含钛矿物催化降解废水中硝基苯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硝基苯(NB)是环境中典型的持久性有机污染物(POP),由于其高度的稳定性和杀菌性,普通的生物、化学方法很难将其降解。本文从环境污染防治和半导体催化材料制备的低成本出发,提出以钛精矿、高钛渣和含钛高炉渣作为催化材料降解硝基苯,研究光、电、超声、热氧化等对硝基苯降解的协同作用,分析光、电、超声、热氧化条件下的硝基苯催化降解反应机理和动力学,优化硝基苯降解条件,评价了处理后硝基苯废水的BOD、COD、TOC等生化指标。
     (1)以含钛矿物为催化剂,利用365 nm高压汞灯、365 nm低压汞灯、254 nm低压汞灯和室内自然光处理含硝基苯废水,并用高效液相色谱(HPLC)分别对产物进行了分析。实验结果表明,光源对硝基苯的降解能力为365 nm高压汞灯>254nm低压汞灯>365 nm低压汞灯,室内自然光对硝基苯无降解作用。365 nm的高压汞灯作用下,90 min硝基本降解率达100%,总有机碳去除率为78.52%,有降解中间产物℡间硝基酚产生,并未达到深度降解。含钛矿物对硝基苯降解具有一定的光催化活性,催化能力为高钛渣>钛精矿>攀钢渣>承钢渣,与矿渣的含钛量成正相关。在pH 3-11的范围内,酸度变化对硝基苯降解率的影响不显著,酸性条件稍有利于反应进行。
     (2)以含钛矿物催化剂粉体1%的碳糊电极为工作电极,对硝基苯在三电极体系中进行电化学测量,实验结果表明:硝基苯在碳糊电极上发生不可逆还原反应,产物为苯胺,不发生氧化反应。硝基苯在电极上的还原反应由扩散步骤控制,在酸性介质中,室温下硝基苯电还原的表观活化能为14.11 kJ·mol-1,其活化能较低,表明硝基苯较易在碳糊电极上还原。在惰性双电极体系中,硝基苯还原为苯胺的反应符合一级动力学方程,反应表观速率常数k=0.01895 min-1。实验条件下,当电解时间达40 min时,BOD5/COD值由0.07提高到0.57,可以采用生物化学方法处理电解后硝基苯废水。
     (3)以含钛矿物为催化剂,利用钛基尺寸不变阳极(DSA)类金属氧化物电极对含硝基苯类废水进行了电化学深度氧化处理,并用高效液相色谱分别对阴、阳极产物进行了分析。实验结果表明,硝基苯去除机理为:在自由基作用下,按硝基苯→硝基酚类→苯酚类一二氧化碳、水的途径降解。在30 V电压下,电解25 min后硝基苯阴、阳极降解率均可以达100%。通过对降解产物的COD分析,阳极在30 min后有机物降解彻底,可以实现污染物零排放;随着电化学催化降解时间的延长,阴极降解产物BOD5/COD逐渐增加,20 min后具有可生化降解性。
     (4)以含钛矿物为催化剂,用超声法对含硝基苯废水进行了降解研究,用高效液相色谱仪对降解产物进行了分析,实验结果表明:超声条件下含钛矿物可以催化降解硝基苯,当超声频率为45 kHz,高钛渣催化剂加入量为18.0 g·L-1时,140 min后硝基苯降解率达100%;在超声产生的自由基作用下,硝基苯降解产物为二氧化碳和水,没有其它副产物产生;单独超声条件下,硝基苯的降解符合一级反应速率方程,表观速率常数kUS=0.00407 min-1;超声催化条件下,硝基苯降解速率方程符合d[NB]/dt=kUS[NB]+kseckpt[NB]。硝基苯经超声处理后可生化性提高,超声频率45 kHz,处理180 min后,硝基苯溶液的BOD5/COD与硝基苯原溶液BOD5/COD相比,提高了近10倍,具有生物化学处理的可能性。
     (5)利用H202为氧化剂,高温密闭条件下对硝基苯废水进行了降解研究。通过正交实验,分析了氧化剂种类、硝基苯初始浓度、反应温度和反应时间对硝基苯降解率的影响。利用高效液相色谱仪分别对降解过程产物进行了分析,实验结果表明:H202在密闭高温条件下形成的自由基攻击硝基苯分子,硝基苯降解过程按硝基苯→硝基酚类→二氧化碳和水的途径进行,降解过程中产生的微量邻、间、对硝基酚类物质不会累积,符合报道的硝基苯与自由基反应的降解产物特点,而NaClO体系产生的邻苯二酚,是氧化剂氧化产物。H202热氧化硝基苯的降解反应符合一级动力学方程,反应表观速率常数K=0.0073 min-1。
Nitrobenzene (NB) is a typical and environmental persistent organic pollutant (POP). Purification of wastewater contaminated with this pollutant is very difficult using general biological and chemical methods, since it is usually stable and disinfectant. In this work, concentrated titania ore, high-titania slag and titania-bearing furnace slag were used as the raw material for catalysts, aiming at an integrated utilization of resources and low-cost fabrication of semiconductor material. The removal efficiency of nitrobenzene catalyzed by titania-containing Slag under light, electricity, ultrasound thermal oxidation was investigated. The kinetics and mechanism of NB degradation under the conditions of light, electricity, ultrasound and thermal oxidation were analyzed. The conditions of reaction for nitrobenzene degradation were optimized, and BOD, COD, TOC of nitrobenzene wastewater were evaluated after the treatment.
     (1) Removal efficiency of nitrobenzene catalyzed by titania-containing slag under 365 nm high pressure mercury lamp,365 nm low pressure mercury lamp,254 nm low pressure mercury lamp and solar light in room was investigated. The products were also analyzed by high performance liquid chromatography (HPLC). The results showed that the effect of light source on the degradation of nitrobenzene is 365 nm high-pressure mercury lamp> 254 nm low pressure mercury lamp> 365 nm low pressure mercury lamp. However there is no degradation of nitrobenzene under solar light in room.100% of NB removal could be reached after 90 min under 365 nm high pressure mercury lamp. Total organic carbon removal rate was 78.52%. NB was ultimately oxidized to CO2 and H2O without other by-products by the action of free radicals provided by the ultrasound-catalysis. There is a by-product—m-nitrophenol produced. Titania-containing slag can remove nitrobenzene catalytically in the presence of light. The order is high-titania slag> concentrated titania ore> pangang slag> chenggang slag. Changes in acidity of the degradation rates of nitrobenzene were not significant in the range of pH from 3 to 11. Slightly acidic condition was conductive to reaction.
     (2) Electrochemical measurements of nitrobenzene aqueous solution under carbon paste electrode (containing 1% catalyst powder) as the working electrode was investigated. The results showed that the reaction of nitrobenzene which was reduced to aniline on the electrode was irreversible direct electrode reaction. Nitrobenzene electrode reactions were controlled by the diffusion steps. In acidic medium, the apparent activation energy of reduction of nitrobenzene to aniline is 14.11 kJ·mol-1 at room temperature. Its activation energy is lower, indicating NB reduction was easy on carbon paste electrode. In the inactive electrode system, the reaction factor of NB reduction to aniline was first-order. The observed rate constant k' was 0.01895 min-1. BOD5/COD values increased from 0.07 to 0.57 after 40 min under experimental conditions, which made it possible that NB wastewater was treated by biodegradation
     (3) Removal efficiency of nitrobenzene was investigated by electrochemical advanced oxidization using dimensionally stable anode (DSA) basis Ti as electro-catalytic electrode and titania-containing slag. The products in anode and cathode were also analyzed by HPLC. The removal mechanism of nitrobenzene can be postulated from the results that nitrobenzene degradation follows the steps as nitrobenzene→p-nitrophenol→phenol→CO2 and H2O on the action of free radical.100% of NB removal could be reached after 25 min under 30 V when high-titania slag was used as catalyst. The products in anode were completely removed after 30 min on the analysis of COD value which showed no discharge of contaminants. With the extension of reaction time, the BOD5/COD value of product in cathode increased gradually and NB aqueous solution obtained biotransformation capability after 20 min.
     (4) Removal efficiency of nitrobenzene catalyzed by titania-containing slag under ultrasound was investigated, and the products were also analyzed by HPLC. The results showed that titania-containing slag can remove nitrobenzene catalytically in the presence of ultrasound. When 18.0 g·L-1 high-titania slag was used as catalyst, the removal efficiency of NB could reach 100%after 140 min under 45 kHz ultrasonic frequency. NB was ultimately oxidized to CO2 and H2O without other by-products by the action of free radicals provided by the ultrasound-catalysis. The reaction factor of NB degradation by ultrasound action was first-order. The observed rate constant kus was 0.00407 min-1. The corresponding reaction equation by ultrasound in the presence of high-titania slag is-d[NB]/dt=kUS[NB]+kseckpt[NB].Biotransformation increased after treatment of ultrasound. BOD5/COD value of NB wastewater treatmented 180 min under 45 kHz ultrasonic frequency increased nearly 10 times than original solution. NB aqueous solution obtained biotransformation capability.
     (5) Removal of nitrobenzene (NB) was investigated by using H2O2 as oxidizer and the reaction products were analyzed by HPLC. The effects of catalysts, initial concentration of NB, reaction temperature and time on NB degradation were studied by orthogonal layout experimental design. The results showed that free radical formed by H2O2 in thermal oxidized condition could attack the NB molecule, and NB degradation follows the steps as nitrobenzene→nitrophenol→carbon dioxide and water. There was no accumulation of the trace intermediate products of o-, m-, p- nitrophenol. The products were in accordance with radical characteristics of degradation products. However, in NaClO medium system, oxidation product is catechol, in accordance with oxidation product. The nitrobenzene degradation kinetics was first-order and the observed reaction rate constant k' was 0.0073 min-1
引文
1. The international programme on chemical safe, Environ health criteria 230:nitrobenzene [S],2003
    2. 王晓燕,尚伟.水体有毒有机污染物的危害及优先控制污染物[J].首都师范大学学报,2002,23(3):73-78
    3. GB 8978-1996中华人民共和国国家标准,污水综合排放标准[S],1996
    4. GB 5749-2006中华人民共和国国家标准,生活饮用水卫生标准[S],2006
    5. 童智尤,周集体,陈毓琛.有机污染物在大连近海海水中生物降解速度的研究[J],环境科学,1997,18(4):41-44
    6. 张全兴,王勇,李秀娟,等.树脂吸附法处理硝基苯和硝基氯苯生产废水的研究[J],化工环保,1997,17(6):323-326
    7. 毛连山,赵全珍,林中祥,等.硝基苯废水的治理[J],环境污染与防治,2000,22(6):22-24,43
    8. 徐中其,陆晓华.活性炭纤维在硝基苯水溶液中的吸附和再生[J],华中理工大学学报,2000,28(7):102-104
    9. 杨义燕,戴猷元.络合萃取法处理高浓度有机废水[J],现代化工,1997,(3):10-14
    10.董云,伊世英.MNT废酸用甲苯萃取工艺的探讨[J],湖南化工,1999,29(6):48-49,58
    11.周家军,吴继秀,朱延才.络合萃取法处理甲苯硝化废水[J],污染防治技术,1995,8(2):95-97
    12. Agrawal A, Tratnyek P G. Reduction of nitro aromatic compounds by zero-valent iron metal [J], Environ. Sci. Techn.,1995,30(1):153-160
    13. Choe S, Lee S H, Chang Y Y, et al. Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0 [J], Chemosphere,2001,42(4):367-372
    14.陈新志,张未星.间硝基甲苯的开发利用[J],杭州化工,1997,27(1):8-10
    15.樊金红,徐文英,高廷耀.硝基苯在铜电极上的电还原特性研究[J],电化学,2005,11(3):341-344
    16.黄成德,覃奇贤,郭鹤桐,等Ni-WC复合电极的结晶结构及其电化学性能的研究[J],化学研究与应用.1997,9(5):464-468
    17.覃奇贤,朱龙章,刘淑兰.镍-碳化钨微粒复合电沉积机理的研究[J],物理化学学报,1994,10(10):891-896
    18.李劲,叶齐政,郭香会,等.电流体直流放电降解水中硝基苯的研究[J],环境科学,2001,22(5):99-101
    19.徐志花.硝基化合物在碳化钨及其复合物电极上的电催化还原行为[D],杭州:浙江工业大学,2003
    20.李玉平,曹宏斌,张懿,等.硝基苯在温和条件下的电化学还原[J],环境科学,2005,26(1):117-120
    21.余宗学.含硝基苯类化工废水预处理的研究[J],周口师范学院学报,2003,3(20):31-33
    22.张辉,程江,杨卓如,等.水中对硝基酚的臭氧化研究[J],化工学报,1996,47(4):488-494
    23. Edmund N, Laurance T, Troetsch S I, et al. Breaking down aromatic compounds in industrial wastewaters [P], USP:6258281,2001-07
    24. Hermann S, Ehnar H, Oemer K M. Removal of chloro and nitro aromatic wastewater pollutants by ozonation and biotreatrnent [J], Environ. Sci. Techn.,1995,29(8):2016-2022
    25. Ralt D, Ulrike S, Ame R, et al. Oxidation of nitro and aminoaromatic compounds with hydrogen peroxide [C], Verbundvorhaben Biologische Sanierung von Ruestungsaltlasten, Tagungsband zum Statussemin,3rd, Berlin,1997:1-35
    26. Chamarro E, Marco A. Use of fenton reagent to improve organic chemical biodegradability [J], Water Res.,2001,35(4):1047-1051
    27.唐朝春,陈蓉,杨卫权.混凝氧化法处理喹禾灵含酚废水的研究[J],华东交通大学学报,1999,16(2):12-17
    28.傅建秀,叶平,王连生,等.催化氧化法处理对硝基酚钠生产废水的研究[J],城市环境与生态,2001,14(4):40-41
    29.钟理,陈建军.高级氧化处理有机污水技术进展[J],工业水处理,2002,22(1):1-5
    30. Vohra M S, Tanaka K. Photocatalytic degradation of nitrotoluene in aqueous TiO2 suspension [J], Water Res.,2002,36(1):59-64
    31.梁延荣,姚秉华,卞文娟.水中硝基酚的纳米TiO2光催化降解[J],分析测试学报,2002,21(1):1-4
    32. Chen L, Kutsuna S, Tokuhashi K. Kinetics of the gas-phase reaction of CF3OC(O)H with OH radicals at 242-328 K [J], Inter. J. Chem. Kinet,2004,36(6):337-344
    33.郭文静,朱运伟,钟理.高级氧化法氧化含邻硝基甲苯废水过程的动力学[J],上海环境科学2002,21(2):79-82
    34. Koubek E. Oxidation of refractory organics in aqueous waste streams by hydrogen peroxide and ultraviolet light [P], USP:4012321,1977-03
    35. Park C, Kim T H, Kim S W, et al. Optimization for biodegradation of 2,4,6-trinitrotoluene (TNT) by pseudomonas putida [J], J. Biosci. Bioeng.,2003,95(6):567-571
    36. Shariq V M, Tanaka K. Photocatalytic degradation of nitrotoluene in aqueous TiO2 suspension [J], Water Res.,2002,36(1):59-64
    37.梁延荣.难降解有机污染物的光催化氧化研究[D],西安:西安理工大学,2002
    38.宋卫峰,谢光炎等,林美强.DSA类电极催化降解硝基苯及动力学研[J],上海环境科学,2002,21(6):353-354
    39. Ng W J, Hu J Y, Ong S L, et al. Effect of acidogenic stage on aerobic toxic organic removal [J], J. Environ. Eng.,1999,125(6):495-500
    40. Pierce. Methods for the detoxification of nitrile and/or amide compounds [P], USP:6060265,2000-05
    41.李湛江,韦朝海,任源,等.硝基苯降解菌生长特性及其降解活性[J],环境科学,1999,20(5):20-24
    42. Peres C M, Naveau H, Agathos S N. Biodegradation of nitrobenzene by its simultaneous reduction into aniline and mineralization of the aniline formed [J], Appl. Microbio. Biotech.,1998,49(3): 343-349
    43.王宇彤,宣志刚,杨昆,等.HSB微生物技术在有机助剂废水处理的应用研究[J],工业水处理,2000,20(12):22-24
    44. Boyd D A, Stuait A G, Alfred A G. Integrated effluent treatment process for nitroaromatic manufacture [P], USP:6288289,2001-09
    45. Toshihiro N, Yoshio S, Yoshishige K, et al. Supercritical CO2 extraction treatment of organic compound in aqueous solution by countercurrent extraction [J], J. Jap. Soc. Water Environ.,1999, 22(10):854-858
    46.莫畏,邓国珠,罗方承,等.钛冶金[M],北京:冶金工业出版社,1998,124-126
    47.张祖光,辛湘杰译,丹尼尔艾伦.钛在能源与工业中的应用[M],北京:机械工业出版社,1989,2
    48.邓国珠,王铁明.承德钛精矿的利用途径探讨[J],河北工业科技,2004,21(4):6-9
    49.邓国珠,刘水根,郭伟,等.钛和钛白生产大型化面临的问题[J],钛工业进展,2001,18(6):1-6
    50.叶良军.攀枝花钛精矿制取高品位氯化渣探讨[J],钛工业进展,2004,21(1):40-42
    51.邓国珠,王雪飞.用攀枝花钛精矿制取高品位富钛料的途径[J],钢铁钒钛,2002,(4):15-19
    52.王晨.高钛渣税则号确立促钛白粉行业良性发展[J],中国涂料,2007,22(1):1-2
    53.稽琳,任泰祥,赵鹰立,等.用攀钢高炉残渣生产水泥[J],中国建材科技,1997,6(6):37-42
    54.薛向欣,董志远,杨合,等.攀钢高炉渣碳氮化处理中矿化剂对碳氮化钛晶粒的影响[J],东北大学学报,2004,25(12):1165-1168
    55.姜涛,薛向欣.配料组成对含钛高炉渣合成TiN/(Ca,Mg) α-sialon粉的影响[J],硅酸盐学报,2005,33(4):416-421
    56.李正平,薛向欣,段培宁,等.用碳热还原氮化法处理含钛高炉渣[J],钢铁研究学报,2005,17(3):15-17,29
    57.王明玉,张力,张林楠,等.含钛高炉渣中钛组分最佳富集相的选择[J],材料与冶金学报,2005,4(3):175-177
    58.徐萌,任铁军,张建良,等.以转底炉技术利用钛资源的基础研究[J],有色金属,2005,(3):24-27.30
    59.吴铿,赵勇,潜伟,等.合成高炉渣中Ti02还原的发泡特性参数[J],中国有色金属学报,2002,12(4):817-821
    60.吴铿,曹进,赵勇,等.TiO2对合成渣中Fe2O3还原发泡过程的影响[J],北京科技大学学报,2003,25(2):131-134
    61.吴铿,李晓,冯宝泽,等.碳还原熔渣中氧化物发泡过程特性参数计算[J],北京科技大学学报,2004,26(4):369-372
    62.周志明.高钛型高炉渣渣钛分离研究[D],重庆:重庆大学,2004
    63.何小龙.全高钛矿渣混凝土的研究与应用[D],重庆:重庆大学,2007
    64.王立芬.降低南钢高炉铁水硅含量的研究[D],重庆:重庆大学,2005
    65.郭宇峰.钒钛磁铁矿固态还原强化及综合利用研究[D],长沙:中南大学,2007
    66.董海刚.从含钛高炉渣中回收钛的基础研究[D],长沙:中南大学,2006
    67.王明玉,娄太平,隋智通.氧化性含钛高炉渣中钙钛矿相的析出行为[J],过程工程学报,2007,7(1):110-112
    68.全跃,任允芙.承钢含铁高炉渣综合利用的工艺矿物学研究[J],钢铁钒钛,1989,10(4):18-23
    69.贾碧,齐宝铭.全钒钛矿冶炼时含钛高炉渣起泡现象的研究[J],钢铁钒钛,1996,17(4):10-14,18
    70.李正平.含钛高炉渣与碳氮反应的实验研究[D],沈阳:东北大学,1999
    71.薛向欣,杨合,左良,等.用含钛高炉渣制备光催化材料的方法[P],CN:02109771.2,2003
    72.杨合,薛向欣,左良,等.含钛和稀土高炉渣光催化降解活性艳红X-3B[J],硅酸盐学报,2003,31(9):896-899
    73.姜涛,薛向欣,段培宁,等TiN/O-Sialon导电复合材料的制备及其性能[J],金属学报,2007,43(2):131-136
    74.姜涛,薛向欣.含钛高炉渣合成(Ca, Mg)a-Sialon-ALN-TiN粉末[J],中国有色金属学报,2004,14(12):2009-2015
    75.董学文.攀钢高炉渣作为光催化材料的可行性分析[J],工业安全与环保,2004,30(9):10-11
    76.Morrison S R,吴辉煌泽.半导体与金属氧化膜的电化学[M],北京:科学技术出版社,1988
    77. Fujishima A, Honda K. Electrochemical photolysis of water at semiconductor electrode [J], Nature, 1972,238:37-38
    78. Hugenschmidt M B, Gamble L, Campbell C T. The interaction of H2O with TiO2 (110) surface [J], Surf. Sci.,1994,302(3):329-340
    79. Henderson M A. Structural sensitivity in the dissociation of water on TiO2 single-crystal surfaces [J], Langmuir,1996,12(21):5093-5098
    80. Henderson M A. An HREELS and TPD study of water on TiO2 (110):the extent of molecular versus dissociative adsorption [J], Surf. Sci.,1996,355(2):151-166
    81. Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces [J], Nature,1997,388: 431-432
    82.刘旦初.多项催化原理[M],上海:复旦大学出版社,1997,216-225
    83.陈建华,龚竹青.二氧化钛半导体光催化材料离子掺杂[M],北京:科学出版社,2006,3,6
    84.董保澎.固体废料的处理与应用[M],北京:冶金工业出版社,1999,22
    85.高水静,张文丽.含钛高炉渣的利用现状与展望[J],山东陶瓷,2006,29(5):29-31
    86. Ishibashi K, Nosaka Y, Hashimoto K, et al. Time-dependent behavior of active oxygen species formed on photoirradiated TiO2 films in air [J], J. Phys. Chem. B,1998,102(12):2117-2120
    87. Bickley R I, Vishmanathan V. Photocatalytically induced fixation of molecular nitrogen by near UV radiation [J], Nature,1979,280:306-308
    88. Scharz P F, Turro N J. A new method to determine the generation of hydroxyl radicals in illuminated TiO2 suspensions [J], J. Phys. Chem. B,1997,101(36):7127-7134
    89. Matthews R W. Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide [J], J. Catal.,1998,111(2):264-272
    90. Matthews R W. Purification of water with near-u.v. illuminated suspensions of titanium dioxide [J], Water Res.,1990,24(5):653-660
    91. Matthews R W, Mcevoy S R. Destruction of phenol in water with sun, sand, and photocatalysis [J], Solar Eneryg,1992,49(6):507-513
    92. Ishibashi K, Fujishima A, Watanabe T, et al. Quantum yields of active oxidative species formed on TiO2 photocatalyst [J], J. Photochem. Photobio. A:Chem.,2000,134(2):139-142
    93. Yu J, Savage P E. Catalytic oxidation of phenol over MnO2 in supercritical water [J], Ind. Eng. Chem. Res.,1999,38(10):3793-3801
    94. Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB'S in the presence of titanium dioxide in aqueous suspension [J], Bull. Environ. Contain. Toxicol.,1976,16(6):697-701
    95. Goswami D Y. A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes [J], J. Sol. Ener. Eng.,1997,119(2):101-107
    96. Mills A, Le H S. An overview of semiconductor photocatalysis [J], J. Photochem. Photobio., A:Chem., 1997,108(1):1-35
    97. Linsebigler A L, Lu, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms and selected results [J], Chem. Rev.,1995,95(3):735-758
    98. Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems [J], Chem. Rev., 1995,95(1):49-68
    99. Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at TiO2 titanium dioxide powder [J], J. Am. Chem. Soc.,1977,99(1):303-304
    100. Tayade R J, Kulkarni R G, Jasra R V. Photocatalytic degradation of aqueous nitrobenzene by nanocrystalline TiO2 [J], Ind. Eng. Chem. Res.2006,45(3):922-927
    101. Harada K, Hisanaga T, Tanaka K. Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions [J], Watar Res.,1990,24(11):1415-1417
    102. Matthews R W, Ollis D F. Photocatalytic oxidation of chlorobenzene in aqueous suspensions of titanium dioxide [J], J. Catal.,1998,97(2):565-569
    103.魏宏斌,严煦世,徐迪民.二氧化钛膜固定相光催化氧化法深度处理自来水[J],中国给水排水, 1996,16(6):413-417
    104.杨合,薛向欣,左良,等.含钛高炉渣催化剂光催化降解亚甲基蓝过程工程学报[J],2004,4(3):265-268
    105.刘卯,薛向欣,杨合,等.含钛高炉渣光催化降解邻硝基酚的实验研究[J],材料导报,2006,20(1):140-142
    106.赵娜,杨合,薛向欣,等.高钛渣作为光催化材料降解邻硝基酚的实验研究[J],硅酸盐学报,2005,33(2):202-205
    107. Tada H, Ishida T, Takao A, et al. Kinetic and DFT studies on the Ag/TiO2- photocatalyzed selective reduction of nitrobenzene to aniline [J], Chem. Phys. Chem.,2005,6(8):1537-1543
    108. Rodriguez M, Timokhin V, Michl F, et al. The influence of different irradiation sources on the treatment of nitrobenzene [J], Catal. Today,2002,44(76):291-300
    109. Bhatkhande D S, Kamble S P, Sawant S B, et al. Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light [J], J. Chem. Eng.,2004,102,283-290
    110. Alfano O M, Bahnemann D, Cassano A E, et al. Photocatalysis in water environments using artificial and solar light [J], Catal. Today,2000,42(58),199-230
    111. Bhatkhande D S, Pangarkar V G, Beenackers A A C M. Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation:chemical effects and scaleup [J], Water Res., 2003,37(9):1223-1230
    112.朱明华.仪器分析[M],北京:高等教育出版社,2004,153-154
    113. McCreery R L. Carbon electrodes:structural effects on electron transfer kinetics [J], Electroanal Chem.,1991,17:221-373
    114.傅业伟,郑建斌,傅紫霞.微伏安电极及其在活体分析中的应用[J],分析化学,1990,18(5):485-492
    115.袁倬斌,李元光.微电极在电化学动力学研究中的应用[J],分析试验室,1996,15(4):95-99
    116.张正奇,刘辉,黎艳飞.碳糊电极新进展[J],分析科学学报,1998,14(1):80-86
    117. Kin J K, Kim H S, Lee D G. Adhesion characteristics of carbon/epoxy composites treated with low-and atmospheric pressure plasmas [J], J. Adhe. Sci. Tech.,2003,17(13),1751-1771
    118. Kim H C, See S K. Electrical properties of unidirectional carbon-epoxy composites in wide frequency band [J],J. Phys. D:Appl. Phys.,1990,23(7):916-921
    119. Ye R, Khoo S B. Cathodic stripping voltammetric determination of ultratrace gold (Ⅲ) at a bulk modified epoxy-graphite tube composite electrode in flow systems [J], Analyst,1999,124:353-360
    120. Khoo S B, Ye R. Determination of trace tin in flow systems at an epoxy-carbon powder-8-hydroxyquinoline composite electrode [J], Analyst,2000,125:895-902.
    121.瞿瞾,胡冠昱,瞿国瑞.石墨电极形式及其特点[J],新技术新工艺,2004,(6):29-31
    122.王静,冯玉杰.溶胶-凝胶法制备稀士Gd掺杂SnO2电催化电极的实验研究[J],环境污染治理技 术与设备,2005,6(7):19-24
    123.冯玉杰,李晓岩,尤宏,等.电化学技术在环境工程中的应用[M],北京:化学工业出版社,2002
    124. Feng Y J, Li X Y. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution [J], Water Res.,2003,37(10):2399-2407
    125. Diab N, Oni J, Schuhmann W. Electrochemical nitric oxide sensor preparation:a comparison of two electrochemical methods of electrode surface modification [J], Bioelectrochem.,2005,66(2):105-110
    126.魏杰,于秀娟,王东田.钛基氧化物电极的制备及其在水处理中的应用[J],环境保护科学,2002,28(4):10-12
    127.倪亚明,朱仲良,宋卫锋,等.电解催化降解苯胺过程的减秩因子法分析[J],环境化学,2001,20(3):255-260
    128.宋卫锋,谢光炎,林美强.DSA类电极催化降解硝基苯及其动力学研究[J],上海环境科学,2002,21(6):353-357
    129.宋卫锋,马前,李义久,等.电化学催化降解苯胺的试验研究[J],环境污染与防治,2001,23(4):157-159
    130.赵国华,陈蕊,高廷耀.有机污染物苯胺在催化电极上氧化降解的途径[J],环境科学研究,2003,16(3):51-54
    131. Matthews R W, Ollis D F. Photocatalytic oxidation of chlorobenzene in aqueous suspensions of titanium dioxide [J], J. Cataly.,1986,97(2):565-569
    132. Azzam M O, Al-Tarazi Mousa, Tahboub Y. Anodic destruction of 4-chlorophenol solution [J], J. Hazard. Mat.,2000,75(1):99-113
    133. Jedral W, Merica S G, Bunce N J. Electrochemical oxidation of chlorinated benzenes [J], Electrochem. Commun.,1999,1(4):108-110
    134. Kim S, Kim T H, Park C, et al. Electrochemical oxidation of polyvinyl alcohol using a RuO2/Ti anode [J], Desalina.,2003,155(1):49-57
    135. Vlyssides A, Loizidou M, Karlis P K, et al. Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode [J], J. Hazard. Mat.,1997,70(2):41-52
    136. Tanaka S, Nakata Y, Kimura T, et al. Electrochemical decomposition of bisphenol A using Pt/Ti and SnO2/Ti anodes [J], J. Appl. Electrochem.,2002,32(2):197-201
    137. Dasilva L M, Fernandes K C, Defaria L A, et al. Electrochemical impedance spectroscopy study during accelerated life test of conductive oxides:Ti/(Ru+Ti+Ce)O2-system [J], Electrochem. Acta., 2004,49(27):4893-4906
    138.董秋花,赵中一.二氧化钛光电催化降解水中有机污染物的研究进展[J],安徽化工,2005,23(2):41-43
    139.樊彩梅,郭向丹,梁镇海.Ti02薄膜电极的制备及光电催化性能[J],稀有金属材料与工程,2005,34(3):409-411
    140.郭香会,李劲,叶齐政,等.脉冲放电等离子体处理硝基苯废水的实验研究[J],高电压技术,2001,27(3):42-44
    141.杨合,薛向欣,董学文.含钛高炉渣抗金黄色葡萄球菌的性能[J],硅酸盐学报,2008,36(3):387-390
    142. Zhang S J, Jiang H, Li M J. Kinetics and mechanisms of radiolytic degradation of nitrobenzene in aqueous solutions [J], Environ. Sci. Tech.,2007,41(6):1977-1982
    143.杨瑞霞,毛存峰.三维电极电解硝基苯废水处理实验研究[J],油气田环境保护,2006,16(1):29-31
    144. Kesselman J M, Lewis N S, Hoffmann M R. Photoelectrochemical degradation of 4-Chlorocatechol at TiO2 electrodes:comparison between sorption and photoreactivity [J], Environ. Sci. Tech.,1997,31(8): 2298-2302
    145. Li X Z, Liu H L, Yue P T. Photoelectrocatalytic oxidation of rose bengal in aqueous solution using a Ti/TiO2 mesh electrode [J], Environ. Sci. Tech.,2000,34(20):4401-4406
    146. Hidaka H, Asai Y, Zhao J. Photoelectrochemical decomposition of surfactants on a TiO2/TCO particulate film electrode assembly [J], Phys. Chem.,1995,99(20):8244-8248
    147. Liu D, Kamat P V. Photoelectrochemical behavior of thin cadmium selenide and coupled titania/cadmium selenide semiconductor films [J], Phys. Chem.,1993,97(41):10769-10773
    148.唐浩亮.超声波TiO2光催化氧化降解有色废水的研究[D],广州:暨南大学硕士论文,2003
    149.刘石生,丘泰球.超声在废水处理中的应用[J],应用声学,2001,20(2):43-46
    150.卞华松,张大年,赵一先,等.水溶液中硝基苯的超声微电场降解[J],环境化学,2002,21(3):264-269
    151.卞华松,张大年,赵一先,等.功率超声场作用下水溶液中甲苯的降解机理[J],环境科学,2001,22(3):84-87
    152.华彬,陆永生,唐春燕,等.含氯苯废水的超声降解研究[J],环境污染与防治,2001,23(3):95-97
    153.祁梦兰,杜静,郭晓红.声化学氧化-SBR法处理染料废水[J],河北轻化工学院学报,1997,18(1):76-80
    154.傅敏,丁培道,蒋永生,等.超声波与电化学协同作用降解硝基苯溶液的实验研究[J],应用卢学,2004,23(5):36-40
    155.傅敏,高宇,王孝华,等.超声波降解苯胺溶液的实验研究[J],环境科学学报,2002,22(3):402-404
    156. Lesko T, Colussi A J, Hoffmann M R. Sonochemical decomposition of phenol:evidence for a synergistic effect of ozone and ultrasound for the elimination of total organic carbon from water [J], Environ. Sci. Tech.,2006,40(21):6818-6823
    157. Kang J W, Hung H M, Lin A, Hoffmann M R. Sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation:The role of O3, H2O2, frequency, and power density [J], Environ. Sci. Tech., 1999,33(18):3199-3205
    158. Chen Y C, Smirniotis P. Enhancement of photocatalytic degradation of phenol and chlorophenols by ultrasound [J], Ind. Eng. Chem. Res.,2002,41(24):5958-5965
    159. Adewuyi Y G. Sonochemistry in environmental remediation.2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water [J], Environ. Sci. Tech.,2005,39(22): 8557-8570
    160. Muruganandham M, Yang J S, Wu J J. Effect of ultrasonic irradiation on the catalytic activity and stability of goethite catalyst in the presence of H2O2 at acidic medium [J], Ind. Eng. Chem. Res.,2007, 46(3):691-698
    161.刘勇弟,王华星,朱亚新Fenton试剂氧化偶合混凝法处理含酚废水的机理研究[J],中国环境科学,1994,14(5):341-345
    162.国家环境保护总局《水和废水监测分析方法》编委会编.水和废水监测分析方法,第四版[M],北京:中国环境科学出版社,2002,467-470,258-273
    163. Sclafani A, Palmisano L, Schiavello M, et al. Influence of the preparation methods of on the photocatalytic degradation of phenol in aqueous dispersion [J], J. Phys. Chem.,1990,94(2):829-832
    164.李俊华,傅慧静,傅立新,等.金属离子掺杂的TiO2薄膜的制备及其光催化降解甲苯的性能[J],催化学报,2005,26(6):503-507
    165. Tayade R J, Kulkarni R G, Jasra R V. Photocatalytic degradation of aqueous nitrobenzene by nanocrystalline TiO2 [J], Ind. Eng. Chem. Res.,2006,45(5),922-927
    166. Drijvers D, Van L H, Beckers M. Decomposition of phenol and trichloroethylene by the ultrasound/H2O2/CuO process [J], Water Res.,1996,33(5):1187-1196
    167. Bickley R I, Gonzalea C T, Lee J S, et al, A structural investigation of titanium dioxide photocatalysts [J], J. Solid State Chem.,1991,92(1):178-190
    168. Kist L T, Albrecht C, Machado E L. Hospital laundry wastewater disinfection with catalytic photoozonation [J]. Clean-Soil, Air, Water,2008,36(9):775-780
    169.倪珺.光电协同催化氧化有机污染物及阴极反应行为的研究[D],杭州:浙江大学,2004
    170.豆俊峰,邹振扬,牟其伍.提高二氧化钛光催化活性的研究进展[J],四川环境,2000,19(4):9-11,31
    171. Nicola J P, Michael R H. Mathematical model of a photocatalytic fiber-opticcable reactor for heterogeneous photocatalytic [J], Environ. Sci. Tech.,1998,32(3):398-404
    172. Haber F. Z. Elektrochem. Angew. Phys. Chem.,1898,5:235
    173. Fan L J, Wang C, Chang S C, et al. Reaction of nitrobenzene on gold single-crystal electrodes:surface crystallographic orientation dependence[J], J. Electroanal. Chem.,1999,477(2):111-120
    174. Polat K, Aksu M L, Pekel A T. Electroreduction of nitrobenzene to p-aminophenol using voltammetric and semipilot scale preparative electrolysis techniques [J], J. Appl. Electrochem.,2002,32(2): 217-223
    175.马淳安,黄烨,童少平,等.碳化钨在对硝基苯酚电还原过程中的电催化行为[J],物理化学学报,2005,21(7):721-724
    176. Squella J A, Huerta M, Bollo S. Electrochemical reduction of nitrotetralones [J], J. Electroanal Chem., 1997,420(1):63-69
    177. Zhang C Z, Yang J, Wu Z D. Electroreduction of nitrobenzene on titanium electrode implanted with platinum [J], Mat. Sci. Eng. B,2000,68(3):138-142
    178. Yang H H, Eckert C A. Homogeneous catalysis in the oxidation of p-chlorophenol in supercritical water [J], Ind. Eng. Chem. Res.,1988,27(11):2009-2014
    179. Silvester D S, Wain A J, Aldous L. Electrochemical reduction of nitrobenzene and 4-nitrophenol in the room temperature ionic liquid [C4dmim] [N(Tf)2] [J], J. Electroanal Chem.,2006,596(2):131-140
    180.马淳安,张文魁,黄辉,等.硝基苯电还原特性研究[J],电化学,1999,5(4):394-399
    181.徐文英,樊金红,高廷耀.硝基苯类物质在铜电极上的电还原特性及pH的影响[J],环境科学,2005,26(2):102-107
    182.程沧沧,邓南圣,吴峰,等.光电催化降解硝基苯及反应产物的分布[J].水处理技术,2006,32(4):19-22
    183. Vinodogopal K, Prashant V K. Enhanced rates of photocatalytic degradation of anazo dye using SnO2/TiO2 coupled semiconductor thin films [J], Environ. Sci. Tech.,1995,29(3):841-845
    184. Marquez J, Pletcher D. A study of the electrochemical reduction of nitrobenzene to p-aminophenol [J], J. Appl. Electrochem.,1980,10 (5):567-573
    185.藤嵨昭,相泽益男,井上澈.电化学测定方法[M],北京:北京大学出版社,1995,157-158
    186. Bard A J, Faulkner L R电化学方法、原理及应用[M],北京:北京工业出版社,1986,232-234
    187.赵凯华,陈熙谋.电磁学(下),第二版[M],北京:高等教育出版社,1996,483
    188.储金宇,汪松美,吴春笃.含有机污染物废水电解及机理研究[J],黄金,2007,28(5):49-52
    189.上海环境保护局.废水生化处理[M],上海:同济大学出版社,1999,34-36
    190. Mantha R, Taylor K E, Biswas N. A continuous system for Fe0 reduction of nitrobenzene in synthetic wastewater [J], Environ. Sci. Tech.,2001,35(15):3231-3236
    191. Hung H M, Ling F H, Hoffmann M R. Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound [J], Environ. Sci. Tech.,2000,34(9): 1758-1763
    192. Larsen J W, Freund M, Kim K Y, et al. Mechanism of the Carbon Catalyzed Reduction of Nitrobenzene by Hydrazine [J], Carb.,2000,38,655-661
    193. Miguel R, Vitaliy T, Florian M, et al. The influence of different irradiation sources on the treatment of nitrobenzene [J], Catal. Today,2002,76:291-300
    194. Contreras S, Rodn'guez M, Chamarro E, et al. UV and UV/Fe(Ⅲ)-enhanced ozonation of nitrobenzene [J]. J. Photochem. Photobiol. A,2001,142:79-83
    195. Arslan-Alaton I, Ferry J L.H4SiW12O40-catalyzed oxidation of nitrobenzene in supercritical water: kinetic and mechanistic aspects [J], Appl. Catal. B:Environ.,2002,38(4):283-293
    196.梁世懿,成本诚.高等有机化学:结构、反应、合成[M],北京:高等教育出版社,1993,39
    197. Kim E J, Hahn S H. Micro structural changes of micro emulsion mediated TiO2 particles during calcination [J], Mater. Lett.,2001,49,244-249
    198. Rajesh J T, Ramchandra G K, Raksh V J. Photocatalytic degradation of aqueous nitrobenzene by nanocrystalline TiO2 [J], Ind. Eng. Chem. Res.,2006,45:922-927
    199. Chen Y F, Lee C Y, Yang M Y, Chiu H T. The effect of calcination temperature on the crystallinity of TiO2 nanopowders [J], Cryst. Grow. Des.,2003,247:363-370
    200. Ramkrishna M, Keithe T, Nihar B A. Continuous system for Fe0 reduction of nitrobenzene in synthetic wastewater [J], Environ. Sci. Tech.,2001,35(15):3231-3236
    201. Zhao J S, Ward O P, Lubicki P, et al. Process for degradation of nitrobenzene:combining electron beam irradiation with biotransformation [J], Biotech. Bioeng.,2001,73(4):306-312
    202.蒋展鹏.环境工程学[M],北京:高等教育出版社,2001,21
    203. Destaillats H, Hung H M, Hoffmann M R. Degradation of alkylphenol ethoxylate surfactants in water with ultrasonic irradiation [J], Environ. Sci. Tech.,2000,34(2):311-317
    204. Bongbeen Y, Yoshio N, Yasuaki M. Sonolytic Degradation of phthalic acid esters in aqueous solutions acceleration of hydrolysis by sonochemical action [J], Phys. Chem. A,2002,106(1):104-107
    205. Hideya K, Yoshiki T, Ryuichi A. Mass spectrometric analysis for high molecular weight synthetic polymers using ultrasonic degradation and the mechanism of degradation [J], Anal. Chem.,2007, 79(11):4182-4187
    206. Ince N H, Tezcanli G, Belen R K. Ultrasound as a catalyzer of aqueous system:the state of the art and environmental applicatoins [J], Appl. Catal. B:Environ.,2001,29:167-176
    207. Petrier C, Micolle M, Merlin G. Characteristics of pentach iorophenate degradation in aqueous solution by means of ultrasound [J], Environ. Sci. Tech.,1992,26(8):1639-1642
    208. Petrier C, Jiang Y, Lamy M F. Ultrasound and environment:sonochemical destruction of chloroaromatic derivatives [J], Environ. Sci. Tech.,1998,32(9):1316-1318
    209. Hua I, Hoffmann M R. Optimization of ultrasonic irradiation as an advanced oxidation technology [J], Environ. Sci. Tech.,1997,31:2237-2243
    210. Lin J G, Chang C N, Wu J R. Decomposition of 2-chlorophenenol in aqueous solution by ultrasound/HO Process [J], Wat. Sci. Tech.,1996,33(6):75-81
    211. Adewwuyi Y G. Sonochemistry in environmental remediation.2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water [J], Environ. Sci. Tech.,2005,39(22): 8557-8570
    212. Kubo M, Fukuda H, Chua X J. Kinetics of ultrasonic degradation of phenol in the presence of composite particles of titanium dioxide and activated carbon [J], Ind. Eng. Chem. Res.,2007,46(3): 699-704
    213.郭银松.论废水生化处理可行性评价[J],电力环境保护,1995,11(3):29-35
    214. Gurol M, Akata A. Kinetics of ozone photolysis in aqueous solution [J], AICHE J.,1996,42(11): 3283-3292
    215. Beltran J, Torregrosa J, Dominguez J R, et al. Advanced oxidation processes for the degradation of p-hydroxybenzoic acid 1:photo-assisted ozonation [J], J. Chem. Tech. Biotech.,2001,76(12): 1235-1242
    216. Jafar S M K, Ali B S M, Mohammad A K, et al. Decolorization of RR-120 dye using ozone and ozone/UV in a semi-batch reactor [J], Can. J. Chem. Eng.,2004,82(6):1284-1288
    217. De K A, Bhattacharjee S, Dutta B K. Kinetics of phenol photooxidation by hydrogen peroxide and ultraviolet radiation [J], Ind. Eng. Chem. Res.,1997,36(9):3607-3612
    218. Acero J L, Benitez F J, Heredia J B, et al. Chemical treatment of cork-processing wastewaters for potential reuse [J], J. Chem. Tech. Biotech.,2004,79(10):1065-1072
    219. Fernando H, Gunther G. Photooxidative treatment of sulfurous water for its potabilization [J], Photochem. Photobiol.,2005,81(3):636-640
    220. Ford J, Hernandez R, Zappi M. Bench-scale evaluation of advanced oxidation processes for treatment of a cyanide-contaminated wastewater from an engine manufacturing facility [J], Environ. Prog.,2006, 25(1):32-38
    221. Yasar A, Ahmad N, Khan A A. Energy requirement of ultraviolet and AOPs for the post-treatment of treated combined industrial effluent [J], Coloration. Tech.,2006,122(4):201-206
    222. Real F J, Benitez F J, Acero J L. Removal of diazinon by various Advanced oxidation processes [J], J. Chem. Tech. Biotech.,2007,82(6):566-574
    223. Ding Z Y, Aki S N V K, Abraham M A. Catalytic supercritical water oxidation:phenol conversion and product selectivity [J], Environ. Sci. Tech.,1995,29(11):2748-2753
    224. Aki S, Abraham M A. Catalytic supercritical water oxidation of pyridine:comparison of catalysts [J], Ind. Eng. Chem. Res.,1999,38(2):358-367
    225. Krajnc M, Levec J. The role of catalyst in supercritical water oxidation of acetic acid [J], Appl. Cat. B: Environ.,1997,13(2):93-103
    226. Yu J, Savage P E. Catalyst activity, stability, and transformations during oxidation in supercritical water [J], Appl. Cat. B:Environ.,2001,31(2):123-132
    227. Zhang X, Savage P E. Fast catalytic oxidation of phenol in supercritical Water [J], Catal. Today,1998, 40(4):333-342

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700