基于聚合物固定生物识别分子和纳米增敏新法的安培生物传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物传感分析是将生物活性材料(酶、抗体/抗原、核酸、适体等)的分子识别功能与物理化学传感换能技术有机结合的现代分析化学分支,具有灵敏度高、选择性好、操作便利、分析速度快、成本低、易于实现实时监测等特点,在复杂环境乃至活体分析中也不乏其应用实例。自第一支生物传感器在20世纪60年代诞生以来,生物传感分析领域发展迅速,备受学术界和产业界关注。有效固定生物识别材料是研制生物传感器的关键步骤之一,采用化学聚合法或电化学聚合法制备生物兼容性聚合物生物敏感材料一直是固定生物识别分子的重要方法。近年来,随着纳米科技的蓬勃发展,纳米生物传感迅速成为生物传感分析领域的国际前沿和热点。本学位论文中,我们简要综述了电化学生物传感器的近期进展,以及聚合物和纳米材料在生物传感领域的应用,并针对基于聚合物固定生物识别分子和纳米增敏新法的生物传感分析开展了系列研究工作,主要内容如下:
     1.将化学/电化学聚合法有机结合,提出了在含酶和单体悬浊液/水溶液中一锅法化学预氧化—电聚合单体(CPEM)的新方法用于高效固定酶,藉此研制了高敏安培生物传感器。考察了1,4-苯二硫酚(BDT)、1,6-已二硫醇(HDT)、邻苯二胺、邻氨基酚和吡咯等单体;铁氰化钾和对苯醌两种预氧化剂;葡萄糖氧化酶(GOx)和碱性磷酸酶两种酶及其生物传感器。代表性实验步骤如下:在BDT单体和酶的水相悬浊液中加入预氧化剂K3Fe(CN)6引发化学氧化聚合,得到包埋有大量高活性酶分子的BDT寡聚体—酶复合物,再电氧化聚合该复合物和BDT单体,最终制得高性能酶膜。与常规电聚合法(CEP)相比,CPEM法所制葡萄糖安培生物传感器的灵敏度提高至32.4倍。通过电化学石英晶体微天平(EQCM)和紫外—可见光谱法的定量测试,发现采用CPEM法可显著提高酶膜中酶的负载量和比活性。
     2.以酶生H2O2(EG-H2O2)为预氧化剂,提出了高效固定酶的一锅法生化预氧化—电聚合单体(BPEM)新方法,藉此研制了高敏葡萄糖安培生物传感器。基本实验步骤如下:在含GOx和2,5-二巯基-1,3,4-噻二唑(DMcT)的水相悬浊液中加入葡萄糖,酶生H2O2使DMcT氧化聚合,生成DMcT寡聚体—GOx复合物,再电氧化聚合该复合物和DMcT单体,可在电极表面制得高性能酶膜。与CEP法比,该法所制传感器的灵敏度提高至119倍,检测下限降低了2个数量级。发现BPEM法所制酶电极的灵敏度比基于外加H2O2的CPEM法更高,原因可能为生化预氧化聚合/包埋作用主要发生在酶分子附近(反应临近性),故酶负载量更大。采用EQCM监测了电极修饰过程,发现DMcT聚合膜可被电还原而从电极上脱落,这有利于电极基底的电化学再生。
     3.采用多巴胺(DA)为单体、HAuCl4或H2PtCl6为预氧化剂,通过CPEM法固定GOx和半乳糖氧化酶,制备了新型聚合物生物纳米复合物(PBNCs):聚多巴胺(PDA)-酶-纳米金(或铂)(AuNPs或PtNPs)复合物,籍此研制了高敏葡萄糖和半乳糖安培生物传感器。PDA基质具有优异的吸附性能和生物相容性,有利于高效固定酶和纳米增敏。与CEP法相比,基于该PBNCs的酶电极更灵敏,金和镀铂金电极上对葡萄糖的检测灵敏度分别达99和129μA cm-2 mmol-1L。基于PBNCs的第二代安培传感器亦有优异性能。
     4.提出了化学氧化聚合-磁性分离/固定新方法用于高效固定酶,藉此研制了高敏葡萄糖安培生物传感器。先采用化学共沉淀法合成了Fe3O4@Au核壳型磁性复合纳米粒子,然后据化学氧化聚合法制得聚1,6-已二硫醇(PHDT)-GOx-Fe3O4@Au纳米复合物,并借助磁场将该复合物分离/固定在磁性电极表面。所制酶电极对葡萄糖的检测灵敏度达110μA cm-2 mmol-1L,检测限为0.3μmol L-1。该法简便、省时、高效。
     5.提出采用新型HDT电聚合膜固定AuNPs、实现纳米增敏压电免疫传感的新方法。通过EQCM等技术研究了HDT电聚合过程和机理。结合理论分析和实验结果,定量考察了AuNPs在HDT电聚合膜上的覆盖度和纳米增敏效应。比较研究了羊抗人免疫球蛋白G (anti-hIgG)的吸附,及后续的与人免疫球蛋白G (hIgG)的免疫反应。与常规HDT自组装单层修饰电极相比,基于HDT电聚合膜的修饰电极可更有效地固定抗体、性能更稳定、制备时间更短。新型硫醇聚合膜材料有望作为硫醇自组装单层的有益补充而在生物传感研究中广泛应用。
     6.基于化学氧化聚合法制备了免疫PBNCs:PDA-PtNPs-anti-hIgG复合物,该复合物免疫亲合性高并可高效催化H202电还原,籍此研制了高敏三明治型安培免疫传感器。该传感器可检测低至0.018 ngmL-1的hIgG,具有良好的重现性、稳定性、再生性和特异性,可用于临床人血清样品中目标物检测。
     7.基于化学氧化法制备了PDA-PtNPs-GOx纳米复合物,然后借助葡萄糖存在下酶生H2O2生化还原HAuCl4,在纳米复合物表面原位生成AuNPs用于高效吸附固定抗体及酶标GOx,制得GOxads/anti-hIgG/AuNPs/PDA-PtNPs-GOx生物纳米复合物,籍此研制了高敏三明治型电化学免疫传感器。该法优势在于能在该生物纳米复合物表面和内部均高效固定GOx酶标,有效地提高了酶标的负载量及活性。以醌/氢醌为媒介体,实现了超敏免疫信号的输出,所制免疫传感器可检测低至2 pg mL-1的hIgG。
     8.将AuNPs/PDA-PtNPs-GOx纳米复合物滴干修饰于金电极表面,共价固定巯基化适体以特异结合凝血酶,以GOx标记物的催化电流为信号输出,研制了“信号衰减”型电化学适体传感器。凝血酶与适体结合后产生传质阻力,可显著抑制标记酶的催化反应速度,降低酶生H2O2氧化电流。所制适体传感器可检测低至0.1 nmolL-1的凝血酶。
     9.结合磁分离/富集技术,提出了以适体缠绕的单壁碳纳米管(SWCNTs)为放大平台的新型三明治型适体安培传感器。以凝血酶适体Ⅰ修饰的磁性纳米粒子、凝血酶、凝血酶适体Ⅱ缠绕的SWCNTs构建三明治型复合物,借助磁场将其分离并富集至磁性金电极上,通过亚甲基蓝分子对SWCNTs上缠绕的适体Ⅱ的位置取代作用,成功分离得到亚甲基蓝/SWCNTs修饰的金电极。以亚甲基蓝的脉冲伏安峰电流为分析信号,所制适体传感器可检测低至3 pmol L-1的凝血酶,优于其它类似传感器。
By combining the recognition ability of bioactive species (enzyme, antibody/antigen, nucleic acid, aptamer, etc.) and the physical/chemical transducer, biosensing analysis has become one of the most important branch of modern analytical chemistry. Biosensor is well acknowledged as a device that can detect the target with high selectivity, time/cost-effectiveness, and operation facility, being competent for working in complex samples, on-line monitoring, and even in vivo analysis. Since the inception of the first biosensor in 1960s, biosensing research has gained an explosive development and received wide academic and industrial attention. The effective immobilization of biorecognition materials is regarded as one of the key steps to construct a biosensor, and the use of chemical or electrochemical polymerization to prepare biocompatible polymeric biosensing films is always one of the most important methods to immobilize biorecognition molecules. Recently, along with the explosive development of nanoscience and nanotechnology, nanobiosensing has become the frontier and focus of this field. In this dissertation, the recent advances of electrochemical biosensors as well as the biosensing applications of polymers and nanomaterials are reviewed, and a series of biosensing studies are conducted based on novel methods for polymeric immobilization of biorecognition molecules and for nano enhancement, as summarized below.
     1. Combining the chemical polymerization and electrochemical polymerization, we propose the one-pot chemical preoxidation and electropolymerization of monomer (CPEM) in enzyme-containing aqueous suspensions (or solutions) as a universal strategy for high-activity and high-load immobilization of enzymes to construct amperometric biosensors. We investigated the monomer of 1,4-benzenedithiol (BDT),1,6-hexanedithiol (HDT), o-phenylenediamine, o-aminophenol or pyrrole, the preoxidant of K3Fe(CN)6 or p-benzoquinone, and the enzyme of glucose oxidase (GOx) or alkaline phosphatase (AP) to develop GOx-based glucose biosensors or AP-based disodium phenyl phosphate biosensors. The typical experimental procedures are as follows. Into an aqueous suspension of BDT and GOx, the preoxidant of K3Fe(CN)6 was added to obtain BDT oligomer-enzyme composite; then high-performance enzyme film was gained by co-electrodeposition of these composites and poly(1,4-benzenedithiol). Compared with the biosensor based on protocol of conventional electropolymerization (CEP), the CPEM-based glucose biosensor presented a 32.4-fold sensitivity. We also found that the load and activity of the immobilized enzymes was largely improved, as estimated by electrochemical quartz crystal microbalance (EQCM) and UV-vis spectrophotometry.
     2. We propose the biochemical preoxidation and electropolymerization of monomer (BPEM) using enzyme generated-H2O2 (EG-H2O2) as the preoxidant to immobilize enzyme with high load and activity, thus to construct a high-performance amperometric glucose biosensor. Basic experimental procedures are as follows. In an aqueous suspension of 2,5-dimercapto-1,3,4-thiadiazole (DMcT) and GOx, glucose was added, and the EG-H2O2 biochemically oxidized DMcT to DMcT oligomer (DMcTO), which entrapped GOx and yielded DMcTO-GOx composites, followed by co-electrodeposition of these composites and DMcT polymer to form a high performance enzyme film. Compared with the CEP protocol, the BPEM-based glucose biosensor presented 119-fold sensitivity, as well as a detection limit of 2 orders lower. We found that the performance of BPEM-based biosensor was superior to that based on the CPEM protocol using externally-added H2O2 as the preoxidant, which may be ascribed to the improved proximity of biochemical preoxidation and thus an increased enzyme load. We also found that DMcT polymer could be cathodically detached from the electrode surface, favorably enabling the electrochemical regeneration of the electrode substrate, as monitored by EQCM.
     3. We propose the preparation of novel poly dopamine (PDA)-enzyme-metallic nanoparticles nanocomposites using the CPEM protocol, with dopamine (DA) as the monomer and HAuCl4 or H2PtCl6 as the preoxidant, to immobilize GOx (or galactose oxidase) for fabricating high performance glucose (or galactose) biosensors. The PDA exhibited excellent adsorbability and biocompatibility, being favorable for highly efficient immobilization of enzyme molecules and nano enhancement. Compared with the CEP protocol, the PBNCs-based biosensor showed obviously improved sensitivity of 99μA cm-2 mmol-1 L and 129μA cm-2 mmol-1 L for glucose at bare Au and platinized Au electrode, respectively. Also, the prepared PBNCs electrode is able to work well in the second generation biosensing mode.
     4. We propose a novel protocol of chemical polymerization with magnetic separation/immobilization for high-sensitivity amperometric glucose biosensing. We prepared Fe3O4@Au core-shell hybrid magnetic nanoparticles (MNPs) using the method of chemical co-precipitation, then synthesized poly(1,6-hexanedithiol) (PHDT)-GOx-Fe3O4@Au nanocomposites using chemical polymerization, which were magnetically separated and immobilized on the magnetism electrode. This protocol was simple, time-saving, and highly efficient. The glucose biosensor showed a high detection sensitivity of 110μA cm-2 mmol-1L, detection limit of 0.3μmol L-1, S/N=3).
     5. We propose electrosynthesized PHDT as a new matrix to immobilize AuNPs and anti-body for performance-enhanced piezoelectric immunosensing. Using the EQCM, we investigated the process and mechanism for HDT electropolymerzation, and estimated the coverage of AuNPs and the nano enhancement effect theoretically and experimentally. We comparatively examined the adsorption of anti-human immunoglobulin G (anti-hIgG) and the subsequent immunoreaction with immunoglobulin G (hIgG). Compared with the electrode modified with HDT self-assembled monolayer (SAM), the PHDT modified electrode showed better stability and can be constructed more time-effectively, demonstrating that the novel thiol-polymer materials may become a useful alternative to thiol-based SAM and find wide biosensing applications.
     6. Novel PDA-PtNPs-anti-hIgG nanocomposites were prepared using chemical synthesis, which present satisfactory immuno-recognition efficiency and strong catalysis ability to electrochemical reduction of H2O2 for high performance sandwich-type amperometric immunosensing. The immunosensor has a limit of detection of 0.018 ng mL-1, as well as good reproducibility, stability, regeneration ability, specificity, and satisfactory feasibility for assay in clinical human serum samples.
     7. Chemical oxidation was used to prepare PDA-PtNPs-GOx nanocomposites, on the surface of which AuNPs were biochemically prepared from reduction of HAuCl4 by the entrapped GOx-generated H2O2 to effectively immobilize antibody and GOx, yielding GOxads/antibody/AuNPs/PDA-PtNPs-GOx PBNCs for high performance sandwich-type amperometric immunosensing. The thus-prepared PBNCs feature high load and activity of the enzyme label immobilized both in the interior and on the surface for ultrasensitive signal readout. Using p-benzoquinone/hydroquinone as the mediator, the proposed immunosensor could detect the target antigen of hIgG down to a concentration of 2 pg mL-
     8. The AuNPs/PDA-PtNPs-GOx nanocomposites were cast onto an Au electrode to covalently bind a thiolated aptamer for thrombin, and a "signal-off'electrochemical aptasensor was thus constructed based on signal output of the GOx label. The binding of thrombin with the captured aptamer obviously blocked the mass-transfer inside the film on the electrode, leading to the suppression of the enzymatic reaction on the electrode and the decrease of the oxidation current of EG-H2O2. The thus-prepared aptasensor could detect thrombin down to a concentration of 0.1 nmol L/-1.
     9. We propose a novel sandwich-type amperometric aptasensor using aptamer-wrapped single-walled carbon nanotubes (SWCNTs) as an amplification platform and the magnetic separation/immobilization technique to effectively improve the sensitivity. In a suspension containing Fe3O4 MNPs modified with thrombin aptamerⅠ(aptamer@MNPs) and SWCNTs modified with thrombin aptamerⅡ(aptamer@SWCNTs), the target thrombin was added to yield the sandwich-type composites of aptamer I@MNPs-thrombin-aptamerⅡ@SWCNTs. The composites were magnetically separated and collected onto the surface of a magnetism Au electrode, methylene blue was added to detach the aptamerⅡfrom SWCNTs via its stronger interaction with SWCNTs than aptamerⅡdoes, and the methylene blue-adsorbed SWCNTs modified electrode was obtained after magnetically removing the aptamer I@MNPs-thrombin-aptamerⅡcomposites. Based on the differential pulse voltammetric detection of methylene blue, the thus-prepared aptasensor could detect thrombin down to a concentration of 3 pmol L-1.
引文
[1]L. C. Clark, J. C. Lyons, Electrode Systems for Continuous Monitoring in Cardiovascular Surgery, Ann. N. Y. Acad. Sci.,1962,102,29-45.
    [2]汪尔康,21世纪的分析化学,科学出版社,北京:1999.
    [3]司士辉,生物传感器,化学工业出版社,北京:2003.
    [4]董绍俊,车广礼,谢远武,化学修饰电极,科学出版社,北京:1995.
    [5]A. K. Sarma, P. Vatsyayan, P. Goswami, S. D. Minteer, Recent Advances in Material Science for Developing Enzyme Electrodes, Biosens. Bioelectron.,2009,24, 2313-2322.
    [6]G. S. Wilson, Y. B. Hu, Enzyme-Based Biosensors for in Vivo Measurements, Chem. Rev.,2000,100,2693-2704.
    [7]J. Y. Lucisano, D. A. Gough, Transient Response of the Two-Dimensional Glucose Sensor, Anal. Chern.,1988,60,1272-1281.
    [8]E. Wilhelm, R. Battino, R. J. Wilcock, Low-Pressure Solubility of Gases in Liquid Water, Chem. Rev.,1977,77,219-262.
    [9]Q. Cai, K. Zeng, C. Ruan, T. A. Desai, C. A. Grimes, A Wireless, Remote Query Glucose Biosensor Based on a pH-Sensitive Polymer, Anal. Chem.,2004,76, 4038-4043.
    [10]D. A. Gough, J. Y. Lucisano, P. H. S. Tse, Two-Dimensional Enzyme Electrode Sensor for Glucose, Anal. Chem.,1985,57,2351-2357.
    [11]G. Reach, G. S. Wilson, Can Continuou Cose Monitoring Be Used for the Treatment of Diabetes, Anal. Chem.,1992,64,381A-385A.
    [12]J. Wang, F. Lu, Oxygen-Rich Oxidase Enzyme Electrodes for Operation in Oxygen-Free Solutions, J. Am. Chem. Soc.,1998,120,1048-1050.
    [13]C. P. McMahon, G. Rocchitta, P. A. Serra, S. M. Kirwan, J. P. Lowry, R. D. O'Neill, Control of the Oxygen Dependence of an Implantable Polymer/Enzyme Composite Biosensor for Glutamate, Anal. Chem.,2006,78,2352-2359.
    [14]C. P. McMahon, R. D. O'Neill, Polymer-Enzyme Composite Biosensor with High Glutamate Sensitivity and Low Oxygen Dependence, Anal. Chem.,2005,77, 1196-1199.
    [15]C. Y. Deng, M. R. Li, Q. J. Xie, M. L. Liu, Y. M. Tan, X. H. Xu, S. Z. Yao, New Glucose Biosensor Based on a Poly(o-Phenylendiamine)/Glucose Oxidase-Glutaraldehyde/Prussian Blue/Au Electrode with QCM Monitoring of Various Electrode-Surface Modifications, Anal. Chim. Acta,2006,557,85-94.
    [16]J. Li, X. Q. Lin, Glucose Biosensor Based on Immobilization of Glucose Oxidase in Poly(o-Aminophenol) Film on Polypyrrole-Pt Nanocomposite Modified Glassy Carbon Electrode, Biosens. Bioelectron.,2007,22,2898-2905.
    [17]D. W. Pan, J. H. Chen, S. Z. Yao, L. H. Nie, J. J. Xia, W. Y. Tao, Amperometric Glucose Biosensor Based on Immobilization of Glucose Oxidase in Electropolymerized o-Aminophenol Film at Copper-Modified Gold Electrode, Sens. Actuators B,2005,104,68-74.
    [18]Z. N. Zhang, H. Y. Liu, J. Q. Deng, A Glucose Biosensor Based on Immobilization of Glucose Oxidase in Electropolymerized o-Aminophenol Film on Platinized Glassy Carbon Electrode, Anal. Chem.,1996,68,1632-1638.
    [19]A. A. Karyakin, E. A. Kotel'nikova, L. V. Lukachova, E. E. Karyakina, J. Wang, Optimal Environment for Glucose Oxidase in Perfluorosulfonated Ionomer Membranes:Improvement of First-Generation Biosensors, Anal. Chem.,2002,74, 1597-1603.
    [20]Y. C. Tsai, S. C. Li, J. M. Chen, Cast Thin Film Biosensor Design Based on a Nafion Backbone, a Multiwalled Carbon Nanotube Conduit, and a Glucose Oxidase Function, Langmuir,2005,21,3653-3658.
    [21]P. G. Osborne, O. Niwa, K. Yamamoto, Plastic Film Carbon Electrodes: Enzymatic Modification for on-Line, Continuous, and Simultaneous Measurement of Lactate and Glucose Using Microdialysis Sampling, Anal. Chem.,1998,70, 1701-1706.
    [22]Y. Zhang, Y. Hu, G. S. Wilson, D. Moatti-Sirat, V. Poitout, G. Reach, Elimination of the Acetaminophen Interference in an Implantable Glucose Sensor, Anal. Chem., 1994,66,1183-1188.
    [23]H. O. T. Saiki, A. Kusakari, H. Endo, M. Ichihara, M. Izumi, Incorporation of Glucose Oxidase into Langmuir-Blodgett Films Based on Prussian Blue Applied to Amperometric Glucose Biosensor, Langmuir,2007,23,4675-4681.
    [24]D. Zhang, K. Zhang, Y. L. Yao, X. H. Xia, H. Y. Chen, Multilayer Assembly of Prussian Blue Nanoclusters and Enzyme-Immobilized Poly(Toluidine Blue) Films and Its Application in Glucose Biosensor Construction, Langmuir,2004,20,7303-7307.
    [25]Y. Lin, K. Liu, Ping Yu, L. Xiang, X. Li, L. Mao, A Facile Electrochemical Method for Simultaneous and on-Line Measurements of Glucose and Lactate in Brain Microdialysate with Prussian Blue as the Electrocatalyst for Reduction of Hydrogen Peroxide, Anal. Chem.,2007,79,9577-9583.
    [26]J. Wang, J. Llu, L. Chen, F. Lu, Highly Selective Membrane-Free, Mediator-Free Glucose Biosensor, Anal. Chem.,1994,66,3600-3603.
    [27]S. Serban, A. F. Danet, N. E. Murr, Rapid and Sensitive Automated Method for Glucose Monitoring in Wine Processing, J. Agric. Food Chem.,2004,52,5588-5592.
    [28]R. Garcia, L. Rakotozafy, J. Nicolas, Analysis and Modeling of the Ferulic Acid Oxidation by a Glucose Oxidase-Peroxidase Association. Comparison with a Hexose Oxidase-Peroxidase Association, J. Agric. Food Chem.,2004,52,3946-3953.
    [29]Z. G. Wang, Y. Wang, H. Xu, G. Li, Z. K. Xu, Carbon Nanotube-Filled Nanofibrous Membranes Electrospun from Poly(Acrylonitrile-Co-Acrylic Acid) for Glucose Biosensor, J. Phys. Chem. C,2009,113,2955-2960.
    [30]C. T. Hsu, H. H. Chung, D. M. Tsai, M. Y. Fang, H. C. Hsiao, J. M. Zen, Fabrication of a Glucose Biosensor Based on Inserted Barrel Plating Gold Electrodes, Anal. Chem.,2009,81,515-518.
    [31]X. J. Huang, C. C. Li, B. Gu, J. h. Kim, S. O. Cho, Y. K. Choi, Controlled Molecularly Mediated Assembly of Gold Nanooctahedra for a Glucose Biosensor, J. Phys. Chem. C,2008,112,3605-3611.
    [32]T. Hasunuma, S. Kuwabata, E. Fukusaki, A. Kobayashi, Real-Time Quantification of Methanol in Plants Using a Hybrid Alcohol Oxidase-Peroxidase Biosensor, Anal. Chem.,2004,76,1500-1506.
    [33]S. A. M. Marzouk, V. V. Cosofret, R. P. Buck, H. Yang, W. E. Cascio, S. S. M. Hassan, A Conducting Salt-Based Amperometric Biosensor for Measurement of Extracellular Lactate Accumulation in Ischemic Myocardium, Anal. Chem.,1997,69, 2646-2652.
    [34]M. Espina, K. Male, J. T. Luong, A Flow Injection (FI) Biosensor System for Pentachlorophenol (PCP) Using a Substrate Recycling Scheme, Environ. Sci. Technol.,2000,34,3291-3295.
    [35]R. Rajagopalan, A. Aoki, A. Heller, Effect of Quaternization of the Glucose Oxidase "Wiring" Redox Polymer.on the Maximum Current Densities of Glucose Electrodes, J. Phys. Chem.,1996,100,3719-3727.
    [36]D. W. Schmidtke, A. Heller, Accuracy of the One-Point in Vivo Calibration of "Wired" Glucose Oxidase Electrodes Implanted in Jugular Veins of Rats in Periods of Rapid Rise and Decline of the Glucose Concentration, Anal. Chem.,1998,70, 2149-2155.
    [37]B. Wang, B. Li, Z. Wang, G. Xu, Q. Wang, S. Dong, Sol-Gel Thin-Film Immobilized Soybean Peroxidase Biosensor for the Amperometric Determination of Hydrogen Peroxide in Acid Medium, Anal. Chem.,1999,71,1935-1939.
    [38]Y. Degani, A. Heller, Direct Electrical Communication between Chemically Modified Enzymes and Metal Electrodes.1. Electron Transfer from Glucose Oxidase to Metal Electrodes Via Electron Relays, Bound Covalently to the Enzyme, J. Phys. Chem.,1987,91,1285-1289.
    [39]K. B. Male, S. Hrapovic, J. M. Santini, J. H. T. Luong, Biosensor for Arsenite Using Arsenite Oxidase and Multiwalled Carbon Nanotube Modified Electrodes, Anal. Chem.,2007,79,7831-7837.
    [40]C. Shan, H. Yang, J. Song, Dongxue Han, A. Ivaska, L. Niu, Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene, Anal. Chem.,2009,81,2378-2382.
    [41]Z. Wang, S. Liu, P. Wu, C. Cai, Detection of Glucose Based on Direct Electron Transfer Reaction of Glucose Oxidase Immobilized on Highly Ordered Polyaniline Nanotubes, Anal. Chem.,2009,81,1638-1645.
    [42]M. Zhao, X. Wu, C. Cai, Polyaniline Nanofibers:Synthesis, Characterization, and Application to Direct Electron Transfer of Glucose Oxidase, J. Phys. Chem. C, 2009,113,4987-4996.
    [43]F. Palmisano, P. G. Zambonin, D. Centonze, M. Quinto, A Disposable, Reagentless, Third-Generation Glucose Biosensor Based on Overoxidized poly(Pyrrole)/Tetrathiafulvalene-Tetracyanoquinodimethane Composite, Anal. Chem., 2002,74,5913-5918.
    [44]缪璐,刘仲明,张水华,电化学免疫传感器的研究进展,中国医学物理学杂志,2006,27,132-134.
    [45]袁若,卓颖,柴雅琴,张英,孙爱丽,基于纳米金/硫堇层层自组装的新型电流型酶-癌胚抗原免疫传感器,中国科学B辑化学,2006,36,425-432.
    [46]M. A. Rahman, J. I. Son, M. S. Won, Y. B. Shim, Gold Nanoparticles Doped Conducting Polymer Nanorod Electrodes:Ferrocene Catalyzed Aptamer-Based Thrombin Immunosensor, Anal. Chem.,2009,81,6604-6611.
    [47]J. Wu, Y. T. Yan, F. Yan, H. X. Ju, Electric Field-Driven Strategy for Multiplexed Detection of Protein Biomarkers Using a Disposable Reagentless Electrochemical Immunosensor Array, Anal. Chem.,2008,80,6072-6077.
    [48]Y. C. Zhang, A. Heller, Reduction of the Nonspecific Binding of a Target Antibody and of Its Enzyme-Labeled Detection Probe Enabling Electrochemical Immunoassay of an Antibody through the 7 pg/mL-100 ng/mL (40 fM-400 pM) Range, Anal. Chem.,2005,77,7758-7762.
    [49]Z. J. Wang, Y. H. Yang, J. S. Li, j. L. Gong, G. L. Shen, R. Q. Yu, Organic-Inorganic Matrix for Electrochemical Immunoassay:Detection of Human IgG Based on ZnO/Chitosan Composite, Talanta,2006,69,686-690.
    [50]J. Das, K. Jo, J. W. Lee, H. Yang, Electrochemical Immunosensor Using p-Aminophenol Redox Cycling by Hydrazine Combined with a Low Background Current, Anal. Chem.,2007,79,2790-2796.
    [51]A. Preechaworapun, T. A. Ivandini, A. Suzuki, A. Fujishima, O. Chailapakul, Y. Einaga, Development of Amperometric Immunosensor Using Boron-Doped Diamond with Poly(o-Aminobenzoic Acid), Anal. Chem.,2008,80,2077-2083.
    [52]Z. P. Chen, Z. F. Peng, Y. Luo, B. Qu, J. H. Jiang, X. B. Zhang, G. L. Shen, R. Q. Yu, Successively Amplified Electrochemical Immunoassay Based on Biocatalytic Deposition of Silver Nanoparticles and Silver Enhancement, Biosens. Bioelectron., 2007,23,485-491.
    [53]A. d.1. Escosura-Muniz, M. M. d. Costa, A. Merkoci, Controlling the Electrochemical Deposition of Silver onto Gold Nanoparticles:Reducing Interferences and Increasing the Sensitivity of Magnetoimmuno-Assays, Biosens. Bioelectron.,2009,24,2475-2482.
    [54]K. Y. Chumbimuni-Torres, Z. Dai, N. Rubinova, Y. Xiang, E. Pretsch, J. Wang, E. Bakker, Potentiometric Biosensing of Proteins with Ultrasensitive Ion-Selective Microelectrodes and Nanoparticle Labels, J. Am. Chem. Soc.,2006,128, 13676-13677.
    [55]X. Mao, J. H. Jiang, Y. Luo, G. L. Shen, R. Q. Yu, Copper-Enhanced Gold Nanoparticle Tags for Electrochemical Stripping Detection of Human IgG, Talanta, 2007,73,420-424.
    [56]J. Das, M. A. Aziz, H. Yang, A Nanocatalyst-Based Assay for Proteins: DNA-Free Ultrasensitive Electrochemical Detection Using Catalytic Reduction of p-Nitrophenol by Gold-Nanoparticle Labels, J. Am. Chem. Soc.,2006,128, 16022-16023.
    [57]A. P. Fan, C. Lau, J. Z. Lu, Magnetic Bead-Based Chemiluminescent Metal Immunoassay with a Colloidal Gold Label, Anal. Chem.,2005,77,3238-3242.
    [58]R. J. Cui, H. C. Pan, J. J. Zhu, H. Y. Chen, Versatile Immunosensor Using CdTe Quantum Dots as Electrochemical and Fluorescent Labels, Anal. Chem.,2007,79, 8494-8501.
    [59]D. X. Cui, B. F. Pan, H. Zhang, F. Gao, R. N. Wu, J. P. Wang, R. He, T. Asahi, Self-Assembly of Quantum Dots and Carbon Nanotubes for Ultrasensitive DNA and Antigen Detection, Anal. Chem.,2008,80,7996-8001.
    [60]J. Wang, G. D. Liu, H. Wu, Y. H. Lin, Quantum-Dot-Based Electrochemical Immunoassay for High-Throughput Screening of the Prostate-Specific Antigen, Small, 2008,4,82-86.
    [61]L. Z. Gao, J. M. Wu, S. Lyle, K. Zehr, L. L. Cao, D. Gao, Magnetite Nanoparticle-Linked Immunosorbent Assay, J. Phys. Chem. C,2008,112, 17357-17361.
    [62]P. C. Lin, P. H. Chou, S. H. Chen, H. K. Liao, K. Y. Wang, Y. J. Chen, C. C. Lin, Ethylene Glycol-Protected Magnetic Nanoparticles for a Multiplexed Immunoassay in Human Plasma, Small,2006,2,485-489.
    [63]刘梦琴,黄勇,刘阳新,蒋健晖,电化学酶联免疫传感器的发展概述,化学传感器,2007,27,3-8.
    [64]焦奎,张书圣,酶联免疫分析技术及应用,化学工业出版社,北京:2004.
    [65]X. Yu, B. Munge, V. Patel, G. Jensen, A. Bhirde, J. D. Gong, S. N. Kim, J. Gillespie, J. S. Gutkind, F. Papadimitrakopoulos, J. F. Rusling, Carbon Nanotube Amplification Strategies for Highly Sensitive Immunodetection of Cancer Biomarkers, J. Am. Chem. Soc.,2006,128,11199-11205
    [66]L. Tang, G. M. Zeng, G. L. Shen, Y. P. Li, Y. Zhang, D. L. Huang, Rapid Detection of Picloram in Agricultural Field Samples Using a Disposable Immunomembrane-Based Electrochemical Sensor, Environ. Sci. Technol.,2008,42, 1207-1212.
    [67]D. P. Tang, J. J. Ren, In Situ Amplified Electrochemical Immunoassay for Carcinoembryonic Antigen Using Horseradish Peroxidase-Encapsulated Nanogold Hollow Microspheres as Labels, Anal. Chem.,2008,80,8064-8070.
    [68]D. P. Tang, R. Yuan, Y. Q. Chai, Ultrasensitive Electrochemical Immunosensor for Clinical Immunoassay Using Thionine-Doped Magnetic Gold Nanospheres as Labels and Horseradish Peroxidase as Enhancer, Anal. Chem.,2008,80,1582-1588.
    [69]Y. Zhuo, P.-X. Yuan, R. Yuan, Y Q. Chai, C. L. Hong, Bienzyme Functionalized Three-Layer Composite Magnetic Nanoparticles for Electrochemical Immunosensors, Biomaterials,2009,30,2284-2290.
    [70]A. E. Ellington, J. W. Szostak, In Vitro Selection of RNA Molecules That Bind Specific Ligangds [J], Nature,1990,346,818-822.
    [71]C. Tuerk, L. Gold, Systematic Evolution of Ligands by Exponential Enrichment [J], Science,1990,249,505-510.
    [72]刘晓静,刘韧,顾长国,朱旭东,核酸适体的研究进展,生理科学进展,2004,35,374-378.
    [73]王成刚,莫志宏,核酸适体技术研究进展,生物医学工程学杂志,2006,26,463-466.
    [74]T. Mairal, V. C. Ozalp, P. L. Sanchez, M. Mir, I. Katakis, C. K. O'Sullivan, Aptamers:Molecular Tools for Analytical Applications, Anal. Bioanal. Chem.,2008, 390,989-1007.
    [75]D. Proske, M. Blank, R. Buhmann, A. Resch, Aptamers-Basic Research, Drug Development, and Clinical Applications, Appl. Microbiol. Biotechnol.,2005,69, 367-374.
    [76]S. Tombelli, M. Minunni, M. Mascini, Analytical Applications of Aptamers, Biosens. Bioelectron.,2005,20,2424-2434.
    [77]雷丽红,傅迎春,徐霞红,谢青季,姚守拙,基于核酸适体的电化学生物传感器,化学进展,2009,21,724-731.
    [78]Y. Xiao, A. A. Lubin, A. J. Heeger, K. W. Plaxco, Label-Free Electronic Detection of Thrombin in Blood Serum by Using an Aptamer-Based Sensor, Angew. Chem. Int. Ed.,2005,44,5456-5459.
    [79]J. Yoshizumi, S. Kumamoto, M. Nakamura, K. Yamana, Target-Induced Strand Release (TISR) from Aptamer-DNA Duplex:A General Strategy for Electronic Detection of Biomolecules Ranging from a Small Molecule to a Large Protein, Analyst,2008,133,323-325.
    [80]G. S. Bang, S. Cho, B. G. Kim, A Novel Electrochemical Detection Method for Aptamer Biosensors, Biosens. Bioelectron.,2005,21,863-870.
    [81]Y. L. Zhang, Y. Huang, J. H. Jiang, G. L. Shen, R. Q. Yu, Electrochemical Aptasensor Based on Proximity-Dependent Surface Hybridization Assay for Single-Step, Reusable, Sensitive Protein Detection, J. Am. Chem. Soc.,2007,129, 15448-15449.
    [82]Z. S. Wu, M. M. Guo, S. B. Zhang, C. R. Chen, J. H. Jiang, G. L. Shen, R. Q. Yu, Reusable Electrochemical Sensing Platform for Highly Sensitive Detection of Small Molecules Based on Structure-Switching Signaling Aptamers, Anal. Chem.,2007,79, 2933-2939.
    [83]K. Feng, C. Sun, Y. Kang, J. Chen, J. H. Jiang, G. L. Shen, R. Q. Yu, Label-Free Electrochemical Detection of Nanomolar Adenosine Based on Target-Induced Aptamer Displacement, Electrochem. Commun.,2008,10,531-535.
    [84]B. R. Baker, R. Y Lai, M. S. Wood, E. H. Doctor, A. J. Heeger, K. W. Plaxco, An Electronic, Aptamer-Based Small-Molecule Sensor for the Rapid, Label-Free Detection of Cocaine in Adulterated Samples and Biological Fluids, J. Am. Chem. Soc.,2006,128,3138-3139.
    [85]E. Paleek, Electrochemical Behaviour of Biological Macromolecules, Bioelectrochem. Bioenerg.,1986,15,275-295.
    [86]E. Paleek, V. Kola, F. Jelen, V. Heinemann, Electrochemical Analysis of the Self-Complementary B-DNA Decamer D(CCAGGCCTGG), Bioelectrochem. Bioenerg.,1990,23,285-299.
    [87]Y. K. Ye, H. X. Ju, Rapid Detection of ssDNA and RNA Using Multi-Walled Carbon Nanotubes Modified Screen-Printed Carbon Electrode, Biosens. Bioelectron., 2005,21,735-741.
    [88]庞代文,齐义鹏,王宗礼,程介克,DNA的电化学研究,化学通报,1994,2,1-4.
    [89]M. Mir, M. Vreeke, I. Katakis, Different Strategies to Develop an Electrochemical Thrombin Aptasensor, Electrochem. Commun.,2006,8,505-511.
    [90]R. Polsky, R. Gill, L. Kaganovsky, I. Willner, Nucleic Acid-Functionalized Pt Nanoparticles:Catalytic Labels for the Amplified Electrochemical Detection of Biomolecules, Anal. Chem.,2006,78,2268-2271.
    [91]N. De-los-Santos-Alvarez, M. J. Lobo-Castanon, A. J. Miranda-Ordieres, P. Tunon-Blanco, Modified-Rna Aptamer-Based Sensor for Competitive Impedimetric Assay of Neomycin B, J. Am. Chem. Soc.,2007,129,3808-3809.
    [92]A. E. Radi, J. L. AceroSanchez, E. Baldrich, C. K. O'Sullivan, Reusable Impedimetric Aptasensor, Anal. Chem.,2005,77,6320-6323.
    [93]D. Xu, D. Xu, X. Yu, Z. Liu, W. He, Z. Ma, Label-Free Electrochemical Detection for Aptamer-Based Array Electrodes, Anal. Chem.,2005,77,5107-5113.
    [94]D. W. Xu, H. H. Han, W. He, Z. H. Liu, D. K. Xu, X. J. Liu, Electrically Addressed Fabrication of Aptamer-Based Array Electrodes, Electroanalysis,2006,18, 1815-1820.
    [95]X. Li, L. Shen, D. Zhang, H. Qi, Q. Gao, F. Ma, C. Zhang, Electrochemical Impedance Spectroscopy for Study of Aptamer-Thrombin Interfacial Interactions, Biosens. Bioelectron.,2008,23,1624-1630.
    [96]U. Schlecht, A. Malave, T. M. A. Gronewold, M. Tewes, M. Lohndorf, Detection of Rev Peptides with Impedance-Sensors-Comparison of Device-Geometries, Biosens. Bioelectron.,2007,22,2337-2340.
    [97]Y. S. Kim, H. S. Jung, T. Matsuura, H. Y. Lee, T. Kawai, M. B. Gu, Electrochemical Detection of 17[Beta]-Estradiol Using DNA Aptamer Immobilized Gold Electrode Chip, Biosens. Bioelectron.,2007,22,2525-2531.
    [98]N. K. Chaki, K. Vijayamohanan, Self-Assembled Monolayers as a Tunable Platform for Biosensor Applications, Biosens. Bioelectron.,2002,17,1-12.
    [99]Y. S. Fung, Y. Y. Wong, Self-Assembled Monolayers as the Coating in a Quartz Piezoelectric Crystal Immunosensor to Detect Salmonella in Aqueous Solution, Anal. Chem.,2001,73,5302-5309.
    [100]X. D. Su, F. T. Chew, S. F. Y. Li, Self-Assembled Monolayer-Based Piezoelectric Crystal Immunosensor for the Quantification of Total Human Immunoglobulin E, Anal. Biochem.,1999,273,66-72.
    [101]A. Chaubey, K. K. Pande, V. S. Singh, B. D. Malhotra, Co-Immobilization of Lactate Oxidase and Lactate Dehydrogenase on Conducting Polyaniline Films, Anal. Chim. Acta,2000,407,97-103.
    [102]Y. Okahata, T. Kobayashi, K. Tanaka, Orientation of DNA Double Strands in a Langmuir-Blodgett Film, Langmuir,1996,12,1326-1330.
    [103]F. Loscher, T. Ruckstuhl, T. Jaworek, G. Wegner, S. Seeger, Immobilization of Biomolecules on Langmuir-Blodgett Films of Regenerative Cellulose Derivatives, Langmuir,1998,14,2786-2789.
    [104]A. Chaubey, M. Gerard, R. Singhal, V. S. Singh, B. D. Malhotra, Immobilization of Lactate Dehydrogenase on Electrochemically Prepared Polypyrrole-Polyvinylsulphonate Composite Films for Application to Lactate Biosensors, Electrochim. Acta,2001,46,723-729.
    [105]M. Situmorang, J. J. Gooding, D. B. Hibbert, D. Barnett, Electrodeposited Polytyramine as an Immobilisation Matrix for Enzyme Biosensors, Biosens. Bioelectron.,1998,13,953-962.
    [106]H. Korri-Youssoufi, B. Makrouf, Electrochemical Biosensing of DNA Hybridization by Ferrocenyl Groups Functionalized Polypyrrole, Anal. Chim. Acta, 2002,469,85-92.
    [107]G. Lillie, P. Payne, P. Vadgama, Electrochemical Impedance Spectroscopy as a Platform for Reagentless Bioaffinity Sensing, Sens. Actuators B,2001,78,249-256.
    [108]W. Schuhmann, R. Lammert, B. Uhe, H. L. Schmid, Polypyrrole, a New Possibility for Covalent Binding of Oxidoreductases to Electrode Surfaces as a Base for Stable Biosensors, Sens. Actuators B,1990,1,537-541.
    [109]N. Haddour, S. Cosnier, C. Gondran, Electrogeneration of a Poly(Pyrrole)-NTA Chelator Film for a Reversible Oriented Immobilization of Histidine-Tagged Proteins, J. Am. Chem. Soc.,2005,127,5752-5753.
    [110]M. M. Ma, L. T. Qu, G. Q. Shi, Glucose Oxidase Electrodes Based on Microstructured Polypyrrole Films, J. Appl. Polym. Sci.,2005,98,2550-2554.
    [111]A. D. Ryabov, V. S. Kurova, V. N. Goral, M. D. Reshetova, J. Razumiene, R. Simkus, V. Laurinavicius, P-Ferrocenylaniline and p-Ferrocenylphenol:Promising Materials for Analytical Biochemistry and Bioelectrochemistry, Chem. Mater.,1999, 11,600-604.
    [112]S. Cosnier, C. Gondran, J. C. Watelet, W. D. Giovani, R. P. M. Furriel, F. A. Leone, A Bienzyme Electrode (Alkaline Phosphatase-Polyphenol Oxidase) for the Amperometric Determination of Phosphate, Anal. Chem.,1998,70,3952-3956.
    [113]S. Cosnier, M. Stoytcheva, A. Senillou, H. Perrot, R. P. M. Furriel, F. A. Leone, A Biotinylated Conducting Polypyrrole for the Spatially Controlled Construction of an Amperometric Biosensor, Anal. Chem.,1999,71,3692-3697.
    [114]P. C. Nien, T.-S. Tung, K. C. Hoa, Amperometric Glucose Biosensor Based on Entrapment of Glucose Oxidase in a Poly(3,4-Ethylenedioxythiophene) Film, Electroanalysis,2006,18,1408-1415.
    [115]I. Willner, E. Katz, N. Lapidot, Bioelectrocatalysed Reduction of Nitrate Utilizing Polythiophene Bipyridinium Enzyme Electrodes, Bioelectrochem. Bioenerg. 1992,29,29-45.
    [116]M. Hiller, C. Kranz, J. Huber, P. Bauerle, W. Schuhmann, Amperometic Biosensors Produced by Immobilization of Redox Enzymes at Polythiophene-Modified Electrode Surfaces, Adv. Mater.,1996,8,219-222.
    [117]B. Wang, B. Li, Q. Deng, S. Dong, Amperometric Glucose Biosensor Based on Sol-Gel Organic-Inorganic Hybrid Material, Anal. Chem.,1998,70,3170-3174.
    [118]J. Wang, P. V. A. Pamidi, K. R. Rogers, Sol-Gel-Derived Thick-Film Amperometric Immunosensors, Anal. Chem.,1998,70,1171-1175.
    [119]S. Cosnier, M. Stoytcheva, A. Senillou, H. Perrot, R. P. M. Furriel, F. A. Leone, A Biotinylated Conducting Polypyrrole for the Spatially Controlled Construction of an Amperometric Biosensor, Anal. Chem.,1999,71,3692-3697.
    [120]R. E. Ionescu, C. Gondran, L. A. Gheber, S. Cosnier, R. S. Marks, Construction of Amperometric Immunosensors Based on the Electrogeneration of a Permeable Biotinylated Polypyrrole Film, Anal. Chem.,2004,76,6808-6813.
    [121]M. P. Schwartz, S. D. Alvarez, M. J. Sailor, Porous SiO2 Interferometric Biosensor for Quantitative Determination of Protein Interactions:Binding of Protein a to Immunoglobulins Derived from Different Species, Anal. Chem.,2007,79,327-334.
    [122]K. P. S. Dancil, D. P. Greiner, M. J. Sailor, A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface, J. Am. Chem. Soc.,1999,121,7925-7930.
    [123]C. Malitesta, I. Losito, P. G. Zambonin, Molecularly Imprinted Electrosynthesized Polymers:New Materials for Biomimetic Sensors, Anal. Chem., 1999,71,1366-1370.
    [124]N. Mano, J. E. Yoo, J. Tarver, Y. L. Loo, A. Heller, An Electron-Conducting Cross-Linked Polyaniline-Based Redox Hydrogel, Formed in One Step at pH 7.2, Wires Glucose Oxidase, J. Am. Chem. Soc.,2007,129,7006-7007.
    [125]P. N. Bartlett, P. R. Birkin, A Microelectrochemical Enzyme Transistor Responsive to Glucose, Anal. Chem.,1994,66,1552-1559.
    [126]O. A. Raitman, E. Katz, A. F. Buckmann, I. Willner, Integration of Polyaniline/Poly(Acrylic Acid) Films and Redox Enzymes on Electrode Supports:An in Situ Electrochemical/Surface Plasmon Resonance Study of the Bioelectrocatalyzed Oxidation of Glucose or Lactate in the Integrated Bioelectrocatalytic Systems, J. Am. Chem. Soc.,2002,124,6487-6496.
    [127]D. D. Borole, U. R. Kapadi, P. P. Mahulikar, D. G. Hundiwale, Glucose Oxidase Electrodes of Polyaniline, Poly(o-Toluidine) and Their Copolymer as a Biosensor:A Comparative Study, Polym. Adv. Technol.,2004,15,306-312.
    [128]S. Cosnier, Biomolecule Immobilization on Electrode Surfaces by Entrapment or Attachment to Electrochemically Polymerized Films. A Review, Biosens. Bioelectron.,1999,14,443-456.
    [129]J. Njagi, S. Andreescu, Stable Enzyme Biosensors Based on Chemically Synthesized Au-Polypyrrole Nanocomposites, Biosens. Bioelectron.,2007,23, 168-175.
    [130]S. Cosnier, C. Gondran, A. Senillou, M. Gratzel, N. Vlachopoulos, Mesoporous TiO2 Films:New Catalytic Electrode Materials for Fabricating Amperometric Biosensors Based on Oxidases, Electroanalysis,1997,9,1387-1392.
    [131]W. Liao, X. T. Cui, Reagentless Aptamer Based Impedance Biosensor for Monitoring a Neuro-Inflammatory Cytokine PDGF, Biosens. Bioelectron.,2007,23, 218-224.
    [132]W. Yan, X. J. Chen, X. H. Li, X. M. Feng, J. J. Zhu, Fabrication of a Label-Free Electrochemical Immunosensor of Low-Density Lipoprotein, J. Phys. Chem. B,2008, 112,1275-1281.
    [133]杨海朋,陈仕国,李春辉,陈东成,戈早川,纳米电化学生物传感器,化学进展,2009,21,210-216.
    [134]S. Brakmann, DNA-Based Barcodes, Nanoparticles, and Nanostructures for the Ultrasensitive Detection and Quantification of Proteins, Angew. Chem. Int. Ed.,2004, 43,5730-5734.
    [135]J. Wang, J. H. Li, A. J. Baca, J. B. Hu, F. M. Zhou, W. Yan, D. W. Pang, Amplified Voltammetric Detection of DNA Hybridization Via Oxidation of Ferrocene Caps on Gold Nanoparticle/Streptavidin Conjugates, Anal. Chem.,2003,75, 3941-3945.
    [136]J. X. Wang, X. Zhu, Q. Y. Tu, Q. Guo, C. S. Zarui, Jamil Momand, X. Z. Sun, F. M. Zhou, Capture of p53 by Electrodes Modified with Consensus DNA Duplexes and Amplified Voltammetric Detection Using Ferrocene-Capped Gold Nanoparticle/Streptavidin Conjugates, Anal. Chem.,2008,80,769-774.
    [137]R. J. Cui, C. Liu, J. M. Shen, D. Gao, J. J. Zhu, H. Y. Chen, Gold Nanoparticle-Colloidal Carbon Nanosphere Hybrid Material:Preparation, Characterization, and Application for an Amplified Electrochemical Immunoassay, Adv. Funct. Mater.,2008,18,2197-2204.
    [138]M. Zayats, E. Katz, R. Baron, I. Willner, Reconstitution of Apo-Glucose Dehydrogenase on Pyrroloquinoline Quinone-Functionalized Au Nanoparticles Yields an Electrically Contacted Biocatalyst, J. Am. Chem. Soc.,2005,127,12400-12406.
    [139]H. Nie, S. Liu, R. Yu, J. Jiang, Phospholipid-Coated Carbon Nanotubes as Sensitive Electrochemical Labels with Controlled-Assembly-Mediated Signal Transduction for Magnetic Separation Immunoassay, Angew. Chem. Int. Ed.,2009,48, 9862-9866.
    [140]Z. Wu, Z. Zhen, J. H. Jiang, G. L. Shen, R. Q. Yu, Terminal Protection of Small-Molecule-Linked DNA for Sensitive Electrochemical Detection of Protein Binding Via Selective Carbon Nanotube Assembly, J. Am. Chem. Soc.,2009,131, 12325-12332.
    [141]Y. C. Fu, P. H. Li, Q. J. Xie, X. H. Xu, L. H. Lei, C. Chen, C. Zou, W. F. Deng, S. Z. Yao, One-Pot Preparation of Polymer-Enzyme-Metallic Nanoparticle Composite Films for High-Performance Biosensing of Glucose and Galactose, Adv. Funct. Mater.,2009,19,1784-1791.
    [142]Y. Huang, Q. Wen, J. H. Jiang, G. L. Shen, R. Q. Yu, A Novel Electrochemical Immunosensor Based on Hydrogen Evolution Inhibition by Enzymatic Copper Deposition on Platinum Nanoparticle-Modified Electrode, Biosens. Bioelectron.,2008, 24,600-605.
    [143]L. Gao, J. Wu, S. Lyle, K. Zehr, L. Cao, D. Gao, Properties of Polyaniline/Carbon Nanotube Multilayer Films in Neutral Solution and Their Application for Stable Low-Potential Detection of Reduced A-Nicotinamide Adenine Dinucleotide, J. Phys. Chem. C,2008,112,17357-17361.
    [144]M. Wooten, W. Gorski, Facilitation of NADH Electro-Oxidation at Treated Carbon Nanotubes, Anal. Chem.,2010,82,1299-1304.
    [145]V. Vamvakaki, K. Tsagaraki, N. Chaniotakis, Carbon Nanofiber-Based Glucose Biosensor, Anal. Chem.,2006,78,5538-5542.
    [146]R. T. Kachoosangi, M. M. Musameh, I. Abu-Yousef, J. M. Yousef, S. M. Kanan, L. Xiao, S. G. Davies, A. Russell, R. G. Compton, Carbon Nanotube-Ionic Liquid Composite Sensors and Biosensors, Anal. Chem.,2009,81,435-442.
    [147]E. Katz, L. Sheeney-Haj-Ichia, A. F. Buckmann, I. Willner, Dual Biosensing by Magneto-Controlled Bioelectrocatalysis, Angew. Chem. Int. Ed.,2002,41, 1343-1346.
    [148]E. Katz, I. Willner, Magneto-Stimulated Hydrodynamic Control of Electrocatalytic and Bioelectrocatalytic Processes, J. Am. Chem. Soc.,2002,124, 10290-10291.
    [149]L. Ding, W. Cheng, X. Wang, S. Ding, H. Ju, Carbohydrate Monolayer Strategy for Electrochemical Assay of Cell Surface Carbohydrate, J. Am. Chem. Soc.,2008, 130,7224-7225.
    [150]I. Willner, E. Katz, Integration of Layered Redox Proteins and Conductive Supports for Bioelectronic Applications, Angew. Chem. Int. Ed.,2000,39,1180-1218.
    [151]R. A. Potyrailo, Polymeric Sensor Materials:Toward an Alliance of Combinatorial and Rational Design Tools?, Angew. Chem. Int. Ed.,2006,45, 702-723.
    [152]M. R. Li, C. Y. Deng, Q. J. Xie, Y. Yang, S. Z. Yao, Electrochemical Quartz Crystal Impedance Study on Immobilization of Glucose Oxidase in a Polymer Grown from Dopamine Oxidation at an Au Electrode for Glucose Sensing, Electrochim. Acta, 2006,51,5478-5486.
    [153]T. Tatsuma, Y. Yokoyama, D. A. Buttry, N. Oyama, Electrochemical Polymerization and Depolymerization of 2,5-Dimercapto-1,3,4-Thiadiazole. QCM and Spectroscopic Analysis, J. Phys. Chem. B,1997,101,7556-7562.
    [154]K. Naoi, Y. Oura, Y. Iwamizu, N. Oyama, Electrochemistry of Disulfide Compounds:Electrochemical Polymerization-Depolymerization Process of 2,5-Dimercapt-1,3,4-thiadiazole, J. Electrochem. Soc.,1995,142,354-360.
    [155]Y. C. Fu, Q. J. Xie, X. E. Jia, X. H. Xu, W. H. Meng, S. Z. Yao, Electrosynthesized Poly(1,6-hexanedithiol) as a New Immobilization Matrix for Au-Nanoparticles-Enhanced Piezoelectric Immunosensing, J. Electroanal. Chem., 2007,603,96-106.
    [156]B. K. Jena, C. R. Raj, Electrochemical Biosensor Based on Integrated Assembly of Dehydrogenase Enzymes and Gold Nanoparticles, Anal. Chem.,2006,78, 6332-6339.
    [157]P. Pandey, S. P. Singh, S. K. Arya, V. Gupta, M. Datta, S. Singh, B. D. Malhotra, Application of Thiolated Gold Nanoparticles for the Enhancement of Glucose Oxidase Activity, Langmuir,2007,23,3333-3337.
    [158]C. Y. Deng, M. R. Li, Q. J. Xie, M. L. Liu, Q. Yang, C. H. Xiang, S. Z. Yao, Construction as Well as EQCM and SECM Characterizations of a Novel Nafion/Glucose Oxidase Glutaraldehyde/Poly(Thionine)/Au Enzyme Electrode for Glucose Sensing, Sens. Actuators B,2007,122,148-157.
    [159]Y. Su, Q. Xie, C. Chen, Q. Zhang, M. Ma, S. Yao, Electrochemical Quartz Crystal Microbalance Studies on Enzymatic Specific Activity and Direct Electrochemistry of Immobilized Glucose Oxidase in the Presence of Sodium Dodecyl Benzene Sulfonate and Multiwalled Carbon Nanotubes, Biotechnol. Prog., 2008,24,262-272.
    [160]D. A. Buttry,M. D. Ward, Measurement of Interfacial Processes at Electrode Surfaces with the Electrochemical Quartz Crystal Microbalance, Chem. Rev.,1992, 92,1355-1379.
    [161]G. Sauerbrey, Verwendung Von Schwingquarzen Zur Wagung Dunner Schichen Zur Mikrowagung[J], Z. Phys.,1959,155,206-222.
    [162]L. Yu, X. H. Wang, J. Li, X. B. Jing, F. S. Wang, Soluble 2,5-Dimercapto-1,3,4-thiadiazole/Poly(o-toluidine) Electroactive Composite, J. Electrochem. Soc.,1999,146,1712-1716.
    [163]J. Houk, G. M. Whitesides, Structure-Reactivity Relations for Thiol-Disulfide Interchange, J. Am. Chem. Soc.,1987,109,6825-6836.
    [164]R. K. Chohan, B. P. Sinha, R. C. Kapoor, Oxidation Kinetics of 2-Dimethylaminoethanethiol Hydrochloride by Ferricyanide Ion in Acid Medium, J. Phys. Chem.,1972,76,3641-3646.
    [165]D. G. Georganopoulou, D. E. Williams, C. M. Pereira, F. Silva, T.-J. Su, J. R. Lu, Adsorption of Glucose Oxidase at Organic-Aqueous and Air-Aqueous Interfaces, Langmuir,2003,19,4977-4984.
    [166]E. Emori, T. Arai, H. Sasai, M. Shibasaki, A Catalytic Michael Addition of Thiols to α,β-Unsaturated Carbonyl Compounds:Asymmetric Michael Additions and Asymmetric Protonations, J. Am. Chem. Soc.,998,120,4043-4044.
    [167]L. F. P. Ferreira, M. E. Taqueda, A. Converti, M. Vitolo, J. A. Pessoa, Purification of Glucose Oxidase from Aspergillus Niger by Liquid-Liquid Cationic Reversed Micelles Extraction, Biotechnol. Prog.,2005,21,868-874.
    [168]K. Hana, Z. J. Wu, J. Leea, I.-S. Ahna, J. W. Parka, B. R. Mina, K. Leea, Activity of Glucose Oxidase Entrapped in Mesoporous Gels, Biochem. Eng. J.,2005, 22,161-166.
    [169]H. Bergmeyer, Methods of Enzymatic Analysis, Methods of enzymatic analysis, Academic Press,1963, New York,
    [170]Y. C. Fu, C. Chen, Q. J. Xie,X. H. Xu, C. Zou, Q. M. Zhou, L. Tan, H. Tang, Y. Y Zhang, S. Z. Yao, Immobilization of Enzymes through One-Pot Chemical Preoxidation and Electropolymerization of Dithiols in Enzyme-Containing Aqueous Suspensions to Develop Biosensors with Improved Performance, Anal. Chem.,2008, 80,5829-5838.
    [171]G. Coward-Kelly, R. R. Chen, A Window into Biocatalysis and Biotransformations, Biotechnol. Prog.,2007,23,52-54.
    [172]J. Sylvestre, H. Chautard, F. Cedrone, M. Delcourt, Directed Evolution of Biocatalysts, Org. Process Res. Dev.,2006,10,562-571.
    [173]G. Y. Zhu, P. Wang, Polymer-Enzyme Conjugates Can Self-Assemble at Oil/Water Interfaces and Effect Interfacial Biotransformations, J. Am. Chem. Soc., 2004,126,11132-11133.
    [174]P. Asuri, S. S. Karajanagi, J. S. Dordick, R. S. Kane, Directed Assembly of Carbon Nanotubes at Liquid-Liquid Interfaces:Nanoscale Conveyors for Interfacial Biocatalysis, J. Am. Chem. Soc.,2006,128,1046-1047.
    [175]M. Riskin, B. Basnar, V. I. Chegel, E. Katz, I. Willne, F. Shi, X. Zhang, Switchable Surface Properties through the Electrochemical or Biocatalytic Generation of AgO Nanoclusters on Monolayer-Functionalized Electrodes, J. Am. Chem. Soc., 2006,128,1253-1260.
    [176]B. Basnar, Y. Weizmann, Z. Cheglakov, I. Willner, Synthesis of Nanowires Using Dip-Pen Nanolithography and Biocatalytic Inks, Adv. Mater.,2006,18, 713-718.
    [177]R. Baron, M. Zayats, I. Willner, Dopamine-, L-Dopa-, Adrenaline-, and Noradrenaline-Induced Growth of Au Nanoparticles:Assays for the Detection of Neurotransmitters and of Tyrosinase Activity, Anal. Chem.,2005,77,1566-1571.
    [178]L. Riemenschneider, S. Blank, M. Radmacher, Enzyme-Assisted Nanolithography, Nano Lett.,2005,5,1643-1646.
    [179]A. Ramanavicius, A. Kausaite, A. Ramanaviciene, Polypyrrole-Coated Glucose Oxidase Nanoparticles for Biosensor Design, Sens. Actuators B,2005,111-112, 532-539.
    [180]T. J. Collins, Taml Oxidant Activators:A New Approach to the Activation of Hydrogen Peroxide for Environmentally Significant Problems, Acc. Chem. Res.,2002, 35,782-790.
    [181]J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chem. Rev.,2005,105,1103-1169.
    [182]E. Shouji, Y. Yokoyama, J. M. Pope, N. Oyama, D. A. Buttry, Electrochemical and Spectroscopic Investigation of the Influence of Acid-Base Chemistry on the Redox Properties of 2,5-Dimercapto-1,3,4-thiadiazole, J. Phys. Chem. B,1997,101, 2861-2866.
    [183]S. Picart, E. Genis, Electrochemical Study of 2,5-Dimercapto-1,3,4-thiadiazole in Acetonitrile, J. Electroanal. Chem.,1996,408,53-60.
    [184]J. C. Hoogvliet, M. Dijksma, B. Kamp, W. P. v. Bennekom, Electrochemical Pretreatment of Polycrystalline Gold Electrodes to Produce a Reproducible Surface Roughness for Self-Assembly:A Study in Phosphate Buffer pH 7.4, Anal. Chem., 2000,72,2016-2021.
    [185]E. Shouji, D. A. Buttry, An Investigation of the Effect of Pyridine Derivatives on the Oxidative Polymerization Process of 2,5-Dimercapto-1,3,4-thiadiazole and Its Disulfide Dimer, J. Phys. Chem. B,1998,102,1444-1449.
    [186]W. Z. Jia, K. Wang, Z. J. Zhu, H. T. Song, X. H. Xia, One-Step Immobilization of Glucose Oxidase in a Silica Matrix on a Pt Electrode by an Electrochemically Induced Sol-Gel Process, Langmuir,2007,23,11896-11900.
    [187]X. L. Luo, J. J. Xu, J. L. Wang, H. Y. Chen, Electrochemically Deposited Nanocomposite of Chitosan and Carbon Nanotubes for Biosensor Application, Chem. Commun.,2005,16,2169-2171.
    [188]X. L. Luo, J. J. Xu, Y. Du, H. Y Chen, A Glucose Biosensor Based on Chitosan-Glucose Oxidase-Gold Nanoparticles Biocomposite Formed by One-Step Electrodeposition, Anal. Biochem.,2004,334,284-289.
    [189]R. Gangopadhyay, A. De, Conducting Polymer Nanocomposites:A Brief Overview, Chem. Mater.,2000,12,608-622.
    [190]C. R. Martin, Membrane-Based Synthesis of Nanomaterials, Chem. Mater., 1996,8,1739-1746.
    [191]R. A. Vaia, J. F. Maguire, Polymer Nanocomposites with Prescribed Morphology:Going Beyond Nanoparticle-Filled Polymers, Chem. Mater.,2007,19, 2736-2751.
    [192]E. Granot, E. Katz, B. Basnar, I. Willner, Enhanced Bioelectrocatalysis Using Au-Nanoparticle/Polyaniline Hybrid Systems in Thin Films and Microstructured Rods Assembled on Electrodes, Chem. Mater.,2005,17,4600-4609.
    [193]A. P. O'Mullane, S. E. Dale, J. V. Macpherson, P. R. Unwin, Fabrication and Electrocatalytic Properties of Polyaniline/Pt Nanoparticle Composites, Chem. Commun.,2004,1606-1607.
    [194]Z. M. Dang, Y. Q. Lin, H. P. Xu, C. Y Shi, S. T. Li, J. B. Bai, Fabrication and Dielectric Characterization of Advanced Batio3/Polyimide Nanocomposite Films with High Thermal Stability, Adv. Funct. Mater.,2008,18,1509-1517.
    [195]Y. Shen, Y. H. Lin, C. W. Nan, Interfacial Effect on Dielectric Properties of Polymer Nanocomposites Filled with Core/Shell-Structured Particles, Adv. Funct. Mater.,2007,17,2405-2410.
    [196]X. D. Cao, C. M. Li, H. F. Bao, Q. L. Bao, H. Dong, Fabrication of Strongly Fluorescent Quantum Dot-Polymer Composite in Aqueous Solution, Chem. Mater., 2007,19,3773-3779.
    [197]K. R. Choudhury, Y. Sahoo, P. N. Prasad, Hybrid Quantum-Dot-Polymer Nanocomposites for Infrared Photorefractivity at an Optical Communicationwavelength, Adv. Mater.,2005,17,2877-2881.
    [198]M. J. Ventura, M. Gu, Engineering Spontaneous Emission in a Quantum-Dot-Doped Polymer Nanocomposite with Three-Dimensional Photonic Crystals, Adv. Mater.,2008,20,1329-1332.
    [199]X. Hong, J. Li, M. J. Wang, J. J. Xu, W. Guo, J. H. Li, Y. B. Bai, T. J. Li, Fabrication of Magnetic Luminescent Nanocomposites by a Layer-by-Layer Self-Assembly Approach, Chem. Mater.,2004,16,4022-4027.
    [200]M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang, T. Hyeon, A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation, Angew. Chem. Int. Ed., 2007,46,7039-7043.
    [201]S. T. Selvan, J. P. Spatz, H. A. Klok, M. Moller, Gold-Polypyrrole Core-Shell Particles in Diblock Copolymer Micelles, Adv. Mater.,1998,10,132-134.
    [202]S. H. Stelzig, M. Klapper, K. Mullen, A Simple and Efficient Route to Transparent Nanocomposites, Adv. Mater.,2008,20,929-932.
    [203]D. Chen, G. Wang, J. H. Li, Interfacial Bioelectrochemistry:Fabrication, Properties and Applications of Functional Nanostructured Biointerfaces, J. Phys. Chem. C,2007,111,2351-2367.
    [204]S. Cosnier, Biomolecule Immobilization on Electrode Surfaces by Entrapment or Attachment to Electrochemically Polymerized Films. A Review, Biosens. Bioelectron.,1999,14,443-456.
    [205]Z. Q. Gao, G. Binyamin, H. H. Kim, S. C. Barton, Y. C. Zhang, A. Heller, Electrodeposition of Redox Polymers and Co-Electrodeposition of Enzymes by Coordinative Crosslinking, Angew. Chem.,2002,114,838-841; Angew. Chem. Int. Ed.41,810-813.
    [206]R. A. Potyrailo, Polymeric Sensor Materials:Toward an Alliance of Combinatorial and Rational Design Tools?, Angew. Chem. Int. Ed.,2006,45, 702-723.
    [207]J. P. Lellouche, G. Senthil, A. Joseph, L. Buzhansky, I. Bruce, E. R. Bauminger, J. Schlesinger, Magnetically Responsive Carboxylated Magnetite-Polydipyrrole/Polydicarbazole Nanocomposites of Core-Shell Morphology. Preparation, Characterization, and Use in DNA Hybridization J. Am. Chem. Soc., 2005,127,11998-12006.
    [208]L. H. Xu, Y. H. Zhu, L. H. Tang, X. L. Yang, C. Z. Li, Dendrimer-Encapsulated Pt Nanoparticles/Polyaniline Nanofibers for Glucose Detection, J. Appl. Polym. Sci., 2008,109,1802-1807.
    [209]Z. Liu, J. Wang, D. Xie, G. Chen, Polyaniline-Coated Fe3O4 Nanoparticle-Carbon-Nanotube Composite and Its Application in Electrochemical Biosensing, Small,2008,4,462-466.
    [210]D. Foxx, E. E. Kalu, Amperometric Biosensor Based on Thermally Activated Polymer-Stabilized Metal Nanoparticles, Electrochem. Commun.,2007,9,584-590.
    [211]Y. H. Zhu, H. Y. Zhu, X. L. Yang, L. H. Xu, C. Z. Li, Sensitive Biosensors Based on (Dendrimer Encapsulated Pt Nanoparticles)/Enzyme Multilayers, Electroanalysis,2007,19,698-703.
    [212]Y. G. Liu, X. M. Feng, J. M. Shen, J. J. Zhu, W. H. Hou, Fabrication of a Novel Glucose Biosensor Based on a Highly Electroactive Polystyrene/Polyaniline/Au Nanocomposite, J. Phys. Chem. B,2008,112,9237-9242.
    [213]J. Li, X. Q. Lin, Glucose Biosensor Based on Immobilization of Glucose Oxidase in Poly(o-Aminophenol) Film on Polypyrrole-Pt Nanocomposite Modified Glassy Carbon Electrode, Biosens. Bioelectron.,2007,22,2898-2905.
    [214]W. Zhao, S. X. Sun, J. J. Xu, H. Y. Chen, X. J. Cao, X. H. Guan, Electrochemical Identification of the Property of Peripheral Nerve Fiber Based on a Biocompatible Polymer Film Via in Situ Incorporating Gold Nanoparticles, Anal. Chem.,2008,80,3769-3776.
    [215]A. Pezzella, M. d'Ischia, A. Napolitano, G. Misuraca, G. Prota, Iron-Mediated Generation of the Neurotoxin 6-Hydroxydopamine Quinone by Reaction of Fatty Acid Hydroperoxides with Dopamine:A Possible Contributory Mechanism for Neuronal Degeneration in Parkinson's Disease, J. Med. Chem.,1997,40,2211-2216.
    [216]S. Corona-Avendano, G. Alarcon-Angeles, M. T. Ramirez-Silva, G. Rosquete-Pina, M. Romero-Romo, M. Palomar-Pardave, On the Electrochemistry of Dopamine in Aqueous Solution. Part Ⅰ:The Role of [SDS] on the Voltammetric Behavior of Dopamine on a Carbon Paste Electrode, J. Electroanal. Chem.,2007,609, 17-26.
    [217]M. D. Hawley, S. V. Tatawawadi, S. Piekarski, R. N. Adarns, Electrochemical Studies of the Oxidation Pathways of Catecholamines, J. Am. Chem. Soc.,1967,89, 447-450.
    [218]J. W. Mo, B. Ogorevc, Simultaneous Measurement of Dopamine and Ascorbate at Their Physiological Levels Using Voltammetric Microprobe Based on Overoxidized Poly(1,2-Phenylenediamine)-Coated Carbon Fiber, Anal. Chem.,2001,73, 1196-1202.
    [219]Y. L. Li, M. L. Liu, C. H. Xiang, Q. J. Xie, S. Z. Yao, Electrochemical Quartz Crystal Microbalance Study on Growth and Property of the Polymer Deposit at Gold Electrodes During Oxidation of Dopamine in Aqueous Solutions, Thin Solid Films, 2006,497,270-278.
    [220]H. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Mussel-Inspired Surface Chemistry for Multifunctional Coatings, Science,2007,318,426-430.
    [221]J. M. Kinyanjui, D. W. Hatchett, J. A. Smith, M. Josowicz, Chemical Synthesis of a Polyaniline/Gold Composite Using Tetrachloroaurate, Chem. Mater.,2004,16, 3390-3398.
    [222]X. P. Sun, S. J. Dong, E. K. Wang, Coordination-Induced Formation of Submicrometer-Scale, Monodisperse, Spherical Colloids of Organic-Inorganic Hybrid Materials at Room Temperature, J. Am. Chem. Soc.,2005,127,13102-13103.
    [223]P. D. Hale, L. I. Boguslavsky, T. Inagaki, H. I. Karan, H. S. Lee, T. A. Skotheim, Y. Okamoto, Amperometric Glucose Biosensors Based on Redox Polymer-Mediated Electron Transfer, Anal. Chem.,1991,63,677-682.
    [224]J. Wang, Electrochemical Glucose Biosensors, Chem. Rev.,2008,108,814-825.
    [225]A. Heller, B. Feldman, Electrochemical Glucose Sensors and Their Applications in Diabetes Management, Chem. Rev.,2008,108,2482-2505.
    [226]H. H. Yang, S. Q. Zhang, X. L. Chen, Z. X. Zhuang, J. G. Xu, X. R. Wang, Magnetite-Containing Spherical Silica Nanoparticles for Biocatalysis and Bioseparations, Anal. Chem.,2004,76,1316-1321.
    [227]H. Wei, E. Wang, Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2o2 and Glucose Detection, Anal. Chem.,2008,80,2250-2254.
    [228]J. Morais, R. B. Azevedo, L. P. Silva, Z. G. M. Lacava, S. N. Bao,O. Silva, F. Pelegrini, C. Gansau, N. Buske, I. Safarik, M. Safarikova, P. C. Morais, Magnetic Resonance Investigation of Magnetic-Labeled Baker's Yeast Cells, J. Magn. Magn. Mater.,2004,272,2400-2401.
    [229]U. Schoepf, E. M. Marecos, R. J. Melder, R. K. Jain, R. Weissleder, Intracellular Magnetic Labeling of Lymphocytes for in Vivo Trafficking Studies, Biotechniques, 1998,24,642-651.
    [230]D. Tang, R. Yuan, Y. Chai, Ultrasensitive Electrochemical Immunosensor for Clinical Immunoassay Using Thionine-Doped Magnetic Gold Nanospheres as Labels and Horseradish Peroxidase as Enhancer, Anal. Chem.,2008,80,1582-1588.
    [231]J. Krizova, A. Spanova, B. Rittich, D. Horak, Magnetic Hydrophilic Methacrylate-Based Polymer Microspheres for Genomic DNA Isolation, J. Chromatogr. A,2005,1064,247-253.
    [232]H. Gu, K. Xu, C. Xu, B. Xu, Biofunctional Magnetic Nanoparticles for Protein Separation and Pathogen Detection, Chem. Commun.,2006,941-949.
    [233]O. Olsvik, T. Popovic, E. Skjerve, K. S. Cudjoe, E. Homes, J. Ugelstad, M. Uhlen, Magnetic Separation Techniques in Diagnostic Microbiology, Clini. Microbiol. Rev.,1994,7,43-54.
    [234]E. B. Altintas, N. Tuezmen, N. Candan, A. Denizli, Use of Magnetic Poly(Glycidyl Methacrylate) Monosize Beads for the Purification of Lysozyme in Batch System, J. Chromatogr. B,2007,853,105-113.
    [235]E. Granot, E. Katz, B. Basnar, I. Willner, Enhanced Bioelectrocatalysis Using Au-Nanoparticle/Polyaniline Hybrid Systems in Thin Films and Microstructured Rods Assembled on Electrodes, Chem. Mater.,2005,17,4600-4609.
    [236]A. P. O'Mullane, S. E. Dale, J. V. Macpherson, P. R. Unwin, Fabrication and Electrocatalytic Properties of Polyaniline/Pt Nanoparticle Composites, Chem. Commun.,2004,1606-1607.
    [237]Z. M. Dang, Y. Q. Lin, H. P. Xu, C. Y. Shi, S. T. Li, J. B. Bai, Fabrication and Dielectric Characterization of Advanced Batio3/Polyimide Nanocomposite Films with High Thermal Stability, Adv. Funct. Mater.,2008,18,1509-1517.
    [238]M. J. Ventura, M. Gu, Engineering Spontaneous Emission in a Quantum-Dot-Doped Polymer Nanocomposite with Three-Dimensional Photonic Crystals, Adv. Mater.,2008,20,1329-1332.
    [239]T. H. Chung, H. C. Pan, W. C. Lee, Preparation and Application of Magnetic Poly(Styrene-Glycidyl Methacrylate) Microspheres, J. Magn. Magn. Mater.,2007, 311,36-40.
    [240]S. S. Wei, Y. F. Zhu, Y. Zhang, J. R. Xu, Preparation and Characterization of Hyperbranched Aromatic Polyamides/Fe3O4 Magnetic Nanocomposite, React. Funct. Polym.,2006,66,1272-1277.
    [241]N. A. D. Burke, H. D. H. Stover, F. P. Dawson, Magnetic Nanocomposites: Preparation and Characterization of Polymer-Coated Iron Nanoparticles, Chem. Mater.,2002,14,4752-4761.
    [242]H. Liu, J. Guo, L. Jin, W. Yang, C. Wang, Fabrication and Functionalization of Dendritic Poly(Amidoamine)-Immobilized Magnetic Polymer Composite Microspheres, J. Phys. Chem. B,2008,112,3315-3321.
    [243]H. Zhang, X. Zhong, J. J. Xu, H. Y. Chen, Fe3O4/Polypyrrole/Au Nanocomposites with Core/Shell/Shell Structure:Synthesis, Characterization, and Their Electrochemical Properties, Langmuir,2008,24,13748-13752.
    [244]J. Huang, B. Han, W. Yue, H. Yan, Magnetic Polymer Microspheres with Polymer Brushes and the Immobilization of Protein on the Brushes, J. Mater. Chem., 2007,17,3812-3818.
    [245]Z. L. Lei, N. Ren, Y. L. Li, N. Li, B. Mu, Fe3O4/SiO2-G-PSSTNA Polymer Nanocomposite Microspheres (PNCMS) from a Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) Approach for Pectinase Immobilization, J. Agric. Food Chem.,2009,57,1544-1549.
    [246]J. Hong, D. Xu, P. Gong, J. Yu, H. Ma, S. Yao, Covalent-Bonded Immobilization of Enzyme on Hydrophilic Polymer Covering Magnetic Nanogels, Micropor. Mesopor. Mater.,2008,109,470-477.
    [247]J. S. Huang, X. T. Li, Y. H. Zheng, Y. Zhang, R. Y. Zhao, X. C. Gao, H. S. Yan, Immobilization of Penicillin G Acylase on Poly[(Glycidyl Methacrylate)-Co-(Glycerol Monomethacrylate)]-Grafted Magnetic Microspheres, Macromol. Biosci.,2008,8,508-515.
    [248]G Bayramoglu, M. Yilmaz, A. U. Senel, M. Y. Arica, Preparation of Nanofibrous Polymer Grafted Magnetic Poly(GMA-MMA)-G-MAA Beads for Immobilization of Trypsin Via Adsorption, Biochem. Eng. J.,2008,40,262-274.
    [249]J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chem. Rev.,2005,105,1103-1170.
    [250]Y. C. Fu, Q. J. Xie, X. E. Jia, X. H. Xu, W. H. Meng, S. Z. Yao, Electrosynthesized Poly(1,6-hexanedithiol) as a New Immobilization Matrix for Au-Nanoparticles-Enhanced Piezoelectric Immunosensing, J. Electroanal. Chem., 2007,603,96-106.
    [251]Y. C. Fu, C. Chen, Q. J. Xie, X. H. Xu, C. Zou, Q. M. Zhou, L. Tan, H. Tang, Y. Y. Zhang, S. Z. Yao, Immobilization of Enzymes through One-Pot Chemical Preoxidation and Electropolymerization of Dithiols in Enzyme-Containing Aqueous Suspensions to Develop Biosensors with Improved Performance, Anal. Chem.,2008, 80,5829-5838.
    [252]Y. C. Fu, C. Zou, Q. J. Xie, X. H. Xu, C. Chen, W. F. Deng, S. Z. Yao, Highly Sensitive Glucose Biosensor Based on One-Pot Biochemical Preoxidation and Electropolymerization of 2,5-Dimercapto-1,3,4-Thiadiazole in Glucose Oxidase-Containing Aqueous Suspension, J. Phys. Chem. B,2009,113,1332-1340.
    [253]R. Wilson, A. P. F. Turner, Glucose Oxidase:An Ideal Enzyme Biosens. Bioelectron.,1992,7,165-185.
    [254]Z. Zhao, M. Qiao, F. Yin, Amperometric Glucose Biosensor Based on Self-Assembly Hydrophobin with High Efficiency of Enzyme Utilization, Biosens. Bioelectron.,2007,22,3021-3027.
    [255]X. Chen, X. Yan, K. A. Khor, B. K. Tay, Multilayer Assembly of Positively Charged Polyelectrolyte and Negatively Charged Glucose Oxidase on a 3D Nafion Network for Detecting Glucose, Biosens. Bioelectron.,2007,22,3256-3260.
    [256]X. Pang, D. He, S. Luo, Q. Cai, An Amperometric Glucose Biosensor Fabricated with Pt Nanoparticle-Decorated Carbon Nanotubes/Tio2 Nanotube Arrays Composite, Sens. Actuators B,2009,137,134-138.
    [257]X. Zeng, X. Li, L. Xing, X. Liu, S. Luo, W. Wei, B. Kong, Y. Li, Electrodeposition of Chitosan-Ionic Liquid-Glucose Oxidase Biocomposite onto Nano-Gold Electrode for Amperometric Glucose Sensing, Biosens. Bioelectron.,2009, 24,2898-2903.
    [258]A. E. G Cass, G. Davis, G D. Francis, H. A. O. Hill, W. J. Aston, I.J. Higgins, E. V. Plotkin, L. D. L. Scott, A. P. F. Turner, Anal. Chem.,1984,56,667-671.
    [259]S. Hrapovic, Y. Liu, K. B. Male, J. H. T. Luong, Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes, Anal. Chem.,2004, 76,1083-1088.
    [260]X. Jia, L. Tan, Y. Zhou, X. Jiang, Q. Xie, H. Tang, S. Yao, Magnetic Immobilization and Electrochemical Detection of Leukemia K562 Cells, Electrochem. Commun.,2009,11,141-144.
    [261]S. Qu, J. Wang, J. Kong, P. Yang, G. Chen, Magnetic Loading of Carbon Nanotube/Nano-Fe3O4 Composite for Electrochemical Sensing, Talanta,2007,71, 1096-1102.
    [262]D. Yu, O. D. Renedo, B. Blankert, V. Sima, R. Sandulescu, J. Arcos, J. M. Kauffmann, A Peroxidase-Based Biosensor Supported by Nanoporous Magnetic Silica Microparticles for Acetaminophen Biotransformation and Inhibition Studies, Electroanalysis 2006,18,1637-1642.
    [263]Y. Zhang, G. M. Zeng, L. Tang, D. L. Huang, X. Y. Jiang, Y. N. Chen, A Hydroquinone Biosensor Using Modified Core-Shell Magnetic Nanoparticles Supported on Carbon Paste Electrode, Biosens. Bioelectron.,2007,22,2121-2126.
    [264]A. Elyacoubi, S. I. M. Zayed, B. Blankert, J. M. Kauffmann, Development of an Amperometric Enzymatic Biosensor Based on Gold Modified Magnetic Nanoporous Microparticles, Electroanalysis,2006,18,345-350.
    [265]Z. Liu, Y. Liu, H. Yang, Y. Yang, G Shen, R. Yu, A Phenol Biosensor Based on Immobilizing Tyrosinase to Modified Core-Shell Magnetic Nanoparticles Supported at a Carbon Paste Electrode, Anal. Chim. Acta,2005,533,3-9.
    [266]Z. Liu, Y. Liu, H. Yang, Y Yang, G. Shen, R. Yu, Direct Electrochemical Immunoassay Based on Immobilization of Protein-Magnetic Nanoparticle Composites on to Magnetic Electrode Surfaces by Sterically Enhanced Magnetic Field Force, Biotechnol. Lett.,2006,28,559-565.
    [267]D. Tang, R. Yuan, Y. Chai, Magnetic Core-Shell Fe3O4@Ag Nanoparticles Coated Carbon Paste Interface for Studies of Carcinoembryonic Antigen in Clinical Immunoassay, J. Phys. Chem. B,2006,110,11640-11646.
    [268]L. L. Pang, J. S. Li, J. H. Jiang, Y. Le, G. L. Shen, R. Q. Yu, A Novel Detection Method for DNA Point Mutation Using QCM Based on Fe3O4/Au Core/Shell Nanoparticle and DNA Ligase Reaction, Sens. Actuators B,2007,127,311-316.
    [269]T. T. H. Pham, C. Cao, S. J. Sim, Application of Citrate-Stabilized Gold-Coated Ferric Oxide Composite Nanoparticles for Biological Separations, J. Magn. Magn. Mater.,2008,320,2049-2055.
    [270]J. L. Lyon, D. A. Fleming, M. B. Stone, P. Schiffer, M. E. Williams, Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding, Nano. Lett.,2004,4,719-723.
    [271]Q. H. Lu, K. L. Yao, D. Xi, Z. L. Liu, X. P. Luo, Q. Ning, Synthesis and Characterization of Composite Nanoparticles Comprised of Gold Shell and Magnetic Core/Cores, J. Magn. Magn. Mater.,2006,301,44-49.
    [272]K. R. Brown, D. G. Walter, M. J. Natan, Seeding of Colloidal Au Nanoparticle Solutions.2. Improved Control of Particle Size and Shape, Chem. Mater.,2000,12, 306-313.
    [273]M. C. Daniel, D. Astruc, Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chem. Rev.,2004,104,293-346.
    [274]H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, S. Sun, Dumbbell-Like Bifunctional Au-Fe3O4 Nanoparticles, Nano. Lett.,2005,5,379-382.
    [275]A. Kaushika, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, B. D. Malhotra, Iron Oxide Nanoparticles-Chitosan Composite Based Glucose Biosensor, Biosens. Bioelectron.,2008,24,676-683.
    [276]L. J. Murphy, Reduction of Interference Response at a Hydrogen Peroxide Detecting Electrode Using Electropolymerized Films of Substituted Naphthalenes, Anal. Chem.,1998,70,2928-2935.
    [277]Y. Q. Dai, D. M. Zhou, K. K. Shiu, Permeability and Permselectivity of Polyphenylenediamine Films Synthesized at a Palladium Disk Electrode, Electrochim. Acta,2006,52,297-303.
    [278]D. Pan, J. Chen, S. Yao, L. Nie, J. Xia, W. Tao, Amperometric Glucose Biosensor Based on Immobilization of Glucose Oxidase in Electropolymerized o-Aminophenol Film at Copper-Modified Gold Electrode, Sens. Actuators B,2005, 104,68-74.
    [279]S. Wang, Y. Tan, D. Zhao, G. Liu, Amperometric Tyrosinase Biosensor Based on Fe3O4 Nanoparticles-Chitosan Nanocomposite, Biosens. Bioelectron.,2008,23, 1781-1787.
    [280]S. N. Shtykov, T. Y. Rusanova, A. V. Kalach, K. E. Pankin, Application of Langmuir-Blodgett Films as Modifiers of Piezoresonance Sensors, Sens. Actuators B, 2006,114,497-499.
    [281]J. W. Grate, E. T. Zellers, The Fractional Free Volume of the Sorbed Vapor in Modeling the Viscoelastic Contribution to Polymer-Coated Surface Acoustic Wave Vapor Sensor Responses, Anal. Chem.,2000,72,2861-2868.
    [282]H. Berney, J. Alderman, W. Lane, J. K. Collins, A Differential Capacitive Biosensor Using Polyethylene Glycol to Overlay the Biolayer, Sens. Actuators B, 1997,44,578-584.
    [283]F. Darain, D. S. Park, J. S. Park, S. C. Chang, Y. B. Shim, A Separation-Free Amperometric Immunosensor for Vitellogenin Based on Screen-Printed Carbon Arrays Modified with a Conductive Polymer, Biosens. Bioelectron.,2005,20, 1780-1787.
    [284]Y. C. Liu, C. M. Wang, K. P. Hsiung, C. Huang, Evaluation and Application of Conducting Polymer Entrapment on Quartz Crystal Microbalance in Flow Injection Immunoassay, Biosens. Bioelectron.,2003,18,937-942.
    [285]J. I. Reyes-de-Corcuera, R. P. Cavalieri, J. R. Powers, J. M. Tang, D. H. Kang, Enzyme-Electropolymer-Based Amperometric Biosensors:An Innovative Platform for Time-Temperature Integrators, J. Agric. Food Chem.,2005,53,8866-8873.
    [286]W. Y. Tao, D. W. Pan, Y. J. Liu, L. H. Nie, S. Z. Yao, An Amperometric Hydrogen Peroxide Sensor Based on Immobilization of Hemoglobin in Poly(o-Aminophenol) Film at Iron-Cobalt Hexacyanoferrate-Modified Gold Electrode, Anal. Biochem.,2005,338,332-340.
    [287]K. Nakanishi, H. Muguruma, I. Karube, A Novel Method of Immobilizing Antibodies on a Quartz Crystal Microbalance Using Plasma-Polymerized Films for Immunosensors, Anal. Chem.,1996,68,1695-1700.
    [288]U. Weckenmann, S. Mittler, K. Naumann, R. A. Fischer, Ordered Self-Assembled Monolayers of 4,4'-Biphenyldithiol on Polycrystalline Silver: Suppression of Multilayer Formation by Addition of Tri-N-Butylphosphine, Langmuir, 2002,18,5479-5486.
    [289]S. W. Joo, S. W. Han, K. Kim, Multilayer Formation of 1,2-Ethanedithiol on Gold:Surface-Enhanced Raman Scattering and Ellipsometry Study, Langmuir,2000, 16,5391-5396.
    [290]P. Kohli, K. K. Taylor, J. J. Harris, G. J. Blanchard, Assembly of Covalently-Coupled Disulfide Multilayers on Gold, J. Am. Chem. Soc.,1998,120, 11962-11968.
    [291]T. G. Lee, K. Kim, M. S. Kim, Adsorption of Xylene-a,a'-dithiol on Silver Investigated by Raman Spectroscopy, J. Phys. Chem.,1991,95,9950-9955.
    [292]S. J. Martin, V. E. Granstaff, G. C. Frye, Characterization of a Quartz Crystal Microbalance with Simultaneous Mass and Liquid Loading, Anal. Chem.,1991,63, 2272-2281.
    [293]Q. J. Xie, J. Wang, A. H. Zhou, Y. Y. Zhang, H. W. Liu, Z. N. Xu, Y. Yuan, M. Y Deng, S. Z. Yao, A Study of Depletion Layer Effects on Equivalent Circuit Parameters Using an Electrochemical Quartz Crystal Impedance System, Anal. Chem.,1999,71, 4649-4656.
    [294]K. Ito, K. Hashimoto, Y. Ishimori, Quantitative Analysis for Solid-Phase Hybridization Reaction and Binding Reaction of DNA Binder to Hybrids Using a Quartz Crystal Microbalance, Anal. Chim. Acta,1996,327,29-35.
    [295]Y. H. Wu, Q. J. Xie, A. H. Zhou, Y. Y. Zhang, L. H. Nie, S. Z. Yao, X. T. Mo, Detection and Analysis of Bacillus Subtilis Growth with Piezoelectric Quartz Crystal Impedance Based on Starch Hydrolysis, Anal. Biochem.,2000,285,50-57.
    [296]X. Chu, Z. L. Zha, G. L. Shen, R. Q. Yu, Quartz Crystal Microbalance Immunoassay with Dendritic Amplification Using Colloidal Gold Immunocomplex, Sensors and Actuators B,2006,114,696-704.
    [297]J. S. Li, Z. S. Wu, H. Wang, G. L. Shen, R. Q. Yu, A Reusable Capacitive Immunosensor with a Novel Immobilization Procedure Based on 1,6-Hexanedithiol and Nano-Au Self-Assembled Layers, Sens. Actuators B,2005,110,327-334.
    [298]Y. M. Long, L. H. Nie, J. H. Chen, S. Z. Yao, Piezoelectric Quartz Crystal Impedance and Electrochemical Impedance Study of HSA-Diazepam Interaction by Nanogold-Structured Sensor, J. Colloid Interface Sci.,2003,263,106-112.
    [299]M. J. Wang, L. Y. Wang, G. Wang, X. H. Ji, Y. B. Bai, T. J. Li, S. Y. Gong, J. H. Li, Application of Impedance Spectroscopy for Monitoring Colloid Au-Enhanced Antibody Immobilization and Antibody-Antigen Reactions, Biosensors and Bioelectronics,2004,19,575-382.
    [300]R. F. Carvalhal, R. S. Freire, L. T. Kubota, Polycrystalline Gold Electrodes:A Comparative Study of Pretreatment Procedures Used for Cleaning and Thiol Self-Assembly Monolayer Formation, Electroanalysis,2005,17,1251-1259.
    [301]L. D. Burke, D. T. Buckley, J. A. Morrissey, Novel View of the Electrochemistry of Gold, Analyst,1994,119,841-845.
    [302]L. D. Burke, P. F. Nugent, Multicomponent Hydrous Oxide Films Grown on Gold in Acid Solution, J. Electroanal. Chem.,1998,444,19-29.
    [303]A. Hamelin, Cyclic Voltammetry at Gold Single-Crystal Surfaces. Part 1. Behaviour at Low-Index Faces, J. Electroanal. Chem.,1996,407,1-11.
    [304]A. Hamelin, A. M. Martins, Cyclic Voltammetry at Gold Single-Crystal Surfaces. Part 2. Behaviour of High-Index Faces, J. Electroanal. Chem.,1996,407, 13-21.
    [305]M. D. Porter, T. B. Bright, D. L. Allara, C. E. D. Chidsey, Spontaneously Organized Molecular Assemblies.4. Structural Characterization of N-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, Infrared Spectroscopy, and Electrochemistry, J. Am. Chem. SOC.,1987,109,3559-3568.
    [306]E. Boubour, R. B. Lennox, Potential-Induced Defects in N-Alkanethiol Self-Assembled Monolayers Monitored by Impedance Spectroscopy, J. Phys. Chem. B,2000,104,9004-9010.
    [307]J. Yang, J. M. Han, K. Isaacson, D. Y. Kwok, Effects of Surface Defects, Polycrystallinity, and Nanostructure of Self-Assembled Monolayers for Octadecanethiol Adsorbed onto Au on Wetting and Its Surface Energetic Interpretation, Langmuir,2003,19,9231-9238.
    [308]W. R. Everett, T. L. Welch, L. Reed, I. Fritsch-Fades, Potential-Dependent Stability of Self-Assembled Organothiols on Gold Electrodes in Methylene Chloride, Anal. Chem.,1995,67,292-298.
    [309]H. Finklea, D. A. Snider, J. Fedyk, Characterization of Octadecanethiol-Coated Gold Electrodes as Microarray Electrodes by Cyclic Voltammetry and AC Impedance Spectroscopy, Langmuir,1993,9,3660-3667.
    [310]C. J. Zhong, M. D. Porter, Evidence for Carbon-Sulfur Bond Cleavage in Spontaneously Adsorbed Organosulfide-Based Monolayers at Gold, J. Am. Chem. Soc.,1994,116,11616-11617.
    [311]S. F. Chen, L. Y Li, C. L. Boozer, S. Y Jiang, Controlled Chemical and Structural Properties of Mixed Self-Assembled Monolayers by Coadsorption of Symmetric and Asymmetric Disulfides on Au(111), J. Phys. Chem. B,2001,105, 2975-2980.
    [312]H. Gronbeck, A. Curioni, W. Andreoni, Thiols and Disulfides on the Au(111) Surface:The Headgroup-Gold Interaction, J. Am. Chem. Soc.,2000,122,3839-3842.
    [313]R. L. Letsinger, R. Elghanian, G. Viswanadham, C. A. Mirkin, Use of a Steroid Cyclic Disulfide Anchor in Constructing Gold Nanoparticle-Oligonucleotide Conjugates, Bioconjugate Chem.,2000,11,289-291.
    [314]S. Y. Lin, Y T. Tsai, C. C. Chen, C. M. Lin, C. h. Chen, Two-Step Functionalization of Neutral and Positively Charged Thiols onto Citrate-Stabilized Au Nanoparticles, J. Phys. Chem. B,2004,108,2134-2139.
    [315]L. A. J. Porter, D. Ji, S. L. Westcott, M. Graupe, R. S. Czernuszewicz, N. J. Halas, T. R. Lee, Gold and Silver Nanoparticles Functionalized by the Adsorption of Dialkyl Disulfides, Langmuir,1998,14,7378-7386.
    [316]C. F. Chen, S. D. Tzeng, M. H. Lin, S. Gwo, Electrostatic Assembly of Gold Colloidal Nanoparticles on Organosilane Monolayers Patterned by Microcontact Electrochemical Conversion, Langmuir,2006,22,7819-7824.
    [317]C. R. Raj, T. Okajima, T. Ohsaka, Gold Nanoparticle Arrays for the Voltammetric Sensing of Dopamine, J. Electroanal. Chem.,2003,543,127-133.
    [318]F. Caruso, E. Rodda, D. N. Furlong, Orientational Aspects of Antibody Immobilization and Immunological Activity on Quartz Crystal Microbalance Electrodes, J. Colloid Interface Sci.,1996,178,104-115.
    [319]H. He, Q. J. Xie, Y. Y. Zhang, S. Z. Yao, A Simultaneous Electrochemical Impedance and Quartz Crystal Microbalance Study on Antihuman Immunoglobulin G Adsorption and Human Immunoglobulin G Reaction, J. Biochem. Biophys. Methods, 2005,62,191-205.
    [320]N. L. Rosi, C. A. Mirkin, Nanostructures in Biodiagnostics, Chem. Rev.,2005, 105,1547-1562.
    [321]J. Wu, Z. F. Fu, F. Yan, H. X. Ju, Biomedical and Clinical Applications of Immunoassays and Immunosensors for Tumor Markers, Trends Anal. Chem.,2007, 26,679-688.
    [322]J. Wang, G. D. Liu, H. Wu, Y. H. Lin, Quantum-Dot-Based Electrochemical Immunoassay for High-Throughput Screening of the Prostate-Specific Antigen, Small, 2008,4,82-86.
    [323]M. Grzelczak, M. A. Correa-Duarte, V. Salgueirino-Maceira, B. Rodriguez-Gonzalez, J. Rivas, L. M. Liz-Marzan, Pt-Catalyzed Formation of Ni Nanoshells on Carbon Nanotubes, Angew. Chem. Int. Ed.,2007,46,7026-7030.
    [324]B. H. Wu, D. Hu, Y. J. Kuang, B. Liu, X. H. Zhang, J. H. Chen, Functionalization of Carbon Nanotubes by an Ionic-Liquid Polymer:Dispersion of Pt and PtRu Nanoparticles on Carbon Nanotubes and Their Electrocatalytic Oxidation of Methanol, Angew. Chem. Int. Ed.,2009,48,4751-4754.
    [325]Z. G. Qi, P. G. Pickup, High Performance Conducting Polymer Supported Oxygen Reduction Catalysts, Chem. Commun.,1998,2299-2300.
    [326]Z. G. Qi, P. G. Pickup, Novel Supported Catalysts:Platinum and Platinum Oxide Nanoparticles Dispersed on Polypyrrole/Polystyrenesulfonate Particles, Chem. Commun.,1998,15-16.
    [327]J. M. Nam, C. S. Thaxton, C. A. Mirkin, Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins, Science,2003,301,1884-1886.
    [328]J. T. Mason, L. Xin, Z. M. Sheng, T. J. O'Leary, A Liposome-PCR Assay for the Ultrasensitive Detection of Biological Toxins, Nat. Biotechnol.,2006,24,555-557.
    [329]G. D. Liu, H. Wu, J. Wang, Y. H. Lin, Apoferritin-Templated Synthesis of Metal Phosphate Nanoparticle Labels for Electrochemical Immunoassay, Small,2006,2, 1139-1143.
    [330]G. D. Liu, J. Wang, H. Wu, Y. H. Lin, Versatile Apoferritin Nanoparticle Labels for Assay of Protein, Anal. Chem.,2006,78,7417-7423.
    [331]P. Asuri, S. S. Karajanagi, R. S. Kane, J. S. Dordick, Polyaniline-Coated Fe3O4 Nanoparticle-Carbonnanotube Composite and Its Application in Electrochemical Biosensing, Small,2007,3,50-53.
    [332]J. Zhang, S. P. Song, L. H. Wang, D. Pan, C. H. Fan, A Gold Nanoparticle-Based Chronocoulometric DNA Sensor for Amplified Detection of DNA, Nat. Protoc.,2007,2,2888-2895.
    [333]X. Y. Xiao, S. G. Sun, J. L. Yao, Q. H. Wu, Z. Q. Tian, Surface-Enhanced Raman Spectroscopic Studies of Dissociative Adsorption of Amino Acids on Platinum and Gold Electrodes in Alkaline Solutions, Langmuir,2002,18,6274-6279.
    [334]X. X. Han, L. J. Cai, J. Guo, C. X. Wang, W. D. Ruan, W. Y. Han, W. Q. Xu, B. Zhao, Y. Ozaki, Fluorescein Isothiocyanate Linked Immunoabsorbent Assay Based on Surface-Enhanced Resonance Raman Scattering, Anal. Chem.,2008,80,3020-3024.
    [335]H. Liu, Z. J. Yang, F. Yan, Y. M. Xu, H. X. Ju, Three-Minute-Long Chemiluminescent Immunoassay Using Dually Accelerated Immunoreaction by Infrared Heating and Passive Mixing, Anal. Chem.,2009,81,4043-4047.
    [336]Y. Huang, Q. Wen, J. H. Jiang, G. L. Shen, R. Q. Yu, A Novel Electrochemical Immunosensor Based on Hydrogen Evolution Inhibitionby Enzymatic Copper Deposition on Platinum Nanoparticle-Modified Electrode, Biosens. Bioelectron.,2008, 24,600-605.
    [337]Y. F. Wu, C. L. Chen, S. Q. Liu, Enzyme-Functionalized Silica Nanoparticles as Sensitive Labels in Biosensing, Anal. Chem.,2009,81,1600-1607.
    [338]Z. Y. Zhong, M. X. Li, D. B. Xiang, N. Dai, Y. Qing, D. Wang, D. P. Tang, Signal Amplification of Electrochemical Immunosensor for the Detection of Human Serum IgG Using Double-Codified Nanosilica Particles as Labels, Biosens. Bioelectron.,2009,24,2246-2249.
    [339]Y. C. Fu, C. Zou, Q. J. Xie, X. H. Xu, C. Chen, W. F. Deng, S. Z. Yao, Highly Sensitive Glucose Biosensor Based on One-Pot Biochemical Preoxidation and Electropolymerization of 2,5-Dimercapto-1,3,4-Thiadiazole in Glucose Oxidase-Containing Aqueous Suspension, J. Phys. Chem. B,2009,113,1332-1340.
    [340]D. X. Li, Q. He, Y. Cui, K. W. Wang, X. M. Zhang, J. B. Li, Thermosensitive Copolymer Networks Modify Gold Nanoparticles for Nanocomposite Entrapment, Chem. Eur. J.,2007,13,2224-2229.
    [341]S. Porel, S. Singh, S. S. Harsha, D. N. Rao, T. P. Radhakrishnan, Nanoparticle-Embedded Polymer:In Situ Synthesis, Free-Standing Films with Highly Monodisperse Silver Nanoparticles and Optical Limiting, Chem. Mater.,2005,17, 9-12.
    [342]J. Ling, Y. F. Li, C. Z. Huang, Visual Sandwich Immunoassay System on the Basis of Plasmon Resonance Scattering Signals of Silver Nanoparticles, Anal. Chem., 2009,81,1707-1714.
    [343]Y. Y. Wang, B. Liu, Conjugated Polyelectrolyte-Sensitized Fluorescent Detection of Thrombin in Blood Serum Using Aptamer-Immobilized Silica Nanoparticles as the Platform, Langmuir,2009,25,12787-12793.
    [344]B. R. Baker, R. Y. Lai, M. S. Wood, E. H. Docto, A. J. Heeger, K. W. Plaxco, An Electronic, Aptamer-Based Small-Molecule Sensor for the Rapid, Label-Free Detection of Cocaine in Adulterated Samples and Biological Fluids, J. Am. Chem. Soc.,2006,128,3138-3139.
    [345]M. Zayats, Y. Huang, R. Gill, C. A. Ma, I. Willner, Label-Free and Reagentless Aptamer-Based Sensors for Small Molecules, J. Am. Chem. Soc.,2006,128, 13666-13667.
    [346]X. L. Zuo, S. P. Song, J. Zhang, D. Pan, L. H. Wang, C. H. Fan, A Target-Responsive Electrochemical Aptamer Switch (TREAS) for Reagentless Detection of Nanomolar ATP, J. Am. Chem. Soc.,2007,129,1042-1043.
    [347]P. L. Sazani, R. Larralde, J. W. Szostak, A Small Aptamer with Strong and Specific Recognition of the Triphosphate of ATP, J. Am. Chem. Soc.,2004,126, 8370-8371.
    [348]J. A. Hansen, Joseph Wang, A. N. Kawde, Y. Xiang, K. V. Gothelf, G. Collins, Quantum-Dot/Aptamer-Based Ultrasensitive Multi-Analyte Electrochemical Biosensor, J. Am. Chem. Soc.,2006,128,2228-2229.
    [349]J. H. Choi, K. H. Chen, M. S. Strano, Aptamer-Capped Nanocrystal Quantum Dots:A New Method for Label-Free Protein Detection, J. Am. Chem. Soc.,2006,128, 15584-15585.
    [350]A. Heckel, G. n. Mayer, Light Regulation of Aptamer Activity:An Anti-Thrombin Aptamer with Caged Thymidine Nucleobases, J. Am. Chem. Soc., 2005,127,822-823.
    [351]C. Deng, J. Chen, Z. Nie, M. Wang, X. Chu, X. Chen, X. Xiao, C. Lei, S. Yao, Impedimetric Aptasensor with Femtomolar Sensitivity Based on the Enlargement of Surface-Charged Gold Nanoparticles, Anal. Chem.,2009,81,739-745.
    [352]D. Shangguan, L. Meng, Z. C. Cao, Z. Xiao, D. Cardona, R. P. Witek, C. Liu, W. Tan, Identification of Liver Cancer-Specific Aptamers Using Whole Live Cells, Anal. Chem.,2008,80,721-728.
    [353]Y. F. Huang, H. T. Chang, W. H. Tan, Cancer Cell Targeting Using Multiple Aptamers Conjugated on Nanorods, Anal. Chem.,2008,80,567-572.
    [354]C. D. Medley, J. E. Smith, Z. Tang, Y. Wu, S. Bamrungsap, W. Tan, Gold Nanoparticle-Based Colorimetric Assay for the Direct Detection of Cancerous Cells, Anal. Chem.,2008,80,1067-1072.
    [355]A. Numnuam, K. Y. Chumbimuni-Torres, Y. Xiang, R. Bash, P. Thavarungkul, P. Kanatharana, Aptamer-Based Potentiometric Measurements of Proteins Using Ion-Selective Microelectrodes, Anal. Chem.,2008,80,707-712.
    [356]B. R. Baker, R. Y. Lai, M. S. Wood, E. H. Doctor, A. J. Heeger, K. W. Plaxco, Electrochemical Aptasensor Based on Proximity-Dependent Surface Hybridization Assay for Single-Step, Reusable, Sensitive Protein Detection, J. Am. Chem. Soc., 2007,129,15448-15449.
    [357]I. Willner, M. Zayats, Electronic Aptamer-Based Sensors, Angew. Chem. Int. Ed.,2007,46,6408-6418.
    [358]A. Bini, M. Minunni, S. Tombelli, S. Centi, M. Mascini, Analytical Performances of Aptamer-Based Sensing for Thrombin Detection, Anal. Chem.,2007, 79,3016-3019.
    [359]J. R. Cole, Affinity Capture and Detection of Immunoglobulin E in Human. Serum Using an Aptamer-Modified Surface in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry, Anal. Chem.,2007,79,273-279.
    [360]A. H. Lu, E. L. Salabas, F. Schuth, Magnetic Nanoparticles:Synthesis, Protection, Functionalization, and Application, Angew. Chem. Int. Ed.,2007,46, 1222-1244.
    [361]Y. C. Fu, P. H. Li, Q. J. Xie, X. H. Xu, L. H. Lei, C. Chen, C. Zou, W. F. Deng, S. Z. Yao, One-Pot Preparation of Polymer-Enzyme-Metallic Nanoparticle Composite Films for High-Performance Biosensing of Glucose and Galactose, Adv. Funct. Mater., 2009,19,1784-1791.
    [362]M. A. Rahman, J. I. Son, M.-S. Won, Y. B. Shim, Gold Nanoparticles Doped Conducting Polymer Nanorod Electrodes:Ferrocene Catalyzed Aptamer-Based Thrombin Immunosensor, Anal. Chem.,2009,81,6604-6611.
    [363]B. Basnar, R. Elnathan, I. Willner, Following Aptamer-Thrombin Binding by Force Measurements, Anal. Chem.,2006,78,3638-3642.
    [364]M. Vairamani, M. L. Gross, G-Quadruplex Formation of Thrombin-Binding Aptamer Detected by Electrospray Ionization Mass Spectrometry, J. Am. Chem. Soc., 2003,125,42-43.
    [365]H. N. Choi, M. A. Kim, W. Lee, Amperometric Glucose Biosensor Based on Sol-Gel Derived Metaloxide/Nafion Composite Films, Anal. Chim. Acta,2005,537 179-187.
    [366]S. F. Chen, L. Y. Li, C. L. Boozer, S. Y. Jiang, Controlled Chemical and Structural Properties of Mixed Self-Assembled Monolayers by Coadsorption of Symmetric and Asymmetric Disulfides on Au(111), J. Phys. Chem. B,2001,105, 2975-2890.
    [367]A. E. Radi, J. L. A. Sanchez, E. Baldrich, C. K. O'Sullivan, Reagentless, Reusable, Ultrasensitive Electrochemical Molecular Beacon Aptasensor, J. Am. Chem. Soc.,2006,128,117-124.
    [368]R. Polsky, R. Gill, L. Kaganovsky, I. Willner, Nucleic Acid-Functionalized Pt Nanoparticles:Catalytic Labels for the Amplified Electrochemical Detection of Biomolecules, Anal. Chem.,2006,78,2268-2271.
    [369]R. Nutiu, Y. F. Li, Structure-Switching Signaling Aptamers, J. Am. Chem. Soc., 2003,125,4771-4778.
    [370]B. Li, H. Wei, S. Dong, Sensitive Detection of Protein by an Aptamer-Based Label-Free Fluorescing Molecular Switch, Chem. Commun.,2007,73-75.
    [371]V. Pavlov, Y. Xiao, B. Shlyahovsky, I. Willner, Aptamer-Functionalized Au Nanoparticles for the Amplified Optical Detection of Thrombin, J. Am. Chem. Soc., 2004,126,11768-11769.
    [372]H. Wei, B. Li, J. Li, E. Wang, S. Dong, Simple and Sensitive Aptamer-Based Colorimetric Sensing of Protein Using Unmodified Gold Nanoparticle Probes, Chem. Commun.,2007,3735-3737.
    [373]M. Famulok, J. S. Hartig, G. Mayer, Functional Aptamers and Aptazymes in Biotechnology, Diagnostics, and Therapy, Chem. Rev.,2007,107,3715-3743.
    [374]S. P. Song, L. H. Wang, J. Li, C. H. Fan, J. L. Zhao, Aptamer-Based Biosensors, Trends Anal. Chem.,2008,27,108-117.
    [375]B. L. Li, Y. L. Wang, H. Wei, S. J. Dong, Amplified Electrochemical Aptasensor Taking AuNPs Based Sandwich Sensing Platform as a Model, Biosens. Bioelectron., 2008,23,965-970.
    [376]L. Shen, Z. Chen, Y. H. Li, P. Jing, S. B. Xie, S. L. He, P. L. He, Y. H. Shao, A Chronocoulometric Aptamer Sensor for Adenosine Monophosphate, Chem. Commun., 2007,2169-2171.
    [377]M. C. Rodriguez, A. N. Kawde, J. Wang, Aptamer Biosensor for Label-Free Impedance Spectroscopy Detection of Proteins Based on Recognition-Induced Switching of the Surface Char, Chem. Commun.,2005,4267-4269.
    [378]M. Zayats, Y. Huang, R. Gill, C. Ma, I. Willner, Label-Free and Reagentless Aptamer-Based Sensors for Small Molecules, J. Am. Chem. Soc.,2006,128, 13666-13667.
    [379]Y Du, B. L. Li, H. Wei, Y. L. Wang, E. K. Wang, Multifunctional Label-Free Electrochemical Biosensor Based on an Integrated Aptamer, Anal. Chem.,2008,80, 5110-5117.
    [380]C. Deng, J. Chen, Z. Nie, M. Wang, X. Chu, X. Chen, X. Xiao, C. Lei, S. Yao, Impedimetric Aptasensor with Femtomolar Sensitivity Based on the Enlargement of Surface-Charged Gold Nanoparticles, Anal. Chem.,2009,81,739-745.
    [381]X. L. Zuo, Y. Xiao, K. W. Plaxco, High Specificity, Electrochemical Sandwich Assays Based on Single Aptamer Sequences and Suitable for the Direct Detection of Small-Molecule Targets in Blood and Other Complex Matrices, J. Am. Chem. Soc., 2009,131,6944-6945.
    [382]S. Centi, S. Tombelli, M. Minunni, M. Mascini, Aptamer-Based Detection of Plasma Proteins by an Electrochemical Assay Coupled to Magnetic Beads, Anal. Chem.,2007,79,1466-1473.
    [383]A. K. H. Cheng, B. Ge, H. Z. Yu, Aptamer-Based Biosensors for Label-Free Voltammetric Detection of Lysozyme, Anal. Chem.,2007,79,5158-5164.
    [384]Y. Xiang, M. Y. Xie, R. Bash, J. J. L. Chen, J. Wang, Ultrasensitive Label-Free Aptamer-Based Electronic Detection, Angew. Chem.,2007,119,9212-9214.
    [385]Y. Xiao, B. D. Piorek, K. W. Plaxco, A. J. Heeger, A Reagentless Signal-on Architecture for Electronic, Aptamer-Based Sensors Via Target-Induced Strand Displacement, J. Am. Chem. Soc.,2005,127,17990-17991.
    [386]A. Numnuam, K. Y. Chumbimuni-Torres, Y. Xiang, R. Bash, P. Thavarungkul, P. Kanatharana, E. Pretsch, J. Wang, E. Bakker, Aptamer-Based Potentiometric Measurements of Proteins Using Ion-Selective Microelectrodes, Anal. Chem.,2008, 80,707-712.
    [387]P. He, L. Shen, Y. Cao, D. Li, Ultrasensitive Electrochemical Detection of Proteins by Amplification of Aptamer-Nanoparticle Bio Bar Codes, Anal. Chem., 2007,79,8024-8029.
    [388]Y. Lu, X. C. Li, L. M. Zhang, P. Yu, L. Su, L. Q. Mao, Aptamer-Based Electrochemical Sensors with Aptamer-Complementary DNA Oligonucleotides as Probe, Anal. Chem.,2008,80,1883-1890.
    [389]X. Chen, M. C. Estevez, Z. Zhu, Y F. Huang, Y. Chen, L. Wang, W. Tan, Using Aptamer-Conjugated Fluorescence Resonance Energy Transfer Nanoparticles for Multiplexed Cancer Cell Monitoring, Anal. Chem.,2009,81,7009-7014.
    [390]J. Ruta, S. Perrier, C. Ravelet, J. Fize, E. Peyrin, Noncompetitive Fluorescence Polarization Aptamer-Based Assay for Small Molecule Detection, Anal. Chem.,2009, 81,7468-7473.
    [391]C. X. Lin, E. Katilius, Y. Liu, J. P. Zhang, H. Yan, Self-Assembled Signaling Aptamer DNA Arrays for Protein Detection, Angew. Chem. Int. Ed.,2006,45, 5296-5301.
    [392]C. D. Medley, J. E. Smith, Z. Tang, Y. Wu, S. Bamrungsap, W. Tan, Gold Nanoparticle-Based Colorimetric Assay for the Direct Detection of Cancerous Cells, Anal. Chem.,2008,80,1067-1072.
    [393]J. W. Liu, Y Lu, Non-Base Pairing DNA Provides a New Dimension for Controlling Aptamer-Linked Nanoparticles and Sensors, J. Am. Chem. Soc.,2007, 129,8634-8643.
    [394]J. W. Liu, Y. Lu, Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles, Angew. Chem. Int. Ed.,2006,45,90-94.
    [395]W. A. Zhao, W. Chiuman, J. C. F. Lam, S. A. McManus, W. Chen, Y. G. Cui, R. Pelton, M. A. Brook, Y. F. Li, DNA Aptamer Folding on Gold Nanoparticles:From Colloid Chemistry to Biosensors, J. Am. Chem. Soc.,2008,130,3610-3618.
    [396]R. Freeman, E. Sharon, R. Tel-Vered, I. Willner, Supramolecular Cocaine-Aptamer Complexes Activate Biocatalytic Cascades, J. Am. Chem. Soc., 2009,131,5028-5029.
    [397]J. Wang, H. S. Zhou, Aptamer-Based Au Nanoparticles-Enhanced Surface Plasmon Resonance Detection of Small Molecules, Anal. Chem.,2008,80, 7174-7178.
    [398]M. Liss, B. Petersen, H. Wolf, E. Prohaska, An Aptamer-Based Quartz Crystal Protein Biosensor, Anal. Chem.,2002,74,4488-4495.
    [399]A. Bogomolova, E. Komarova, K. Reber, T. Gerasimov, O. Yavuz, S. Bhatt, M. Aldissi, Challenges of Electrochemical Impedance Spectroscopy in Protein Biosensing, Anal. Chem.,2009,81,3944-3949.
    [400]S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, R. N. Muller, Magnetic Iron Oxide Nanoparticles:Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chem. Rev.,2008, 108,2064-2110.
    [401]M. A. M. Gijs, F. Lacharme, U. Lehmann, Microfluidic Applications of Magnetic Particles for Biological Analysis and Catalysis, Chem. Rev.,2010,110, 1518-1563.
    [402]H. G. Nie, S. J. Liu, R. Q. Yu, J. H. Jiang, Phospholipid-Coated Carbon Nanotubes as Sensitive Electrochemical Labels with Controlled-Assembly-Mediated Signal Transduction for Magnetic Separation Immunoassay, Angew. Chem. Int. Ed., 2009,48,9862-9866.
    [403]S. Centi, G. Messina, S. Tombelli, I. Palchetti, M. Mascini, Different Approaches for the Detection of Thrombin by an Electrochemical Aptamer-Based Assay Coupled to Magnetic Beads, Biosens. Bioelectron.,2008,23,1602-1609.
    [404]J. Zheng, W. Feng, L. Lina, F. Zhang, G. Cheng, P. He, Y. Fang, A New Amplification Strategy for Ultrasensitive Electrochemical Aptasensor with Network-Like Thiocyanuric Acid/Gold Nanoparticles, Biosens. Bioelectron.,2007,23, 341-347.
    [405]S. Iijima, Helical Microtubules of Graphitic Carbon, Nature,1991,354,56-58.
    [406]M. Trojanowicz, Analytical Applications of Carbon Nanotubes:A Review, Trends Anal. Chem.,2006,25,480-489.
    [407]D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of Carbon Nanotubes, Chem. Rev.,2006,106,1105-1136.
    [408]M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, N. G. Tassi, DNA-Assisted Dispersion and Separation of Carbon Nanotubes, Nat. Mater.,2003,2,338-342.
    [409]R. J. Chen, Y. G. Zhang, Controlled Precipitation of Solubilized Carbon Nanotubes by Delamination of DNA, J. Phys. Chem. B,2006,110,54-57.
    [410]R. Yang, Z. Tang, J. Yan, H. Kang, Y. Kim, Z. Zhu, W. Tan, Noncovalent Assembly of Carbon Nanotubes and Single-Stranded DNA:An Effective Sensing Platform for Probing Biomolecular Interactions, Anal. Chem.,2008,80,7408-7413.
    [411]Z. Wu, Z. Zhen, J. H. Jiang, G. L. Shen, R. Q. Yu, Terminal Protection of Small-Molecule-Linked DNA for Sensitive Electrochemical Detection of Protein Binding Via Selective Carbon Nanotube Assembly, J. Am. Chem. Soc.,2009,131, 12325-12332.
    [412]Y. Y. Ma, S. R. Ali, A. S. Dodoo, H. X. He, Enhanced Sensitivity for Biosensors: Multiple Functions of DNA-Wrapped Single-Walled Carbon Nanotubes in Self-Doped Polyaniline Nanocomposites, J. Phys. Chem. B,2006,110,16359-16365.
    [413]C. G. Hu, Y. Y. Zhang, G. Bao, Y. L. Zhang, M. L. Liu, Z. L. Wang, DNA Functionalized Single-Walled Carbon Nanotubes for Electrochemical Detection, J. Phys. Chem. B,2005,109,20072-20076.
    [414]M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. Mclean, G. B. Onoa, G. G. Samsonidze, E. D. Semke, M. Usrey, D. J. Walls, Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly, Science,2003,302,1545-1548.
    [415]X. M. Tu, S. Manohar, A. Jagota, M. Zheng, DNA Sequence Motifs for Structure-Specific Recognition and Separation of Carbon Nanotubes, Nature,2009, 460,250-253.
    [416]Y. Chen, H. Liu, T. Ye, J. Kim, C. Mao, DNA-Directed Assembly of Single-Wall Carbon Nanotubes, J. Am. Chem. Soc.,2007,129,8696-8697.
    [417]Y. Ma, S. R. Ali, L. Wang, P. L. Chiu, R. Mendelsohn, H. He, In Situ Fabrication of a Water-Soluble, Self-Doped Polyaniline Nanocomposite:The Unique Role of DNA Functionalized Single-Walled Carbon Nanotubes, J. Am. Chem. Soc., 2006,128,12064-12065.
    [418]Z. Zhu, Z. W. Tang, J. A. Phillips, R. H. Yang, H. Wang, W. H. Tan, Regulation of Singlet Oxygen Generation Using Single-Walled Carbon Nanotubes, J. Am. Chem. Soc.,2008,130,10856-10857.
    [419]R. H. Yang, J. Y. Jin, Y. Chen, N. Shao, H. Z. Kang, Z. Y. Xiao, Z. W. Tang, Y. R. Wu, Z. Zhu, W. H. Tan, Carbon Nanotube-Quenched Fluorescent Oligonucleotides: Probes That Fluoresce Upon Hybridization, J. Am. Chem. Soc.,2008,130, 8351-8358.
    [420]J. K. Herr, J. E. Smith, C. D. Medley, D. Shangguan, W. Tan, Aptamer-Conjugated Nanoparticles for Selective Collection and Detection of Cancer Cells, Anal. Chem.,2006,78,2918-2924.
    [421]G. K. Kouassi, J. Irudayaraj, Magnetic and Gold-Coated Magnetic Nanoparticles as a DNA Sensor, Anal. Chem.,2006,78,3234-3241.
    [422]Y. C. Fu, P.H. Li, L. J. Bu, T. Wang, Q. J. Xie, X. H. Xu, L. H. Lei, C. Zou, S. Z. Yao, Chemical/Biochemical Preparation of New Polymeric Bionanocomposites with Enzyme Labels Immobilized at High Load and Activity for High-Performance Electrochemical Immunoassay, J. Phys. Chem. C,2010,114,1472-1480.
    [423]H. Xu, X. Mao, Q. Zeng, S. Wang, A. N. Kawde, G. Liu, Aptamer-Functionalized Gold Nanoparticles as Probes in a Dry-Reagent Strip Biosensor for Protein Analysis, Anal. Chem.,2009,81,669-675.
    [424]Y. M. Yan, M. N. Zhang, K. P. Gong, L. Su, Z. X. Guo, L. Q. Mao, Adsorption of Methylene Blue Dye onto Carbon Nanotubes:A Route to an Electrochemically Functional Nanostructure and Its Layer-by-Layer Assembled Nanocomposite, Chem. Mater.,2005,17,3457-3463.
    [425]Q. Zhao, X. F. Lu, C. G. Yuan, X. F. Li, X. C. Le, Aptamer-Linked Assay for Thrombin Using Gold Nanoparticle Amplification and Inductively Coupled Plasma-Mass Spectrometry Detection, Anal. Chem.,2009,81,7484-7489.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700