非平衡磁控溅射沉积MoS_2-Ti复合薄膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管溅射沉积MoS_2薄膜已成为星上精密活动件表面润滑改性的主要手段之一,但是当前的薄膜制备技术依然存在大气防潮能力低、真空环境中耐磨寿命不够长以及复杂形状活动件表面均匀成膜、批量生产困难等缺陷。为了满足我国空间飞行器后续发展对功能扩展、寿命提高以及研制周期缩短提出的工程应用急需,本研究采用近年来新开发的非平衡磁控溅射沉积技术,并通过在MoS_2薄膜中掺杂金属Ti有效地弥补了当前制备技术的缺陷,提高了薄膜的性能。本文重点研究了薄膜制备工艺参数变化对其结构和性能的影响及作用机理,最终获得了优化的工艺并达到了工程应用水平。
     研究工作取得的主要创新性结果如下:
     1、首次系统、细致地研究了溅射靶功率、非平衡磁控线圈电流、工件台偏压、工作气体流量、工件台转速、薄膜沉积温度、沉积时间多项工艺参数与薄膜的结构和性能之间的关系,对变化机理进行了深入的分析和探讨,掌握了优化的薄膜制备工艺。
     2、首次阐明在大气和真空环境中,使MoS_2-Ti复合薄膜具有润滑能力的允许Ti含量不同,大气环境为17~20 wt.%,真空为12~15 wt.%,大气中允许的Ti含量较高与氧存在下摩擦对偶间形成Fe_2O_3和MoO_3,从而有利于MoS_2转移膜的形成以及加强了转移膜与摩擦对偶间的附着力有关。
     3、首次提出通过薄膜硬度以及附着力测试图片来预测其在真空环境中的摩擦学性能,当薄膜纳米压入硬度高于5 GPa或附着力测试图片上的划痕表现为锯齿状崩落时,薄膜在真空环境中的耐磨寿命差甚至失去润滑能力,产生的机理是在加强的离子流轰击作用下薄膜颗粒尺寸不断减小以致破坏了MoS_2晶间和晶内的滑移能力。
     4、开展了试验条件与薄膜真空摩擦学性能的关系研究,获得了多种试验载荷、转速、基底材料、表面处理状态下薄膜的真空耐磨寿命,发现转速在250~1000 r/min内变化时薄膜耐磨寿命基本不变,从而提出可利用此特点对经该工艺润滑的活动机构开展有效的加速寿命试验。
     5、首次证明该工艺在空间精密滚动轴承上具有较好的适用性,获得了在30℃,85%相对湿度环境中贮存1年以上轴承各项摩擦力矩变化的数据,以及在优于10~(-3)Pa级真空环境中沿同一方向累计运转1.8×10~8转以上的寿命试验数据,为该项技术在空间精密活动件中的应用提供了有力的支撑。
Though magnetron sputtering MoS_2 films have already been used in aerospace precision moving mechanical parts as one of the main surface lubricating modification methods, there are still some deficiencies existed in current deposition technology. For example , film has poor humidity-resistant ability; in vacuum the wear resistant life of the film is not long enough; and for mechanical parts with complicated configurations the film can't been deposited uniformly throughout the surface; additionally the current method has trouble on mass production. At present, spacecraft development on function expansion, life lengthening and manufacture periods shortening appeals to improve MoS_2 deposition technology to content their urgent engineering application needs. In this paper, we use unbalanced magnetron sputtering deposition system to obtain uniform MoS_2 film and by doping Ti in MoS_2 film to improve the film's properties. The study is emphasized on the effects and mechanisms of the deposition parameters on the structure and properties of the film. Ultimately we got optimized technology parameters for producing high quality film which can meet the need of aerospace engineering application.
     The main results and innovations of this study are :
     1. For the first time, the systematic and detailed relationships and alteration mechanisms between structure, properties of MoS_2 film and deposition parameters such as target sputtering power, unbalanced magnetron coil current, substrate bias, gas flow during deposition, substrate table rotation, deposition temperature and time are acquired, and the optimized deposition parameters are procured.
     2. For the first time, we find that in ambient and in vacuum environments, the Ti content allowed to be doped in MoS_2 film is different if the film's lubricating ability is maintained. In ambient environment, this value is between 17 wt.% and 20 wt.%; while in vacuum it is 12~15 wt.%. The result can be interpreted as in ambient environment , the oxidation of portions of MoS_2 to MoO_3 and Fe to Fe_2O_3 will promote the transfer of MoS_2 to opposite part and realize strong substrate-film-opposite part bonding.
     3. We find a simply method to predict film's wear resistant life in vacuum by measuring film's nano-indention and analyzing scratch testing pictures. If the film's nano- indention hardness is above 5 GPa or if there are jagged scores in the scratch testing picture, the film will has poor wear resistant life or even has no lubricating ability. It is proposed that since the size of the crystallite in the MoS_2 film is so small at higher ion flux bombardment, the intercrystallite or innercrystallite slips in MoS_2 film are prohibited.
     4. The effects of test conditions such as load, speed and substrate on film's tribological properties in vacuum are studied. We find that when test speed is changed between 250~1000 r/min, the film's wear resistant life keeps almost the same, then space moving mechanisms used such lubricating method can have effective accelerated life test method.
     5. For the first time we indicate that such film deposition technology can be used on aerospace precision ball bearings. The test data show that the change of bearing's friction torque in 30°C, 85% humidity environment which is beyond one year andthe bearing's running properties in 10~(-3) Pa grade vacuum which is beyond 1.8×10~8 round. These experimental data can provide strong support for the application of the technology in space.
引文
[1] P.D.Fleischauer, Tribology in the Space Environment, Aerospace Report NO.TR-97(8570)-2, 1997.
    [2] 徐福祥,林华宝,侯深渊,《卫星工程概论》,中国宇航出版社,2004.
    [3] Robert L.Fusaro, Lubrication of space systems, NASA Technical Memorandum 106392, 1994.
    [4] Robert L. Fusaro, Tribology Needs for Future Space and Aeronautical Systems, NASA Technical Memorandum 104525, 1992.
    [5] D.J.Carre, C.G.Kalogeras, et al., Recent Experience with Synthetic Hydrocarbon Lubricants for Spacecraft Applications, Proc.Sixth European Space Mechanisms & Triboloty Symp., 1995, P.177.
    [6] William R.Jones,Jr, The Properties of Perfluoropolyethers Used for Space Applications, NASA Technical Memorandum 106275, 1993.
    [7] Mario Marchetti, Tribological performance of some pennzane based greased for vacuum applications, NASA/TM-2002-211373, 2002.
    [8] Robert L.Fusaro, Liquid Lubrication for Space Applications, NASA Technical Memorandum 105198,1992.
    [9] Robert L.Fusaro, Tribological properties of polymer films and solid bodies in a vacuum environment, NASA Technical Memorandum 88966, 1987.
    [10] Robert L.Fusaro, Self-lubrication polymer composites and polymer transfer film lubrication for space applications, NASA Technical Memorandum 102492, 1990.
    [11] M.J.Todd, Solid lubrication of ball bearings for spacecraft mechanisms, Tribol.lnt., 1982(15):331-337.
    [12] J.R.Lince, Solid Lubrication for Spacecraft Mechanisms, Aerospace Report No.TR-97(8565)-4, 1997.
    [13] S.F.Murray, H.Heshmat, Accelerated Testing of Space Mechanisms, NASA CR-198437,1995.
    [14] William R.Jones,Jr, Stephen V.Pepper, A New Apparatus to Evaluate Lubricants for Space Applications-The Spiral Orbit Tribometer, NASA/TM-2000-209935, 2000.
    [15] Robert L.Fusaro, Preventing Spacecraft Failures Due to Tribological Problems, NASA/TM-2001-210806, 2001.
    [16] Erwin V.Zaretsky,《TRIBOLOGY for AEROSPACE APPLICATIONS》, STLE Publication, 1997.
    [17] W.Shapiro, et al., Space Mechanisms Lessons Learned Study, NASA TM-107046/7, 1995.
    [18] William R. Jones,Jr, Space Tribology, NASA/TM-2000-209924, 2000.
    [19] R.A.Rowntree, M.J.Todd, A Review of European Trends in Space Tribology and its Application to Spacecraff Mechanism Design, Mater.Res.Soc.Symp.Proc., 1989(140):21-34.
    [20] M.J.Todd, Activities Report in Space Tribology, ESA-CR(P)-2043, 1985.
    [21] P.D.Fleischauer, M.R.Hilton, Assessment of the Tribological Requirements of Advanced Spacecraft Mechanisms, Mater.Res.Soc.Symp.Proc., 1989(140):9-20.
    [22] M.R.Hilton, P.D.Fleischauer, Lubricants for High-Vacuum Application, Aerospace Report No.TR-0091(6945-03)-6, 1993.
    [23] J.W.Kannel, J.A.Lowry, K.F.Dufrane, Lubricant Selection Manual, NAS8-36655, 1991.
    [24] Kazuhisa Miyoshi,Solid lubrication fundamentals and applications, NASA/TM-2000-107249, 2000.
    [25] E.Richard Booser,《TRIBOLOGY DATA HANDBOOK》,CRC Press LLC., 1997.
    [26] T.Spalvins, Deposition of MoS_2 Films by Physical Sputtering and their Lubrication Properties in Vacuum, ASLE Trans., 1969(12):36-43.
    [27] T.Spalvins,Coatings for wear and lubrication, Thin Solid Films, 1978(53):285-300.
    [28] R.L.Christy, H.R.Ludwig, R.F.Sputtered MoS_2 Parameter effects on wear life, Thin Solid Films, 1979(64):223-229.
    [29] T.Spalvins, Tribological properties of sputtered MoS_2 films in relation to film morphology, Thin Solid Film, 1980(73):291-297.
    [30] P.D.Fleischauer, Effects of crystallite orientation on environmental stability and lubrication properties of sputtered MoS_2 thin films, ASLE Transactions, 1983(27):82-88.
    [31] V.Buck, Morphological properties of sputtered MoS_2 films, Wear, 1983(91):281-288.
    [32] H.Dimigen, H.Hubsch, K.Reichelt, Stoichiometry and friction properties of sputtered MoS_x layers, Thin Solid Film, 1985(129):79-91.
    [33] P.D.Fieischauer, R.Bauer, The influence of surface chemistry on MoS_2 transfer film formation, ASLE Transactions, 1986(30): 160-166.
    [34] P.D.Fleischauer, R.Bauer, Chemical and structural effects on the lubrication properties of sputtered MoS_2 films, ASLE Transactions 1987(31):239-250.
    [35] P.D.Fleischauer, Fundamental aspects of the electronic structure, materials properties and lubrication performance of sputtered MoS_2 films, Thin Solid Films, 1987(154):309-322.
    [36] J.R.Lince, P.D.Fleischauer, Crystallinity of rf-sputtered films, J.Mater. Res., 1987(2):827-838.
    [37] V.Buck, Preparati on and properties of different types of sputtered MoS_2 Films, Wear,1987(114):263-274.
    [38] L.E.Pope,J.K.G.Panitz, The effects of hertzian stress and test atmosphere on the friction coefficients of MoS_2 coatings, Surf.Coat.Technol., 1988 (36):341-350.
    [39] P.A.Bertrand, Orientation of rf-sputter-deposited MoS_2 films, J.Mater.Res., 1989(4): 180-184.
    [40] E.W.Roberts, Ultralow friction films of MoS_2 for space applications, Thin Solid Films,1989(181):461-473.
    [41] M.R.Hilton,P.D.Fleischauer, TEM lattice imaging of the nanostructure of early-growth sputter-depositedMoS_2 solid lubricant films, J.Mater.Res., 1990(45):406-421.
    [42] M. R. Hilton, R. Bauer, P.D.Fleischauer, Tribological performance and deformation of sputter-deposited MoS_2 solid lubricant films during sliding wear and indentation contact, Thin Solid Films,1990(188):219-236.
    [43] J.Moser, F. Levy, Crystal reorientation and wear mechanisms in MoS_2 lubricating thin films investigated by TEM, J.Mater.Res., 1993(8):206-213.
    [44] J.Moser, F.Levy, MoS_(2-x) lubricating films: structure and wear mechanisms investigated by cross-sectional transmission electron microscopy, Thin Solid Films,1993(228):257-260.
    [45] C.Donnet,Th.Le Mogne, Superlow friction of oxygen-free MoS_2 coatings in ultrahigh vacuum, Surf.Coat.Technol., 1993(62):406-411.
    [46] J.M.Martin, H.Pascal, C.Donnet et al., Superlubricity of MoS_2: Crystal Orientation Mechanisms, Surf.Coat.Technol., 1994(68/69):427-432.
    [47] 王均安,于德洋,欧阳锦林,二硫化钼溅射膜在潮湿空气中贮存后润滑性能的退化与失效机理,摩擦学学报,1994(1):25-32.
    [48] G.Jayaram,N.Doraiswamy, et al.,Ultrahigh vacuum high resolution transmission elctron microscopy of sputter-deposited MoS_2 thin films, Surf.Coat.Technol., 1994(68/69):439-445.
    [49] H.Waghray, The-Shing Lee, et al.,A study of the tribological and electrical properties of sputtered and burnished transition metal dichalcogenide films, Surf.Coat.Technol., 1995(76/77):415-420.
    [50] C.Donnet,J.M.Martin, et al.,Super-low friction of MoS_2 coatings in various environments, Tribol.Int.,1996(29):123-128.
    [51] P.D.Fleischauer, J.R.Lince, A comparison of oxidation and oxygen substitution in MoS_x solid film lubricants, Tribol.lnt., 1999(32):627-636.
    [52] 王吉会,杨静,磁控溅射MoS_2薄膜的生长特性研究,润滑与密封,2005(6):12-14.
    [53] M.S.Donley, Deposition and properties of MoS_2 thin films grown by pulsed laser evaporation, Surf.Coat.Techol., 1988(36):329-340.
    [54] N.J.Mikkelsen, J.Chevallier, Friction and wear measurements of sputtered MoS_2 films amorphized by ion bombardment, Appl.Phys.Lett.,1988(52): 1130-1132.
    [55] T.R.Jervis,M.Nastasi, Laser surface processing of molybdenum disulfide thin films, Thin solid film, 1989(181):475-483.
    [56] A.Aubert,J.Ph.Nabot, et al.,Preparation and properties of MoSx films grown by d.c. magnetron sputtering, Surf.Coat.Technol., 1990(41): 127-134.
    [57] N.J.Mikkelsen, G.Sorensen, Solid lubricating films produced by ion bombardment of sputter deposited MoS_x films, Surf.Coat.Technol.,1992 (51): 118-123.
    [58] L.E.Seitzman, R.N.Bolster, I.L.Singer, X-ray diffraction of MoS_2 coatings prepared by ion-beam-assisted deposition, Surf.Coat.Technol., 1992(52):93-98.
    [59] J.Rechberger, P.Brunner, High performance cutting tools with a solid lubricant physically vapour-deposited coating, Surf.Coat.Technol., 1993(62):393-398.
    [60] S.D.Walck, J.S.Zabinski, et al., Evolution of surface topography in pulsed-laser-deposited thin films of MoS_2, Surf.Coat.Technol., 1993(62):412-416.
    [61] J.Moser, F.Levy, Composition and growth mode of MoS_2 sputtered films, J.Vac.Sci.Technal., 1994(12):494-500.
    [62] L.E.Seitzman,R.N.Bolster, I.L.Singer, Effects of temperature and ion-to-atom ratio on the orientation of IBED MoS_2 coatings, Surf.Coat.Techno., 1995(260):143-147.
    [63] L.E.Seitzman, R.N.Bolster, I.L.Singer, IBAD MoS_2 lubrication of titanium alloys, Surf. Coat.Techno., 1996(78):10-13.
    [64] J.L.Grosseau-Poussard, H.Garem, High resolution transmission electron microscopy study of quausi-amorphous MoS_x coatings, Surf. Coat.Techno., 1996 (78):19-25.
    [65] D.P.Monaghan,D.G.Teer, et al.,Deposition of graded alloy nitride films by closed field unbalanced magnetron sputtering, Surf.Coat.Technol., 1993(59): 21-25.
    [66] W.Lauwerens, Jihui Wang, et al., Humidity resistant films prepared by pulsed magnetron sputtering, Surf.Coat.Technol.,2000(131):216-221.
    [67] B.C.Stupp, Synergistic effects of metals co-sputtered with MoS_2, Thin solid film, 1981(84):257-266.
    [68] P.Niederhauser, H.E.Hintermann, Moisture-resistant MoS_(2-).based composite lubricant films, Thin solid film,1983(108):209-218.
    [69] T.Spalvins, Frictional and morphological properties of Au-MoS_2 films sputtered from a compact target, Thin Solid Film, 1984(118):375-384.
    [70] L.E.Pope, T.R.Jervis, Effects of laser processing and doping on the lubrication and chemical properties of thin MoS_2 films, Surf. Coat. Technol., 1990(42):217-225.
    [71] 王其明,徐锦芬,党鸿辛,MoS_2-Au共溅膜的结构与性能之研究,固体润滑,1999(10):84-95.
    [72] M.R.Hilton, R.Bauer, et al., Structural and tribological studies of MoS_2 solid lubricant films having tailored metal-multilayer nanostructures, Surf.Coat. Technol., 1992(53):13-23.
    [73] J.R.Lince, M.R.Hilton, Metal incorporation in sputter-deposited films studied by extended X-ray absorption fine structure, Aerospace Report No.ATR-94(8461)-3, 1995.
    [74] G.Jayaram,L.D.Marks,M.R.Hiiton, Nanostructure of Au-20%Pd layers in MoS_2 multilayer solid lubricant films, Surf. Coat.Technol., 1995(76/77):393-399.
    [75] De-Yang Yu,Jun-An Wang, et al., Variations of properties of the MoS_2-LaF_3 eosputtered and MoS_2-sputtered ftlms after storage in moist air, Thin Solid Film, 1997(293):1-5.
    [76] M.R.Hilton,G.Jayaram,L.D.Marks,Microstructure of cosputter-deposited metal-and oxide-MoS_2 solid lubricant thin films, J.Mater.Res., 1998(13): 1022-1032。
    [77] 孙晓军,汪晓萍,孙嘉奕等,MoS_2基共溅射薄膜摩擦学性能的研究,摩擦学学报,1998(18):20-24.
    [78] S.Mikhailov, E.Pfluger, L.Knoblauch, Morphology and tribological properties of metal(oxide) MoS_2 nanostructured multilayer coatings, Surf. Coat.Technol., 1998(105): 175-183.
    [79] M.C.Simmonds, A.Savan, et al., Structural, morphological, chemical and tribological investigations of sputter deposited MoS_x/metal multilayer coatings, Surf.Coat.Technol., 1998(108-109):340-344.
    [80] M.C.Simmonds, A.Savan, H.Van Swygenhoven, Characterisation of magnetron sputter deposited MoS_x/metal multilayers, Thin Solid Film, 1999(354):59-65.
    [81] M.C.Simmonds, A.Savan, et al., Mechanical and tribological performance of MoS_2 co-sputtered composites, Surf.Coat.Technol.,2000(126):15-24.
    [82] P.Voumard, A.Savan, Advances in solid lubrication with MoS_2 multilayered coatings, Lubrication Science, 2001(13):135-145.
    [83] 陈焘,郭等柱等,磁控溅射防锈MoS_2薄膜沉积工艺研究,真空与低温,2002(8):241-245.
    [84] J.D.Holbery, E.Pflueger, A.Savan, Alloying MoS_2 with Al and Au: structure and tribological performance, Surf.Coat.Technol.,2003(169-170):716-720.
    [85] B.Window, N.Savvides, Charged particle fluxes from planar magnetron sputtering sources, J.Vac.Sci.TechnoI.A., 1986(4):196-202.
    [86] B.Window, N.Savvides, Unbalanced D.C. magnetron as sources of high ion fluxes, J.Vac.Sci.Technol. A., 1986(4):453-456.
    [87] N.Savvides,B.Window, Unbalanced magnetron ion-assisted deposition and property modification of thin film, J.Vac.Sci.Technol. A., 1986(4):504-508.
    [88] P.J.Kelly, R.D.Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum, 2000(56):159-172.
    [89] W.D.Sproul,P.J.Graham, et al.,High rate reactive sputtering in an opposed cathode closed-field unbalanced magnetron sputtering system, Surf.Coat.Technol., 1990(43-44):270-278.
    [90] W.D.Sproul, The unbalanced magnetron:Current status of development, Surf. Coat. Technol., 1991(48): 81-94.
    [91] W.D.Sproul, Multi-cathode unbalanced magnetron Sputtering systems, Surf. Coat.Technol., 1991(49): 284-289.
    [92] D.G.Teer, J.Hampshire, V.C.Fox, The tribological properties of MoS_2/metal composite coatings deposited by closed field magnetron sputtering, Surf.Coat. Technol., 1997(94-95):572-577.
    [93] V.C.Fox, J.Hampshire, D.G.Teer, MoS_2/metal composite coatings deposited by closed-field unbalanced magnetron sputtering: tribological properties and industrial uses, Surf.Coat.Technol., 1999(112): 118-122.
    [94] V.Rigato,G.Maggioni, et al., A study of the structural and mechanical properties of T-MoS_2 coatings deposited by closed field unbalanced magnetron sputter ion plating, Surf.Coat.Technol., 1999(116-119): 176-183.
    [95] V.C.Fox, N.Renevier, D.G.Teer, et al., The structure of tribologically improved MoS_2-metal composite coatings and their industrial applications, Surf.Coat.Technol., 1999(116-119):492-497.
    [96] Da-Yung Wang, Chi-Lung Chang, Zie-Yih Chert, Microstructural and tribological characterization of MoS_2-Ti composite solid lubricating films, Surf. Coat. Technol., 1999(120-121):629-635.
    [97] I.Bertoti,M.Mohai, et al., XPS investigation of ion beam treated MoS_2-Ti composite coatings, Surf.Coat.Technol., 2000(125): 173-178.
    [98] N.M.Renevier, V.C.Fox, Coating characteristics and tribological properties of sputter-deposited MoS_2/metal composite coatings deposited by closed field unbalanced magnetron sputter ion plation, Surf.Coat.Technol., 2000(127):24-37.
    [99] N.M.Renevier, J.Hamphire, V.C.Fox, Advantages of using self-lubricating, hard, wear-resistant MoS_2-based coatings, Surf.Coat.Technol., 2001(142-144):67-77.
    [100] Sun Kyu Kim, Young Hwan Ahn, Kwang Ho Kim, MoS_2-Ti composite coatings on tool steel by d.c. magnetron sputtering, Surf.Coat.Technol.,2003(169-170):428-432.
    [101] N.M.Renevier, H.Oosterling, et al., Performance and limitations of MoS_2/Ti composite coated inserts, Surf.Coat.Technol.,2003(172):13-23.
    [1] 赵家政,徐洮,《分析电子显微镜用手册》,宁夏人民出版社,1996
    [2] 魏全金,《材料电子显微分析》,冶金工业出版社,1990
    [3] 吉昂,陶光仪等,《X射线荧光光谱分析》,科学出版社,2003
    [4] 王世中,臧鑫士,《现代材料研究方法》,北京航空航天大学出版社,1991
    [5] 赵文轸,《材料表面工程导论》,西安交通大学出版社,1998
    [6] 唐伟忠,《薄膜材料制备原理、技术及应用》,冶金工业出版社,1998
    [7] 吴自勤,王兵,《薄膜生长》,科学出版社,2001
    [8] 郑伟涛等,《薄膜材料与薄膜技术》,化学工业出版社,2004
    [9] ISO 14577-1:2002《Metallic materials-Instrumented indentation test for hardness and materials parameters-Part 1: Test method》.
    [10] ENV 1071-3:1994《Advanced technical ceramics-Methods of test for ceramic coatings-Part3: Determination of adhesion by a scratch test》.
    [11] J.R.Lince,P.D.Fleischauer, Solid lubrication for spacecraft mechanisms,Aerospace report No. TR-97(8565)-4,1997.
    [1] S.L.Rohde, ASM Handbook, Volume5:Sputter Deposition, ASM International, 2007:1-17.
    [2] 郑伟涛等,《薄膜材料与薄膜技术》,化学工业出版社,2004
    [3] J.R.Lince, P.D.Fleischauer, Crystallinity of rf-sputtered films, J.Mater. Res.,1987(2):827-838.
    [4] V.Buck, Morphological properties of sputtered MoS_2 films, Wear, 1983 (91):281-288.
    [5] T.Spalvins, Frictional and morphological properties of Au-MoS_2 films sputtered from a compact target, Thin Solid Film, 1984( 118):375-384.
    [6] M.R.Hilton, R.Bauer, et al., Structural and tribological studies of MoS_2 solid lubricant films having tailored metal-multilayer nanostructures, Surf.Coat. Technol.,1992(53):13-23.
    [7] D.G.Teer, J.Hampshire, V.C.Fox, The tribological properties of MoS_2/metal composite coatings deposited by closed field magnetron sputtering, Surf.Coat.Technol.,1997(94-95):572-577.
    [8] S.Mikhailov, E.Pfluger, L.Knoblauch. Morphology and tribological properties of metal(oxide) MoS_2 nanostructured multilayer coatings, Surf. Coat.Technol., 1998(105):175-183.
    [9] N.J.Mikkelsen, G.Sorensen, Solid lubricating films produced by ion bombardment of sputter deposited MoS_x films, Surf.Coat.Technol., 1992(51):118-123.
    [10] J.R.Lince, M.R.Hilton, Metal incorporation in sputter-deposited films studied by extended X-ray absorption fine structure, Aerospace Report No.ATR-94(8461)-3,1995.
    [11] M.C.Simmonds, A.Savan, H.Van Swygenhoven, Characterisation of magnetron sputter deposited MoS_x/metal multilayers, Thin Solid Film, 1999(354):59-65.
    [12] M.C.Simmonds, A.Savan, et al., Mechanical and tribological performance of MoS_2 co-sputtered composites, Surf.Coat.Technol.,2000(126):15-24.
    [13] V.rigato,G.Maggioni,et al., A study of the structural and mechanical properties of Ti- MoS_2 coatings deposited by closed field unbalanced magnetron sputter ion plating, Surf.Coat.Technol., 1999(116-119): 176-183.
    [14] B.C.Stupp, Synergistic effects of metals co-sputtered with MoS_2,Thin solid film, 1981(84):257-266.
    [15] V.Buck, Preparati on and properties of different types of sputtered MoS_2 Films, Wear, 1987(114): 263-274.
    [16] P.D.Fleischauer, J.R.Lince, A comparison of oxidation and oxygen substitution in MoS_x solid film lubricants, Tribol.Int., 1999 (32):627-636.
    [17] P.A.Bertrand, Orientation of rf-sputter-deposited MoS_2 films, J.Mater.Res., 1989(4): 180-184.
    [18] M.R.Hilton,P.D.Fleischauer, TEM lattice imaging of the nanostructure of early-growth sputter-deposited MoS_2 solid lubricant films, J.Mater.Res., 1990(45):406-421.
    [19] J.R.Lince, M.R.Hilton, A.S.Bommannavar, Oxygen substitution in sputter deposited MoS_2 films studied by extended X-ray absorption fine structure, x-ray photoelectron spectroscopy and x-ray diffraction, Surf. Coat. Technol., 1990(43/44)640-651.
    [20] N.M.Renevier, V.C.Fox, Coating characteristics and tribological properties of sputter-deposited MoS_2/metal composite coatings deposited by closed field unbalanced magnetron sputter ion plation, Surf.Coat.Technol., 2000( 127):24-37.
    [21] I.Bertoti,M.Mohai, et al., XPS investigation of ion beam treated MoS_2-Ti composite coatings, Surf. Coat.Technol., 2000(125): 173-178.
    [22] Sun Kyu Kim, Young Hwan Ann, Kwang Ho Kim, MoS_2-Ti composite coatings on tool steel by d.c. magnetron sputtering, Surf.Coat.Technol.,2003(169-170):428-432.
    [23] N.M.Renevier, H.Oosterling, et al., Performance and limitations of MoS_2/Ti composite coated inserts, Surf.Coat.Technol.,2003(172): 13-23.
    [24] Da-Yung Wang, Chi-Lung Chang, Zie-Yih Chen, Microstructural and tribological characterization of MoS_2-Ti composite solid lubricating films, Surf. Coat. Technol., 1999(120-121):629-635.
    [25] 王其明,徐锦芬,党鸿辛,MoS_2&-Au共溅膜的结构与性能之研究,固体润滑,1990(10):84-95.
    [26] V.C.Fox, N.Renevier, D.G.Teer, et al., The structure of tribologically improved MoS_2-metal composite coatings and their industrial applications, Surf.Coat.Technol., 1999(116-119):492-497.
    [27] N.M.Renevier, J.Hamphire, V.C.Fox, Advantages of using self-lubricating, hard,wear-resistant MoS_2-based coatings, Surf.Coat.Technol., 2001(142- 144):67-77.
    [28] W.E.Jamison, Electronic effects on the lubricating properties of molybdenum disulfide and related materials, ASLE Proc. 2nd Int. Conf. Solid Lub.,1978,P1-8.
    [29] T.Spalvins, Frictional and morphological properties of Au-MoS_2 films sputtered from a compact target, Thin Solid Film, 1984( 118):375-384.
    [30] E.W.Roberts, Ultralow friction films of MoS_2 for space applications, Thin Solid Films, 1989(181): 461-473.
    [31] I.L.Singer,R.N.Bolster,B.C.Stupp, Hertzian stress contribution to low friction behavior of thin coatings, Appl.Phys.Lett. 1990(57):995-997.
    [32] C.Donnet,J.M.Martin, et al., Super-low friction of MoS_2 coatings in various environments, Tribol.Int., 1996(29):123-128.
    [33] R.Holinski,J.Gansheimer,A study of the lubricating mechanism of molybdenum disulfide, Wear, 1971(26):329-342.
    [34] P.D.Fleischauer, R.Bauer, The influence of surface chemistry on MoS_2 transfer film formation, ASLE Transactions, 1986(30): 160-166.
    [35] P.D.Fleischauer, R.Bauer, Chemical and structural effects on the lubrication properties of sputtered MoS_2 films, ASLE Transactions 1987(31):239-250.
    [36] M.Matsunaga, T.Homma, Investigation of vapor adsorption on molybdenum disulfide surfaces by auger electron spectroscopy, ASLE Transactions, 1981(25):323-328.
    [37] P.D.Fleischauer, Effects of crystallite orientation on environmental stability and lubrication properties of sputtered MoS_2 thin films, ASLE Transactions, 1983(27):82-88.
    [1] B.Window, N.Savvides, Charged particle fluxes from planar magnetron sputtering sources, J. Vac.Sci.Technol.A., 1986(4): 196-202.
    [2] B.Window, N.Savvides, Unbalanced D.C. magnetron as sources of high ion fluxes, J.Vac.Sci.Technol. A.,1986(4):453-456.
    [3] N.Sawides, B. Window, Unbalanced magnetron ion-assisted deposition and property modification of thin film, J.Vac.Sci.Technol. A.,1986(4):504-508.
    [4] W.D.Sproul, P.J.Graham, et al., High rate reactive sputtering in an opposed cathode closed-field unbalanced magnetron sputtering system, Surf.Coat.Technol., 1990(43-44):270-278.
    [5] W.D.Sproul, The unbalanced magnetron: Current status of development, Surf. Coat. Technol., 1991(48): 81-94.
    [6] W.D.Sproul, Multi-cathode unbalanced magnetron Sputtering systems, Surf. Coat.Technol., 1991(49): 284-289.
    [7] D.G.Teer, Technical note:a magnetron sputter ion-plating system, Surf.Coat. Technol., 1989(39/40): 565-572.
    [8] D.P.Monaghan, D.G.Teer, Deposition of graded alloy nitride films by closed field unbalanced magnetron sputtering, Surf.Coat.Technol., 1993(59):21-25.
    [9] N.J.Mikkelsen, J.Chevallier, Friction and wear measurements of sputtered MoS_2 films amorphized by ion bombardment, Appl.Phys.Lett., 1988(52): 1130-1132.
    [10] J.Moser, F.Levy, Composition and growth mode of MoS_2 sputtered films, J.Vac.Sci.Technal., 1994(12):494-500.
    [11] V.Rigato,G.Maggioni, et al., A study of the structural and mechanical properties of Ti- MoS_2 coatings deposited by closed field unbalanced magnetron sputter ion plating, Surf.Coat.Technol., 1999(116-119): 176-183.
    [12] I.Bertoti,M.Mohai, et al., XPS investigation of ion beam treated MoS_2-Ti composite coatings, Surf.Coat. Technol., 2000(125):173-178.
    [13] P.D.Fleischauer, R.Bauer, Chemical and structural effects on the lubrication properties of sputtered MoS_2 films, ASLE Transactions 1987(31):239-250.
    [14] N.J.Mikkelsen, G.Sorensen, Solid lubricating films produced by ion bombardment of sputter deposited MoS_x films, Surf.Coat.Technol., 1992(51): 118-123.
    [15] R.Holinski,J.Gansheimer, A study of the lubricating mechanism of molybdenum disulfide, Wear, 1971(26):329.
    [16] P.D.Fleischauer, R.Bauer, The influence of surface chemistry on MoS_2 transfer film formation, ASLE Transactions, 1986(30): 160-166.
    [1] 唐伟忠,《薄膜材料制备原理、技术及应用》,冶金工业出版社,1998.
    [2] W.D.Sproul, Multi-cathode unbalanced magnetron Sputtering systems, Surf. Coat.Technol.,1991(49): 284-289.
    [3] P.J.Kelly, R.D.Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum, 2000(56): 159-172.
    [4] B.Window, N.Savvides, Charged particle fluxes from planar magnetron sputtering sources, J.Vac. Sci.Technol.A., 1986(4): 196-202.
    [5] B. Window, N.Savvides, Unbalanced D.C. magnetron as sources of high ion fluxes, J.Vac.Sci.Technol. A.,1986(4):453-456.
    [6] W.D.Sproul, P.J.Graham, et al.,High rate reactive sputtering in an opposed cathode closed-field unbalanced magnetron sputtering system, Surf.Coat.Technol., 1990(43-44):270-278.
    [7] J.Moser, F.Levy, Composition and growth mode of MoS_2 sputtered films, J.Vac.Sci.Technal., 1994(12): 494-500.
    [8] V.Rigato, G.Maggioni, et al., A study of the structural and mechanical properties of Ti-MoS_2 coatings deposited by closed field unbalanced magnetron sputter ion plating, Surf.Coat.Technol., 1999(116-119): 176-183.
    [9] I.Bertoti, M.Mohai, et al., XPS investigation of ion beam treated MoS_2-Ti composite coatings, Surf.Coat. Technol., 2000(125): 173-178.
    [10] T.Spalvins, Coatings for wear and lubrication, Thin Solid Films, 1978(53):285-300.
    [11] H.Dimigen, H.Hubsch, K.Reichelt, Stoichiometry and friction properties of sputtered MoS_x layers, Thin Solid Film, 1985(129):79-91.
    [12] T.Spalvins, Tribological properties of sputtered MoS_2 films in relation to film morphology,Thin Solid Film, 1980(73):291-297.
    [1] 唐伟忠,《薄膜材料制备原理、技术及应用》,冶金工业出版社,1998.
    [2] J.Moser, F.Levy, Composition and growth mode of MoS_2 sputtered films, J.Vac.Sci.Technal., 1994(12):494-500.
    [3] P.D.Fleischauer, Effect of crystallite orientation on environmental stability and lubrication properties of sputtered MoS_2 thin films, ASLE Transactions, 1989(27):82-88.
    [4] 王其明,徐锦芬,党鸿辛,MoS_2-Au共溅膜的结构与性能之研究,固体润滑,1990(10):84-95.
    [5] J.Moser, F.Levy, Growth mechanisms and near-interface structure in relation to orientation of MoS_2 sputtered thin films, J.Mater.Res., 1992(7):734-740.
    [6] 王吉会,杨静,磁控溅射MoS_2薄膜的生长特性研究,润滑与密封,2005(6):12-14.
    [7] N.M.Renevier, V.C.Fox, Coating characteristics and tribological properties of sputter-deposited MoS_2/metal composite coatings deposited by closed field unbalanced magnetron sputter ion plation, Surf.Coat.Technol., 2000(127):24-37.
    [8] J.Moser, F.Levy, Crystal reorientation and wear mechanisms in MoS_2 lubricating thin films investigated by TEM, J.Mater.Res., 1993(8):206-213.
    [9] J.Moser, F.Levy, MoS_(2-x) lubricating films: structure and wear mechanisms investigated by cross-sectional transmission electron microscopy, Thin Solid Films, 1993(228):257-260.
    [10] H.Dimigen, H.Hubsch, K.Reichelt, Stoichiometry and friction properties of sputtered MoS_x layers, Thin Solid Film, 1985(129):79-91.
    [11] T.Spalvins, Tribological properties of sputtered MoS_2 films in relation to film morphology.Thin Solid Film, 1980(73):291-297.
    [12] P.D.Fleischauer, R.Bauer, The influence of surface chemistry on MoS_2 transfer film formation, ASLE Transactions, 1986(30): 160-166.
    [13] N.J.Mikkelsen, G.Sorensen, Solid lubricating films produced by ion bombardment of sputter deposited MoS_x films, Surf.Coat.Technol., 1992(51): 118-123.
    [14] W.Lauwerens, Jihui Wang, et al, Humidity resistant films prepared by pulsed magnetron sputtering, Surf.Coat.Technol.,2000(131):216.
    [15] L.E.Seitzman,R.N.Bolster,I.L.Singer, Effects of temperature and ion-to-atom ratio on the orientation of IBED MoS_2 coatings, Surf.Coat.Techno., 1995(260): 143-147.
    [1] J.Boyd, B.P.Robertson, The friction properties of various lubricants at high pressures, ASME Trans., 1945(67):51-59.
    [2] G.R.Hyde,Friction at very high pressure, M.S.Thesis,Brigham Young University, 1957.
    [3] R.L.Johnson,D.Godfrey, Friction of solid films on steel at high sliding velocities, NACA TN 1578,1948.
    [4] M.B.Peterson,R.L.Johnson,Friction and wear investigations of molybdenum disulfide I:Effect of moisture, NACA TN 3055,1953.
    [5] J.W.Midgley, The frictional properties of molybdenum disulphide, J.Inst.Petrol., 1956(42):316-319.
    [6] H.F.Barry,J.P.Binkelman, MoS_2 lubrication of various metals, Lubrication Eng., 1966(22): 139-145.
    [7] L.E.Pope,J.K.G.Panitz,The effects of hertzian stress and test atmosphere on the friction coefficients of MoS_2 coatings, Surf.Coat.Technol., 1988(36):341-350.
    [8] E. W.Roberts, Ultralow friction films of MoS_2 for space applications, Thin Solid Films, 1989(181):461-473.
    [9] I.L.Singer,R.N.Bolster,B.C.Stupp, Hertzian stress contribution to low friction behavior of thin coatings, Appl.Phys.Lett.1990(57):995-997.
    [10] 孙晓军,汪晓萍,孙嘉奕等,MoS_2基共溅射薄膜摩擦学性能的研究,摩擦学学报,1998(18):20-24.
    [11] Jiaren Jiang,R.D.Arnell,Gajendra Dixit,The influence of ball size on tribological behaviour of MoS_2 coating tested on a ball-on-disk wear rig, Wear 2000(243): 1-5.
    [12] G.Salomon,A.W.J.de gee,J.H.Zaat, Mechano-chemical factors in MoS_2 film lubrication, Wear, 1964(7): 87-101.
    [13] A.J.Haltner, An evaluation of the role of vapor lubrication mechanisms in MoS_2, Wear, 1964(7): 102-117.
    [14] E.W.Roberts, Ultralow friction films of MoS_2 for space applications, Thin Solid Films,1989(181): 461-473.
    [15] J.K.Lancaster, The influence of substrate hardness on the formation and endurance of molybdenum disulphide films, Wear, 1967(10)103-117.
    [16] A.A.Milne, Experiments on the friction and endurance of various surface treatments lubricated with MoS_2, Wear, 1957(1):92-103.
    [17] W.E.Jamison, Electronic effects on the lubricating properties of molybdenum disulfide and related materials, ASLE Proc. 2nd Int. Conf. Solid Lub.,1978, P1-8.
    [18] P.Niederhauser, H.E.Hintermann, Moisture-resistant MoS_2-based composite lubricant films, Thin solid film,1983(108):209-218.
    [1] J.W.Kannel, J.A.Lowry, K.F.Dufrane, Lubricant Selection Manual, NAS8-36655, 1991.
    [2] Robert L. Fusaro, Tribology Needs for Future Space and Aeronautical Systems, NASA Technical Memorandum 104525, 1992.
    [3] M.R.Hilton, P.D.Fleischauer, Lubricants for High-Vacuum Application, Aerospace Report No.TR-0091(6945-03)-6, 1993.
    [4] William R. Jones,Jr, Space Tribology, NASA/TM-2000-209924, 2000.
    [5] M.J.Todd, Solid lubrication of ball bearings for spacecraft mechanisms, Tribol.Int., 1982(15):331-337.
    [6] E.W.Roberts, Ultralow friction films of MoS_2 for space applications, Thin Solid Films, 1989(181): 461-473.
    [7] E. W.Roberts, Thin solid lubricant films in space, Tribol.Int., 1990(23): 95-104.
    [8] D.W.Roberts,New frontiers for space tribology, Tribol.Int., 1990(23): 149-155.
    [9] M.R.Hilton,P.D.Fleischauer,Applications of solid lubricant films in spacecraft, Surf.Coat.Technol., 1992(54/55):435-441.
    [10] Q.J.Xue,D.Y.Yu, Investigation of the lubrication failure mechanisms of several thin solid films, Proc. of Ⅲ Int. Sym. on Tri.-fat.,2000(10):36-43.
    [11] J.K.G.Panitz,L.E.Pope, et al., The tribological properties of MoS_2 coatings in vacuum, low relative humidity and high relative humidity environments, J. Vac.Sci. Technol., 1988(3): 1166-1170.
    [12] J.R.Lince, Solid Lubrication for Spacecraft Mechanisms, Aerospace Report No.TR-97(8565)-4, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700