活动断层区公路隧道抗错断结构设计的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
公路工程中经常遇到断裂构造问题,现行规范都基于避让原则加以规定,概括之不外乎断裂工程活动性判定和工程活断裂避让等两个方面;但随着我国国民经济的快速发展,国土资源开发密度、强度和深度不断增加,许多工程尤其是隧道工程建设过程中不可避免地会遇到活动断裂的问题。
     无论是断层的突发粘滑还是缓慢蠕滑,都会使断层产生变形,并且这种变形都是三维的空间变形,兼具张拉、剪切和扭动的性质,两者的区别在于错动量的大小。伴随地震发生的断层粘滑运动,断层形变较大,因此往往会直接错断位于其中的隧道结构或者使其因变形过大,影响正常使用。而断层蠕滑运动是不伴随地震发生的缓慢运动,一般以年滑动量表示;尽管断层蠕滑年位错量相对较小,但隧道工程使用年限相对较长,在使用年限内断层累积位错量不容忽视,必须考虑其对隧道结构的剪切破坏效应。如本论文依托工程嘎隆拉隧道隧址区的主断层滑动速率约5mm/a,百年平均位错量约0.5m,如此大的位错量如果在隧道结构设计中不加以重视和考虑,势必将严重威胁隧道结构的安全。
     本文结合交通部科技项目“西藏波密扎木至墨脱公路建设关键技术研究”,对穿越活动断层区公路隧道的抗错断结构设计进行了研究,首先提出了“超挖设计”、“铰接设计”和“隔离消能设计”三种抗断设计理念,接着重点对“铰接设计”设计理念及计算方法进行了研究,分别提出了采用地层-结构法和荷载-结构法时“铰接设计”的计算模型及设计方法,最后采用三维有限差分数值模型试验对荷载-结构法“铰接设计”抗断措施的效果进行了分析。
     本文主要的创新点和工作为:
     (1)提出了穿越活动断层区公路隧道抗错断设计的三种设计理念,即“超挖设计”、“铰接设计”和“隔离消能设计”;
     (2)提出了基于荷载-结构法设计的“铰接设计”中衬砌节段长度及节段间连接剪切刚度的计算方法;
     (3)提出了基于地层-结构法设计的“铰接设计”中衬砌节段长度及节段间柔性连接长度的计算方法。
The problem of faults are often encountered during the highway projects, the existing norms are based on the principle of avoidance provisions of nothing more than a general fracture of engineering activities and engineering to determine live two aspects such as fault avoidance; but as China's western development the implementation of the strategy, land resources development density, intensity and depth of the increasing number of projects, especially the process of tunnel construction will inevitably encounter the problem of active faults.
     Whether stick-slip fault or a sudden slow creep, would generate deformed fault, and the deformation of the space are three-dimensional deformation, both Tension, shear and twisting nature of the difference between the two is the size of the volume of fault creep.Accompanied by stick-slip earthquake fault movement, the larger fault deformation, Shear failure is often occurred because of the tunnel structure or deformation is too large, the impact of normal use. And fault creep movement is not accompanied by the slow movement of the earthquake occurred, the general in order to express the year slippage; Although fault creep dislocation in the volume of relatively small, but the tunnel project a relatively long useful life, in the life of the accumulated fault dislocation volume can not be ignored, we must consider the structure of the tunnel effect of shear failure. If this issue by relying on Galongla-tunnel project through the main fault slip rate of about 5mm per year, a hundred years the average dislocation of about 0.5m, so much the volume of the dislocation structure in the tunnel if the design does not attach importance to and taken into account, there will be serious threat to the safety of the tunnel structure.
     In this paper, the Ministry of Communications Science and Technology Project“the research of key technologies of Zhamu to Medog highway of the Bomi region in Tibet”through the anti-breaking measures study of the highway tunnel across active fault zones, Firstly, put forward "over-excavation", "articulated design" and "isolation of energy dissipation design" three design concepts, Secondly, with an emphasis on " articulated design " design philosophy and method of calculation have been studied, respectively, proposed the use of stratigraphic structure method and load structure method to determine the structure of lining segment length and inter-segment flexible connection method of calculating shear rigidity, and finally the use of three-dimensional finite difference numerical model testing on the " articulated design " anti-broken effects of measures to verify.
     In this paper, the innovation and work as follows:
     (1) Put forward design three design concepts for anti-breaking measures of the highway tunnel across active fault zones, namely "over-excavation design", " articulated design " and "isolation of energy dissipation design";
     (2) Put forward the methods caculating the lining segment length and the Shear rigidity of flexible inter-segment connections of "articulated design", with the load structure method.
     (3) Put forward the methods calculating the lining segment length and the length of flexible inter-segment connection of "articulated design", with the stratigraphic structure method.
引文
[1]李金都,陈书涛.南水北调西线调水区地质条件与关键工程地质问题分析[J].人民黄河, 1999, 21 (2) : 22-24.
    [2]雷谦荣译,丁济新校.地震带的隧道开挖[J].地下空间, 1994, 14(2): 138-144.
    [3]蒋树屏.地震中桥隧受损分析及修复对策[R].重庆交通科研设计院, 2008, 8.
    [4]刘启方,袁一凡,金星等.近断层地震动的基本特征[J].地震工程与工程振动. 2006, 26(1): 1-8.
    [5]冯启民,邵广彪.近断层地震动速度、位移峰值衰减规律的研究[J].地震工程与工程振动. 2004, 24(4): 13-19.
    [6]王启耀,蒋臻蔚,彭建兵.全新活动断裂和地裂缝对公路工程的影响及对策[J].公路, 2006, 2(2): 104-108.
    [7]李爽,谢礼立.近场问题的研究现状与发展方向[J].地震学报, 2007, 29(1): 102-111.
    [8]黄志全,漆家福,伍法权等.南水北调一期工程的主要工程地质问题[J].中国地质灾害与防治学报, 2002 , 13(3): 1-9.
    [9]陆兆溱.工程地质学[M].北京:中国水利水电出版社, 1986.
    [10]黄醒春,卢海星.复杂断层扰动下的原岩应力场的数值分析与评价[J].岩土工程学报, 2000, 22(3): 327-331.
    [11]苏生瑞.断裂构造对地应力场的影响及其工程意义[D].成都:成都理工学院, 2001.
    [12]苏生瑞,朱合华.断裂物理力学性质对其附近地应力场的影响[J].西北大学学报, 2002, 32(6): 655-658.
    [13]苏生瑞,朱合华.岩石物理力学性质对断裂附近地应力场的影响[J].岩石力学与工程学报, 2003, 22(3): 370-377.
    [14]宋惠珍,曾海容.逆冲断层应力场的数值模拟[J].地震地质, 1999, 21(3): 275-282.
    [15]薛之龙,杨家卫.小湾水电站泄洪洞过F7断层有限元线弹性分析[J].云南水力发电, 2001, 17(3): 55-58.
    [16] Pellet F, BenoitO. 3 - D Numerical simulation of the behaviour of underground structures crossing faulted zone[A]. In: Vouille G, Berest Ped.Proc. of 9th International Congress on RockMechanics[C]. Rotterdam: A. A. Balkema, 1999. 213-218.
    [17] Seokwon Jeon, Jongwoo Kim et al. Effect of a fault and weak p lane on the stability of a tunnel in rock - a casemodel test and numerical analysis[J]. Int. J. Rock. Mech. Min. Sci. 2004, 41(3): 658-663.
    [18]陈红旗,魏云杰.断裂构造工程效应综述[J].岩土工程技术, 2003, 17(5): 249-252.
    [19]李金都,陈书涛.南水北调西线调水区地质条件与关键工程地质问题分析[J].人民黄河,1999, 21(2): 22-24.
    [20] Kirzhner F, Rosenhouse G. Numerical analysis of tunnel dynamic response to earth motions[J]. Tunneling and Underground Space Technology, 2000, 15(3): 249-258.
    [21]陈健云,胡志强.超大型地下洞室群的三维地震响应分析[J].岩土工程学报, 2001, 23(4): 494-498.
    [22]番昌实.隧洞及地下结构抗震问题的研究概述[J].世界隧道, 1996, 33(5): 7-16.
    [23]姜忻良,宋丽梅.软土地层中地下隧道结构地震反应分析[J].地震工程与工程振动, 1999, 19(1): 65-69.
    [24] Prater. E G, Weiland.M. Some facters affecting the response to seismic loading in a soil-structure interaction problem[A]. Proc. DMSR77 [C]. Karisrhe /5-16 Sep. 1977, 3: 237-254.
    [25]戚蓝,马斌,钟登华.断层错位影响下输水管道结构分析[J].水利水电技术, 2001, 32(12): 47~48.
    [26]冯启民,赵林.跨越断层埋地管道屈曲分析[J].地震工程与工程振动, 2001, 21(4): 80-87.
    [27]董津城.发震断烈的安全距离规定简介—《建筑抗震设计规范》修订简介(五)[J].工程抗震, 1999(6): 14-16.
    [28]杜炜平,古德生隧道通过断层区的力学特性与技术对策研究[J].西部探矿工程, 2000, 21 (5):1-31.
    [29]陈红旗西安地裂缝地震动效应研究[D]西安:长安大学, 2002.
    [30]冯启民,赵林.跨越断层埋地管道屈曲分析[J]地震工程与工程振动, 2001, 21(4): 79-81.
    [31]黄志全,漆家福,伍法权等.南水北调一期工程的主要工程地质问题[J].中国地质灾害与防治学报, 2002, 13(3): 1-91.
    [32]王威,任青文.活动断裂对深埋隧洞影响的研究概述[J].地震工程与工程振动, 2006, 26 (1): 175-180.
    [33] Russo M, Germani G, Amberg W. Design and construction of large tunnel through active faults: a recent application [C]. International Conference of Tunnelling & Underground Space Use . Istanbul, Turkey, 16-18 October 2002.
    [34] Walter AMBERG,Marco RUSSO .Seismic design of underground structures-the Bolu Tunnel[C]. AITES-ITA 2001 World Tunnel Congress, ISBN 88-555-2594-8.
    [35] Suleyman Dalg?c*. Tunneling in squeezing rock, the Bolu tunnel, Anatolian Motorway, Turkey[J]. Engineering Geology, 67 (2002): 73-96.
    [36] R. John Caulfield, D. Scott Kieffer, David F. Tsztoo, Bill Cain. Seismic design measures for the retrofit of the Claremont[C] . 2005 RETC PROCEEDINGS. Chapter 89.
    [37] D. Scott Kieffer, R. John Caulfield, Bill Cain. Seismic upgrades of the Claremont tunnel[C].2001 RETC PROCEEDINGS, Chapter 68.
    [38] A.R. Shahidi a, M. Vafaeian b,*. Analysis of longitudinal profile of the tunnels in the active faulted zone and designing the flexible lining (for Koohrang-III tunnel)[J]. Tunnelling and Underground Space Technology, 20(2005): 213-221.
    [39]梁文灏,李国良.乌鞘岭特长隧道方案设计[J].现代隧道技术, 2004, 41(2): 1-7.
    [40]王文礼.台湾集集大地震山岳隧道受损情形之探讨[J].现代隧道技术, 2001, 38(2): 52-60.
    [41] Slemmons D B. Geological Effects of the Dixie Valey-Fairview Peak[J] , Nevada, Earth-quakes of December 16, 1954. Seism Soc Am Bull .1957, 47(4): 353-375.
    [42] Bonilla M G . Historic Surface Faulting in Continental United States and Adjacent Parts of Mexico[R] . U S Geological Survey Open-File Report . 1967.
    [43]松田时彦.活动断裂と地震—その地质学的研究[M].地质学论集. 1976, 12: 15-32.
    [44]彭建兵,毛彦龙,范文等.区域稳定性动力学研究[M].北京:科学出版社, 2001, 33-68.
    [45]韩文峰.黄河黑山峡大柳树松动岩体工程地质研究[M].兰州:甘肃科学出版社, 1993, 18-125.
    [46]李仲春.论大柳树高坝方案地质环境.水利水电工程设计[J] . 1995, (1): 1-7.
    [47]罗国煜,陈新民,李晓昭等.城市环境岩土工程[M].南京,南京大学出版社. 2000.
    [48] Matstuda T. Estimation of future destructive earthquakes from active faults on land in Japan[J], J.Phys.Earth, 1977, 25(Suppl.): 251-260.
    [49]李起彤.活动层及其工程评价[M].北京:地震出版社. 1991.
    [50]王建民.发震断裂地表破裂的危险性分析[J].工程勘察, 1992, (4).
    [51]潘家铮,何璟.中国水力发电工程(工程地质卷)[M].北京:中国电力出版社, 2000, 22-100.
    [52]李仲春.论大柳树高坝方案地质环境[J].水利水电工程设计, 1995, (1): 1-7.
    [53]董津城.发震断裂的安全距离规定简介[J].工程抗震, 1999, (2): 14-16.
    [54]汤森鑫.活动断裂安全距离研究[J].工程抗震, 1999, (3): 44-48.
    [55]汤淼鑫.电力工程活动断裂安全距离的研究[J].电力勘测, 1999, (2): 28-31.
    [56] Slemmons D B.Geological Effects of the Dixie Valey-Fairview Peak[J] , Nevada, Earth-quakes of December 16, 1954.Seism Soc Am Bull .1957, 47(4): 353-375.
    [57] Bonilla M G .Historic Surface Faulting in Continental United States and Adjacent Parts of Mexico[R] . U S Geological Survey Open-File Report . 1967.
    [59] Wiegel R.L. Earthquake Engineering[M]. Prentice Hall. 1970.
    [60]范雪宁,陈兴亮,刘杰等.浅谈南水北调西线工程隧道穿越活断层的处理对策[J].人民黄河, 2001, 23(10).
    [61]松田时彦,卢振恒(译).活断层和地震的地质研究[M].活断层研究,地震出版社, 1983:15-31.
    [61]廖秋林,曾钱帮.基于ANSYS平台复杂地质体FLAC3D模型的自动生成[J].岩石力学与工程学报, 2005(24): 1010-1013.
    [62]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社, 1995.
    [63]吴波,刘维宁,高波等.地铁分岔隧道施工性态的三维数值模拟与分析[J].岩石力学与工程学报, 2004, 23(18): 3081-3086.
    [64]李仲奎,戴荣,姜逸明, FLAC3D分析中的初始应力场生成及在大型地下洞室群计算中的应用[J].岩石力学与工程学报, 2002, 21(增2): 2387-2392.
    [65]刘波,韩彦辉. FLAC原理、实例与应用指南[M].北京:人民交通出版社, 2005年9月.
    [66]段文峰,王蕾笑,廖雄华.岩土工程施工力学问题数值模拟方法探讨[J].吉林建筑工程学院学报, 2003, 20(2): 16-22.
    [67]孙钧,王炳鉴.地下结构有限元解析[M].上海:同济大学出版社, 1988.
    [68]赵德安,蔡小林,陈志敏等.侧压力系数对隧道衬砌力学行为的影响分析[J].岩石力学与工程学报, 22(增2): 2857-2860.
    [69]郝哲,李伟,刘斌.韩家岭大跨度隧道开挖过程数值模拟研究[J].西部探矿工程, 2005, (2): 96-99.
    [70]胡庆安,崔刚,蒋丽君.空间反向荷载法模拟隧道开挖[J].隧道建设, 2006, 26(4): 3-5.
    [71]徐林生,孙钧,蒋树屏.洋碰隧道CRD工法施工过程的动态仿真数值模拟研究[J].地质灾害与环境保护, 2001, 12(1): 58-67.
    [72]苏国韶.高地应力下大型地下洞室群稳定性分析与智能优化研究[博士学位论文].北京:中国科学院研究生院, 2006.
    [73]张传庆,冯夏庭,周辉等.应力释放法在隧洞开挖模拟中若干问题的研究[J].岩土力学, 2008, 29(5): 1174-1180.
    [74]佘健,何川.软弱围岩段隧道施工过程中围岩位移的三维弹塑性数值模拟[J].岩石力学与工程学报, 2006, 25(3): 623-629.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700