows:
     TiC(100)     Fe(100)     Studies of adhesion at TiC(100)/Fe(100) interfaces showed that if Fe-C bond formed at the interface, adhesion would reach at a miximum value:2400mJ/m. Moreever, the interfacial bonding properties of TiC/Fe can also be influenced by the number of TiC layers. The interfacial adhesion varied from3.325J/m2,2.106J/m2to1.770J/m2with the number of TiC layers changing from1,2to3. Wetting and binding properties at TiC/Fe interfaces decreased with the increase of the layers of ceramic phase.
     Secondly, the effect of point defects types and distribution of electroc and bonding properties at interfaces were also studied, especially C vacancies(Vc). Results showed that the formation energy of Vc was1/10smaller than that of VTj. Vacancy formation energy in surfaces was smaller than that of inside bulk. Vc and VTi point defects are both favoriable to wetting and binding properties of TiC/Fe interface. Study on electronic structures and bonding in TiCx(x=0.75-1.0), wetting and adhesion at TiC/Fe interfaces showed that ordered Vc could change the bonding types in TiCx phases, forming new types of bond, i.e. VCp-Tid pdπ which was not found in Vc free TiC. Ti-C covalent bonds and Ti-Ti metallic bonds around Vc became stronger at TiCx/Fe interface compared to VC free TiC/Fe interface, while there showed a increase in ionic bonding in the internal of TiCx phases. Wetting properties at TiCx/Fe interface were improved after the changes in electronic structures and bond types caused by VC. TiC0.75/Fe interfaces showed better wetting and adhesion than that of TiC/Fe. This is mainly due to the fact that the bonding states under fermi level are increased, while the antibonding states up the fermi level are decreased. Morever, three vacancy peaks were found in beta-PDOS of TiC0.75/Fe interface. They are at-0.567eV,-3.985eV and-4.745eV, the former being of d character, and the latter two p-d.
     Thirdly, the effect of transition metal additives (Me=Mo, W, V, Nb, Co, Ni, Cd, Ag) on interfacial properties of TiC/Fe were analysized. It was found that Mo, W, V, Ni, Co can improve the wetting properties of TiC/Fe interfaces, while Nb, Cd, Ag can't. The additives may either incorporate into the crystal structures to the metallic phase or the ceramic phase, while the degree of difficulty is different. Mo,W,Co were incorporated mainly into structure of TiC with less amount into Fe phase. However, Ni, V were incorporated mainly into structure of Fe, only lesser amount of them incorporated into TiC. However, it was the lesser part incorporations not the main part that plays a key role in improving the wettability of TiC/Fe interfaces. The key mechanisms in improving the wettablility and adhesion of TiC/Fe interfaces is that:p orbital of C interfacial atom hybridizated with d orbital of Me, forming strong C-Me polar covalent bond, with C-Fe and C-Ti covalent bond strengthened at the same time. Morever, d-d metallic bond were also formed between Me and Fe, Ti.
     Lastly, interfacial properties of TiC(Al2O3)/Ti-Al(Fe-Al) cermets were studies. Ti-Al/Al2O3cermets were prepared by in-situ SHS method. XRD and SEM eximinations were made to give a detailed information of phases and microscopic structures, which was confirmed to be TiAl-Ti3Al-Al2O3. First principles studies were made to the new structures and it was found that O-Al and O-Ti bonds were formed between Ti3Al-Al2O3interface. O-Al interfacial bond showed more covalent characters than that in bulk A12O3. Studies on TiC/Ti-Al(Fe-Al) interfaces showed that covalent bonding were formed on both TiC/FeAl and TiC/Ti3Al intefaces. They are C-Fe bonds at TiC/FeAl, C-Ti andC-Al bonds at TiC/Ti3Al. It was also found that interfacial bonding between intermetallic phases and TiC ceramics were more covalent characteric than that of bulk TiC. Morever, interfacial bonding in cermets showed more metallic characters than that in bulk ceramics, giving rise to the wettability and adhesion properties of TiC/Ti-Al(Fe-Al) interfaces.
引文
[1]赵正,刘福田,李文虎.金属陶瓷覆层材料界面结合层的研究[J].粉末冶金技术,2008,26(2):111.
    [2]许并社.材料界面的物理与化学[M].北京:化学工业出版社,2006.181-184.
    [3]刘志林,李志林,刘伟东.界面电子结构与界面性能[M].北京:科学出版社,2002.1-2.
    [4]陈名海.Ti(C, N)基金属陶瓷中润湿性与陶瓷相价电子结构的关系[D].合肥工业大学硕士学位论文,2003.
    [5]张巧莉,李树杰,张坤.SiC/Co-Cr体系的润湿性研究[J].复合材料学报,2006,23(4):60-64.
    [6]陈建等.活性金属/陶瓷润湿机理研究[J].上海交通大学学报.2001,3:364-367.
    [7]Eustathopoulos N. Dynamics of wetting in reactive metal/ceramic systems[J]. Acta Mater., 1998,46(7):2319-2327.
    [8]Swiler T P, Loehman R E. Molecular dynamics simulations of reacive wetting in metal-ceramic systems[J]. Acta Mater.,2000,48:4419-4424.
    [9]Oh S H, Kauffmanna Y, Scheu C, et al. Ordered liquid aluminum at the interface with sapphire[J]. Sci.,2005,310:661-663.
    [10]王绍青.金属/陶瓷异质界面的第一原理计算研究[J].中国基础科学,2005,5:13-14.
    [11]闻立时.固体材料界面研究的物理基础[M].北京:科学出版社,1991.1-2.
    [12]Sutton A P, Ballluffi R W. Interfaces in Crystalline Materials[M]. Oxford, Clarendon Press,1995.349-352.
    [13]Schonberger U, Andersen O K, Methfessel M, Bonding at metalceramic interfaces; ab initio density-functional calculations for Ti and Ag on MgO[J], Acta Metall. Mater.,1992, 40:S1-S10.
    [14]Finnis M W, The theory of metal-ceramic interfaces[J]. J. Phys. Condens. Mater.,1996,8: 5811-5836.
    [15]Zavodinsky V G. Ab initio study of the fcc-WC(100) surface and its interaction with cobalt monolayers[J]. Appl. Surf. Sci.,2011,257(8):3581-3585.
    [16]Li H, Zhang L, Zeng Q, et al. Structural, elastic and electronic properties of transition metal carbides TMC(TM=Ti, Zr, Hf and Ta) from first-principles calculations [J]. Soli. State Commun.,2011,151(8):602-606.
    [17]Wang Y, Chen L Q, Liu Z K, et al. First-principles calculations of twin-boundary and stacking-fault energies in magnesium[J]. Scripta Mater.,2010,62(9):646-649.
    [18]Sun X, Pratt A, Yamauchi Y, et al. First-principles study of the structural and magnetic properties of graphene on a Fe/Ni(111) surface[J]. J. Phys. D:Appl. Phys.2010,43(38): 385002.
    [19]Cacciamani G, Dinsdale A, Palumbo M, et al. The Fe-Ni system:Thermodynamic modelling assisted by atomistic calculations[J]. Intermetallics,2010,18(6):1148-1162.
    [20]Zavodinsky V G. Cobalt layers crystallized on the WC(100) surface:Spin-polarized ab initio study[J]. Int. J. Refract. Met. Hard Mater.2011,29(2):184-187.
    [21]Fang L h, Wang L, Gong J h, et al. First-principles study of bulk and (001) surface of TiC[J]. Transactions of Nonferrous Metals Society of China,2010,20(5):857-862.
    [22]Fang C M, Huis van M A, Sluiter M H F, et al. Stability, structure and electronicproperties of [gamma]-Fe23C6 from first-principles theory [J]. Acta Mater., 2010,58(8):2968-2977.
    [23]Kim H K, Jung W S, Lee B J. Modified embedded-atom method interatomic potentials for the Fe-Ti-C and Fe-Ti-N ternary systems[J]. Acta Mater.,2009,57(11):3140-3147.
    [24]Jones T E, Sauer M A, Eberhart M E. First-principles study of the mode-1 fracture of Fe-TiX interfaces (X=C,N)[J]. Phys. Rev. B,2008,78 (9); 092104.
    [25]Hugosson H W, Eriksson O, Jansson U, et al. Surface segregation of transition metal impurities on the TiC(100) surface[J]. Surf. Sci,2005,585 (1-2):101-107.
    [26]Postnikov A, Entel P. Ab initio Simulations of Fe and TiC clusters[J]. Phase Transitions, 2004,77(1):149-159.
    [27]Blaha P, Schwarz K. Electron densities and chemical bonding in TiC, TiN, and TiO derived from energy band calculations[J]. Int. J. Quantum Chem.,1983,23 (4):1535-1552.
    [28]Mizuno M, Tanaka I, Adachi H. Chemical bonding at the Fe/TiX (X=C, N or O) interfaces[J].Acta Mater,1998,46(5):1637-1645.
    [29]Benedek R, Alavi A, Seidman D N, et al. First Principles Simulation of a Ceramic Metal Interface with Misfit[J]. Phys. Rev. Letters,2000,84(15):3362-3365.
    [30]Dudiy S, Lundqvist B. First-principles density-functional study of metal-carbonitride interface adhesion:Co/TiC(001) and Co/TiN(001)[J]. Phys. Rev. B,2001,64 (4):45403.
    [31]Dudiy S. Effects of Co magnetism on Co/TiC(001) interface adhesion:a first-principles study[J]. Surf. Sci.,2002,497(1-3):171-182.
    [32]Christensen M, Dudiy S, Wahnstrom G. First-principles simulations of metal-ceramic interface adhesion:Co/WC versus Co/TiC[J]. Phys. Rev. B,2002,65:045408-045417.
    [33]Shishidou T, Lee J H, Zhao Y J, et al. Overlayer and superlattice studies of metal/ceramic interfaces:Fe/TiC[J]. J. Appl. Phys.,2003,93:6876-6878.
    [34]Zhukovskii Y, Kotomin E A, Herschend B, et al. The adhesion properties of the Ag/a-Al2O3(0001) interface:an ab initio study[J]. Surface Science,2002.513(2):343-358.
    [35]Arya A, Carter E A. Structure, bonding, and adhesion at the TiC(100)/Fe(110) interface from first principles[J]. J. Chem. Phys.,2003,118 (19):8982-8996.
    [36]Eremeev S V, Schmauder S, Hocker S, et al. Ab-initio investigation of Ni(Fe)/ZrO2(001) and Ni-Fe/ZrO2(001) interfaces[J]. Surf. Sci.,2009,603(14):2218.
    [37]张跃,韩小平,高雪等.金属/陶瓷界面的第一原理研究[J].稀有金属材料与工程.205,34,Zl:640-642.
    [38]张怀征.碳化物陶瓷表面和金属-氮化物界面的第一原理研究[D].中国科学院金属研究所.博士论文,2007.
    [39]李洪涛,张文清.金属/陶瓷界面的第一原理热力学研究[J].中国材料进展,2009,28(3):13-16.
    [40]冯纪伟,张文清,江莞.Ag/Al2O3界面结构与O2分压关系的原子级热力学模拟[J].无机材料学报,2007,22(01):119-122.
    [41]朱磊,闵新民,陈峰.TiC/Fe及掺杂复合陶瓷的结构、性能与化学键[J].武汉理工大学学报,2008,(02):17-20.
    [42]Kim H K, Jung W S, Lee B J. Modified embedded-atom method interatomic potentials for the Fe-Ti-C and Fe-Ti-N ternary systems[J]. Acta Mater.,2009,57 (11):3140-3147.
    [43]王超营,王振清,孟庆元.空位的第一性原理及经验势函数的对比研究[J].物理学报,2010,59(05):3370-3376.
    [44]Nakamura K, Ohnuma T, Ogata T. First-principles study of structure, vacancy formation, and strength of bcc Fe/V4C3 interface[J]. J. Mater. Sci.,2011,46 (12):4206-4215.
    [45]徐文武.TiCx/Fe、TiC-Me-Fe系列金属陶瓷价电子结构与性能的关系[D].桂林工学院硕士研究生论文.2005.
    [46]吴一,龙飞,申玉芳等.(Ti, Me)C-Fe金属陶瓷界面电子结构与性能的关系[J].稀有金属材料与工程.2009,38(S2):525-528.
    [47]刘凯,邹正光,申玉芳等.Mo对TiC/Fe金属陶瓷界面润湿性影响的第一性原理研究[J].全国材料科学中的数学应用研讨会论文集,2010.
    [48]邹正光,吴一,申玉芳等.钛铁矿-铝-碳原位合成TiC-xAl2O3/Fe金属基复合陶瓷性能的化学键性分析[J].东北大学学报(自然科学版)2010.31(z1):96-100.
    [1]Hohenberg P, Kohn W. Inhomogeneous electron gas[J], Phys. Rev.1964,136:B864-B871.
    [2]Kohn W and Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev.1965,140:A1133-A1138.
    [3]Jones R O, Gunnarsson O. The density functional formalism, its applications and prospects[J]. Rev. Mod. Phys.1989.61:689-746.
    [4]Parr R G, Yang W. Density-Functional Theory of Atoms and Molecules[M]. Oxford University Press, New York,1989:47-48.
    [5]Dreizler R M, Gross E K U. Density Functional Theory[M]. Springer, Berlin,1990.1-3.
    [6]Barth von J, Hedin L. A local exchange-correlation potential for the spin polarized case[J]. i, J. Phys.1972, C5:1629-1642.
    [7]Gunnarsson O, Lundqvist B I, Lundqvist S. Screening in a spinpolarized electron liquid[J]. Soli. State Gommun.1972,11:149-153.
    [8]Wang C S, Klein B M, Krakauer H. Theory of magnetic and structural ordering in iron[J]. Phys. Rev. Lett.1985,54:1852-1855.
    [9]Langreth D C, Mehl M J. Easily implementable nonlocal exchangecorrelation energy functional[J]. Phys. Rev.1981,Lett.47:446-450.
    [10]Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J], Phys. Rev.1992, B46:6671-6687.
    [11]Ashcroft N W, Mermin N D. Solid State Physics[M]. Sounders College Publishing, Fort Worth,1976:127-130.
    [12]Andersen O K. Linear methods in band theory[J]. Phys. Rev. B,1975,12:3060-3083.
    [13]Skriver H L. The LMTO Method[M]. Springer, Berlin,1984:79-83.
    [14]Methfessel M. Elastic constants and phonon frequencies of Si calculated by a fast full-potential linear-muffin-tin-orbital method[J], Phys. Rev. B,1988,38:1537-1540.
    [15]Krakauer H, Posternak M, Freeman A J. Linearized augmented planewave method for the electronic band structure of thin films[J]. Phys. Rev. B,1979,19:1706-1719.
    [16]Wimmer E, Krakauer H, Weinert M, and Freeman A J. Full-potential selfconsistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces:O2 molecule[J]. Phys. Rev. B,1981,24:864-875.
    [17]Weinert M, Wimmer E, and Freeman A J. Total-energy all-electron density functional method for bulk solids and surfaces[J]. Phys. Rev. B,1982,26:4571-4578.
    [18]Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients[J]. Rev. Mod. Phys.1992,64:1045-1097.
    [19]Kresse G, Furthmuller J. Efficient iterative schemes for ab initiototalenergy calculations using a plane-wave basis set[J]. Phys. Rev. B,1996,54:11169-11186.
    [20]Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis[J]. Comput. Mater. Sci.,1996,6:15-50.
    [21]Phillips J C, Kleinman L. New Method for Calculating Wave Functions in Crystals and Molecules[J]. Phys. Rev.,1959,116:287-294.
    [22]Cohen M L, Heine V. The Fitting of Pseudopotentials to ExperimentalData and Their Subsequent Application[J]. Soli. State Phys.1970,24:37-248.
    [23]Appelbaum J A, Hamann D R. Self-Consistent Pseudopotentials for Si[J]. Phys. Rev. B 1973,8:1777.
    [24]Louie S G, Schliiter M, Chelikowsky J R, et al. Self-consistent electronic states for reconstructed Si vacancy models[J], Phys. Rev., B 1976,13:1654-1663.
    [25]Zunger A, Cohen M L. First-principles nonlocal-pseudopotential approach in the density-functional formalism:Development and application to atoms[J]. Phys. Rev. B 1978,18: 5449.5472.
    [26]Hamann D R, Schluter M, Chiang C. Norm-Conserving Pseudopotentials [J], Phys. Rev. Lett.1979,43:1494-1497.
    [27]Yin M T, Cohen M L. Theory of ab initio pseudopotential calculations[J]. Phys. Rev. B 1982,25:7403-7412.
    [28]Bachelet G B, Hamann D R, Schluter M. Pseudopotentials that work:From H to Pu[J]. Phys. Rev. B 1982,26:4199-4228.
    [29]Hamann D R. Generalized norm-conserving pseudopotentials [J]. Phys. Rev. B1989,40: 2980-2987.
    [30]Shirley E L, Allan D C, Martin R M, et al. Extended normconserving pseudopotentials [J]. Phys. Rev.1989, B40:3652-3660.
    [31]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigen value for malism[J]. Phys. Rev. B,1990,41:7892-7895.
    [32]Laasonen K, Car R, Lee C, et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics[J]. Phys. Rev. B,1991,43:6796-6799.
    [33]Laasonen K, Pasquarello A, Car R, et al. Car-Parinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials[J]. Phys. Rev. B,1993,47:10142-10153.
    [34]Kresse G, Hafner J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements[J]. J. Phys. Condens. Matter,1994,6:8245-8257.
    [35]Jones R O, Gunnarsson O. The density functional formalism, its applications and prospects[J]. Rev. Mod. Phys,1989,61(3):689-746.
    [36]Kresse G, Furthmuller J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set[J]. Phys. Rev. B,1996,54:11169-11186.
    [37]Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis[J], Comput.Mater. Sci.,1996,6:15-50.
    [38]Shimazaki T, Kubo M. Analytical energy gradient of Gaussian and Fourier transform (GFT) method for periodic condensed systems[J]. Chem. Phys. Lett.,2011,503(4-6): 316-321.
    [39]张俊.基于密度泛函理论研究NiSin和YnAl团簇[D].开封:河南大学,2008.
    [40]Gonze X, Amadon B, Anglade P-M, et al. ABINIT:First-principles approach to material and nanosystem properties[J]. Comput. Phys. Commun.,2009,180(12):2582-2615.
    [41]Schwarz K. DFT calculations of solids with LAPW and WIEN2k[J]. J. Soli. State Chem.,2003,176(2):319-328.
    [1]Christensen A. The temperature factor parameters of some transition metal carbides and nitrides by single crystal X-ray and neutron diffraction[J]. Acta Chem. Scandinavica, Series A,1978,32:89-90.
    [2]刘志林.界面电子结构与界面性能[M].北京:科学出版社,2002.21-40.
    [3]De Boer F R, Boom R, Mattens W C M, et al. Cohesion in Metals[M]. North-Holland, New York:1988.43-44
    [4]Tyson W R, Miller W A. Surface Free Energies of Solid Metals:Estimation from Liquid Surface Tension Measurements[J], Surf. Sci.1977,62:267-276.
    [5]Lin Y, Wang S. Microstructure of TiC-W cladding on steel in nanoscale[J]. Wear,2004, 256(7-8):720-725.
    [6]张卫方,韩杰才,杜善义,等.SHS/PHIP制备TiC-Fe金属陶瓷的微观组织研究[J].复合材料学报,2001,18(2):65-69.
    [7]吴一.天然钛铁矿碳热,铝热原位合成金属基复合陶瓷的研究[D],南昌大学博士论文,2005.
    [8]Baker R, Nutting J. The tempering of 2.25 Cr%-1% Mo steel after quenching and normalizing[J]. J. Inst. Spec. Rep.1959; 192(3):257-268.
    [9]师瑞霞,尹衍升,李嘉,龚红宇.Co包覆纳米Al2O3/TiC复合材料的界面电子结构计算及材料制备[J].人工晶体学报,2006,35(2):388.
    [10]Segall M D, Pickard C J, Shah R, et al. Population Analysis in Plane Wave Electronic Structure Calculations[J]. Molecular Physics,1996,89:571-577.
    [11]M D Segall, R Shah, C J Pickard, et al. Population Analysis of Plane Wave Electronic Structure Calculations of Bulk Materials [J]. Physical Review B,1996,54:16317-16320.
    [12]Christensen A, Carter E A. First-principles characterization of a heteroceramic interface: ZrO2(001) deposited on an alpha-Al2O3(1102) substrate[J]. Phys. Rev. B,2000,62(24): 16968-16983.
    [13]Tatsuya, Shishidou. Overlayer and superlattice studies of metal ceramic interfaces: Fe/TiC[J]. Journal of Applied Physics,2003,93(10):6876-6878.
    [1]Levy R B, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis[J]. Science.1973; 181:547-549.
    [2]Matzke H, Solid State Ionics[M].1984; 12:25-45.
    [3]Grove D E, Gupta U, Jr Castleman A W. Effect of carbon concentration on changing the morphology of titanium carbide nanoparticles from cubic to cuboctahedron[J]. ACS nano. 2009; 4(1):49-54.
    [4]Xiang J Y, Hu W T, Liu S C, et al. Mechanochemically activated synthesis of zirconium carbide nanoparticles at room temperature:A simple route to prepare nanoparticles of transition metal carbides[J]. Mater.Chem. Phys.2011; 31(8):1491-1496.
    [5]Froumin N, Frage N, Polak M, Wettability and Phase Formation in the TiCx/Al Systems[J]. Scripta Mater.1997; 37(8):1263-1266.
    [6]Froumin N, Frage N, Polak M, et al. Wetting phenomena in the TiC/(Cu-Al) system[J]. Acta Mater.2000; 48(7):1435-1441.
    [7]Dudiy S V, Lundqvist B I. Wetting of TiC and TiN by metals[J]. Phys. Rev. B.2004; 69(12):1098-1121.
    [8]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev. B.1990; 41(11):7892-7895.
    [9]Fernandes C J, Anjinho C, Amaral P M, et al. Characterisation of solar-synthesised TiCx (x= 0.50,0.625,0.75,0.85,0.90 and 1.0) by X-ray diffraction, density and Vickers microhardness[J]. Mater. Chem. Phys.2003; 77(3):711-718.
    [10]Grossman J C, Mizel A, Cote M, et al.Transition Metals and Their Carbides and Nitrides:Trends in Electronic and Structural Properties [J]. Phys. Rev. B.1999; 60(9): 6343-6347.
    [11]Dunand A, Flack H D, Yvon K. Bonding study of TiC and TiN. I. High-precision x-ray-diffraction determination of the valence-electron density distribution, Debye-Waller temperature factors, and atomic static displacements in TiCo.94 and TiNo.99[J]-Phys. Rev. B.1985; 31(4):2299-2315.
    [12]Moisy-Maurice V, De Novion C, Christensen A, Elastic diffuse neutron scattering study of the defect structure of TiC0.76 and NbC 0.73 [J]. Soli. State Commun.1981; 39(5):661-665.
    [13]Arya, Carter E A. Structure, bonding, and adhesion at the TiC(100)/Fe(110) interface from first principles[J]. J. Chem. Phys.2003; 118(19):103-120.
    [14]Shishidou T, Lee J H, Zhao Y J, et al. Overlayer and superlattice studies of metalceramic interfaces:FeTiC[J]. J. Appl. Phys.2003; 93:6876-6878.
    [15]邹正光,TiC/Fe的自蔓延高温合成过程、机理及应用研究[D].武汉:武汉工业大学,1998.
    [16]吴一.天然钛铁矿碳热铝热原位合成金属基复合材料的研究[D].南昌:南昌大学,2005.
    [1]吴一.天然钛铁矿碳热,铝热原位合成金属基复合陶瓷的研究[D],南昌:南昌大学,2005.
    [2]徐文武.TiCx/Fe、TiC-Me-Fe系列金属陶瓷价电子结构与性能的关系[D].桂林:桂林工学院,2004.
    [1]Horvitz D, Gotman I, Gutmanas E Y, et al. In situ processing of dense Al2O3-T1 aluminide interpenetrating phase composites[J]. Soc.,2002,22:947-954.
    [2]Clarke D R. Interpenetrating Phase Composites[J]. J. Eur. Ceram. Soc.,1992,75:739-758.
    [3]Aghajanian M K, Rocazella M A, Burke J T, et al. The fabrication of metal matrix composites by a pressureless infiltration technique[J]. J. Mater. Sci.,1991,26:447-454.
    [4]Subramanian R, McKamey C G, Schneibel J H, et al. Iron aluminide-Al2O3 composites by in situ displacement reactions:processing and mechanical properties[J]. P.A. Menchhofer, Mater. Sci. Eng.,1998, A 254:119-128.
    [5]Cai Z H, Zhang D L. Mechanical Properties and Fracture Behaviour of TixAl y(O)/Al2O3 Composites [J]. Mater. Sci. Forum.,2003,437-438:451-454.
    [6]Yamaguchi M, Inui H, Ito K. High-temperature structural intermetallics[J]. Acta Mater., 2000,48,307-322.
    [7]Wu X. Review of alloy and process development of TiAl alloys[J]. Intermetallics.14 2006:1114-1122.
    [8]Lasalmonie A. Intermetallics:Why is it so difficult to introduce them in gas turbine engines[J]. Intermetallics.14,2006,1123-1129.
    [9]Wood M, Ward-Close M. Fibre-reinforced intermetallic compounds by physical vapour deposition[J]. Mater. Sci. Eng.1995, A192,590-596.
    [10]Ward-Close C M, Minor R, Doorbar P. Intermetallic-matrix composites—a review[J]. Intermetallics.1996,4:217-229.
    [11]Fan R, Liu B, Zhang J, et al. Kinetic evaluation of combustion synthesis 3TiO2+ 7A1 → 3TiAl+ 2A12O3 using non-isothermal DSC method[J]. Chem. Phys.,2005,91:140-145.
    [12]Yeh C L, Su S H. In situ formation of TiAl-TiB2 composite by SHS[J]. J. Alloy Compd., 2006,407:150-156.
    [13]Alman D E. Reactive sintering of TiAl-Ti5Si3 in situ composites[J]. Intermetallics,2005, 13:572-579.
    [14]Munir Z A. Synthesis of high temperature materials by self-propagating combustion[J]. Am. Ceram. Soc. Bull.,1988,67:342-349.
    [15]Munir Z A, Anselmi-Tamburini U. Self-propagating exothermic reactions:The synthesis of high-temperature materials by combustion[J]. Mater. Sci. Rep.1989,3:277-365.
    [16]Kamali A R, Nejad I, Aboutalebi M, et al. Effect of ball milling on reaction between TiO2 and A1[J]. Russian Journal of Non-Ferrous Metals.2009,50:246-249.
    [17]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev. B.,1990,41:7892-7895.
    [18]Segall M D, Lindan P, Probert M, et al. Frist-principles simulation:Ideals[J]. J Phys: Cond Matter.,2002,14:2717-2743.
    [19]Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys Rev Lett.1996,77:3865-3868.
    [20]Li J C M, Microstructure and properties of materials[M], World Scientific Pub Co Inc, 2001.76-80.
    [21]Han C Z, Brown I, Zhang D. Microstructure development and properties of alumina-Ti aluminide interpenetrating composites [J]. Current App. Phys.,2006,6:444-447.
    [22]Travitzky N, Gotman I, Claussen N. Alumina-Ti aluminide interpenetrating composites: microstructure and mechanical properties[J]. Mater. Lett.2003,57:3422-3426.
    [23]Menand A, Huguet A, Nerac-Partaix A. Interstitial solubility in y and a2 phases of TiAl-based alloys[J]. Acta Mater.,1996,44:4729-4737.
    [24]Dufour L C. Surface and interface of ceram icom etal materials[M]. K luw er A cad em ic Publisher,1989:1393.
    [25]Subramanian R, Schneibel J H. FeAl-TiC and FeAl-WC composites—melt infiltration processing, microstructure and mechanical properties[J]. Materials Sci. Eng.:A,1998, 244(1):103-112.
    [26]Schneibel J H, Carmichael C A, Specht E D, et al. Liquid-phase sintered iron aluminide-ceramic composites[J]. Intermetallics,1997(5):61-67.
    [27]Wu N Q. Mechanically driven synthesis of nanophase composite powder[J]. Materials Letters,1997,32(4):259-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700