听觉事件相关电位和磁共振波谱在轻度认知功能障碍诊断中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:
     老年期痴呆的原因很多,阿尔茨海默病(Alzheimer's disease,AD)是最常见的一种[1],通常以记忆障碍开始逐渐发展为全面认知功能衰退,严重影响了老年人的生活质量,给家庭和社会带来很大的负担。轻度认知功能障碍(mild cognitive impairment,MCI)已作为一个独立的疾病受到重视,MCI患者是转化为AD的高危人群[2, 3]。在健康老年人与AD之间有一个较长的发展过程,MCI是介于正常人老年人与AD之间的发展阶段[4]。由于AD的治疗效果较差,MCI是对AD进行早期干预治疗的有利阶段,已成为目前的研究热点。
     听觉事件相关电位(auditory eventrelated potentials,AERPs)是一种可靠的脑活动对听觉刺激反应的一种无创伤性神经电生理检测,是帮助确认认知障碍和心理状态的评估手段[5]。对反应听觉刺激的oddball任务产生的事件相关电位已被广泛用于定量测量皮层感觉活动和认知功能。近年来很多文献报道了AERPs的不同成分在MCI的研究,主要用来诊断、预测和观察疗效,认为有很高的敏感性和特异性[6-9]。
     磁共振波谱(magnetic resonance spectroscopy,MRS)是神经影像学中发展迅速的领域,可对神经化学物质及其代谢物进行非侵入性活体分析,在脑结构改变出现之前即可显示出脑代谢变化。在过去的二十年中,已广泛应用于神经及精神疾病,帮助了解这些疾病的病理机制,监测药物治疗或非药物治疗的长期变化,并确定诊断组之间的差异。目前MRS检测已用于认知功能障碍性疾病[10],也用于MCI的诊断、分型和预测转归,肯定了其敏感性[11-14]。
     本研究通过AERPs的各成分分析,寻找反应MCI早期认知损害的神经电生理指标。通过氢质子磁共振波谱分析(1H-MRS)寻找反应MCI早期认知损害的脑物质代谢指标。了解MCI的脑功能变化和物质代谢变化特征,观察与临床心理学特征之间的联系。探讨AERPs和1H-MRS可否作为MCI诊断的敏感方法。同时观察MCI的脑功能变化和物质代谢变化特征,是否介于健康老人和AD之间;临床心理学评分是否也介于二者之间;脑功能变化和相关脑区物质代谢是否有相关性;脑功能变化和相关脑区物质代谢分别与临床心理学评分是否有相关性。通过分析他们的关系,及早发现MCI大脑电活动的变化及反应其变化的相应脑区物质代谢异常。验证AERPs和1H-MRS异常是否与临床认知测试评分变化一致,以说明AERPs和1H-MRS为早期MCI诊断和鉴别诊断敏感的手段。两者联合应用可说明脑代谢变化是脑功能异常的反应,这些改变特征与临床变化特征一致。联合应用AERPs和1H-MRS可提高MCI诊断的准确性。
     研究方法
     1、对符合MCI和AD的患者和年龄匹配的健康老人进行对照研究。MCI组34例,男23例,女11例,年龄62~85岁,平均年龄71.6±5.7岁,教育年限7.8±1.2年。AD组18例,男11例,女7例,年龄60~83岁,平均年龄73.4士5.6岁,教育年限7.1±1.4年。对照组(Normal controls,NC)34例,男21例,女13例,年龄57~80岁,平均年龄71.6±5.7岁,教育年限7.8±1.2年。首先用神经心理学量表对三组受试者进行总体认知功能、分项记忆功能、语言功能、执行功能和视觉空间功能评估。
     2、对MCI、AD和NC受试者完成心理测试后通过声刺激Oddball模式,即通过听音调序列的靶探测任务诱发出AERPs。在头皮记录刺激所诱发的电位成分,获得P50,N100,P200、N200和P300波。分析三组受试者非靶刺激Cz点记录的P50,N100,P200波潜伏期和波幅的差异性;靶刺激Pz点记录的N200和P300波潜伏期和波幅的差异性。
     3、对MCI、AD和NC组受试者在AERPs检测后三天内进行1H-MRS检测。感兴趣区选在左额叶、左颞叶和右顶叶皮层。采集三个脑区的脑代谢物N-乙酰天冬氨酸(N-acetyl-aspartate,NAA)、肌酸(Creatine,Cr)和胆碱(Choline ,Cho)数据。分析三组受试NAA、Cr和Cho水平;NAA/Cr和NAA/Cho的差异性。
     4、分析MCI的AERPs成分P50波幅和P300潜伏期分别与左额叶和左颞叶皮层NAA/Cr的相关性。分析P50波幅、P300潜伏期、左额叶和左颞叶皮层NAA/Cr诊断MCI的准确性。
     5、分析MCI的AERPs成分P50、N100、P200、N200和P300波的波幅和潜伏期分别与其各项神经心理评分的相关性。
     6、分析MCI左额叶、左颞叶和右顶叶皮层NAA/Cr分别与其各项神经心理评分的相关性。
     7、统计学分析:所得数据用均值±标准差( x±s)表示。用SPSS16.0对数据进行处理,多组间进行单因素方差分析,用LSD法进行组间比较;相关性分析用Pearson相关分析;回归分析用线性回归。对单项及联合检测结果作图绘成受试者工作特征曲线,计算曲线下面积和标准误。以P<0.05表示差异具有统计学意义,P<0.01表示统计学差异非常显著。
     结果
     1、轻度认知功能障碍神经心理学特征
     MCI组MMSE、记忆测试得分较NC低,差异非常显著(P< 0.001或P< 0.0001);语言功能的Boston命名得分也降低,差异显著;语言功能的词语流畅试验、执行功能和视觉空间功能得分均无显著差异(均P>0.05)。AD组各项测试得分均较MCI组低,差异显著或非常显著(P< 0.05或P< 0.0001)。
     2、听觉事件相关电位在轻度认知功能障碍诊断中的作用
     对非靶刺激的反应:MCI组P50波幅大于NC组,差异非常显著(P< 0.001);P50潜伏期、N100和P200波幅及潜伏期与NC组比较均差异不显著(均P>0.05)。AD组P50波幅较MCI组低,差异显著(P< 0.05);AD组与MCI组比较,P50潜伏期、N100和P200波幅及潜伏期均差异不显著(均P>0.05))。对靶刺激的反应:MCI组P300潜伏期较NC组延长,波幅降低,均差异显著(均P< 0.05);N200波幅和潜伏期与NC组比较均差异不显著(均P>0.05)。AD组P300潜伏期较MCI组延长,差异非常显著,波幅降低,差异显著(均P< 0.01);AD组与MCI组比较N200波幅和潜伏期均差异不显著(均P>0.05)。
     3、磁共振波谱在轻度认知功能障碍诊断中的作用
     MCI组与NC组比较,左额叶皮层NAA水平和NAA / Cr均降低,均差异非常显著(均P< 0.01);左颞叶皮层NAA和NAA / Cr降低,均差异显著(均P< 0.05);右顶叶皮层NAA和NAA / Cr均差异不显著(P>0.05);三个脑区的Cr、Cho水平和Cho/Cr均差异不显著(均P>0.05)。AD组与MCI组比较左额叶、左颞叶和右顶叶皮层NAA和NAA / Cr均降低,均差异非常显著(P< 0.0001);三个脑区的Cho水平和Cho/Cr均差异不显著(均P>0.05)。
     4、MCI听觉事件相关电位和磁共振波谱与认知功能评分的相关性
     MCI的P50波幅和P300潜伏期与神经心理测试各记忆分项得分均呈负相关关系;MCI左额叶和左颞叶皮层的NAA / Cr与神经心理测试各记忆分项得分均呈正相关关系。P50波幅与左额叶皮层的NAA / Cr呈负相关关系;P300潜伏期与左额叶和左颞叶皮层的NAA / Cr呈负相关关系。在鉴别NC和MCI及MCI和AD时,受试者工作特征曲线下面积显示联合P50波幅、P300潜伏期、左额叶和左颞叶皮层的NAA / Cr四个指标检测时曲线下面积最大。
     结论
     1.本组MCI有明显的记忆障碍,部分语言功能损害,执行功能和视觉空间功能无损害,符合MCI的认知特点。
     2. MCI特点是P50波幅增大,P300潜伏期延长不如AD显著。P50波幅和P300潜伏期可用于MCI的诊断。
     3. MCI的特点是NAA / Cr降低,但较AD患者NAA / Cr数值高,受影响的脑区少。NAA / Cr可用于MCI的诊断。
     4. P50波幅、P300潜伏期和NAA / Cr与认知功能中记忆功能相关,P50波幅和P300潜伏期与NAA / Cr相关。联合AERPs和~1H-MRS检测时诊断MCI的准确性明显提高。AERPs和1H-MRS联合应用可作为诊断和跟踪MCI的手段。
There are many reasons for elderly dementia, Alzheimer's disease (AD) is the most common.Widespread cognitive decline appear gradually,seriously affecting the quality of life of older persons.Mild cognitive impairment (MCI) is a disorder in older patients that is initially characterized by cognitive disturbances,such as memory or language function that is a major risk factor for AD.MCI has been paid more attention as an independent disease.MCI patients are at high risk of conversion to AD.It is a long development process between healthy elderly and AD.Because there are no effective treatment on AD, MCI is the intervention stage, has become the focus of research.Auditory event-related potential (AERPs) is a reliable non-invasive detection of nerve electrophysiology to identify cognitive impairment and mental state assessment.Magnetic resonance spectroscopy (MRS) is a non-invasive neural imaging technology to analyze brain metabolites in vivo.This study was aimed to examine the AERPs and 1H-MRS characteristic changes of MCI, to examine the changes in AERPs and their relationship with brain metabolic changes in MCI by analyzing the results of controls,MCI and AD subjects.By examining AERPs and brain biochemical components, We observe the changes of these parameters in MCI subjects in order to find neuroelectrophysiological indexes to reflect cognitive impairment in earlier period of MCI.We analyzed the correlation of AERPs components abnormalities and the biochemical components abnormalities in different brain regions,and the correlation of abnormalities in AERPs and 1H-MRS with the clinical cognitive test scores.We study their relationship in order to find the early metabolic abnormalities of different brain regions that may reflect the changes of brain activities in the MCI.We study the relationship of abnormalities in AERPs and 1H-MRS with the clinical cognitive test scores in order to identify concordance of these changes, identify the role of AERPs and 1H-MRS measurements.They may offer means to diagnosis MCI and track changes of brain activities associated with functional and metabolic changes,and to assess early cognitive impairment in MCI.Combined 1H-MRS and AERPs can improve diagnostic accuracy of MCI.
     METHODS
     1.The study involve MCI,mild AD patients and age-matched healthy elderly control subjects.MCI group,34 patients,23 males and 11 females,aged 62 to 85 years,mean age 71.6±5.7 years,years of education 7.8±1.2 years.AD group,18 patients,11 males and 7 females,aged 60 to 83 years,mean 73.4±5.6 years,years of education 7.1±1.4 years.The control group 34 patients,21 males and 13 females,aged 57 to 80 years,mean age 71.6±5.7 years,years of education 7.8±1.2 years.The cognitive functions of the all subjects were assessed by clinical neurological and neuropsychological assessment scales in overall cognitive function,memory function,language function, executive function and visual spatial function.
     2.After neuropsychological assessments,the event related potentials components P50,N100,P200,N200 and P300 waves of the subjects evoked by a sonic stimulus Oddball mode,a target detection task by listening to a sequence of tones.The stimulus paradigm were recorded in MCI,mild AD and control subjects.We analyzed group differences of P50,N100,P200 latencies and amplitudes recorded at the Cz site;N200 and P300 waves latencies and amplitudes differences recorded at the Pz site.
     3.Brain metabolic data were collected three days after AERPs were examined in all subjects.The concentrations of brain metabolites and the metabolite ratios were obtained in three different brain areas:left frontal,left temporal and right parietal cortex by magnetic resonance spectroscopy.The brain metabolites were N-acetyl aspartate (NAA),Creatine (Cr) and Choline (Cho).The metabolite ratios were NAA/Cr and NAA/Cho.We analyzed group differences in MCI,mild AD and control subjects.
     4.We analyzed correlation between AERPs parameters and cerebral NAA/Cr ratios in left frontal and left temporal lobe cortex of MCI.AERPs parameters were P50 amplitude and P300 latency.We analyzed the diagnostic accuracy of P50 amplitude,P300 latency,NAA/Cr of left frontal and left temporal cortex to MCI.
     5.We correlate P50,N100,P200,N200,P300 latencies and amplitudes with clinical neuropsychological scores of MCI.
     6.We correlate cerebral NAA/Cr ratios in left frontal,left temporal lobe and right parietal cortex with clinical neuropsychological scores of MCI.
     7.Statistical analysis:Data are expressed as mean±SD.SPSS16.0 software was used for statistical analysis.One way ANOVA was used with the LSD multiple comparison tests for multiple groups;Pearson correlation was used for correlation analysis;linear regression was used for regression analysis.We drew receiver operating characteristic curve according to the results of individual detection and combined detection,calculated area under the curve and standard error.Statistical significance was accepted at a level of P < 0.05.
     RESULTS
     1. Neuropsychological analysis of MCI
     MCI received significantly lower scores in all memory tests and one of the language test Boston naming test(P< 0.001 or P< 0.0001.MCI and controls showed no significant differences in the results of another language test verbal fluency test,the two visual-spatial function tests and the two executive function tests(all P>0.05.AD patients had significantly lower scores in all tests(P< 0.05 or P< 0.0001).
     2. Auditory event-related potentials analysis of MCI
     (1)In response to non-targets
     AERPs in response to non-target frequent tones at the Cz site are presented.P50 amplitude in MCI were significantly increased than controls(P< 0.001).But there were no significant group differences in the latency of P50, amplitudes or latencies of N100 and P200(all P>0.05).AD had significant lower amplitude than MCI(P< 0.05).
     (2)In response to target infrequent tones
     MCI showed a significantly prolonged P300 latency and lowered amplitude than controls(all P< 0.05).But there were no significant group differences in the N200 latency and amplitude(all P>0.05.AD had significantly prolonged P300 latency and lowered amplitude than MCI(all P< 0.01).But there were no significant group differences in the N200 latency and amplitude(all P>0.05).
     3. Metabolite levels and ratios analysis of MCI by 1H-MRS
     The levels of metabolites NAA,Cr,Cho and their ratios NAA/Cr, Cho/Cr in left frontal, left temporal and right parietal cortex of controls,MCI and AD patients are shown.Compared with controls, MCI had significant lower NAA and NAA/Cr in the left prefrontal and left temporal cortex(P< 0.05 or P< 0.01), but not in the right parietal cortex.Cr,Cho and Cho/Cr were not significantly different between groups in three brain areas(all P>0.05).AD patients had significantly decreased NAA and NAA/Cr in the left prefrontal,left temporal and right parietal cortex than MCI(all P< 0.0001).But there were no significant group differences of Cr,Cho and Cho/Cr in three brain areas(all P>0.05).
     4. Relationship between AERPs , 1H-MRS and cognitive tests of MCI P50 amplitude and P300 latency were negatively correlated with all the memory scores of MCI.NAA/Cr in the left prefrontal and left temporal cortex were positively correlated with all the memory scores of MCI.P50 amplitude was negatively correlated with NAA/Cr in the left prefrontal cortex; P300 latency was negatively correlated with NAA/Cr in the left prefrontal and left temporal cortex.The receiver operating characteristic curve showed the largest area under the curve when P50 amplitude, P300 latency, NAA / Cr of left frontal and left temporal cortex were combined in identifying NC and MCI, MCI and AD.
     CONCLUSIONS
     1. MCI had obvious disorders of assessment of memory function, had slightly partial damage in assessment of language function.There were no obvious impairment of executive function and visual-spatial function.These results consistent with the cognitive characteristics of MCI.
     2. MCI had larger P50 amplitude and prolonged P300 latency.AD had more prolonged P300 latency than MCI.P50 amplitude and P300 latency may be used to identify normal, MCI and AD.
     3. MCI had significantly lower NAA/Cr ratios.AD had lower NAA/Cr ratios and more brain areas affected than MCI.NAA / Cr can be used to identify normal, MCI and AD.
     4. P50 amplitude ,P300 latency and NAA/Cr were correlated with scores of clinical memory tests of MCI.Combined 1H-MRS and AERPs can improve significantly diagnostic accuracy of MCI.Combined AERPs and 1H-MRS may be used as a means of diagnosis and follow-MCI.P50 amplitude and P300 latency were correlated with NAA/Cr.
引文
1. Brookmeyer R, Johnson E, Ziegler-Graham K, et al. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement, 2007,3:186-91.
    2. Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment. Arch Neurol, 2001,58:1985-92.
    3. Jack CR Jr, Shiung MM, Weigand SD, et al. Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology, 2005,65:1227-31.
    4. Ritchie K, Touchon J. Mild cognitive impairment: conceptual basis and current nosological status. Lancet, 2000,355:225-28.
    5. Polich J, Ladish C, Bloom FE. P300 assessment of early Alzheimer's disease. Electroencephalogr Clin Neurophysiol, 1990,77:179-89.
    6. Golob EJ, Irimajiri R, Starr A. Auditory cortical activity in amnestic mild cognitive impairment: relationship to subtype and conversion to dementia. Brain, 2007,130:740-52.
    7. Papaliagkas V, Kimiskidis V, Tsolaki M, et al. Usefulness of event-related potentials in the assessment of mild cognitive impairment. BMC Neurosci, 2008,9:107.
    8. Egerhazi A, Glaub T, Balla P, et al. [P300 in mild cognitive impairment and in dementia]. Psychiatr Hung, 2008,23:349-57.
    9. van DJA, Vuurman EF, Smits LL, et al. Response speed, contingent negative variation and P300 in Alzheimer's disease and MCI. Brain Cogn, 2009,69:592-99.
    10. Ross AJ, Sachdev PS. Magnetic resonance spectroscopy in cognitive research. Brain Res Brain Res Rev, 2004,44:83-102.
    11. Modrego PJ. Predictors of conversion to dementia of probable Alzheimer type in patients with mild cognitive impairment. Curr Alzheimer Res, 2006,3:161-70.
    12. Franczak M, Prost RW, Antuono PG, et al. Proton magnetic resonance spectroscopy of the hippocampus in patients with mild cognitive impairment: a pilot study. J Comput Assist Tomogr, 2007,31:666-70.
    13. Olson BL, Holshouser BA, 3rd BW, et al. Longitudinal metabolic and cognitive changes in mild cognitive impairment patients. Alzheimer Dis Assoc Disord,2008,22:269-77.
    14. Wang Z, Zhao C, Yu L, et al. Regional metabolic changes in the hippocampus and posterior cingulate area detected with 3-Tesla magnetic resonance spectroscopy in patients with mild cognitive impairment and Alzheimer disease. Acta Radiol, 2009,50:312-19.
    15.郭峰,张振馨.痴呆的流行病学研究现状.中华神经科杂志, 2007,40:343-46.
    16. KRAL VA. Senescent forgetfulness: benign and malignant. Can Med Assoc J, 1962,86:257-60.
    17. Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol, 1999,56:303-08.
    18. Celsis P. Age-related cognitive decline, mild cognitive impairment or preclinical Alzheimer's disease. Ann Med, 2000,32:6-14.
    19. Kluger A, Gianutsos JG, Golomb J, et al. Motor/psychomotor dysfunction in normal aging, mild cognitive decline, and early Alzheimer's disease: diagnostic and differential diagnostic features. Int Psychogeriatr, 1997,9 Suppl 1:307-16; discussion 317-21.
    20.朱紫青,李春波,张明园.社区老人轻度认知功能损害的预后和转归.上海精神医学:12—14.
    21. Morris JC, Price AL. Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer's disease. J Mol Neurosci, 2001,17:101-18.
    22. Mufson EJ, Chen EY, Cochran EJ, et al. Entorhinal cortex beta-amyloid load in individuals with mild cognitive impairment. Exp Neurol, 1999,158:469-90.
    23. Price JL, Morris JC. Tangles and plaques in nondemented aging and "preclinical" Alzheimer's disease. Ann Neurol, 1999,45:358-68.
    24. Bennett DA, Schneider JA, Bienias JL, et al. Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions. Neurology, 2005,64:834-41.
    25. Morris JC, Price AL. Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer's disease. J Mol Neurosci, 2001,17:101-18.
    26. Ohm TG, Muller H, Braak H, et al. Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer's disease-related neurofibrillary changes. Neuroscience, 1995,64:209-17.
    27. Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science,1997,278:412-19.
    28.曹秋云,江开达,刘永昌.阿尔茨海默病与轻度认知功能障碍脑正电子发射计算机断层扫描的对照研究.中华医学杂志, 2002,82:1613-16.
    29. Petersen RC. Mild cognitive impairment: transition between aging and Alzheimer's disease. Neurologia, 2000,15:93-101.
    30. Matsushita S, Arai H, Okamura N, et al. Clinical and biomarker investigation of a patient with a novel presenilin-1 mutation (A431V) in the mild cognitive impairment stage of Alzheimer's disease. Biol Psychiatry, 2002,52:907-10.
    31. N Okamura HA, Maruyama M. Combined Analysis of CSF Tau Levels and [123I]Iodoamphetamine SPECT in Mild Cognitive Impairment: Implications for a Novel Predictor of Alzheimer’s Disease. Am J Psychiatry, 2002,159:474-76.
    32. Petersen RC, Morris JC. Mild cognitive impairment as a clinical entity and treatment target. Arch Neurol, 2005,62:1160-63; discussion 1167.
    33. Polich J, Ladish C, Bloom FE, 1990. P300 assessment of early Alzheimer's disease. Electroencephalogr Clin Neurophysiol. 77,179-189.
    34. Sutton S, Braren M, Zubin J, John ER, 1965. Evoked-potential correlates of stimulus uncertainty. Science. 150,1187-1188.
    35. Donchin E, C. M, G, 1988. Is the P300 component a manifestation of context updating. Behav brain sci. 11,357-427.
    36. Golob EJ, Johnson JK, Starr A, 2002. Auditory event-related potentials during target detection are abnormal in mild cognitive impairment. Clin Neurophysiol. 113,151-161.
    37. Golob EJ, Irimajiri R, Starr A, 2007. Auditory cortical activity in amnestic mild cognitive impairment: relationship to subtype and conversion to dementia. Brain. 130,740-752.
    38. Valenzuela MJ, Sachdev P, 2001. Magnetic resonance spectroscopy in AD. Neurology. 56,592-598.
    39. Kantarci K, Jack CR Jr, Xu YC, Campeau NG, O'Brien PC, Smith GE, Ivnik RJ, Boeve BF, Kokmen E, Tangalos EG, Petersen RC, 2000. Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: A MRS study. Neurology. 55,210-217.
    40. Catani M, Cherubini A, Howard R, Tarducci R, Pelliccioli GP, Piccirilli M, Gobbi G, Senin U, Mecocci P, 2001. (1)H-MR spectroscopy differentiates mild cognitiveimpairment from normal brain aging. Neuroreport. 12,2315-2317.
    41. Pilatus U, Lais C, Rochmont AM, Kratzsch T, Frolich L, Maurer K, Zanella FE, Lanfermann H, Pantel J, 2009. Conversion to dementia in mild cognitive impairment is associated with decline of N-actylaspartate and creatine as revealed by magnetic resonance spectroscopy. Psychiatry Res. 173,1-7.
    42. Ross AJ, Sachdev PS, 2004. Magnetic resonance spectroscopy in cognitive research. Brain Res Brain Res Rev. 44,83-102.
    43. Modrego PJ, Fayed N, Pina MA, 2005. Conversion from mild cognitive impairment to probable Alzheimer's disease predicted by brain magnetic resonance spectroscopy. Am J Psychiatry. 162,667-675.
    44. Metastasio A, Rinaldi P, Tarducci R, Mariani E, Feliziani FT, Cherubini A, Pelliccioli GP, Gobbi G, Senin U, Mecocci P, 2006. Conversion of MCI to dementia: Role of proton magnetic resonance spectroscopy. Neurobiol Aging. 27,926-932.
    1. Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol, 1999,56:303-08.
    2. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 1984,34:939-44.
    3. Yao-xian G. Wechsler Adult Intelligence Scale Amendment in China. Acta Psychologica Sinica, 1983,3:36-36.
    4. GUO QH, LU CS, HONG Z. Auditory Verbal Memory Test in Chinese Elderly. Chin Ment Heal J, 2001,15:13-15.
    5. GUO Qi-hao HZ, WeXiong S. Boston Naming Test in Chinese Elderly,Patient with Mild Cognitive Impairment and Alzheimers Dementia. Chinese Mental Health Journal, 2006,20:81-84.
    6. LU JC, GUO QH, HONG Z. Trail Making Test Used by Chinese Elderly Patients with Mild Cognitive Impairement and Mild Alzheimer’Dementia. Chin J Clin Psychol, 2006,14:118-20.
    7. ZHOU AH, JIA JP. The value of the clock drawing test for identifying mild vascular cognitive impairment and mild vascular dementia. Chin J Nerve Ment Dis, 2008,34:72-75.
    8. SUN L, ZHANG XQ, TANG Z. Study of the change of cognition function and predictor factors in the patients with Alzheimer’s disease before and after onset. J Clin Neurol, 2008,21:91-93.
    9. Schonknecht P, Pantel J, Kruse A, et al. Prevalence and natural course of aging-associated cognitive decline in a population-based sample of young-old subjects. Am J Psychiatry, 2005,162:2071-77.
    10. Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med, 2004,256:240-46.
    11. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med, 2004,256:183-94.
    12. Wolf H, Grunwald M, Ecke GM, et al. The prognosis of mild cognitive impairment in the elderly. J Neural Transm Suppl, 1998,54:31-50.
    13.唐牟尼,刘协和,云扬.社区老年期轻微认知功能损害和老年期痴呆的随访研究.中华精神科杂志, 2000,33:218.
    14. Bennett DA, Schneider JA, Bienias JL, et al. Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions. Neurology, 2005,64:834-41.
    15. Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment. Arch Neurol, 2001,58:1985-92.
    16. Petersen RC, Stevens JC, Ganguli M, et al. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 2001,56:1133-42.
    17. Petersen RC, Morris JC. Mild cognitive impairment as a clinical entity and treatment target. Arch Neurol, 2005,62:1160-63; discussion 1167.
    18. Petersen RC, Parisi JE, Dickson DW, et al. Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol, 2006,63:665-72.
    19. Galvin JE, Powlishta KK, Wilkins K, et al. Predictors of preclinical Alzheimer disease and dementia: a clinicopathologic study. Arch Neurol, 2005,62:758-65.
    20. Babiloni C, Cassetta E, Dal Forno G, et al. Donepezil effects on sources of cortical rhythms in mild Alzheimer's disease: Responders vs. Non-Responders. Neuroimage, 2006,31:1650-65.
    21. Cummings JL. Alzheimer's disease. N Engl J Med, 2004,351:56-67.
    22. Kawas CH. Clinical practice. Early Alzheimer's disease. N Engl J Med, 2003,349:1056-63.
    23. Cummings JL. Clinical evaluation as a biomarker for Alzheimer's disease. J Alzheimers Dis, 2005,8:327-37.
    24. Tierney MC, Szalai JP, Snow WG, et al. Prediction of probable Alzheimer's disease in memory-impaired patients: A prospective longitudinal study. Neurology, 1996,46:661-65.
    25. Collie A, Maruff P. The neuropsychology of preclinical Alzheimer's disease and mild cognitive impairment. Neurosci Biobehav Rev, 2000,24:365-74.
    26. Bowen J, Teri L, Kukull W, et al. Progression to dementia in patients with isolated memory loss. Lancet, 1997,349:763-65.
    27. Fowler KS, Saling MM, Conway EL, et al. Computerized neuropsychological tests in the early detection of dementia: prospective findings. J Int Neuropsychol Soc, 1997,3:139-46.
    28.肖世富,徐巍.老年人轻度认知功能损害的神经心理测验研究.临床精神医学杂志, 1999,9:129-32.
    29. Flicker C, Ferris SH, Reisberg B. Mild cognitive impairment in the elderly: predictors of dementia. Neurology, 1991,41:1006-09.
    30. Ritchie K, Artero S, Touchon J. Classification criteria for mild cognitive impairment: a population-based validation study. Neurology, 2001,56:37-42.
    31. Hanninen T, Hallikainen M, Koivisto K, et al. A follow-up study of age-associated memory impairment: neuropsychological predictors of dementia. J Am Geriatr Soc, 1995,43:1007-15.
    32. Blesa R, Adroer R, Santacruz P, et al. High apolipoprotein E epsilon 4 allele frequency in age-related memory decline. Ann Neurol, 1996,39:548-51.
    33. LI Tao YUX, ZHANG Dai,HUA Li-wang, et al. Neuropsychological characteristics of individuals with mild cognitive impairment. Chin J Geriatr Heart Brain Vestal Dis, 2007,9:545-47.
    34. Grady CL, Haxby JV, Horwitz B, et al. Longitudinal study of the early neuropsychological and cerebral metabolic changes in dementia of the Alzheimer type. J Clin Exp Neuropsychol, 1988,10:576-96.
    35. Hodges JR, Patterson K. Is semantic memory consistently impaired early in the course of Alzheimer's disease? Neuroanatomical and diagnostic implications. Neuropsychologia, 1995,33:441-59.
    36. Perry RJ, Watson P, Hodges JR. The nature and staging of attention dysfunction in early (minimal and mild) Alzheimer's disease: relationship to episodic and semantic memory impairment. Neuropsychologia, 2000,38:252-71.
    1. Sunderland T, Hampel H, Takeda M, et al. Biomarkers in the diagnosis of Alzheimer's disease: are we ready. J Geriatr Psychiatry Neurol, 2006,19:172-79.
    2. Cummings JL. Clinical evaluation as a biomarker for Alzheimer's disease. J Alzheimers Dis, 2005,8:327-37.
    3. Prince M, Acosta D, Chiu H, et al. Effects of education and culture on the validity of the Geriatric Mental State and its AGECAT algorithm. Br J Psychiatry, 2004,185:429-36.
    4. Xu G, Meyer JS, Huang Y, et al. Adapting mini-mental state examination for dementia screening among illiterate or minimally educated elderly Chinese. Int J Geriatr Psychiatry, 2003,18:609-16.
    5. Lai CL, Lin RT, Liou LM, et al. The role of event-related potentials in cognitive decline in Alzheimer's disease. Clin Neurophysiol, 2010,121:194-99.
    6. Polich J, Corey-Bloom J. Alzheimer's disease and P300: review and evaluation of task and modality. Curr Alzheimer Res, 2005,2:515-25.
    7. Barrett G. Clinical application of event-related potentials in dementing illness: issues and problems. Int J Psychophysiol, 2000,37:49-53.
    8. Katada E, Sato K, Ojika K, et al. Cognitive event-related potentials: useful clinical information in Alzheimer's disease. Curr Alzheimer Res, 2004,1:63-69.
    9. Sutton S, Braren M, Zubin J, et al. Evoked-potential correlates of stimulus uncertainty. Science, 1965,150:1187-88.
    10. Donchin E, Coles MG. Is the P300 component a manifestation of context updating. Behavioral and Brain Sciences. 11(3) ,1988. 357-427.
    11.杨文俊.大脑高级功能的神经电生理.第1版.北京:中国科学技术出版社,1998.
    12. Schacter DL. Implicit memory: a new frontier for cognitive neuroscience :The cognitive neurosciences, Cambridge, MA: MIT Press.
    13. Golob EJ, Starr A. Effects of stimulus sequence on event-related potentials and reaction time during target detection in Alzheimer's disease. Clin Neurophysiol, 2000,111:1438-49.
    14. Gordon B, Carson K. The basis for choice reaction time slowing in Alzheimer's disease. Brain Cogn, 1990,13:148-66.
    15. Levinoff EJ, Saumier D, Chertkow H. Focused attention deficits in patients with Alzheimer's disease and mild cognitive impairment. Brain Cogn, 2005,57:127-30.
    16. Salthouse TA. Aging and measures of processing speed. Biol Psychol, 2000,54:35-54.
    17. Storandt M, Beaudreau S. Do reaction time measures enhance diagnosis of early-stage dementia of the Alzheimer type. Arch Clin Neuropsychol, 2004,19:119-24.
    18. Golob EJ OV, Starr A. Event-related potentials accompanying motor preparation and stimulus expectancy in the young, young-old and oldest-old. 2005,26:531-42.
    19. Reite M, Teale P, Zimmerman J, et al. Source origin of a 50-msec latency auditory evoked field component in young schizophrenic men. Biol Psychiatry, 1988,24:495-506.
    20. Boutros N, Torello MW, Burns EM, et al. Evoked potentials in subjects at risk for Alzheimer's disease. Psychiatry Res, 1995,57:57-63.
    21. Golob EJ, Johnson JK, Starr A. Auditory event-related potentials during target detection are abnormal in mild cognitive impairment. Clin Neurophysiol, 2002,113:151-61.
    22. Golob EJ, Irimajiri R, Starr A. Auditory cortical activity in amnestic mild cognitive impairment: relationship to subtype and conversion to dementia. Brain, 2007,130:740-52.
    23. Irimajiri R, Michalewski HJ, Golob EJ, et al. Cholinesterase inhibitors affect brain potentials in amnestic mild cognitive impairment. Brain Res, 2007,1145:108-16.
    24. Thomas C, vom BI, Rupp A, et al. P50 gating deficit in Alzheimer dementia correlates to frontal neuropsychological function. Neurobiol Aging, 2010,31:416-24.
    25. Golob EJ, Irimajiri R, Starr A. Auditory cortical activity in amnestic mild cognitive impairment: relationship to subtype and conversion to dementia. Brain, 2007,130:740-52.
    26. Reite M, Zimmerman JT, Zimmerman JE. Magnetic auditory evoked fields: interhemispheric asymmetry. Electroencephalogr Clin Neurophysiol, 1981,51:388-92.
    27. Nakasato N, Fujita S, Seki K, et al. Functional localization of bilateral auditory cortices using an MRI-linked whole head magnetoencephalography (MEG) system.Electroencephalogr Clin Neurophysiol, 1995,94:183-90.
    28. Pantev C, Ross B, Berg P, et al. Study of the human auditory cortices using a whole-head magnetometer: left vs. right hemisphere and ipsilateral vs. contralateral stimulation. Audiol Neurootol, 1998,3:183-90.
    29. Howard MA, Volkov IO, Mirsky R, et al. Auditory cortex on the human posterior superior temporal gyrus. J Comp Neurol, 2000,416:79-92.
    30. Liegeois-Chauvel C, de Graaf JB, Laguitton V, et al. Specialization of left auditory cortex for speech perception in man depends on temporal coding. Cereb Cortex, 1999,9:484-96.
    31. Grunwald T, Boutros NN, Pezer N, et al. Neuronal substrates of sensory gating within the human brain. Biol Psychiatry, 2003,53:511-19.
    32. Kisley MA, Polk SD, Ross RG, et al. Early postnatal development of sensory gating. Neuroreport, 2003,14:693-97.
    33. Liegeois-Chauvel C, Musolino A, Badier JM, et al. Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr Clin Neurophysiol, 1994,92:204-14.
    34. Reite M, Teale P, Zimmerman J, et al. Source location of a 50 msec latency auditory evoked field component. Electroencephalogr Clin Neurophysiol, 1988,70:490-98.
    35. Bell-McGinty S, Lopez OL, Meltzer CC, et al. Differential cortical atrophy in subgroups of mild cognitive impairment. Arch Neurol, 2005,62:1393-97.
    36. Romanski LM, Goldman-Rakic PS. An auditory domain in primate prefrontal cortex. Nat Neurosci, 2002,5:15-16.
    37. Apostolova LG, Steiner CA, Akopyan GG, et al. Three-dimensional gray matter atrophy mapping in mild cognitive impairment and mild Alzheimer disease. Arch Neurol, 2007,64:1489-95.
    38. Korzyukov O, Pflieger ME, Wagner M, et al. Generators of the intracranial P50 response in auditory sensory gating. Neuroimage, 2007,35:814-26.
    39. Weisser R, Weisbrod M, Roehrig M, et al. Is frontal lobe involved in the generation of auditory evoked P50. Neuroreport, 2001,12:3303-07.
    40. Davies DC, Horwood N, Isaacs SL, et al. The effect of age and Alzheimer's disease on pyramidal neuron density in the individual fields of the hippocampal formation. ActaNeuropathol, 1992,83:510-17.
    41. Pekkonen E, Jaaskelainen IP, Hietanen M, et al. Impaired preconscious auditory processing and cognitive functions in Alzheimer's disease. Clin Neurophysiol, 1999,110:1942-47.
    42. Kurylo DD, Corkin S, Allard T, et al. Auditory function in Alzheimer's disease. Neurology, 1993,43:1893-99.
    43. Scheff SW, Price DA. Synapse loss in the temporal lobe in Alzheimer's disease. Ann Neurol, 1993,33:190-99.
    44. Braak H, Del TK, Schultz C, et al. Vulnerability of select neuronal types to Alzheimer's disease. Ann N Y Acad Sci, 2000,924:53-61.
    45. Court J, Martin-Ruiz C, Piggott M, et al. Nicotinic receptor abnormalities in Alzheimer's disease. Biol Psychiatry, 2001,49:175-84.
    46. Goodin DS, Squires KC, Henderson BH, et al. Age-related variations in evoked potentials to auditory stimuli in normal human subjects. Electroencephalogr Clin Neurophysiol, 1978,44:447-58.
    47. Pfefferbaum A, Ford JM, Roth WT, et al. Age-related changes in auditory event-related potentials. Electroencephalogr Clin Neurophysiol, 1980,49:266-76.
    48. Picton TW, Stuss DT, Champagne SC, et al. The effects of age on human event-related potentials. Psychophysiology, 1984,21:312-25.
    49. Iragui VJ, Kutas M, Mitchiner MR, et al. Effects of aging on event-related brain potentials and reaction times in an auditory oddball task. Psychophysiology, 1993,30:10-22.
    50. Anderer P, Semlitsch HV, Saletu B. Multichannel auditory event-related brain potentials: effects of normal aging on the scalp distribution of N1, P2, N2 and P300 latencies and amplitudes. Electroencephalogr Clin Neurophysiol, 1996,99:458-72.
    51. Hermanutz M, Cohen R, Sommer W. The effects of serial order in long sequences of auditory stimuli on event-related potentials. Psychophysiology, 1981,18:415-23.
    52. Hirata K, Lehmann D. N1 and P2 of frequent and rare event-related potentials show effects and after-effects of the attended target in the oddball-paradigm. Int J Psychophysiol, 1990,9:293-301.
    53. Golob EJ, Johnson JK, Starr A. Auditory event-related potentials during targetdetection are abnormal in mild cognitive impairment. Clin Neurophysiol, 2002,113:151-61.
    54. Golob EJ, Miranda GG, Johnson JK, et al. Sensory cortical interactions in aging, mild cognitive impairment, and Alzheimer's disease. Neurobiol Aging, 2001,22:755-63.
    55. Golob EJ, Johnson JK, Starr A. Auditory event-related potentials during target detection are abnormal in mild cognitive impairment. Clin Neurophysiol, 2002,113:151-61.
    56. Caravaglios G, Costanzo E, Palermo F, et al. Decreased amplitude of auditory event-related delta responses in Alzheimer's disease. Int J Psychophysiol, 2008,70:23-32.
    57. Anderer P, Pascual-Marqui RD, Semlitsch HV, et al. Differential effects of normal aging on sources of standard N1, target N1 and target P300 auditory event-related brain potentials revealed by low resolution electromagnetic tomography (LORETA). Electroencephalogr Clin Neurophysiol, 1998,108:160-74.
    58. Liegeois-Chauvel C, Musolino A, Badier JM, et al. Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr Clin Neurophysiol, 1994,92:204-14.
    59. Reite M, Teale P, Zimmerman J, et al. Source location of a 50 msec latency auditory evoked field component. Electroencephalogr Clin Neurophysiol, 1988,70:490-98.
    60. Siedenberg R, Goodin DS, Aminoff MJ, et al. Comparison of late components in simultaneously recorded event-related electrical potentials and event-related magnetic fields. Electroencephalogr Clin Neurophysiol, 1996,99:191-97.
    61. Woldorff MG, Gallen CC, Hampson SA, et al. Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proc Natl Acad Sci U S A, 1993,90:8722-26.
    62. Ritter W, Simson R, Vaughan HG Jr, et al. Manipulation of event-related potential manifestations of information processing stages. Science, 1982,218:909-11.
    63. Picton TW. The P300 wave of the human event-related potential. J Clin Neurophysiol, 1992,9:456-79.
    64. Egerhazi A, Glaub T, Balla P, et al. [P300 in mild cognitive impairment and in dementia]. Psychiatr Hung, 2008,23:349-57.
    65. Papaliagkas VT, Anogianakis G, Tsolaki M, et al. Combination of P300 and CSF beta-Amyloid(1-42) Assays may Provide a Potential Tool in the Early Diagnosis of Alzheimer's Disease. Curr Alzheimer Res, 2010,7:295-99.
    66.高东,韩明飞,郑重.慢性强迫游泳抑郁模型大鼠类P300电位的变化.第三军医大学学报, 2010,32:414-17.
    67. Polich J, Ladish C, Bloom FE. P300 assessment of early Alzheimer's disease. Electroencephalogr Clin Neurophysiol, 1990,77:179-89.
    68. Yamaguchi S, Tsuchiya H, Yamagata S, et al. Event-related brain potentials in response to novel sounds in dementia. Clin Neurophysiol, 2000,111:195-203.
    69. Rosenberg C, Nudleman K, Starr A. Cognitive evoked potentials (P300) in early Huntington's disease. Arch Neurol, 1985,42:984-87.
    70. Goodin DS, Aminoff MJ. Electrophysiological differences between subtypes of dementia. Brain, 1986,109 ( Pt 6):1103-13.
    71. Brown WS, Marsh JT, LaRue A. Event-related potentials in psychiatry: differentiating dERPession and dementia in the elderly. Bull Los Angeles Neurol Soc, 1982,47:91-107.
    72. Patterson JV, Michalewski HJ, Starr A. Latency variability of the components of auditory event-related potentials to infrequent stimuli in aging, Alzheimer-type dementia, and dERPession. Electroencephalogr Clin Neurophysiol, 1988,71:450-60.
    73. Holt LE, Raine A, Pa G, et al. P300 topography in Alzheimer's disease. Psychophysiology, 1995,32:257-65.
    74. Polich J. Probability and inter-stimulus interval effects on the P300 from auditory stimuli. Int J Psychophysiol, 1990,10:163-70.
    75. Kutas M, McCarthy G, Donchin E. Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science, 1977,197:792-95.
    76. Pekkonen E, Jousmaki V, Kononen M, et al. Auditory sensory memory impairment in Alzheimer's disease: an event-related potential study. Neuroreport, 1994,5:2537-40.
    77. O'Donnell BF, Friedman S, Swearer JM, et al. Active and passive P3 latency and psychometric performance: influence of age and individual differences. Int J Psychophysiol, 1992,12:187-95.
    78. Egerhazi A, Glaub T, Balla P, et al. [P300 in mild cognitive impairment and indementia]. Psychiatr Hung, 2008,23:349-57.
    79. Frodl T, Hampel H, Juckel G, et al. Value of event-related P300 subcomponents in the clinical diagnosis of mild cognitive impairment and Alzheimer's Disease. Psychophysiology, 2002,39:175-81.
    80. Halgren E, Squires NK, Wilson CL, et al. Endogenous potentials generated in the human hippocampal formation and amygdala by infrequent events. Science, 1980,210:803-05.
    81. McCarthy G, Wood CC, Williamson PD, et al. Task-dependent field potentials in human hippocampal formation. J Neurosci, 1989,9:4253-68.
    82. Smith ME, Halgren E, Sokolik M, et al. The intracranial topography of the P3 event-related potential elicited during auditory oddball. Electroencephalogr Clin Neurophysiol, 1990,76:235-48.
    83. Gironell A, Garcia-Sanchez C, Estevez-Gonzalez A, et al. Usefulness of p300 in subjective memory complaints: a prospective study. J Clin Neurophysiol, 2005,22:279-84.
    84. Olichney JM, Morris SK, Ochoa C, et al. Abnormal verbal event related potentials in mild cognitive impairment and incipient Alzheimer's disease. J Neurol Neurosurg Psychiatry, 2002,73:377-84.
    85. Lijffijt M, Lane SD, Meier SL, et al. P50, N100, and P200 sensory gating: relationships with behavioral inhibition, attention, and working memory. Psychophysiology, 2009,46:1059-68.
    86. Hsieh MH, Liu K, Liu SK, et al. Memory impairment and auditory evoked potential gating deficit in schizophrenia. Psychiatry Res, 2004,130:161-69.
    87. Fabiani M, Karis D, Donchin E. P300 and recall in an incidental memory paradigm. Psychophysiology, 1986,23:298-308.
    88. Semlitsch HV, Anderer P, Saletu B, et al. Cognitive psychophysiology in nootropic drug research: effects of Ginkgo biloba on event-related potentials (P300) in age-associated memory impairment. Pharmacopsychiatry, 1995,28:134-42.
    1. Sijens PE, den Bent MJ v, Nowak PJ, et al. 1H chemical shift imaging reveals loss of brain tumor choline signal after administration of Gd-contrast. Magn Reson Med, 1997,37:222-25.
    2. Ross AJ, Sachdev PS. Magnetic resonance spectroscopy in cognitive research. Brain Res Brain Res Rev, 2004,44:83-102.
    3. Bachelard H, Badar-Goffer R. NMR spectroscopy in neurochemistry. J Neurochem, 1993,61:412-29.
    4. Grady CL, Haxby JV, Horwitz B, et al. Longitudinal study of the early neuropsychological and cerebral metabolic changes in dementia of the Alzheimer type. J Clin Exp Neuropsychol, 1988,10:576-96.
    5. Berg L, Miller JP, Baty J, et al. Mild senile dementia of the Alzheimer type. 4. Evaluation of intervention. Ann Neurol, 1992,31:242-49.
    6. Morris JC, Edland S, Clark C, et al. The consortium to establish a registry for Alzheimer's disease (CERAD). Part IV. Rates of cognitive change in the longitudinal assessment of probable Alzheimer's disease. Neurology, 1993,43:2457-65.
    7. Simmons ML, Frondoza CG, Coyle JT. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience, 1991,45:37-45.
    8. Urenjak J, Williams SR, Gadian DG, et al. Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem, 1992,59:55-61.
    9. TALLAN HH. Studies on the distribution of N-acetyl-L-aspartic acid in brain. J Biol Chem, 1957,224:41-45.
    10. Pan JW, Takahashi K. Interdependence of N-acetyl aspartate and high-energy phosphates in healthy human brain. Ann Neurol, 2005,57:92-97.
    11. Soares DP, Law M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol, 2009,64:12-21.
    12. Bates TE, Strangward M, Keelan J, et al. Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. Neuroreport, 1996,7:1397-400.
    13. De Stefano N, Matthews PM, Arnold DL. Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med, 1995,34:721-27.
    14. Rutgers DR, Klijn CJ, Kappelle LJ, et al. Cerebral metabolic changes in patients with a symptomatic occlusion of the internal carotid artery: a longitudinal 1H magnetic resonance spectroscopy study. J Magn Reson Imaging, 2000,11:279-86.
    15. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol, 1991,82:239-59.
    16. Chakraborty G, Mekala P, Yahya D, et al. Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. J Neurochem, 2001,78:736-45.
    17. Matalon R, Michals-Matalon K. Biochemistry and molecular biology of Canavan disease. Neurochem Res, 1999,24:507-13.
    18. D'Adamo AF Jr, Gidez LI, Yatsu FM. Acetyl transport mechanisms. Involvement of N-acetyl aspartic acid in de novo fatty acid biosynthesis in the developing rat brain. Exp Brain Res, 1968,5:267-73.
    19. Jung RE, Yeo RA, Chiulli SJ, et al. Biochemical markers of cognition: a proton MR spectroscopy study of normal human brain. Neuroreport, 1999,10:3327-31.
    20. Yeo RA, Hill D, Campbell R, et al. Developmental instability and working memory ability in children: a magnetic resonance spectroscopy investigation. Dev Neuropsychol, 2000,17:143-59.
    21. Scheibel A, Conrad T, Perdue S, et al. A quantitative study of dendrite complexity in selected areas of the human cerebral cortex. Brain Cogn, 1990,12:85-101.
    22. Falini A, Calabrese G, Origgi D, et al. Proton magnetic resonance spectroscopy and intracranial tumours: clinical perspectives. J Neurol, 1996,243:706-14.
    23. Gill SS, Thomas DG, Van Bruggen N, et al. Proton MR spectroscopy of intracranial tumours: in vivo and in vitro studies. J Comput Assist Tomogr, 1990,14:497-504.
    24. Ross AJ, Sachdev PS. Magnetic resonance spectroscopy in cognitive research. Brain Res Brain Res Rev, 2004,44:83-102.
    25. Kantarci K, Petersen RC, Boeve BF, et al. 1H MR spectroscopy in common dementias. Neurology, 2004,63:1393-98.
    26. Kantarci K, Weigand SD, Petersen RC, et al. Longitudinal 1H-MRS changes in mildcognitive impairment and Alzheimer's disease. Neurobiol Aging, 2007,28:1330-39.
    27. Chantal S, Braun CM, Bouchard RW, et al. Similar 1H magnetic resonance spectroscopic metabolic pattern in the medial temporal lobes of patients with mild cognitive impairment and Alzheimer disease. Brain Res, 2004,1003:26-35.
    28. Chao LL, Schuff N, Kramer JH, et al. Reduced medial temporal lobe N-acetylaspartate in cognitively impaired but nondemented patients. Neurology, 2005,64:282-89.
    29. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol, 1991,82:239-59.
    30. Schuff N, Amend D, Ezekiel F, et al. Changes of hippocampal N-acetyl aspartate and volume in Alzheimer's disease. A proton MR spectroscopic imaging and MRI study. Neurology, 1997,49:1513-21.
    31. Falini A, Bozzali M, Magnani G, et al. A whole brain MR spectroscopy study from patients with Alzheimer's disease and mild cognitive impairment. Neuroimage, 2005,26:1159-63.
    32. Sarazin M, Berr C, De Rotrou J, et al. Amnestic syndrome of the medial temporal type identifies prodromal AD: a longitudinal study. Neurology, 2007,69:1859-67.
    33. Kantarci K. 1H magnetic resonance spectroscopy in dementia. Br J Radiol, 2007,80 Spec No 2:S146-52.
    34. Adalsteinsson E, Sullivan EV, Kleinhans N, et al. Longitudinal decline of the neuronal marker N-acetyl aspartate in Alzheimer's disease. Lancet, 2000,355:1696-97.
    35. Moffett JR, Ross B, Arun P, et al. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol, 2007,81:89-131.
    36. Soher BJ, Doraiswamy PM, Charles HC. A review of 1H MR spectroscopy findings in Alzheimer's disease. Neuroimaging Clin N Am, 2005,15:847-52, xi.
    37. Kantarci K, Jack CR Jr, Xu YC, et al. Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: A 1H-MRS study. Neurology, 2000,55:210-17.
    38. Kantarci K, Smith GE, Ivnik RJ, et al. 1H magnetic resonance spectroscopy, cognitive function, and apolipoprotein E genotype in normal aging, mild cognitive impairment and Alzheimer's disease. J Int Neuropsychol Soc, 2002,8:934-42.
    39. Kantarci K, Xu Y, Shiung MM, et al. Comparative diagnostic utility of different MR modalities in mild cognitive impairment and Alzheimer's disease. Dement Geriatr CognDisord, 2002,14:198-207.
    40. Pilatus U, Lais C, Rochmont AM, et al. Conversion to dementia in mild cognitive impairment is associated with decline of N-actylaspartate and creatine as revealed by magnetic resonance spectroscopy. Psychiatry Res, 2009,173:1-7.
    41. den Heijer T, Sijens PE, Prins ND, et al. MR spectroscopy of brain white matter in the prediction of dementia. Neurology, 2006,66:540-44.
    42. Metastasio A, Rinaldi P, Tarducci R, et al. Conversion of MCI to dementia: Role of proton magnetic resonance spectroscopy. Neurobiol Aging, 2006,27:926-32.
    43. Doraiswamy PM, Charles HC, Krishnan KR. Prediction of cognitive decline in early Alzheimer's disease. Lancet, 1998,352:1678.
    44. Modrego PJ, Fayed N, Pina MA. Conversion from mild cognitive impairment to probable Alzheimer's disease predicted by brain magnetic resonance spectroscopy. Am J Psychiatry, 2005,162:667-75.
    45. Schuff N, Capizzano AA, Du AT, et al. Selective reduction of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology, 2002,58:928-35.
    46. Block W, Jessen F, Traber F, et al. Regional N-acetylaspartate reduction in the hippocampus detected with fast proton magnetic resonance spectroscopic imaging in patients with Alzheimer disease. Arch Neurol, 2002,59:828-34.
    47. Valenzuela MJ, Sachdev P. Magnetic resonance spectroscopy in AD. Neurology, 2001,56:592-98.
    48. Bertolino A, Callicott JH, Nawroz S, et al. RERPoducibility of proton magnetic resonance spectroscopic imaging in patients with schizophrenia. Neuropsychopharmacology, 1998,18:1-9.
    49. Pouwels PJ, Frahm J. Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn Reson Med, 1998,39:53-60.
    50. Marshall I, Wardlaw J, Cannon J, et al. RERPoducibility of metabolite peak areas in 1H MRS of brain. Magn Reson Imaging, 1996,14:281-92.
    51. Erecinska M, Silver IA. ATP and brain function. J Cereb Blood Flow Metab, 1989,9:2-19.
    52. Sauter A, Rudin M. Determination of creatine kinase kinetic parameters in rat brain by NMR magnetization transfer. Correlation with brain function. J Biol Chem,1993,268:13166-71.
    53. B.L. Miller LC, R. Booth T. In vivo 1H-MRS choline: correlation with in vitro chemistry/histology. Life Sci, 1996,58:1929– 1935.
    54. Brenner RE, Munro PM, Williams SC, et al. The proton NMR spectrum in acute EAE: the significance of the change in the Cho:Cr ratio. Magn Reson Med, 1993,29:737-45.
    55. Droz B, Di GL, Koenig HL, et al. Axon-myelin transfer of phospholipid components in the course of their axonal transport as visualized by radioautography. Brain Res, 1978,155:347-53.
    56. Roser W, Hagberg G, Mader I, et al. Proton MRS of gadolinium-enhancing MS plaques and metabolic changes in normal-appearing white matter. Magn Reson Med, 1995,33:811-17.
    57. Falini A, Calabrese G, Origgi D, et al. Proton magnetic resonance spectroscopy and intracranial tumours: clinical perspectives. J Neurol, 1996,243:706-14.
    58. Gill SS, Thomas DG, Van Bruggen N, et al. Proton MR spectroscopy of intracranial tumours: in vivo and in vitro studies. J Comput Assist Tomogr, 1990,14:497-504.
    59. Galanaud D, Nicoli F, Le FY, et al. Multimodal magnetic resonance imaging of the central nervous system. Biochimie, 2003,85:905-14.
    60. Klein J. Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. J Neural Transm, 2000,107:1027-63.
    61. Catani M, Cherubini A, Howard R, et al. (1)H-MR spectroscopy differentiates mild cognitive impairment from normal brain aging. Neuroreport, 2001,12:2315-17.
    62. DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol, 2002,51:145-55.
    63. Valenzuela MJ, Sachdev P. Magnetic resonance spectroscopy in AD. Neurology, 2001,56:592-98.
    64. MacKay S, Ezekiel F, Di SV, et al. Alzheimer disease and subcortical ischemic vascular dementia: evaluation by combining MR imaging segmentation and H-1 MR spectroscopic imaging. Radiology, 1996,198:537-45.
    65. Wurtman RJ, Blusztajn JK, Maire JC. "Autocannibalism" of choline-containing membrane phospholipids in the pathogenesis of Alzheimer's disease-A hypothesis.Neurochem Int, 1985,7:369-72.
    66. Heun R, Schlegel S, Graf-Morgenstern M, et al. Proton magnetic resonance spectroscopy in dementia of Alzheimer type. Int J Geriatr Psychiatry, 1997,12:349-58.
    67. Valenzuela MJ, Sachdev PS, Wen W, et al. Dual voxel proton magnetic resonance spectroscopy in the healthy elderly: subcortical-frontal axonal N-acetylaspartate levels are correlated with fluid cognitive abilities independent of structural brain changes. Neuroimage, 2000,12:747-56.
    68. Pfefferbaum A, Adalsteinsson E, Spielman D, et al. In vivo brain concentrations of N-acetyl compounds, creatine, and choline in Alzheimer disease. Arch Gen Psychiatry, 1999,56:185-92.
    69. Jessen F, Block W, Traber F, et al. Decrease of N-acetylaspartate in the MTL correlates with cognitive decline of AD patients. Neurology, 2001,57:930-32.
    70. Sawrie SM, Martin RC, Knowlton R, et al. Relationships among hippocampal volumetry, proton magnetic resonance spectroscopy, and verbal memory in temporal lobe epilepsy. Epilepsia, 2001,42:1403-07.
    71. Buckley PF, Moore C, Long H, et al. 1H-magnetic resonance spectroscopy of the left temporal and frontal lobes in schizophrenia: clinical, neurodevelopmental, and cognitive correlates. Biol Psychiatry, 1994,36:792-800.
    72. Ridderinkhof KR, den Wildenberg WP v, Segalowitz SJ, et al. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn, 2004,56:129-40.
    73. Meador KJ, Loring DW, Davis HC, et al. Cholinergic and serotonergic effects on the P3 potential and recent memory. J Clin Exp Neuropsychol, 1989,11:252-60.
    74. Mittenberg W, Seidenberg M, O'Leary DS, et al. Changes in cerebral functioning associated with normal aging. J Clin Exp Neuropsychol, 1989,11:918-32.
    75. Soininen HS, Karhu J, Partanen J, et al. Habituation of auditory N100 correlates with amygdaloid volumes and frontal functions in age-associated memory impairment. Physiol Behav, 1995,57:927-35.
    76. Craik FI, Morris LW, Morris RG, et al. Relations between source amnesia and frontal lobe functioning in older adults. Psychol Aging, 1990,5:148-51.
    77. Parkin AJ, Walter BM. Recollective experience, normal aging, and frontal dysfunction. Psychol Aging, 1992,7:290-98.
    78. Parkin AJaW, B. M. Aging, short-term memory, and frontal dysfunction. Psychobiology, 1991,19:175—179.
    79. Polich J. Clinical application of the P300 event-related brain potential. Phys Med Rehabil Clin N Am, 2004,15:133-61.
    80. Halgren E, Squires NK, Wilson CL, et al. Endogenous potentials generated in the human hippocampal formation and amygdala by infrequent events. Science, 1980,210:803-05.
    81. McCarthy G, Wood CC, Williamson PD, et al. Task-dependent field potentials in human hippocampal formation. J Neurosci, 1989,9:4253-68.
    82. Smith ME, Halgren E, Sokolik M, et al. The intracranial topography of the P3 event-related potential elicited during auditory oddball. Electroencephalogr Clin Neurophysiol, 1990,76:235-48.
    83. Kiss I, Dashieff RM, Lordeon P. A parieto-occipital generator for P300: evidence from human intracranial recordings. Int J Neurosci, 1989,49:133-39.
    84. Halgren E, Marinkovic K, Chauvel P. Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr Clin Neurophysiol, 1998,106:156-64.
    85. Price JL, Morris JC. Tangles and plaques in nondemented aging and "preclinical" Alzheimer's disease. Ann Neurol, 1999,45:358-68.
    86. Backman L, Andersson JL, Nyberg L, et al. Brain regions associated with episodic retrieval in normal aging and Alzheimer's disease. Neurology, 1999,52:1861-70.
    87. Frackowiak RS, Pozzilli C, Legg NJ, et al. Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain, 1981,104:753-78.
    88. Alexander GE, Chen K, Pietrini P, et al. Longitudinal PET Evaluation of Cerebral Metabolic Decline in Dementia: A Potential Outcome Measure in Alzheimer's Disease Treatment Studies. Am J Psychiatry, 2002,159:738-45.
    89. Frodl T, Hampel H, Juckel G, et al. Value of event-related P300 subcomponents in the clinical diagnosis of mild cognitive impairment and Alzheimer's Disease.Psychophysiology, 2002,39:175-81.
    90. Reinvang I, Espeseth T, Gjerstad L. Cognitive ERPs are related to ApoE allelic variation in mildly cognitively impaired patients. Neurosci Lett, 2005,382:346-51.
    91. Golob EJ, Johnson JK, Starr A. Auditory event-related potentials during target detection are abnormal in mild cognitive impairment. Clin Neurophysiol, 2002, 13:151-61.
    92. Golob EJ, Irimajiri R, Starr A. Auditory cortical activity in amnestic mild cognitive impairment: relationship to subtype and conversion to dementia. Brain, 2007, 30:740-52.
    93. Schuff N, Amend D, Ezekiel F, et al. Changes of hippocampal N-acetyl aspartate and volume in Alzheimer's disease. A proton MR spectroscopic imaging and MRI study. Neurology, 1997,49:1513-21.
    94. Pilatus U, Lais C, Rochmont AM, et al. Conversion to dementia in mild cognitive impairment is associated with decline of N-actylaspartate and creatine as revealed by magnetic resonance spectroscopy. Psychiatry Res, 2009,173:1-7.
    95. Jacobson S, Trojanowski JQ. Prefrontal granular cortex of the rhesus monkey. I. Intrahemispheric cortical afferents. Brain Res, 1977,132:209-33.
    96. 3rd GGW, MacLean KA, Hauser MD, et al. The neurophysiology of functionally meaningful categories: macaque ventrolateral prefrontal cortex plays a critical role in spontaneous categorization of species-specific vocalizations. J Cogn Neurosci, 2005,17:1471-82.
    97. Evans TA, Howell S, Westergaard GC. Auditory--visual cross-modal perception of communicative stimuli in tufted capuchin monkeys (Cebus apella). J Exp Psychol Anim Behav Process, 2005,31:399-406.
    98. Romanski LM, Averbeck BB, Diltz M. Neural rERPesentation of vocalizations in the primate ventrolateral prefrontal cortex. J Neurophysiol, 2005,93:734-47.
    99. Petrides M, Pandya DN. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. J Comp Neurol, 1988,273:52-66.
    100. Hackett TA, Stepniewska I, Kaas JH. Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Res, 1999,817:45-58.
    101. Kondo H, Saleem KS, Price JL. Differential connections of the temporal pole with theorbital and medial prefrontal networks in macaque monkeys. J Comp Neurol, 2003,465:499-523.
    102. Golob EJ, Miranda GG, Johnson JK, et al. Sensory cortical interactions in aging, mild cognitive impairment, and Alzheimer's disease. Neurobiol Aging, 2001,22:755-63.
    103. Braak H, de Vos RA, Jansen EN, et al. Neuropathological hallmarks of Alzheimer's and Parkinson's diseases. Prog Brain Res, 1998,117:267-85.
    1. Golob EJ, Irimajiri R, Starr A. Auditory cortical activity in amnestic mild cognitive impairment: relationship to subtype and conversion to dementia. Brain, 2007,130:740-52.
    2. Irimajiri R, Golob EJ, Starr A. Auditory brain-stem, middle- and long-latency evoked potentials in mild cognitive impairment. Clin Neurophysiol, 2005,116:1918-29.
    3. Golob EJ, Johnson JK, Starr A. Auditory event-related potentials during target detection are abnormal in mild cognitive impairment. Clin Neurophysiol, 2002,113:151-61.
    4. Lai CL, Lin RT, Liou LM, et al. The role of event-related potentials in cognitive decline in Alzheimer's disease. Clin Neurophysiol, 2010,121:194-99.
    5. Bennys K, Portet F, Touchon J, et al. Diagnostic value of event-related evoked potentials N200 and P300 subcomponents in early diagnosis of Alzheimer's disease and mild cognitive impairment. J Clin Neurophysiol, 2007,24:405-12.
    6. Papaliagkas V, Kimiskidis V, Tsolaki M, et al. Usefulness of event-related potentials in the assessment of mild cognitive impairment. BMC Neurosci, 2008,9:107.
    7. Egerhazi A, Glaub T, Balla P, et al. [P300 in mild cognitive impairment and in dementia]. Psychiatr Hung, 2008,23:349-57.
    8. Frodl T, Hampel H, Juckel G, et al. Value of event-related P300 subcomponents in the clinical diagnosis of mild cognitive impairment and Alzheimer's Disease. Psychophysiology, 2002,39:175-81.
    9. Gironell A, Garcia-Sanchez C, Estevez-Gonzalez A, et al. Usefulness of p300 in subjective memory complaints: a prospective study. J Clin Neurophysiol, 2005,22:279-84.
    10. van DJA, Vuurman EF, Smits LL, et al. Response speed, contingent negative variation and P300 in Alzheimer's disease and MCI. Brain Cogn, 2009,69:592-99.
    11. Papaliagkas VT, Anogianakis G, Tsolaki M, et al. Combination of P300 and CSF beta-Amyloid(1-42) Assays may Provide a Potential Tool in the Early Diagnosis of Alzheimer's Disease. Curr Alzheimer Res, 2010,7:295-99.
    12. Papaliagkas VT, Anogianakis G, Tsolaki MN, et al. Prediction of conversion from mild cognitive impairment to Alzheimer's disease by CSF cytochrome c levels and N200 latency. Curr Alzheimer Res, 2009,6:279-84.
    13. Egerhazi A. [The early diagnosis and differential diagnosis of Alzheimer's disease with clinical methods]. Orv Hetil, 2008,149:2433-40.
    14. Espeseth T, Rootwelt H, Reinvang I. Apolipoprotein E modulates auditory event-related potentials in healthy aging. Neurosci Lett, 2009,459:91-95.
    15. Reinvang I, Espeseth T, Gjerstad L. Cognitive ERPs are related to ApoE allelic variation in mildly cognitively impaired patients. Neurosci Lett, 2005,382:346-51.
    16. Li X, Shao X, Wang N, et al. Correlation of auditory event-related potentials and magnetic resonance spectroscopy measures in mild cognitive impairment. Brain Res, 2010,1346:204-12.
    17. Chen W, Wang JQ, Zhang LJ. [Sex differences in brain stem auditory evoked potentials and P300 examination in patients with mild cognitive impairment and Alzheimer's disease.]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2005,34:172-76.
    18. Golob EJ, Miranda GG, Johnson JK, et al. Sensory cortical interactions in aging, mild cognitive impairment, and Alzheimer's disease. Neurobiol Aging, 2001,22:755-63.
    19. Olichney JM, Morris SK, Ochoa C, et al. Abnormal verbal event related potentials in mild cognitive impairment and incipient Alzheimer's disease. J Neurol Neurosurg Psychiatry, 2002,73:377-84.
    20. Olichney JM, Iragui VJ, Salmon DP, et al. Absent event-related potential (ERP) word repetition effects in mild Alzheimer's disease. Clin Neurophysiol, 2006,117:1319-30.
    21. Ally BA, McKeever JD, Waring JD, et al. Preserved frontal memorial processing for pictures in patients with mild cognitive impairment. Neuropsychologia, 2009,47: 044-55.
    22. Galli G, Ragazzoni A, Viggiano MP. Atypical event-related potentials in patients with mild cognitive impairment: An identification-priming study. Alzheimers Dement, 2010,6:351-58.
    23. Li X, Zhang Y, Feng L, et al. Early event-related potentials changes during simple mental calculation in Chinese older adults with mild cognitive impairment: A case-control study. Neurosci Lett, 2010,475:29-32.
    24. Peters JM, Hummel T, Kratzsch T, et al. Olfactory function in mild cognitiveimpairment and Alzheimer's disease: an investigation using psychophysical and electrophysiological techniques. Am J Psychiatry, 2003,160:1995-2002.
    25. Missonnier P, Gold G, Fazio-Costa L, et al. Early event-related potential changes during working memory activation predict rapid decline in mild cognitive impairment. J Gerontol A Biol Sci Med Sci, 2005,60:660-66.
    26. Missonnier P, Deiber MP, Gold G, et al. Working memory load-related electroencephalographic parameters can differentiate progressive from stable mild cognitive impairment. Neuroscience, 2007,150:346-56.
    27. Stephen JM, Montano R, Donahue CH, et al. Somatosensory responses in normal aging, mild cognitive impairment, and Alzheimer's disease. J Neural Transm, 2010,117: 17-25.
    28. Irimajiri R, Michalewski HJ, Golob EJ, et al. Cholinesterase inhibitors affect brain potentials in amnestic mild cognitive impairment. Brain Res, 2007,1145:108-16.
    29. Polak T, Ehlis AC, Langer JB, et al. Non-invasive measurement of vagus activity in the brainstem - a methodological progress towards earlier diagnosis of dementias. J Neural Transm, 2007,114:613-19.
    30. Woon WL, Cichocki A, Vialatte F, et al. Techniques for early detection of Alzheimer's disease using spontaneous EEG recordings. Physiol Meas, 2007,28:335-47.
    31. Liddell BJ, Paul RH, Arns M, et al. Rates of decline distinguish Alzheimer's disease and mild cognitive impairment relative to normal aging: integrating cognition and brain function. J Integr Neurosci, 2007,6:141-74.
    32. Missonnier P, Herrmann FR, Michon A, et al. Early disturbances of gamma band dynamics in mild cognitive impairment. J Neural Transm, 2010,117:489-98.
    33. van DJA, Vuurman EF, Verhey FR, et al. Increased EEG gamma band activity in Alzheimer's disease and mild cognitive impairment. J Neural Transm, 2008,115: 301-11.
    34. Karrasch M, Laine M, Rinne JO, et al. Brain oscillatory responses to an auditory-verbal working memory task in mild cognitive impairment and Alzheimer's disease. Int J Psychophysiol, 2006,59:168-78.
    35. Sakuma K, Murakami T, Nakashima K. Short latency afferent inhibition is not impaired in mild cognitive impairment. Clin Neurophysiol, 2007,118:1460-63.
    36. der Hiele K v, Vein AA, Kramer CG, et al. Memory activation enhances EEG abnormality in mild cognitive impairment. Neurobiol Aging, 2007,28:85-90.
    1. Burns A, Zaudig M. Mild cognitive impairment in older people. Lancet, 2002,360:1963-65.
    2. Modrego PJ. Predictors of conversion to dementia of probable Alzheimer type in patients with mild cognitive impairment. Curr Alzheimer Res, 2006,3:161-70.
    3. Kantarci K. 1H magnetic resonance spectroscopy in dementia. Br J Radiol, 2007,80 Spec No 2:S146-52.
    4. Franczak M, Prost RW, Antuono PG, et al. Proton magnetic resonance spectroscopy of the hippocampus in patients with mild cognitive impairment: a pilot study. J Comput Assist Tomogr, 2007,31:666-70.
    5. Rupsingh R, Borrie M, Smith M, et al. Reduced hippocampal glutamate in Alzheimer disease. Neurobiol Aging, 2009.
    6. Olson BL, Holshouser BA, 3rd BW, et al. Longitudinal metabolic and cognitive changes in mild cognitive impairment patients. Alzheimer Dis Assoc Disord, 2008,22:269-77.
    7. Garcia SJM, Gavrila D, Antunez C, et al. Magnetic resonance spectroscopy performance for detection of dementia, Alzheimer's disease and mild cognitive impairment in a community-based survey. Dement Geriatr Cogn Disord, 2008,26:15-25.
    8. Catani M, Cherubini A, Howard R, et al. (1)H-MR spectroscopy differentiates mild cognitive impairment from normal brain aging. Neuroreport, 2001,12:2315-17.
    9. Siger M, Schuff N, Zhu X, et al. Regional myo-inositol concentration in mild cognitive impairment Using 1H magnetic resonance spectroscopic imaging. Alzheimer Dis Assoc Disord, 2009,23:57-62.
    10. Chantal S, Braun CM, Bouchard RW, et al. Similar 1H magnetic resonance spectroscopic metabolic pattern in the medial temporal lobes of patients with mild cognitive impairment and Alzheimer disease. Brain Res, 2004,1003:26-35.
    11. Jones RS, Waldman AD. 1H-MRS evaluation of metabolism in Alzheimer's disease and vascular dementia. Neurol Res, 2004,26:488-95.
    12. Kantarci K, Jack CR Jr, Xu YC, et al. Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: A 1H MRS study. Neurology, 2000,55:210-17.
    13. Ackl N, Ising M, Schreiber YA, et al. Hippocampal metabolic abnormalities in mild cognitive impairment and Alzheimer's disease. Neurosci Lett, 2005,384:23-28.
    14. Chao LL, Mueller SG, Buckley ST, et al. Evidence of neurodegeneration in brains of older adults who do not yet fulfill MCI criteria. Neurobiol Aging, 2010,31:368-77.
    15. Wang Z, Zhao C, Yu L, et al. Regional metabolic changes in the hippocampus and posterior cingulate area detected with 3-Tesla magnetic resonance spectroscopy in patients with mild cognitive impairment and Alzheimer disease. Acta Radiol, 2009,50:312-19.
    16. Fayed N, Davila J, Oliveros A Jr, et al. Correlation of findings in advanced MR techniques with global severity scales in patients with some grade of cognitive impairment. Neurol Res, 2010,32:157-65.
    17. Rami L, Caprile C, Gomez-Anson B, et al. Naming is associated with left temporal pole metabolite levels in neurodegenerative diseases. Dement Geriatr Cogn Disord, 2008,25:212-17.
    18. Rami L, Gomez-Anson B, Bosch B, et al. Cortical brain metabolism as measured by proton spectroscopy is related to memory performance in patients with amnestic mild cognitive impairment and Alzheimer's disease. Dement Geriatr Cogn Disord, 2007,24:274-79.
    19. Griffith HR, Hollander JA, Okonkwo O, et al. Executive function is associated with brain proton magnetic resonance spectroscopy in amnestic mild cognitive impairment. J Clin Exp Neuropsychol, 2007,29:599-609.
    20. Griffith HR, Okonkwo OC, den Hollander JA, et al. Brain metabolic correlates of decision making in amnestic mild cognitive impairment. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn, 2010,17:492-504.
    21. Martinez-Bisbal MC, Arana E, Marti-Bonmati L, et al. Cognitive impairment: classification by 1H magnetic resonance spectroscopy. Eur J Neurol, 2004,11:187-93.
    22. Kantarci K, Petersen RC, Przybelski SA, et al. Hippocampal volumes, proton magnetic resonance spectroscopy metabolites, and cerebrovascular disease in mild cognitive impairment subtypes. Arch Neurol, 2008,65:1621-28.
    23. Pilatus U, Lais C, Rochmont AM, et al. Conversion to dementia in mild cognitive impairment is associated with decline of N-actylaspartate and creatine as revealed by magnetic resonance spectroscopy. Psychiatry Res, 2009,173:1-7.
    24. Modrego PJ, Fayed N, Pina MA. Conversion from mild cognitive impairment to probable Alzheimer's disease predicted by brain magnetic resonance spectroscopy. Am J Psychiatry, 2005,162:667-75.
    25. Fayed N, Davila J, Oliveros A, et al. Utility of different MR modalities in mild cognitive impairment and its use as a predictor of conversion to probable dementia. Acad Radiol, 2008,15:1089-98.
    26. Metastasio A, Rinaldi P, Tarducci R, et al. Conversion of MCI to dementia: Role of proton magnetic resonance spectroscopy. Neurobiol Aging, 2006,27:926-32.
    27. Wang LN, Wang W, Zhang XH, et al. [An interventional study on amnestic mild cognitive impairment with small dose donepezil]. Zhonghua Nei Ke Za Zhi, 2004,43:760-63.
    28. Wang W, Wang LN, Zhang XH, et al. [A nimodipine interventional study of patients with mild cognitive impairment]. Zhonghua Nei Ke Za Zhi, 2006,45:274-76.
    29. Kantarci K, Xu Y, Shiung MM, et al. Comparative diagnostic utility of different MR modalities in mild cognitive impairment and Alzheimer's disease. Dement Geriatr Cogn Disord, 2002,14:198-207.
    30. Kantarci K, Weigand SD, Przybelski SA, et al. Risk of dementia in MCI: combined effect of cerebrovascular disease, volumetric MRI, and 1H MRS. Neurology, 2009,72:1519-25.
    31. Zhang B, Li M, Sun ZZ, et al. Evaluation of functional MRI markers in mild cognitive impairment. J Clin Neurosci, 2009,16:635-41.
    32. Smith CD. Neuroimaging Through the Course of Alzheimer's Disease. J Alzheimers Dis, 2009.
    33. Kantarci K, Smith GE, Ivnik RJ, et al. 1H magnetic resonance spectroscopy, cognitive function, and apolipoprotein E genotype in normal aging, mild cognitive impairment and Alzheimer's disease. J Int Neuropsychol Soc, 2002,8:934-42.
    34. Thambisetty M, Hye A, Foy C, et al. Proteome-based identification of plasma proteins associated with hippocampal metabolism in early Alzheimer's disease. J Neurol,2008,255:1712-20.
    35. Li X, Shao X, Wang N, et al. Correlation of auditory event-related potentials and magnetic resonance spectroscopy measures in mild cognitive impairment. Brain Res, 2010,1346:204-12.
    36. Kantarci K, Reynolds G, Petersen RC, et al. Proton MR spectroscopy in mild cognitive impairment and Alzheimer disease: comparison of 1.5 and 3 T. AJNR Am J Neuroradiol, 2003,24:843-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700