高速砂轮切割试验机的研制及磨切区温度场仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树脂薄片切割砂轮(以下简称锯片)是磨具产品中最常见的产品之一。但在高速锯切领域,国内产品与国外产品有较大差距,目前国内公司已经开始从事高转速及超高转速磨具产品的生产与开发。为保证锯片在高转速下稳定安全工作,产品从配方到用料、加工、以及成品检测都有较严格的规定。其中锯片成品检测包括平面度检测、静平衡检测、回转试验以及锯切试验等。锯切试验作为砂轮出厂的最后一道检测工序,它的数据直接反映出一批产品的锯切性能。
     针对现有高速锯片锯切试验方法的缺陷,本文分析了该试验对锯切试验机及其零部件的要求,提出了锯切试验机的总体设计方案及各部件的具体解决方案。根据该方案,设计并制造出高速锯片锯切试验机。该试验机实现了锯片在锯切过程中定进给力的加载,解决了高转速下轴承可能出现的发热及整机的震动问题,较为简单地实现了大直径工件的夹装、调心及旋转,很好地解决了高速锯片在锯切大直径工件时的散热问题。根据锯切试验检测锯片的具体情况,给出了判定锯片质量好坏的方法,提出锯切效能的概念。
     为了研究高速锯片在锯切大直径工件时的性能,为试验机的改进提供解决方案,以及为大直径、高速度锯切机床的研制提供理论依据,本文分别采用试验及仿真分析的方法研究了锯片在磨削切割区温度场的分布情况。试验采集了锯片在锯切直径为160mm圆钢时周围环境温度随时间变化的数据。分析锯切工况,得出锯片锯切进给模型及边界条件加载模型。根据以上分析,使用APDL语言建立了工件有限元实体模型,完成了时间变化载荷的加载、分析及后处理。最终得出数据结果以及温度场分布图,同时与试验采集数据进行对比,实现分析数据对机器设计改进的指导。
Thin resinous grinding wheel (here in after referred as grinding wheel) is one of the most common products in abrasive field. However, in the field of high-speed sawing, there is a wide gap between domestic and foreign products. Now, the domestic companies have begun to engage in the development of high-speed grinding wheel products. To ensure the grinding wheel to be security and stability under high-speed operations, the products of grinding wheel have stringent criterion in the process of confect, product, material choice and check. The check process including flatness detection, static balance detection, rolling test as well as cutting test and so on. Cutting test as the final process before production get out of factory, its data is a direct reflection to the quality of a number of grinding wheel.
     In allusion to the defect in actual saw cutting testing machine, the requirement of saw cutting testing machine and it's components under high speed condition were analyzed. Proposed an recapitulative design scheme of the testing machine and the solution of each components. Under the program, designed and manufactured high-speed saw cutting testing machine. The machine achieved the force loading of fixed value in the process of cutting test, solved the potential problem of hot in bearing and shaking in machine, achieved in the clamp and rolling of large diameter workpieces. According to the actual circumstances of cutting test, the article given a method of how to judge the quality of grinding wheel, taken out a conception of cutting efficiency.
     In order to study the capability of high-speed grinding wheel in machining large-diameter workpieces, offer academic bases to high-speed and high-efficiency cutting machine tool, this article used experimental and simulative method to analysis the lapse rate around grinding wheel. Test collected mutative temperature data around grinding wheel when incise the workpiece with a diameter of 160mm round. Analysis of the sawing condition, come into the sawing model and the loading model of boundary condition. Based on the above analysis, language of APDL was used to finish modeling, loading, meshing and solution of entity. Finally, the paper got the results of analysis data, as well as temperature distribution graph. Contrasting with the collecting data, then achieve the aim of theory guidance of practice.
引文
1.刘铭.树脂薄片切割砂轮方向的探讨[J].金刚石与磨料磨具,2007,161(5):71-73.
    2.王霖,秦勇等.磨削温度场的研究现状及发展趋势[J].工具技术,2002.36(6):7-10
    3.张冬梅,刘传绍等.磨削温度理论研究的现状与发展[J].工具技术,2006.40:6-9
    4.Rowe W B,Morgan M N.A simplified approach to control of thermal damage in grinding[J].Annals of the CIRP 1996,45(1):133-135.
    5.Guo C,Malkin S.Analysis of energy partition in grinding[J].ASME Journal of Engineering for Industry,1995,117:55-61.
    6.高航,高效立轴平面强力磨削技术与机理的研究 沈阳:东北大学博士学位论文,1992
    7.金滩,高效深切磨削技术的基础研究沈阳:东北大学博士学位论文
    8.赵恒华,冯宝富,金滩等 高效深磨的三种解析热模型[J].金刚石与磨料磨具工程,2003(2):18-20
    9.徐慧蓉.高效深磨中温度的理论分析[J].机床与液压,2004(8):104-106
    10.郑钧宜.磨削射流冷却的理论分析和实验研究[D]武汉理工大学,2008
    11.徐鸿钧,童宪超.磨削时制件表面层温度分布的研究[J].南京航空航天大学学报,1983,(03)
    12.李伟.钛合金切削磨削冷却润滑理论与技术研究.南京:南京航空航天大学博士学位论文,1992
    13.Hesselbach,J.Hoffmeister,Maiz K.Machanova.Surface grinding with cryogenics[J].Production Engineering,2004,11(2):1-4
    14.A.Lefebvre et.Numerical analysis of ginding temperature measurement by the foil/workpiece the mocouple method[J].International Journal of Machine Tools&Manufacture,2006,46:1716-1726
    15.Jing Li,J.C.M.Li.Tmperature distribution in workpiece during scratching and grinding[J].Materials Science and Engineering A,2005,409:108-119
    16.王霖.计算机仿真技术在磨削温度场中的应用[J].工具技术,2001(10):19-21
    17.田晓,林衫等.杯形砂轮平面磨削温度场的有限元分析[J].精密制造与自动化,2004(2):23-24.
    18.张玉宝,常静.砂轮切断机近三十年来的发展概况[J].包头钢铁学院学 报,1995,14(4):65-70.
    19.刘菊东,王贵成,陈康敏,等.45钢磨削硬化的实验研究[J].材料科学与工艺,2005,13(3):326-328.
    20.刘菊东,王贵成,陈康敏,等.65Mn钢磨削硬化层组织的研究[J].中国机械工程师,2004,15(17):1573-1576.
    21.张宁菊,赵美玲.非调制钢的淬硬研究[J].机械工程师,2005,4:32-33.
    22.崔江红,穆云超.ANSYS在砂轮磨削温度场计算机仿真中的应用[J].精密制造与自动化,2005(1):39-40.
    23.高航,李剑.磨削温度场通式及其计算机仿真分析[J].东北大学学报:自然科学版,2004(6):574-577.
    24.郭力 何利民.高速高效磨削温度的实验研究[J].精密制造与自动化,2007(2):12-16.
    25.龚欢.40Cr钢磨削强化工艺试验与温度场仿真研究[D]南京航空航天大学,2007
    26.杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    27.张洪济.热传导[M].北京:高等教育出版社,1992.
    28.曾攀.有限元分析及应用[M].北京:清华大学出版社,2004.
    29.龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].北京:机械工业出版社,2004.
    30.张超晖.Ansys热分析教程与实例解析[M].中国铁道出版社,2007.2
    31.叶先磊,等.ANSYS工程分析软件应用实例[M].北京:清华大学出版社,2003.
    32.王焕定,王伟.有限单元法教程[M].哈尔滨:哈尔滨工业大学出版社,2003.
    33.罗振东.混合有限元法基础及应用[M].北京:科学出版社,2006.
    34.王庆五,等.ANSYS 10.0机械设计[M].北京:机械工业出版社,2006.
    35.李开泰,等.有限元方法及其应用[M].北京:科学出版社,2006.
    36.张宁菊,赵美玲.400r磨削淬硬的研究方法[J].现代机械,2005,4:81-82.
    37.魏铭森.玻纤网片对薄片切割砂轮增强作用的力学分析[J].南通工学院学报(自然科学版,2003(3):39-41.
    38.洪余材,等.薄型锯片基体技术要求质量控制及使用[J].金刚石工具,2006,27(3):44-45.
    39.陈义辉.树脂磨具制造[M].北京:机械工业部机床工具局,1984.
    40.赵民.Φ1600mm金刚石圆锯片的有限元分析[J].石材,1999(2):11-12.
    41.陆名彰,熊万里,黄红武.超高速磨削技术的发展及其主要相关技术[J].湖南大学学报: 自然科学版,2002,10(3):44-47.
    42.赵恒华,冯宝富,高贯斌,等.超高速磨削技术在机械制造领域中的应用[J].东北大学学报:自然科学版,2003(6):564-567.
    43.付云岗.工程实验法在新型树脂切割砂轮中的应用[J].金刚石与磨料磨具,2005(4):67-70.
    44.刘延俊,关浩,周繁森.液压与气压传动[M],北京:高等教育出版社,2007.
    45.王树.变频调速系统设计与应用[M],北京:机械工业出版社,2005.
    46.Brinksmeier E,Brockhoff T.Randchicht-Warmebehandungdurch Schleifen[J],Harterei-Techn-Mitt,1994,49(5):327-330.
    47.Nee A Y C.On the measurement of surface grinding temperature[J].International J M T D R,1981,21(314):279-291.
    48.Joseph C,Conway J R,Kirchnar H P.Crack Branching as a Mechanism of Crushing During Grinding.An Ceram Soc,1986,69(8):50-53.
    49.Kim N K,Guo C,Malkin S.Heat Flux distribution and energy partition in creep-feed grinding[J].Annals of the CIRP,1997,46:227-232.
    50.John A.Ekaterinaris.Numerical Simulation of Incompressor Two-Blade Rotor Flowfields.Aerospace Sciences Metting & Exhibit,AIAA Paper97-0398,1997.
    51.Zhao Bo,Liu Chuanshao,Research on dispersing range Ra and ductility cutting domain of hard-brittle material surface,Proceedings of 6th ICMT,2001:223-228
    52.Hesselbach,J.Hoffmeister,Maiz K.Machanova.Surface grinding with cryogenics[J].Production Engineering,2004,11(2):1-4
    53.T.Jin,D.J.Stephenson.Three Dimensional Finite Element Simulation of Transient Heat Transfer in High Efficiency Deep Grinding[J].CIRP Annals-Manufactuing Technology,2004,53(1):259-262

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700