新型电化学生物传感器的构建及其在生化分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物传感器是以生物识别性单元作为主要功能性元件,能够感受到特定的目标物质,并通过特定的换能器将这种感知转换成可识别信号的装置或器件。作为现代分析化学研究的热门课题,生物传感器是一门由化学、生物、医学、物理、电子技术等多种学科互相渗透成长起来的新学科,具有选择性高、分析速度快、操作简单、价格低廉以及可进行在线甚至活体分析等特点,在环境监测、临床诊断、食品工业等领域都得到了高度的关注和广泛的应用。本论文针对生物传感器研究的关键问题,即如何将生物成份稳定、高活性地固定到换能器表面,使用不同的材料、不同的修饰方法制备了一系列新型电化学生物传感器和一些无酶的电化学传感器,并将其应用于生化分析中。采用各种电化学技术,如循环伏安法(CV)、电化学交流阻抗法(EIS)、时间-电流曲线(i-t)等,以及紫外可见分光光度法(UV-vis)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能量散射谱(EDS)等技术详细研究了电化学传感器的结构、性质及其检测性能。本论文主要研究工作如下:
     (1)首先制备了一种新型的聚丙烯酰胺/壳聚糖半互穿聚合物网络水凝胶并将其用于对氧化还原性蛋白质血红蛋白的固定。该复合物水凝胶为蛋白质的固定提供了一个良好的微环境。通过SEM、UV-vis以电化学循环伏技术对固定在水凝胶中的血红蛋白进行了表征。紫外可见光谱研究结果表明固定于该复合物水凝胶中的血红蛋白能很好地保持其二级结构。循环伏安实验表明固定化的血红蛋白能与电极之间发生直接电子传递,在pH 7.0的磷酸盐缓冲溶液中,异相电子传递速率常数为5.51±0.30s-1。同时,固定于水凝胶膜中血红蛋白保持了很好的生物活性,对H2O2有良好的电催化性能。催化电流与H2O2的浓度在5×10-6 M-4.2x10-4 M内呈良好的线性。相比于单独的聚丙烯酰胺水凝胶,该复合物水凝胶固定的Hb膜具有更好的稳定性。
     (2)通过π-π作用,利用DNA对单壁碳纳米管(SWCNTs)进行功能化,并通过DNA功能化的SWCNTs将辣根过氧化物酶(HRP)固定于玻碳(GC)电极表面。循环伏安实验表明固定于DNA-SWCNTs上HRP能成功地实现其直接电化学。DNA作为SWCNTs与HRP直接的夹层,能有效地保持HRP的活性。与HRP-SWCNTs/GC及HRP-DNA/GC电极相比,HRP-DNA-SWCNTs/GC电极具有更好的电化学特性。所制备的HRP-DNA-SWCNTs/GC电极可以用来作为一个第三代H202生物传感器。通过实验详细探讨了pH以及检测电位对该生物传感器性能的影响。在最优检测条件下,响应电流与H202的浓度在6.0×10-7-1.8x10-3M的范围呈线性相关,最低检测限达到了3.0×10-7M。该生物传感器具有良好的重现性和稳定性,并能用于实际样品的检测。
     (3)通过静电相互作用,利用层层自组装的方法,我们将负电荷的DNA-SWCNTs与正电荷的Hb组装在电极表面,构筑了(Hb/DNA-CNTs)n多层膜。循环伏安实验表明固定于多层自组装膜中的Hb保持了良好的生物活性,能与电极之间发生直接电子转移。其式电位与电解液的pH值呈线性关系,表明了Hb与电极之间的直接电子传递是一电子一质子的电化学反应。同时,固定于多层膜内的Hb能很好地保持其生物活性,对H2O2具有良好的催化性能。能用于构建无试剂的H202生物传感器。这种基于酶和纳米复合物材料之间的层层自组装技术为构建无媒介体的生物传感器提供了一种有效的方法,同时也为可控地构造功能性的纳米结构生物界面提供了一个很好的实验模型。
     (4)首先将纳米金粒子通过电沉积的方法修饰于平面金电极表面,制备了纳米金电极,再将纳米金电极置于苯醌(BQ)、壳聚糖(CS)、离子液体(IL)、葡萄糖氧化酶(GOD)的混合溶液中,通过电沉积构建了一个灵敏的葡萄糖生物传感器。BQ的电化学还原消耗了质子,增大了电极附近溶液的pH值,从而使得壳聚糖变得不溶,沉积于电极表面,同时,GOD与IL也可以共沉积于电极表面。所构建的生物传感器能快速地对葡萄糖响应(<5 s),在最优实验条件下,该生物传感器具有很高的响应灵敏度(14.33μAmM-1 cm-2),是普通的平面金电极上所构建的生物传感器的2.8倍。其检测限达到了1.5×10-6M,比普通的平面金电极上所构建的生物传感器低20倍。同时,该生物传感器具有很宽的线性范围,良好的重现性,稳定性以及较好选择性,并能用于实际血清样品中葡萄糖浓度的测定。
     (5)通过简单的直流电沉积方法,可以将DNA-Cu2+复合物固定于GC电极表面。沉积于电极表面的DNA-Cu2+复合物对H202具有良好的电催化性能。基于此我们构建了一个灵敏的无酶H202传感器。为了获得最大的灵敏度,通过实验详细研究了沉积液中Cu2+浓度和沉积时间等电沉积条件以及pH值和检测电位等检测条件对H202在DNA-Cu2+/GC电极上的响应电流的影响。在最优条件下,该传感器对H202响应的线性范围为8.0×10-7 M-4.5×10-3 M,灵敏度为40.25μAmM-1,检测限为2.5×10-7 M,响应时间在4 s以内。相比于酶传感器,所构建的无酶H2O2传感器表现出更好的稳定性和重现性。
     (6)将CNTs、Nafion、铜纳米粒子(Cunano)结合,制备了新型纳米复合材料材料Cunano/CNTs-Nf,并用于对亚硝酸盐的检测。Nafion能使CNTs得到很好地分散,同时能于Cu2+结合,然后通过电化学还原Cu2+,使得Cunano沉积于CNTs上。采用SEM, TEM, EDS对制备的Cunano/CNTS-Nf纳米复合物进行了表征,结果表明Cunano均匀地分布于CNTs表面,直径在30 nm左右。电化学实验表明,该纳米复合物对亚硝酸根具有良好的催化活性,能在一个较低的电位下(-0.05 V)实现对亚硝酸根的检测。在最优实验条件下,该纳米复合物修饰的电极对亚硝酸盐检测的线性范围为1.0×10-6 M-6.0x10-4 M,检测限为8.0x10-8 M。由于较低的检测电位,CUnano/CNTs-Nf修饰的电极具有良好的稳定性和抗干扰能力。
A biosensor is a device for the detection of an analyte that combines a biological component with a physicochemical detector component, which transforms the signal resulting from the interaction of the analyte with the biological element into easily measured and quantified signal. As a hot topic in analytical chemistry, biosensor is an interdisciplinary approach including chemistry, biology, medical science, physics and electronics. Due to their high sensitivity, rapidity, simplicity, low-cost and potential ability for real-time and on-site analysis, biosensors have attracted wide attentions and applied widely in various areas including environmental monitoring, clinical diagnosis, food industry and so on. Focusing on the key issue of biosensors fabrication, how to immobilize biological component onto transducer surface with high stability and high activity, this dissertation concentrated on the use of various materials and modification methods to prepare novel biosensors and electrochemically nonenzymatic sensor. Then, the fabricated electrochemical sensors were applied to bio/chemical analysis. Their structure, characteristics and performances have been investigated by electrochemical methods such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and current-time technique (i-t), ultraviolet-visible spectrophotometry (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS), etc. The main points of this dissertation are summarized as follows:
     (1) Semi-interpenetrating polymer network (semi-IPN) hydrogel based on polyacrylamide (PAM) and chitosan was prepared to immobilize redox protein hemoglobin (Hb). The Hb-PAM-chitosan hydrogel film obtained has been investigated by scanning electron microscopy (SEM), UV-vis spectroscopy and cyclic voltammetry. UV-vis spectroscopy showed that Hb kept its secondary structure similar to its native state in the Hb-PAM-chitosan hydrogel film. Cyclic voltammogram of Hb-PAM-chitosan film modified glass carbon (GC) electrode showed that direct electron transfer between Hb and GC electrode occurred. The electron-transfer rate constant was about 5.51±0.30 s-1 in pH 7.0 buffers. Additionally, Hb in the semi-IPN hydrogel film retained its bioactivity and showed excellent electrocatalytic activity toward H2O2. The electrocatalytic current values were linear with increasing concentration of H2O2 in a wide range of 5-420μM. Compared with PAM hydrogel, Hb entrapped in PAM-chitosan semi-IPN hydrogel could exhibit better stability.
     (2) SWCNTs were functionalized by DNA through theπ-πinteractions between the nanotube sidewalls and the nucleic acid bases. Then the resulted DNA-SWCNTS hybrids were used to immobilize horseradish peroxidase (HRP) on glassy carbon (GC) electrode. Cyclic voltammetry showed that the direct electrochemistry of HRP immobilized on DNA-SWCNTs hybrids was achieved. The DNA interlayer between the SWCNTs and HRP could be used to keep the activity of HRP. Compared with HRP-SWCNTs/GC and HRP-DNA/GC electrodes, the prepared HRP-DNA-SWCNTs/GC electrode exhibited more excellent electrochemical properties. Thus, the prepared HRP-DNA-SWCNTs/GC electrode was proposed as a third-generation H2O2 biosensor. The effect of pH and applied potential on the performance of the biosensor was discussed in detail. Under the optimal conditions, a wide linear range of the propose biosensor for the detection of H2O2 was observed from 6.0×10-7 to 1.8×10-3 M. The detection limit was found to be 3.0×10-7 M. Furthermore, the proposed biosensor displayed very good reproducibility, high stability, and can be used to detect H2O2 in real samples.
     (3) Layer-by-layer assembly of Hb with DNA functionalized singlewall carbon nanotubes (DNA-SWCNTs) was achieved on glassy carbon electrode surface based on the electrostatic attraction between positively charged Hb and negatively charged DNA-SWCNTs hybrids. Cyclic voltammogram of (Hb/DNA-SWCNTs)n films modified electrodes indicated that direct electrochemistry of Hb was achieved. The dependence of the formal potential on solution pH indicated that one-proton transfer was coupled to each electron transfer in the direct electron transfer reaction. Additionally, Hb in the multilayer films retained its bioactivity and showed excellent electrocatalytic activity toward H2O2, suggesting that such multilayer films could be used as reagentless biosensors. The layer-by-layer assembly of enzymes with nano-hybrids provided a general and useful way to construct sensitive biosensors without using mediators. On the other hand, this would be used as an easily prepared experimental model to fabricate functional nanostructured biointerfaces.
     (4) First, nano-gold electrode was constructed by electrochemically depositing gold nanoparticles onto a flat gold electrode surface. Then the nano-gold electrode was immersed in the bath containing p-benzoquinone (BQ), chitosan (CS), glucose oxidase (GOD) and ionic liquid (IL) for fabrication of a sensitive glucose biosensor through electrodeposition. The proton consumption during electroreduction of BQ increased the local solution pH near the electrode surface and led to the deposition of CS hydrogel on the electrode surface. Co-deposition of GOD and IL with the CS hydrogel was achieved. The proposed biosensor exhibited a fast amperometric response (<5 s) to glucose. Under the optimal conditions, the proposed biosensor exhibited a high current sensitivity (14.33μA mM-1 cm-2), which was 2.8 times of the biosensor prepared by electrodepositing CS-IL-GOD biocomposite on flat gold electrode. The detection limit for glucose was 1.5μM, which was 20-fold lower compared to the biosensor prepared on flat gold electrode. Moreover, the proposed biosensor exhibited a wide linear range, high reproducibility, long-time storage stability and satisfactory anti-interference ability. The proposed biosensor can applied to detect glucose concentration in serum samples.
     (5) DNA-Cu2+ complex were immobilized on the surface of GC electrode through electrodeposition under controlled dc potential. The electrodeposited DNA-Cu2+ complex exhibited excellent electrocatalytic behavior towards H2O2. Thus, a nonenzymatic H2O2 sensor was fabricated. The effects of Cu2+ concentration, electrodeposition time and determination conditions such as pH value, applied potential on the current response of the DNA-Cu2+/GC electrode toward H2O2 were optimized to obtain the maximal sensitivity. Under the optimal conditions, the linear range for the detection of the H2O2 is 8.0×10-7 M to 4.5×10-3 M with a high sensitivity of 40.25μA mM-1, a low detection limit of 2.5×10-7 M and a fast response time of within 4 s. Compared with the traditional enzymic sensor, the nonenzymatic H2O2 sensor exhibited better stability and reproducibility.
     (6) A novel hybrid, based on the combination of CNTs, Nafion and copper nanoparticles (Cunano) was synthesized and used to determination of nitrite. Nafion was used to disperse CNTs and displayed interaction with Cu2+. Then, Cunano were deposited onto CNTs by electrochemically reduction of Cu2+. SEM, TEM and EDS were used to characterize the resulted Cunano/CNTs-Nf hybrid. The results demonstrated that Cunano uniformly coated on CNTs with an average size of 30 nm. The electrochemical experiments indicated that the Cunano/CNTs-Nf hybrid modified electrode showed high electrocatalytic activity for the reduction of nitrite and could used to detect nitrite under a low applied potential of-0.05 V. Under the optimal conditions, The linear range of the determination of nitrite at the Cunano/CNTs-Nf hybrid modified electrode was from 1.0×106 M to 6.0×10-4 M, and the detection limit was found to be 8.0×10-8 M. The low detection potential gived the Cunano/CNTs-Nf hybrid modified electrode good stability and anti-interferent ability.
引文
[1]司士辉.生物传感器.北京:化学工业出社,2003:1.
    [2]Nagel B, Dellweg H, Gierasch L M. Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992). Pure and Applied Chemistry,1992,64(1):143-168.
    [3]Clark L C, Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences,1962,102(1),29-45.
    [4]Updike S J, Hicks G P. The enzyme electrode. Nature,1967,214(6):986-988.
    [5]Janata I. Immunoelectrode. Journal of the American Chemical Society,1975,97(10): 2914-2916.
    [6]Divies C. Ethanol oxidation by an Acetobacter xylinum microbial electrode. Annals of Microbiology,1975,126(A):175-185.
    [7]Karube I, Matsunaga T, Mitsuda S, et al. Microbial electrode BOD sensors. Biotechnology and Bioengineering,1997,19(10):1535-1547.
    [8]Rechnita G A, et al. A bio-selective membrane electrode prepared with living bacterial cells. Analytical Chimical Acta,1977,94(2):357-365.
    [9]Mosbach K, Danielsson B. An enzyme themistor. Biochimica et Biophysica,1974, 364(1):140-145.
    [10]Lubbers D W, Opitz N. Die pCO2/pO2 optrode:eine neue pCO2, pO2 messonde zur messung der pCO2 oder pO2 von gasen und fussigkeiten. Naturforsch. C:Bioscience, 1975,30(c):532-533.
    [11]Voelkl K P, Opitz N, Lubbers D W, et al. Continuous measurement of concentrations of alcohol using a fluorescence-photometric enzymic method. Fresenius Zeitschrift fur Analytische Chemie,1980,301(2):162-163.
    [12]Liedberg B, Nylander C, Lundstrm I. Surface plasmon resonance for gas detection and biosensing. Sensors and Actuator B:Chemical,1983,4(2):299-304.
    [13]Guilbault G G. Determination of formaldehyde with enzyme-coatd piezoelectric crystal detector. Analytical Chemistry,1983,55(11):1682-1684.
    [14]Sergeyeva T A, Lavrik N V, Rachkov A E, et al. An approach to conductometric immunosensor based on phthalocyanine thin film. Biosensors and Bioelectronics,1998, 13(6):359-369.
    [15]Vidal J C, Garcia E, Castillo J R. In situ preparation of overoxidized. PPy/oPPD bilayer biosensors for the determination of glucose and cholesterol in serum. Sensors and Actuator B:Chemical,1999,57(1-3):219-226.
    [16]Sergeyeva T A, Soldatkin A P, achkov A E, et al. Lactamase label-based potentiometric biosensor for α-2 interferon detection. Analytica Chimica Acta,1999,390(1-3):78-81.
    [17]Pena N, Kuiz G, Reviejo A J, et al. Graphite-Teflon composite bienzyme electrodes for the determination of cholesterol in reversed micelles:application to food samples. Analytical Chemistry,2001,73(6):1190-1195.
    [18]Guan W J, Li Y, Chen Y Q, et al. Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes. Biosensors and Bioelectronics,2005, 21(3):508-512.
    [19]Bunde R L, Jarvi E J, Rosentreter J J. Piezoelectric quartz crystal biosensors. Talanta, 1998,46(6):1223-1236
    [20]姚守拙.压电化学与生物传感.长沙:湖南师范大学出版社,1997.
    [21]Wang H, Zeng H, Liu Z, et al. Immunophenotyping of Acute Leukemia using an integrated piezoelectric immunosensor array. Analytical Chemistry,2004,76(8): 2203-2209.
    [22]He F, Geng Q, Zhu W, et al. Rapid detection of Escherichia coli using a separated electrode piezoelectric crystal sensor. Analytica Chimica Acta,1994,289(3):313-319.
    [23]He F, Deng L, Xie Q, et al. Rapid Detection of Staphylococcus Aureus Using a Separated Electrode Piezoelectric Crystal Sensor. Analytical Letters,1995,28(2):213-224.
    [24]Bart J C, Judd L J, Kusterbeck A W. Environmental immunoassay for the explosive RDX using a fluorescent dye-labeled antigen and the continuous flow immunosensor. Sensors and Actuator B:Chemical,1997,38(2):411-418.
    [25]Toppozada A R, Wright J, Eldefrawi A T. Evaluation of a fiber optic immunosensor for quantitating cocaine in coca. Biosensors and Bioelectronics,1997,12(2):113-124.
    [26]罗细亮,徐静娟,陈洪渊.场效应晶体管生物传感器.分析化学,2004,32(10):1395-1400.
    [27]Lee C H, Seo H I, Lee Y C, et al. All solid type ISFET glucose sensor with fast response and high sensitivity characteristics. Sensors and Actuators B:Chemical,2002,64(1-3): 37-41.
    [28]Selvanayagam Z E, Neuzil P, Sridhar U, et al. An ISFET-based immunosensor for the detection of β-Bungarotoxin. Biosensors and Bioelectronics,2002,17(9):821-826.
    [29]Ingebrandt S, Yeung C K, Krause M, et al. Cardiomyocyte-transistor-hybrids for sensor application. Biosensors and Bioelectronics,2001,16(7-8):565-570.
    [30]Xie B, Meckklenburg M, Danielesson B, et al. Development of an integrated thermal biosensor for the simultaneous determination of multiple analytes. The Analyst,1995, 120(1):155-160.
    [31]Pizziconi V B, Page D L. A cell-based immunobiosensor with engineered molecular recognition-Part I:design feasibility. Biosensors and Bioelectronics,1997,12(3): 287-299.
    [32]Reach G, Wilson, G S. Can continuous glucose monitoring be used for the treatment of diabetes. Analytical Chemistry,1992,64(6):381A-386A.
    [33]Gough D, Lucisano J, Tse P. Two-dimensional enzyme electrode sensor for glucose. Analytical Chemistry,1985,57(12):2351-2357.
    [34]Armour J C, Lucisano J Y, McKean B D, et al. Application of chronic intravascular blood glucose sensor in dogs. Diabetes,1990,39(12):1519-1526.
    [35]Sasso S, Pierce R, Walla R, et al. Electropolymerized 1,2-diaminobenzene as a means to prevent interferences and fouling, and to stabilize immobilized enzyme in electrochemical biosensors. Analytical Chemistry,1990,62(11):1111-1117.
    [36]Malitesta C, Palmisano F, Torsi L, et al. Self-modeling mixture analysis of second-derivative near-infrared spectral data using the SIMPLISMA approach. Analytical Chemistry,1990,62(22):2735-2742.
    [37]Palmisano F, Centonze D, Guerrieri A, et al. An interference-free biosensor based on glucose oxidase electrochemically immobilized in a non-conducting poly(pyrrole) film for continuous subcutaneous monitoring of glucose through microdialysis sampling. Biosensors and Bioelectronics,1993,8(9-10):393-399.
    [38]Karyakin A A, Karyakina E E, Gorton L. The electrocatalytic activity of Prussian blue in hydrogen peroxide reduction studied using a wall-jet electrode with continuous flow. Journal of Electroanalytical Chemistry,1998,456(1-2):97-104.
    [39]Lukachova L V, Kotelnikova E A, D'Ottavi,D, et al. Electrosynthesis of poly-o-diaminobenzene on the Prussian Blue modified electrodes for improvement of hydrogen peroxide transducer characteristics. Bioelectrochemistry 2002,55(1-2): 145-148.
    [40]Cass A E, Davis G, Francis G D, et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry,1984,56(4):667-671.
    [41]Shichiri M, Yamasaki Y, Hakui N, et al. Wearable artificial endocrine pancreas with needle-type glucose sensor. Lancet,1982,320(8308):1129-1131.
    [42]Frew J, Hill H A. Electrochemical biosensors. Analytical Chemistry,1987,59(15): 933A-944A.
    [43]Wu J, Qu Y. Mediator-free amperometric determination of glucose based on direct electron transfer between glucose oxidase and an oxidized boron-doped diamond electrode. Analytical and Bioanalytical Chemistry,2006,385(7):1330-1335.
    [44]Cooper J M, Greenough K R, McNeil C J. Direct electron transfer reactions between immobilized cytochrome and modified gold electrode. Journal of Electroanalytical Chemistry,1993,347(1-2):267-275.
    [45]Khan G F, Ouwa M, Wernet W. Design of a stable charge transfer complex electrode for a third-generation amperometric glucose sensor. Analytical Chemistry,1996,68(17): 2939-2945.
    [46]温至立,汪世平,沈国励.免疫传感器的发展概述.生物医学工程杂志,2001,184(4):642-646.
    [47]Pizziconi V B, Page D L. A cell Based Immunobiosensor molecular with Engineered Recognition Design Feasibility. Biosensors and Bioelectronics,1997,12(3):287-299.
    [48]Xie B, Meckklenburg M, Danielesson B, et al. Development of an integrated thermal biosensor for the simultaneous determination of multiple analytes. Analyst,1995,120(1): 155-160.
    [49]Mattiasson B, Borrebaecka C, Sanfridsona B, et al. Thermometric enzyme linked immunosorbent assay:TELISA. Biochimica et Biophysica Acta-Enzymology,1977, 483(2):221-227.
    [50]Birnbaum S, Bulow L, Hardy K, et al. Automated thermometric enzyme immunoassay of human proinsulin produced by Escherichia coli. Analytical Biochemistry,1986,158(1): 12-19.
    [51]Urban G, Kamper H, Jachimowicz A, et al. The construction of microcalorimetric biosensors by use of high resolution thin film thermistors. Biosensors and Bioelectronics, 1997,6(3):275-280.
    [52]Shons A, Dorman F, Najarian J. An immunospecific microbalance. Journal of Biomedical Materials Research,1972,6(6):565-570.
    [53]Wu Z, Shen G, Li Z, et al. A direct immunoassay for schistosoma japonium antibody (SjAb) in serum by piezoelectric body acoustic wave sensor. Analytica Chimica Acta, 1999,398(1):57-63.
    [54]Navratilova I, Skladal P, Viklicky V. Development of piezoelectric immunosensors for measurement of albuminuria. Talanta,2001,55(4):831-839.
    [55]Zhang B, Jiang Y, Kuang H, et al. Development of a spiral piezoelectric immunosensor based on thiol self-assembled monolayers for the detection of insulin. Journal of Immunological Methods,2001,338(1-2):7-13.
    [56]Zhang B, Mao Q, Zhang X, et al. A novel piezoelectric quartz micro-array immunosensor based on self-assembled monolayer for determination of human chorionic gonadotropin. Biosensors and Bioelectronics,2004,19(7):711-720.
    [57]Liedberg B, Nylander C, Lundstrom I. Biosensing with surface plasmon resonance-how it all started. Biosensors and Bioelectronics,1995,10(8):i-ix.
    [58]Severs A H, Schasfoort R B M, Salden M H L. An immunosensor for syphilis screening based on surface plasmon resonance. Biosensors and Bioelectronics,1993,8(3-4): 185-189.
    [59]Morgan H, Taylor D M. A surface plasmon resonance immunosensor based on the streptavidin-biotin complex. Biosensors and Bioelectronics,1992,7(6):405-410.
    [60]Uda T, Hifumi E, Kubota N, et al. Sensing of the antibody against AIDS virus protein gp41 and the influence of serum using surface plasmon resonance. Denki Kagaku.1995, 63(12):1160-1166.
    [61]Ravanat C, Wiesel M L, Schuhler S, et al. One-step assay for the determination of free protein S antigen in plasma using real-time biospecific interaction analysis. Blood Coagulation and Fibrinolysis,1998,9(4):333-341.
    [62]Takatoshi S, Masanori Y, Hiroya I, et al. Flow injection analysis of amitrole by chemiluminescent immunosensor using alkaline phosphatase and adamantyl methoxyphosphoryloxy phenyldioxetane. Analytical Science,2001,17(supplement I):1407-1410.
    [63]Plowman T E, Reichert W M, Peters C R, et al. Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor. Biosensors and Bioelectronics,1996,11(1-2):149-160.
    [64]Toppozada-A R, Wright J, Eldefrawi A T, et al. Evaluation of a fiber optic immunosensor for quantitating cocaine in coca. Biosensors and Bioelectronics,1997, 12(2):113-124.
    [65]Ghindilis A L, Skorobogat'ko O V, Gavrilova V P, et al. A new approach to the construction of potentiometric immunosensors. Biosensors and Bioelectronics,1992, 7(4):301-304.
    [66]袁若,唐典萍,柴雅琴等.高灵敏电位型免疫传感器对乙型肝炎表面抗原的诊断技术研究.中国科学B辑:化学,2004,34(4):279-286.
    [67]Sandberg R G, Van Houten L J, Schwartz J L, et al. A conductive polymer-based immunosensor for the analysis of pesticide residues. ACS Symposium Series,1992, 511(8):81-88.
    [68]Yagiuda K, Hemmi A, Ito S, et al. Development of a conductivity-based immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine. Biosensors and Bioelectronics,1996,11(8):703-707.
    [69]Limbut W, Kanatharana P, Mattiasson B, et al. A reusable capacitive immunosensor for carcinoembryonic antigen (CEA) detection using thiourea modified gold electrode. Analytical Chimica Acta,2006,561(1-2):55-61.
    [70]Li C M, Pan L K, Luong, J H T. Capacitance immunosensors based on an array biotape. Analyst,2006,131(7):788-790.
    [71]Limbut W, Hedstrom M, Thavarungkul P, et al. Capacitive biosensor for detection of endotoxin. Analytical and Bioanalytical Chemistry,2007,389(2):517-525.
    [72]Loyprasert S, Thavarungkul P, Asawatreratanakul P, et al. Label-free capacitive immunosensor for microcystin-LR using self-assembled thiourea monolayer incorporated with Ag nanoparticles on gold electrode. Biosensors and Bioelectronics, 2008,24(1):78-86.
    [73]Limbut W, Thavarungkul P, Kanatharana P, et al. Cost-effective disposable thiourea film modified copper electrode for capacitive immunosensor. Electrochimica Acta,2010, 55(9):3268-3274.
    [74]Ivnitski D, Rishpon J. A one-step, separation-free amperometric enzyme immunosensor. Biosensors and Bioelectronics,1996,11(4):409-417.
    [75]Trau D, Theuerl T, Wilmer M, et al. Development of an amperometric flow injection immunoanalysis system for the determination of the herbicide 2,4-dichlorophenoxyacetic acid in water. Biosensors and Bioelectronics,1997,12(6): 499-510
    [76]Vetcha S, Wilkins E, Yates T, et al. Rapid and sensitive handheld biosensor for detection of hantavirus antibodies in wild mouse blood samples under field conditions. Talanta, 2002,58(2):517-528.
    [77]Yu H, Yan F, Dai Z, et al. A disposable amperometric immunosensor for α-1-fetoprotein based on enzyme-labeled antibody/chitosan-membrane-modified screen-printed carbon electrode. Analytical Biochemistry,2004,331(1):98-105.
    [78]Suresh S, Gupta A K, Rao, V K, et al. Amperometric immunosensor for ricin by using on graphite and carbon nanotube paste electrodes. Talanta,2010,81(1-2):703-708.
    [79]Yao T, Rechnitz G A. Amperometric enzyme-immunosensor based on ferrocene-mediated amplification. Biosensors,187,3(5):307-312.
    [80]Wilson M S, Rauh R D. Novel amperometric immunosensors based on iridium oxide matrices. Biosensors and Bioelectronics,2004,19(7):693-699.
    [81]Aluoch A O, Sadik O A, Bedi G. Development of an oral biosensor for salivary amylase using a monodispersed silver for signal amplification. Analytical Biochemistry,2005, 340(1):136-144.
    [82]Yang X, Yuan R, Chai Y, et al. Porous redox-active Cu2O-SiO2 nanostructured film: Preparation, characterization and application for a label-free amperometric ferritin immunosensor. Talanta,2009,78(2):-596-601.
    [83]Aizawa M, Morioka A, Suzuki S, et al. Enzyme immunosenser:Ⅲ Amperometric determination of human cherienic gonadotropin by membrane-bound antibody. Analytical Biochemisty,1979,94(1):22-28.
    [84]Aizawa M, Morioka A, Suzuki S, et al. An enzyme immunosensor for the electrochemical determination of the tumor antigen a-fetoprotein. Analytica Chimica Acta,1980,115(15):61-67.
    [85]Ivnitski D, Rishpon J. A one-step, separation-free amperometric enzyme immunosensor. Biosensors and Bioelectronics,1996,11(4):409-417.
    [86]Santandreu M, Alegret S, Fabregas E. Determination of P-HCG using amperometric immunosensors based on a conducting immunocomposite. Analytica Chimica Acta, 1999,396(2-3):181-188.
    [87]Liu G, Wu Z, Wang S, et al. Renewable amperometric immunosensor for schistosoma japonium antibody assay. Analytical Chemistry,2001,73(14):3219-3226.
    [88]Ionescu R E, Cosnier S, Herrmann S, et al. Amperometric Immunosensor for the Detection of Anti-West Nile Virus IgG. Analytical Chemistry,2007,79 (22): 8662-8668
    [89]Prabhulkar S, Alwarappan S, Liu G, et al. Amperometric micro-immunosensor for the detection of tumor biomarker. Biosensors and Bioelectronics,2009,24(12):3524-3530.
    [90]Wade R S, Castro C E. Oxidation of heme proteins by alkylhalides. Journal of the American Chemical Society,1973,95(1) 231-234.
    [91]Fan C H, Wang H Y, Sun S, et al. Electron-transfer reactivity and enzymatic activity of hemoglobin in a SP sephadex membrane. Analytical Chemistry,2001,73(13): 2850-2854.
    [92]Ye J, Baldwin R P. Catalytic reduction of myoglobin and hemoglobin at chemically modified electrodes containing methylene blue. Analytical Chemistry,1988,60(20): 2263-2268.
    [93]Zhang Y Z, Zhao H, Yuan Z B. Electrodeposition of rhein and its electrocatalytic activity toward hemoglobin reduction. Electroanalysis,2002,14(5):382-386.
    [94]Hill H A O. The development of bioelectrochemistry. Coordination Chemistry Reviews, 1996,151(1):115-123.
    [95]Jia J B, Wang B Q, Wu A G, et al. A method to construct a third-generation horseradish peroxidase biosensor:self-assembling gold nanoparticles to three-dimensional sol-gel network. Analytical Chemistry,2002,74(9):2217-2223.
    [96]Gorton L, Lindgren A, Larsson T, et al. Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Analytica Chimica Acta, 1999,400(1-3):91-108.
    [97]Ferapontova E, Gorton L. Direct electrochemistry of heme multicofactor-containing enzymes on alkanethiol-modified gold electrodes. Bioelectrochemistry,2005,66(1-2): 55-63.
    [98]Rusling J F. Enzyme bioelectrochemistry in cast biomembrane-like films. Accounts of Chemical Research,1998,31(6):363-369.
    [99]Hu N F. Direct electrochemistry of redox proteins or enzymes at various film electrodes and their possible applications in monitoring some pollutants. Pure and Applied Chemistry,2001,73(12):1979-1991.
    [100]Paolucci-Jeanjean D, Belleville M P, Rios G M. Biomolecule applications for membrane-based phase contacting systems:distribution, separation and reaction-A first state of the art. Chemical Engineering Research and Design,2005,83(3):302-308.
    [101]He P L, Hu N F, Zhou G. Assembly of electroactive layer-by-layer films of hemoglobin and polycationic poly(diallyldimethylammonium). Biomacromolecules,2002,3(1): 139-146.
    [102]Sun H, Hu N F, Ma H Y. Direct electrochemistry of hemoglobin in polyacrylamide hydrogel film on graphite electrodes. Electroanalysis,2000,12(13):1064-1070.
    [103]Wang S F, Chen T, Zhang Z L, et al. Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hygrogel films in room-temperature ionic liquids. Langmuir,2005,21(20):9260-9266.
    [104]Silva C C, Rocha H H B, Freire F N A, et al. Hydroxyapatite screen-printed thick films: optical and electrical properties. Materials Chemistry and Physics,2005,92(1): 260-268.
    [105]Liu Y, Yuan R, Chai Y Q, et al. Direct electrochemistry of horseradish peroxidase immobilized on gold colloid/cysteine/nafion-modified platinum disk electrode. Sensors and Actuators B:Chemical,2006,115(1):109-115.
    [106]Zhao Y D, Bi Y.H, Zhang W D, et al. The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2. Talanta,2005,65(2):489-494.
    [107]Jia N Q, Zhou Q, Liu L, et al. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol-gel-derived tin oxide/gelatin composite films. Journal of Electroanalytical Chemistry,2005,580(2):213-221.
    [108]Luo X L, Xu J J, Du Y. A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition. Analytical Biochemistry,2004,334(2):284-289.
    [109]Zhang M G, Smith A, Gorski W.Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Analytical Chemistry,2004,74(17): 5045-5050.
    [110]Lu X B, Hu J Q, Yao X, et al. Composite system based on chitosan and room-temperature ionic liquid:direct electrochemistry and electrocatalysis of hemoglobin. Biomacromolecules,2006,7(3):975-980.
    [111]Xia Y Q, Guo T Y, Song M D, B.H. et al. Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Biomacromolecules,2005,6(6):2601-2606.
    [112]George P, Hanania G. Spectrophotometric study of ionizations in methemoglobin. Biochemical Journal,1953,55(2):236-243.
    [113]Theorell H, Ehrenberg A. Spectrophotometric, magnetic, and titrimetric studies on the heme-linked groups in myoglobin. Acta Chemica Scandinavica,1951,5(1):823-848.
    [114]Huang H, Hu N F, Zeng Y H, et al. Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films. Analytical Biochemistry,2002,308(1):141-151.
    [115]Murray R W. Chemically modified electrodes. In:Electroanalytical Chemistry(Bard A J Ed.). New York:Marcel Dekker,1986,191-368.
    [116]Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry,1979, 101(1):19-28.
    [117]Meites L. Polarographic Techniques. Second ed. New York:Wiley,1965,282-284.
    [118]Bond A M. Modern Polarographic Methods in Analytical Chemistry. Second ed. New York:Marcel Dekker,1980,29-30.
    [119]Arnao M B, Acosta M, Del-Rio J A, et al. A kinetic study on the suicide inactivation of peroxidase by hydrogen peroxide. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1990,1041(1):43-47.
    [120]Kamin R A, Willson G S. Rotation ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Analytical Chemistry 1980,52(8):1198-1205.
    [121]Yao H, Li N, Xu J Z, et al. Direct electrochemistry and electrocatalysis of hemoglobin in gelatine film modified glassy carbon electrode. Talanta,2007,71(2):550-554.
    [122]Wang Q L, Lu G X, Yang B J. Direct electrochemistry and electrocatalysis of hemoglobin immobilized on carbon paste electrode by silica sol-gel film. Biosensors and Bioelectronics 2004,19(10):1269-1275.
    [123]Wang H Y, Guan R, Fan C H, et al. A hydrogen peroxide biosensor based on the bioelectrocatalysis of hemoglobin incorporated in a kieselgubr film. Sensors and Actuators B:Chemical,2002,84(2-3):214-218.
    [124]Feng J J, Zhao G, Xu J J, et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Analytical Biochemistry,2005,342(2):280-286.
    [125]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354(7):56-58.
    [126]Dai H. Carbon nanotubes:synthesis, integration, and properties. Accounts of Chemical Research,2002,35(12):1035-1044.
    [127]Chen D, Wang G, Li, J. Interfacial bioelectrochemistry:fabrication, properties and applications of functional nahostructured biointerfaces. The Journal of Physical Chemistry C,2007,111(6):2351-2367.
    [128]Zhang Q, Zhang L, Li J. DNA-hemoglobin-multiwalls carbon nanotube hybrid material with sandwich structure:preparation, characterization, and application in bioelectrochemistry. The Journal of Physical Chemistry C,2007,111(24):8655-8660.
    [129]Karajanagi S S, Vertegel A A, Kane R S, et al. Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir,2004,20(26):11594-11599.
    [130]Nassar A E F, Rusling J F. Electron transfer between electrodes and heme proteins in protein-DNA films. Journal of the American Chemical Society,1996,118(12): 3043-3044.
    [131]Lisdat F, Ge B, Krause B, et al. Nucleic acid-promoted electron transfer to cytochrome c. Electroanalysis,2001,13(15):1225-1230.
    [132]Nakashima N, Okuzono S, Marakami H, et al. DNA dissolves single-walled carbon nanotubes in water. Chemistry Letters,2003,32(5):456-457.
    [133]Guo M, Chen J, Liu D, et al. Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes. Bioelectrochemistry, 2004,62(1):29-35.
    [134]Noguchi Y, Fujigaya T, Niidome Y, et al. Single-walled carbon nanotubes/DNA hybrids in water are highly stable. Chemical Physics Letters,2008,455(4-6):249-251.
    [135]Karachevtsev V A, Glamazda A Y, Leontiev V S, et al. Glucose sensing based on NIR fluorescence of DNA-wrapped single-walled carbon nanotubes. Chemical Physics Letters,2007,435(1-3):104-108.
    [136]Cathcart H, Quinn S, Nicolosi V, et al. Spontaneous debundling of single-walled carbon nanotubes in DNA-based dispersions. The Journal of Physical Chemistry C,2007, 111(1):66-74.
    [137]Wang G H, Zhang L M. Using novel polysaccharide-silica hybrid material to construct an amperometric biosensor for hydrogen peroxide. The Journal of Physical Chemistry B, 2006,110(49):24864-24868.
    [138]Yao H, Li N, Xu S, et al. Electrochemical study of a new methylene blue/silicon oxide nanocomposition mediator and its application for stable biosensor of hydrogen peroxide. Biosensors and Bioelectronics,2005,21(2):372-377.
    [139]Yin H, Ai S, Shi, W, et al. A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase. Sensors and Actuators B:Chemical,2009,137(2):747-753.
    [140]Xiang C, Zou Y, Sun L, et al. Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnO-gold nanoparticle-Nafion nanocomposite. Sensors and Actuators B:Chemical,2009,136(1):158-162.
    [141]Camacho C, Chico B, Cao R, et al. Novel enzyme biosensor for hydrogen peroxide via supramolecular associations. Biosensors and Bioelectronics,2009,24(7):2028-2033.
    [142]Rusling J F, Nassar A E F. Enhanced electron transfer for myoglobin in surfactant films on electrodes. Journal of the American Chemical Society,1993,115,11891-11897.
    [143]Nadzhafova O Y, Zahsev V N, Drozdova M V, et al. Heme proteins sequestered in silica sol-gels using surfactants feature direct electron transfer and peroxidase activity. Electrochemistry communications,2004,6(2):205-209.
    [144]Rusling J F. Electroactive and enzyme-active protein-polyion films assembled layer-by-layer. In:Protein Architecture:Interfacing Molecular Assemblies and Immobilization Biotechnology (Lvov Y, Mohwald H. Eds). New York:Marcel Dekker, 2000,337-337.
    [145]Ma H, Hu N, Rusling J F. Electroactive myoglobin films grown layer-by-layer with poly(styrenesulfonate) on pyrolytic graphite electrodes. Langmuir,2000,16(11): 4969-4975.
    [146]He P, Hu N, Zhou G A. Assembly of electroactive layer-by-layer films of hemoglobin and polycationic poly(diallyldimethylammonium). Biomacromolecules,2002,3(1): 139-146.
    [147]Wang L, Hu N. Direct electrochemistry of hemoglobin in layer-by-layer films with poly(vinyl sulfonate) grown on pyrolytic graphite electrodes. Bioelectrochemistry,2001, 53(2):205-212.
    [148]He P, Hu N. Interactions between heme proteins and dextran sulfate in layer-by-layer assembly films. The Journal of Physical Chemistry B,2004,108(35):13144-13152.
    [149]Heeger A J. Semiconducting and metallic polymers:The fourth generation of polymeric materials. The Journal of Physical Chemistry B,2001,105(35):8475-8491.
    [150]Lee G S, Lee Y J, Yoon K B. Layer-by-layer assembly of zeolite crystals on glass with polyelectrolytes as ionic linkers. Journal of the American Chemical Society,2001, 123(40):9769-9779.
    [151]Gittins D I, Caruso F. Tailoring the polyelectrolyte coating of metal nanoparticles. The Journal of Physical Chemistry B,2001,105(29):6846-6852.
    [152]Zhang J, Feng M, Tachikawa H. Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes. Biosensors and Bioelectronics, 2007,22(12):3036-3041.
    [153]Zhang H, Hu N. Conductive Effect of gold nanoparticles encapsulated inside polyamidoamine (PAMAM) dendrimers on electrochemistry of myoglobin (Mb) in {PAMAM-Au/Mb}n layer-by-layer Films. The Journal of Physical Chemistry B,2007, 111(35):10583-10590.
    [154]Shen L, Hu N. Electrostatic adsorption of heme proteins alternated with polyamidoamine dendrimers for layer-by-layer assembly of electroactive films. Biomacromolecules,2005,6(3):1475-1483.
    [155]Wang S, Chen T, Zhang Z, et al. Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids. Langmuir,2005,21(20):9260-9266.
    [156]Zhao Y, Bi Y, Zhang W, et al. The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2. Talanta,2005,65(2):489-494.
    [157]Fan C, Wang H, Sun S, et al. Electron-transfer reactivity and enzymatic activity of hemoglobin in a SP sephadex membrane. Analytical Chemistry,2001,73(13): 2850-2854.
    [158]Tong Z, Yuan R, Chai Y, et al. Amperometric biosensor for hydrogen peroxide based on Hemoglobin/DNA/Poly-2,6-pyridinediamine modified gold electrode. Thin Solid Films 2007,515(20-21):8054-8058.
    [159]Pei J, Tian F, Thundat, T. Glucose biosensor based on the micro-cantilever. Analytical Chemistry,2004,76(2):292-297.
    [160]Center for Disease Control, Ministry of Health China. Guideline for management of Chinese diabetes, www.eds.org.cn,2005.
    [161]Wang J. Electrochemical glucose biosensors. Chemical Reviews,2008,108(2): 814-825.
    [162]Hu J. The evolution of commercialized glucose sensors in China. Biosensors and Bioelectronics,2009,24(5):1083-1089.
    [163]Cosnier S. Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films A review. Biosensors and Bioelectronics,1999,14(5):443-456.
    [164]Wei D, Ivaska A. Applications of ionic liquids in electrochemical sensors. Analytica Chimica Acta,2008,607(2):126-135.
    [165]Lozano P L, Diego T D, Carrie D, et al. Stabilization of α-chymotrypsin by ionic liquids in transesterification reactions. Biotechnology and Bioengineering,2001,75(5): 563-569.
    [166]Laszlo J A, Compton D L. Comparison of peroxidase activities of hemin, cytochrome c and microperoxidase-11 in molecular solvents and imidazolium-based ionic liquids. Journal of Molecular Catalysis B:Enzymatic,2002,18(1-3):109-120.
    [167]Persson M, Bornscheuer U T. Increased stability of an esterase from Bacillus stearothermophilus in ionic liquids as compared to organic solvents. Journal of Molecular Catalysis B:Enzymatic,2003,22(1-2):21-27.
    [168]Lou W Y, Zong M H, Wu H. Enhanced activity, enantioselectivity and stability of papain in asymmetric hydrolysis of d,l-p-hydroxyphenylglycine methyl ester with ionic liquid. Biocatalysis and Biotransformation,2004,22(3):171-176.
    [169]Machado M F, Saraiva J M. Thermal stability and activity regain of horseradish peroxidase in aqueous mixtures of imidazolium-based ionic liquids. Biotechnology Letters,2005,27(16):1233-1239.
    [170]Lu X B, Hu J Q, Yao X, et al. Composite system based on chitosan and room-temperature ionic liquid:direct electrochemistry and electrocatalysis of hemoglobin. Biomacromolecules,2006,7(3):975-980.
    [171]Lu X B, Zhang Q, Zhang L, et al. Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochemistry Communications,2006,8(5):874-878.
    [172]Xi F, Liu L, Wu Q, et al. One-step construction of biosensor based on chitosan-ionic liquid-horseradish peroxidase biocomposite formed by electrodeposition. Biosensors and Bioelectronics,2008,24(1):29-34.
    [173]Turner M B, Spear S K, Holbrey J D, et al. Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules,2004,5(4):1379-1384.
    [174]Zhao F, Wu X E, Wang M K, et al. Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials. Analytical Chemistry, 2004,76(17):4960-4967.
    [175]Zhao Q, Zhan D P, Ma H Y, et al. Direct proteins electrochemistry based on ionic liquid mediated carbon nanotube modified glassy carbon electrode. Frontiers in Bioscience, 2005,10(1):326-334.
    [176]Liu Y, Wang M, Li J, et al. Highly active horseradish peroxidase immobilized in 1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol-gel host materials. Chemical Communications,2005, (13):1778-1780.
    [177]Wang Q, Tang H, Xie Q J, et al. Room-temperature ionic liquids/multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH. Electrochimica Acta,2007,52(24):6630-6637.
    [178]Wu L Q, Gadre A P, Yi H, et al. Voltage-dependent assembly of the polysaccharide chitosan onto an electrode surface. Langmuir,2002,18(22):8620-8625.
    [179]Wu L Q, Yi H, Li S, et al. Spatially selective deposition of a reactive polysaccharide layer onto a patterned template. Langmuir,2003,19(3):519-524.
    [180]Wu L Q, Lee K, Wang X, et al. Chitosan-mediated and spatially selective electrodeposition of nanoscale particles. Langmuir,2005,21(8):3641-3646.
    [181]Yi H, Wu L Q, Ghodssi R, et al. A robust technique for assembly of nucleic acid hybridization chips based on electrochemically templated chitosan. Analytical Chemistry,2004,76(2):365-372.
    [182]Yi H, Wu L Q, Ghosdssi R, et al. Signal-directed sequential assembly of biomolecules on patterned surfaces. Langmuir,2005,21(6):2104-2107.
    [183]Zhou Q M, Xie Q J, Fu Y C, et al. Electrodeposition of carbon nanotubes-chitosan-glucose oxidase biosensing composite films triggered by reduction of p-benzoquinone or H2O2. The Journal of Physical Chemistry B,2007,111(38): 11276-11284.
    [184]Li C, Liu Y, Luong J H T. Impedance sensing of DNA binding drugs using gold substrates modified with gold nanoparticles. Analytical Chemistry,2005,77(2): 478-485.
    [185]Tremiliosi-Filho G, Dall'Antonia L H, Jerkiewicz G. Limit to extent of formation of the quasi-two-dimensional oxide state on Au electrodes. Journal of Electroanalytical Chemistry,1997,422 (1-2):149-159.
    [186]Baranski A S, Krogulec T, Nelson L J, et al. High-frequency impedance spectroscopy of platinum ultramicroelectrodes in flowing solutions. Analytical Chemistry,1998,70(14): 2895-2901.
    [187]Luo X L, Xu J J, Du Y, et al. A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition. Analytical Biochemistry,2004,334(2):284-289.
    [188]Wu B Y, Hou S H, Yin F, et al. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosensors and Bioelectronics,2007,22(6):838-844.
    [189]Chen X, Jia J, Dong S. Organically modified sol-gel/chitosan composite based glucose biosensor. Electroanalysis,2003,15(7):608-612.
    [190]Cass A E G, Davis G, Francis D G, et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry,1984,56(4):667-671.
    [191]Tsiafoulis C, Trikalitis P, Prodromidis M. Synthesis, characterization and performance of vanadium hexacyanoferrate as electrocatalyst of H2O2. Electrochemistry Communications,2005,7(12):1398-1404.
    [192]NotsuH, Tatsuma T, Fujishima A. Tyrosinase-modified boron-doped diamond electrodes for the determination of phenol derivatives. Journal of Electroanalytical Chemistry, 2002,523(1-2):86-92.
    [193]Karyakin A A, Gitelmacher O V, Karyakina E E. Prussian Blue based first generation biosensors:A high sensitive amperometric electrode for glucose. Analytical Chemistry, 1995,67(14):2419-2423.
    [194]Matsubara C, Kawamoto N, Takamala K. Oxo[5,10,15,20-tetra(4-pyridyl) porphyrinato] titanium(IV):an ultrahigh-sensitive spectrophotometric reagent for hydrogen peroxide. Analyst,1992,117(11):1781-1784.
    [195]Lobnik A, Cajlakovic M. Sol-gel based optical sensor for continuous determination of dissolved hydrogen peroxide. Sensors and Actuators B:Chemical,2001,74(1-3): 194-199.
    [196]Genfa Z, Dasgupta P K, Edgemond W S, et al. Determination of hydrogen peroxide by photoinduced fluorogenic reactions. Analytica Chimica Acta,1991,243(1):207-216.
    [197]Shi G Y, Lu J X, Xu F, et al. Liquid chromatography-electrochemical detector for the determination of glucose in rat brain combined with in vivo microdialysis. Analytica Chimica Acta,2000,413(1-2):131-136.
    [198]Pinkernell U, Effkemann S, Karst U. Simultaneous HPLC determination of peroxyacetic acid and hydrogen peroxide. Analytical Chemistry,1997,69(17): 3623-3627.
    [199]Rocha F R P, Torralba E R, Reis B F. et al. A portable low cost equipment for flow injection chemiluminescence measurements. Talanta,2005,67(4):673-677.
    [200]Navas M J, Jimenez A M, Galan G. Air analysis:Determination of hydrogen peroxide by chemiluminescence. Atmospheric Environment,1999,33(14):2279-2283.
    [201]Hurdis E C, Romeyn Jr H. Accuracy of determination of hydrogen peroxide by cerate oxidimetry. Analytical Chemistry,1954,26(2):320-325.
    [202]Tseng K S, Chen L C, Ho K C. Amperometric detection of hydrogen peroxide at Prussian blue-modified FTO electrode. Sensors and Actuators B:Chemical,2005, 108(1-2):738-745.
    [203]Lin Y H, Cui X L, Li L Y. Low-potential amperometric determination of hydrogen peroxide with a carbon paste electrode modified with nanostructured cryptomelane-type manganese oxides. Electrochemistry Communications,2005,7(2):166-172.
    [204]Deng Q, Dong S J. Mediatorless hydrogen peroxide electrode based on horseradish peroxidase entrapped in poly(o-phenylenediamine). Journal of Electroanalytical Chemistry,1994,377(1-2):191-195.
    [205]Lei C X, Hu S Q, Gao N, et al. An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol-gel derived carbon ceramic electrode. Bioelectrochemistry,2004,65(1):33-39.
    [206]Wang H Y, Guan R, Fan C H, et al. A hydrogen peroxide biosensor based on the bioelectrocatalysis of hemoglobin incorporated in a kieselgubr film. Sensors and Actuators B:Chemical,2002,84(2-3):214-218.
    [207]Wang Q L, Lu G X, Yang B J. Hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin immobilized on carbon paste electrode by a silica sol-gel film. Sensors and Actuators B:Chemical,2004,99(1):50-57.
    [208]Bharathi S, Lev O. Sol-gel-derived nanocrystalline gold-silicate composite biosensor. Analytical Communications,1998,35(1):29-31.
    [209]Ricci F, Palleschi G. Sensor and biosensor preparation, optimization and applications of Prussian blue modified electrodes. Biosensors and Bioelectronics,2005,21(3): 389-407.
    [210]Wilson R, Turner A P F. Glucose oxidase:An ideal enzyme. Biosensors and Bioelectronics,1992,7(3):165-185.
    [211]Thenmozhi K, Narayanan S S. Electrochemical sensor for H2O2 based on thionin immobilized 3-aminopropyltrimethoxy silane derived sol-gel thin film electrode. Sensors and Actuators B:Chemical,2007,125(1):195-201.
    [212]De Mattos I L, Gorton L, Ruzgas T. Sensor and biosensor based on Prussian Blue modified gold and platinum screen printed electrodes. Biosensors and Bioelectronics, 2003,18(2-3):193-200.
    [213]O'Halloran M P, Pravda M, Guilbault G G. Prussian Blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors. Talanta,2001,55(3):605-611.
    [214]You T Y, Niwa 0, Tomita M, et al. Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Analytical Chemistry, 2003,75(9):2080-2085.
    [215]Chikae M, Idegami K, Kerman K, et al. Direct fabrication of catalytic metal nanoparticles onto the surface of a screen-printed carbon electrode. Electrochemistry Communications,2006,8(8):1375-1380.
    [216]Zhang J, Gao L. Dispersion of multiwall carbon nanotubes by sodium dodecyl sulfate for preparation of modified electrodes toward detecting hydrogen peroxide. Materials Letters,2007,61(17):3571-3574.
    [217]Qiu J D, Peng H Z, Liang R P, et al. Synthesis, characterization, and immobilization of Prussian blue-modified Au nanoparticles:Application to electrocatalytic reduction of H2O2. Langmuir,2007,23(4):2133-2137.
    [218]Hrapovic S, Liu Y, Male K B, et al. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Analytical Chemistry,2004,76(4): 1083-1088.
    [219]Jeykumari D R S, Ramaprabhu S, Narayanan S S. A thionine functionalized multiwalled carbon nanotube modified electrode for the determination of hydrogen peroxide. Carbon 2007,45(6):1340-1353.
    [220]Zou Y J, Sun L X, Xu F. Prussian Blue electrodeposited on MWNTs-PANI hybrid composites for H2O2 detection. Talanta,2007,72(2):437-442.
    [221]Liu H H, Lu J L, Zhang M, et al. Direct electrochemistry of cytochrome c surface-confined on DNA-modified gold electrodes. Journal of Electroanalytical Chemistry,2003,544(1):93-100.
    [222]Chen X H, Ruan C M, Kong J L, et al. Characterization of the direct electron transfer and bioelectrocatalysis of horseradish peroxidase in DNA film at pyrolytic graphite electrode. Analytica Chimica Acta,2000,412(1-2):89-98.
    [223]Song Y H, Wang L, Ren C B, et al. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode. Sensors and Actuators B:Chemical,2006,114(2):1001-1006.
    [224]Gao Y G, Sriam M, Wang A H J. Crystallographic studies of metal ion-DNA interactions:different binding modes of cobalt(Ⅱ), copper(Ⅱ) and barium(Ⅱ) to N7 of guanines in Z-DNA and a drug-DNA complex. Nucleic Acids Research,1993,21(17): 4093-4191.
    [225]Prutz W A, Butler J, Land E J. Interaction of Cu(Ⅰ) with nucleic acids. International Journal of Radiation Biology,1990,58(2):215-234.
    [226]Sigel H, Prijis B, Erlenmeyer H. Uber Struktur und Aktivitat der den H2O2-Zerfall katalysierenden Cu2+-Komplexe. Experimentia,1967,23(2):170-172.
    [227]Gu T T, Hasebe Y. DNA-Cu(Ⅱ) poly(amine) complex membrane as novel catalytic layer for highly sensitive amperometric determination of hydrogen peroxide. Biosensors and Bioelectronics,2006,21(11):2121-2128.
    [228]Hasebe Y, Gu T T. DNA-Cu(Ⅱ) complex as a novel electrocatalyst for a hydrogen peroxide sensor. Journal of Electroanalytical Chemistry,2005,576(1):177-181.
    [229]Chen X H, Matsumoto N, Hu Y B, et al. Electrochemically mediated electrodeposition/electropolymerization to yield a glucose microbiosensor with improved characteristics. Analytical Chemistry,2002,74(2):368-372.
    [230]Wu Z Y, Chen L G, Shen G L, et al. Platinum nanoparticle-modified carbon fiber ultramicroelectrodes for mediator-free biosensing. Sensors and Actuators B:Chemical, 2006,119(1):295-301.
    [231]Salimi A, Hallaj R, Soltanian S, et al. Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Analytica Chimica Acta,2007,594(1):24-31.
    [232]Lin X Q, Jiang X H, Lu L P. DNA deposition on carbon electrodes under controlled dc potentials. Biosensors and Bioelectronics,2005,20(9):1709-1717.
    [233]Wang B Q, Li B, Wang Z X, et al. Sol-gel thin-film immobilized soybean peroxidase biosensor for the amperometric determination of hydrogen peroxide in acid medium. Analytical Chemistry,1999,71(10):1935-1939.
    [234]Chen X, Zhang J Z, Wang B Q, et al. Hydrogen peroxide biosensor based on sol-gel-derived glasses doped with Eastman AQ polymer. Analytica Chimica Acta,2001, 434(2):255-260.
    [235]Huang Y G, Ji J D, Hou Q N. A study on carcinogenesis of endogenous nitrite and nitrosamine, and prevention of cancer. Mutation Research,1996,358(1):7-14.
    [236]Lijinsky W, Epstein S S. Nitrosamines as environmental carcinogens. Nature,1970, 225(1):21-23.
    [237]Wolf I A, Wasserman A E. Nitrates, nitrites, and nitrosamines. Science,1972,177(4043): 15-19.
    [238]Koshland D E. The molecule of the year. Science,1992,258(5090):1861-1862.
    [239]Lei J P, Ju H X, Ikeda O. Catalytic oxidation of nitric oxide and nitrite mediated by water-soluble high-valent iron porphyrins at an ITO electrode. Journal of Electroanalytical Chemistry,2004,567(2):331-338.
    [240]Wang S, Yin Y, Lin X. Cooperative effect of Pt nanoparticles and Fe(Ⅲ) in the electrocatalytic oxidation of nitrite. Electrochemistry Communications,2004,6(3): 259-262.
    [241]Zhao K, Song H, Zhuang S, et al. Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes. Electrochemistry Communications,2007,9(1):65-70.
    [242]Bbasour A A, Mehrgardi M A. Electrocatalytic activity of Ce(Ⅲ)-EDTA complex toward the oxidation of nitrite ion. Talanta,2005,67(3):579-584.
    [243]Kamyabi M A, Aghajanloo F. Electrocatalytic oxidation and determination of nitrite on carbon paste electrode modified with oxovanadium(Ⅳ)-4-methyl salophen. Journal of Electroanalytical Chemistry,2008,614(1-2):157-165.
    [244]Jiang L, Wang R, Li X, et al. Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochemistry Communications,2005,7(6):597-601.
    [245]Santos W J R, Sousa A L, Luz R C S, et al. Amperometric sensor for nitrite using a glassy carbon electrode modified with alternating layers of iron(Ⅲ) tetra-(N-methyl-4-pyridyl)-porphyrin and cobalt(Ⅱ) tetrasulfonated phthalocyanine. Talanta,2006,70(3):588-594.
    [246]Davis J, Compton R G. Sonoelectrochemically enhanced nitrite detection. Analytica Chimica Acta,2000,404(2):241-247.
    [247]Tarafder P K, Rathore D P S. Spectrophotometric determination of nitrite in water. Analyst,1988,113(7):1073-1076.
    [248]Ensafi A A, Saminifar M. New synthetic methodology to prepare polyfunctionalized heptane building blocks with four stereocenters:synthesis of the (±)-C17-C23 subunit of Ionomycin. Talanta,1993,40(7):1375-1378.
    [249]Wang Y, Wei W Z, Liu X Y, et al. Carbon nanotube/chitosan/gold nanoparticles-based glucose biosensor prepared by a layer-by-layer technique. Materials Science and Engineering:C,2009,29(1):50-54.
    [250]Zhao H T, Ju H X. Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase. Analytical Biochemistry, 2006,350(1):138-144.
    [251]Merkoci A, Pumera M, Llopis X, et al. New materials for electrochemical sensing VI: Carbon nanotubes. Trends in Analytical Chemistry,2005,24(9):826-838.
    [252]Gavalas V G, Law S A, Ball J C, et al. Carbon nanotube aqueous sol-gel composites: enzyme-friendly platforms for the development of stable biosensors. Analytical Biochemistry,2004,329(2):247-252.
    [253]Lin Y, Cui X, Ye X. Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochemistry Communications,2005,7(3):267-274.
    [254]Zhao G, Liu K, Lin S, et al. Electrocatalytic reduction of nitrite using a carbon nanotube electrode in the presence of cupric ions. Microchimica Acta,2004,144(1-3):75-80.
    [255]Mena M L, Yanez-Sedeno P, Pingarron J M. A comparison of different strategies for the construction of amperometric enzyme biosensors using gold nanoparticle-modified electrodes. Analytical Biochemistry,2005,336(1):20-27.
    [256]Welch C M, Compton R G. The use of nanoparticles in electroanalysis:a review. Analytical and Bioanalytical Chemistry,2006,384(3):601-619.
    [257]Beltramo G L, Koper M T M. Nitric oxide reduction and oxidation on stepped Pt[n(111)×(111)] Electrodes. Langmuir,2003,19(21):8907-8915.
    [258]Wang H, Huang Y, Tan Z, et al. Fabrication and characterization of copper nanoparticle thin-films and the electrocatalytic behavior. Analytica Chimica Acta,2004,526(1): 13-17.
    [259]Miyazaki A, Asakawa T, Nakano Y, et al. Nitrite reduction on morphologically controlled Pt nanoparticles. Chemical Communications,2005, (29):3730-3732.
    [260]Haq S, Carew A, Raval R. Nitric oxide reduction by Cu nanoclusters supported on thin Al2O3 films, Journal of Catalysis,2004,221(1):204-212.
    [261]Zhu M, Liu M, Shi G, et al. Novel nitric oxide microsensor and its application to the study of smooth muscle cells. Analytica Chimica Acta,2002,455(2):199-206.
    [262]Epron F, Gauthard F, Pineda C, et al. Catalytic reduction of nitrate and nitrite on Pt-Cu/Al2O3 catalysts in aqueous solution:role of the interaction between copper and platinum in the reaction. Journal of Catalysis,2001,198(2):309-318.
    [263]Zhu X, Lin X. Novel nitrite sensing using a palladium-polyphenosafranine nano-composite. Analytical Sciences,2007,23(8):981-985.
    [264]Yang P H, Wei W Z, Tao C. Determination of trace thiocyanate with nano-silver coated multi-walled carbon nanotubes modified glassy carbon electrode. Analytica Chimica Acta,2007,585(2):331-336.
    [265]Davis J, Moorcroft M J, Wilkins S J, et al. Electrochemical detection of nitrate at a copper modified electrode under the influence of ultrasound. Electroanalysis,2000, 12(17):1363-1367.
    [266]Ko W Y, Chen W H, Cheng C Y, et al. Highly electrocatalytic reduction of nitrite ions on a copper nanoparticles thin film. Sensors and Actuators B:Chemical,2009,137(2): 437-441.
    [267]Kim B, Sigmund W M. Functionalized multiwall carbon nanotube/gold nanoparticle composites. Langmuir,2004,20(19):8239-8242.
    [268]Toth J E, Anson F C. Electrocatalytic reduction of nitrite and nitric oxide to ammonia with iron-substituted polyoxotungstates. Journal of the American Chemical Society, 1989,111(7):2444-2451.
    [269]Cotton F A, Wilkinson G. Advanced Inorganic Chemistry. Fourth ed. New York:Wiley, 1980.
    [270]Stedman G. Reaction mechanisms of inorganic nitrogen compounds. Advances in inorganic chemistry and radiochemistry,1979,22:113-170.
    [271]董绍俊,车广礼,谢远武.化学修饰电极.北京:科学出版社,2003.
    [272]Zeng J, Wei W, Zhai X, et al. Assemble-electrodeposited ultrathin conducting poly(Azure A) at a carbon nanotube-modified glassy carbon electrode, and its electrocatalytic properties to the reduction of nitrite. Microchimica Acta,2006,155(3-4): 379-386.
    [273]Tian Y, Wang J, Wang Z, et al. Electroreduction of nitrite at an electrode modified with polypyrrole nanowires. Synthetic Metals,2004,143(3):309-313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700