南北地震带南段震源空间分布特征与地壳物性结构的关系及其构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南北地震带南段位于青藏高原东缘,是中国大陆东西构造的分界,同时也是各种地球物理特征的急剧变化带。该带地震活动频度高、强度大、周期短,震源浅,是典型的强震多发地带,一直受到地学界的关注。本文通过震源空间分布特征及其与地壳物性结构的研究,对搞清南北地震带地壳深部结构和探讨其形成演化过程具有重要意义。
     论文主要内容有:
     第一章,介绍了震源分布的研究意义和国内外研究现状及本文的研究内容和目的。
     第二章,介绍了研究区区域构造特征,运动场和主要断裂活动特征及地壳结构特征。
     第三章,通过对收集的地震数据进行统计和分析,得出南北地震带南段震源分布特征。平面上微震的震中呈斑杂状或串珠状分布,与活动断裂的展布相吻合;强震的分布呈弥散状,局部集中,但大多与断裂位置稍有偏离。震源机制在研究区北部以逆冲为主,向南转变为走滑和正断层型为主。断层面倾向以北东和北西向为主,滑动方向以南北向为主。东西向廊带震源深度分布:震源多分布在地壳深度5-33km范围内。微震多集中在10-15km的浅层,强震在10-33km深度均有分布,但20km之下已大为减少。不管是微震还是强震,剖面上均存在“多震层”,不同地段多震层的位置和厚度有变化。横向上疏密变化,强震深度分布图上存在地震“空区”和丛集区,这可能与深部块体边界的构造位置有关。通过三维可视化显示,发现由南到北三个廊带多震层有不断扩展的趋势,越到北部,10km和15km深度的多震层有相互连接成为同一个规模较大的层的趋势。35km是该区强震发生的底界(不同地段底界深度不同,35km为最深底界),该深度以下地震极少。南北向廊带震源深度分布:南北横向上震源点疏密变化,在26°N、27°N、31°N下方一定范围内震源点异常密集,且有强震集中。微震在深度10km、15km和33km左右都有多震层存在,而强震多震层在10km、15km、20km深度存在。不同地段多震层的密度和厚度有变化。
     第四章,震源分布与地壳物性结构对比研究。地壳速度结构与震源分布:平面上,微震密度分布与15km切片低速异常的分布类似,而强震密度分布与65km深度切片低速异常的分布比较一致,表明微震主要受控于中地壳层次的构造活动,而强震的发生与下地壳构造性质关系密切。本文认为,强震主要受控于下地壳低粘度物质(低速层)的韧性变形,因而“有根的低速异常”上方强震分布密度较高。剖面上,壳内低速层与“多震层”的底界一致,中地壳很薄的低速层与下地壳较厚的低速层都具有这一规律。研究区地壳厚度具有南薄北厚,东薄西厚的特征,地壳较厚的地区中地壳和下地壳广泛存在低速层,这些低速层与多震层的底界相对应。低速层可能是重要的孕震构造,对地震的发生具有控制作用。地壳电性结构与震源分布:研究区电性结构的特征是壳内存在大规模低阻体,与震源密度分布对比可知,低阻体往往被壳内两个不同深度——10-15km和33km左右——的多震层所夹持。震源密度高值点和电性突变带均与地表可见的大规模断裂有良好的对应关系。此外,高热流的地区其震源密度也较高。
     第五章,分析了低速、低阻层和多震层的构造属性,探讨了研究区大陆动力学过程,并对研究区强震的形成机制做了探索。低速、低阻层、多震层的构造属性:中地壳层次的低速、低阻层很可能是壳内滑脱层,是韧性下地壳与脆性上地壳发生拆离解耦的构造层次;下地壳低速、低阻层是部分熔融、含流体的韧性流变层。壳内多震层是上地壳硬的脆性层,容易发生突然破裂,产生地震。南北地震带南段大陆动力学过程:青藏高原增厚的下地壳向北流动扩展,形成近南北向的下地壳层流构造。下地壳流层向北运动受到塔里木盆地、柴达木盆地强硬块体的阻挡,转向青藏高原东缘川西地区,又被四川盆地阻挡,开始沿接触带——龙门山断裂向北东和南西两个方向扩展,并使得龙门山脉强烈隆升。青藏高原下地壳流层围绕喜马拉雅东构造结顺时针旋转流动,带动上地壳差异运动而形成大规模的走滑断层和正断层。同时,这股旋转流与受北部柴达木盆地阻挡转向四川盆地再次受阻而向云南方向流动的下地壳流层汇集,使得滇西地区上地壳隆升,并形成大量走滑断层和正断层,并拖曳上地壳物质向南方“逃逸”。下地壳流层与上地壳脆性层发生差异运动,在中地壳层次发生剪切拆离,形成滑脱层(对应于中地壳低速、低阻层),并控制了上地壳的构造运动。研究区板内地震形成机制:来自青藏高原的下地壳流层的流动和受阻,是控制南北地震带南段地震活动的重要因素。下地壳流层流动拖曳上部脆性层运动,不仅上下层之间差异运动形成壳内滑脱层,而且不同地段下地壳流速不同,使得上地壳不同块体也做差异运动。而差异运动是形成断层和使先成断层再活动的原因,也即地震活动的原因。对汶川地震形成机制的解释:川西高原下地壳流层向东流动受到四川盆地强硬下地壳的阻挡,下地壳物质汇聚顶托上地壳隆升,在龙门山之下的中地壳层次造成应变和应力的积累。下地壳流层拖曳上地壳脆性层也向东运动,但二者运动速度不同。最初在下地壳流层未与四川地块接触时,下地壳流速应该比上地壳运动速度快,接触而受阻之后,下地壳流速大幅度减慢,物质开始在接触带附近聚集并顶托上地壳隆升。由于四川盆地上地壳主要为沉积物,强度不大,川西高原上地壳的运动受到的阻力没有下地壳流层的阻力大,因而上地壳运动速度减慢的少,继续向四川盆地方向推进,与下地壳汇聚物质的顶托作用一起,使龙门山地区强烈隆升并形成朝向四川盆地的逆冲推覆构造。上、下地壳的差异运动在中地壳层次形成韧脆性剪切带和滑脱层,上地壳和下地壳通过该滑脱层解耦,上地壳脆性层形成断层。龙门山断裂带主要有三条断裂,后山断裂、中央断裂和山前断裂,在川西高原与四川盆地作用过程中,这些逆冲断裂形成闭锁区,应力和能量积累到超过其闭锁极限时,突然释放即形成地震。
     最后在第六章总结了本文研究得出的结论并进行了简要讨论,指出了本研究的若干不足之处。
Southen of the S-N belt located in the eastern edge of Qinghai-Tibet Plateau as the tectonic boundary between the East and West and also the dramatic changes of variety geophysical characteristics of China. It has been of concern to scholars with its frequent seismic activity with high intensity, short-cycle and shallow focal depths. In this paper, the connection between the geophysical structure of the crust and the distribution of earthquake focals are explored, and its tectonic implications are discussed. It has a great significance for clearing the deep crustal structure of the study area and to explore the process of its formation and evolution.
     Content of the Paper are as follows:
     ChapterⅠintroduced the meaning of the study on earthquake focal distribution, research actuality at home and abroad and the content and purpose of this study.
     ChapterⅡdescribed the characteristics of regional tectonic of the study area, GPS and the characteristics of the active fault and characteristics of the crust structure.
     ChapterⅢ, statistical analysis of the collected seismic data and distribution characteristics of earthquake focals of the southern north-south seismic belt. The epicenter distribution of slight earthquake was plaque-like or beaded, and fit close with distribution of active faults; strong earthquakes showed diffuse distribution and local focus, but in most cases with slightly deviated from the distribution of the fracture position. Focal mechanism in the northern part of the study area are mainly thrust, but into the south and strike-slip fault is the main type. Fault plane inclined to the north-East and North-West to the main sliding direction of the main north-south. Focal depth distribution in East-west corridor: a majority of focals distributed in crustal depth range of 5-33km. Slight earthquake concentrated in the shallow 10-15km and the strong 10-33km, but it has been greatly reduced under 20km; There are seismogenic layers located on the sections, and the thickness of layers are changed with different location. Horizontal changes in density, there is an earthquake "empty areas" and the cluster area in the depth distribution of earthquake which may be associated' with the location of the tectonic block borders. The seismogenic layer seems to be the trend of ever-expanding from south to north through the three-dimensional visual display. 35km is the bottom depth of the strong earthquakes occurred in the area (it is different from of the depth of different sections, 35km maybe the deepest). The focal depth distribution in North-south corridor: there is strong focus under the point of 26°N, 27°N, 31°N. In the depth of 10km, 15km, 20km and 33km have about the existence of seismogenic layer.
     ChapterⅣ, the comparative study of the earthquake focal distribution and the Geophysical Structure of the Crust. Crustal velocity structure and earthquake focal distribution: density distribution of the slight earthquakes was similar to the low-speed anomalies in 15km depth section and the density distribution of strong earthquakes similar to the low-speed anomalies in depth of 65km section of earth's crust, mainly controlled by tectonic activity levels , and the occurrence of strong and close under the tectonic nature. This article holds that the main earthquake and controlled by the ductile deformation of low-viscosity lower crust (low-velocity layer) , where "the low-speed anomalies with a root" has higher density of earthquakes. Profile, the crustal low-velocity layer is identical with the bottom of the seismogenic layer. There is a broad low-velocity layer in the areas of thick crust, these low-velocity layer corresponds to the bottom of the seismogenic layer. Low-velocity layer may be important seismogenic structures, and it controled the occurrence of earthquakes. Resistivity structure of the crust and the earthquake focal distribution: the existence of large-scale low-resistivity body is the main characteristic of resistivity structure of the study area. Regularly, the low-resistivity body was nipped by two seismogenic layers with different depths - 10- 15km and 33km around. High heat flow areas corresponding to focal areas of high density.
     ChapterⅤ, The tectonic properties of low-velocity& resistivity layer and seismogenic layer, the continental dynamics the study area was discussed and the study area and the formation of strong earthquakes' mechanisms were explored. The low-velocity& resistivity layer is likely to be slippage layer between ductile lower crust and brittle upper crust and detachment occurred in the level of the structure of decoupling; The low-velocity& resistivity layer maybe produced by partial melting, containing rheological fluid layer of toughness. The seismogenic layer is a hard brittle upper crust layer, prone to sudden rupture, resulting in an earthquake. The continental dynamics of the southern section of north-south seismic belt: the expansion of the thickening lower crust of Qinghai-Tibet Plateau flowed northward. The flowed layer under the crust was stoped by the Tarim Basin, Qaidam Basin block, then turn to the eastern edge of The Plateau in western Sichuan. The Sichuan Basin blocked also stoped the flowed lower crust at Longmenshan fracture, and the lower crust flow into both directions East and West along Longmenshan, and makes a strong uplift of Longmen Mountains. The lower crust of Qinghai-Tibet Plateau clockwise flow around the East Himalayas(Namjagbarwa). The movement of the upper crust driven by lower crust flow makes differences in the formation of large-scale movement of strike-slip faults and normal faults. At the same time, this rotating flow together with the the flow blocked by Sichuan Basin, flow to Yunnan direction. The upper crust of western Yunnan uplift, and a large number of strike-slip faults and normal faults are formed. The lower crust flow draged on crustal material escape to the South. Differential movement between the lower crust and the upper crust brittle layer to form a slip layer in the crustal shear detachment level (corresponding to low-velocity& resistivity layer in middle crust), and controls the tectonic movement of upper crust. Mechanisms the of intraplate earthquakes: an important factor is the lower crust flow and delay from the Qinghai-Tibet Plateau to the study area, it controls the seismic activity in southern section of north-south seismic belt. Flowed lower crust dragging the upper brittle layer movement, differences in movement occur not only between the upper and lower crust to form slip layer, but also between different blocks. The difference in movement is the causation of faults activities and that is the reason for seismic activity. Mechanism of the Wenchuan Ms8.0 earthquake: the eastward lower crust laminar flow under the West Sichuan Plateau blocked by the Sichuan Basin at Longmenshan bring on the accumulation of strain and stress. There are three main fault rupture in Longmenshan, there formed a closed thrust zone in these faults, when the accumulation of stress and energy achieve to more than latch-up limit of its sudden release, the earthquake occured.
     Finally, ChapterⅥsummarizes the conclusions of this paper and a brief discussion, pointing out a number of shortcomings in this study.
引文
[1]李永华,吴庆举.中国地学热点研究区几个地学问题的探讨.国际地震动态,2007,9:11-19.
    [2]王振声,王周元,顾仅萍,等.中国南北地震带的范围及其活动特征初步探讨.地球物理学报,1976,19(2):110-117.
    [3]Flesch LM,Holt W E,Silver PG,et al.Constraining the extentof crustmantle coupling in centralAsia using GPS,geologic,and shear wave splitting data.Earth and Planetary Science Let,2005,238:248-268.
    [4]王椿镛,吴建平,楼海,等.青藏高原东部壳幔速度结构和地幔变形场的研究.地学前缘,2006,13(5):349-359
    [5]Maggi,A.,Jackson,J.A.,Priestley,K.,and Baker,C..A re-assessment of focal depth distribution in southern Iran,the Tien Shan and northern India:Do earthquakes really occur in the continental mantle?:Geophysical Journal International,2000,143:629-661.
    [6]Chen,W.-P.,and Molnar,P..Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere:Journal of Geophysical Research,1983,88:4183-4214.
    [7]Chen,W.-P..A brief update on,the focal depths of intracontinental earthquakes and their correlations with heat flow and tectonic age:Seismological Research Letters,1988,59:263-272.
    [8]Wiens,D.A.,and Stein,S..Age dependence of intraplate seismicity and implications for lithospheric evolution:Journal of Geophysical Research,1983,88:6455-6468.
    [9]Wong,I.G.,and Chapman,D.S..Deep intraplate earthquakes in the western United States and their relationship to lithospheric temperatures:Seismological Society of America Bulletin,1990,80:589-599.
    [10]McKenzie,D.,and Fairhead,D..Estimates of the effective elastic thickness of the continental lithosphere from Bouger and free air gravity anomalies:Journal of Geophysical Research,1997,102:27,523-27,552.
    [11]Maggi A.,Jackson J.A.,McKenzie D.And Priestley K..Earthquake focal depths,effective elastic thickness,and the strength of the continental lithosphere:Geology;2000,28(6):495-498
    [12]Zandt,G.,and Richins,W.D..An upper mantle earthquake beneath the middle Rocky Mountains in NE Utah[abs.]:Earthquake Notes,1979,50:69-70.
    [13]段星北,中国地震震源深度的地理分布,地震学报,1997,19(6):590-593.
    [14]王竹华,王大鹏,孙祝友,杜国云,.中国陆域近10年地震时空分布统计特征,烟台师范学院学报(自然科学版),2005,21(4):293-296.
    [15]胥广银,高孟潭,俞言祥,等.地震震源深度分布模型的统计研究,中国地震, 2001,17(4):343-349.
    [16]张培震,邓起东,等.中国大陆的强震活动与活动地块,中国科学(D辑),2003,33(增刊):12-20.
    [17]徐锡伟,陈文彬,于贵华,等.2001年11月14日昆仑山库赛湖地震(M,8.1)地表破裂带的几本特征,地震地质,2002,24(1):1-13.
    [18]Pekzer G.Tapponnier P.Armijo R.Magnitude of late Quaternary left-lateral displacements along the northern edge of Tibet.Science,1989,246:1283-1289
    [19]崔作舟,尹周勋,高恩元,等.青藏高原速度结构和深部构造[M].北京:地质出版社,1992,1-112.
    [20]徐常芳.中国大陆地壳上地慢电性结构及地震分布规律(一).地震学报,1996,18(2):254-261.
    [21]傅维洲,贺日政,邱虎.川滇构造带及其邻区的地壳结构与地震分布.长春科技大学学报,1999,29(4):369-372.
    [22]陈学波,吴跃强,杜平山,等.龙门山构造带两侧地壳速度结构特征.见:国家地震局科技监测司,编.中国大陆深部构造的研究与进展.北京:地震出版社,1988.97-113.
    [23]Sipkin,and Revenaugh,J.Regional variation of attenuation and travel time in China form analysis of multiple-ScS Phases.J.Gepohys.Res.1994,,99(BZ).
    [24]张家声,李燕,.青藏高原向东挤出的变形响应及南北地震带构造组成.地学前缘.2003,10(U08):168-175.
    [25]邓起东,冉勇康,杨晓平,等.中国活动构造图(1:400万).北京:地震出版社,2007.
    [26]张智.川滇地区地壳及上地幔结构面波层析成像[博士学位论文],长春,吉林大学.2004.
    [27]陈炳蔚,王恺熹,等.怒江-澜沧江-金沙江地区大地构造.北京:地质出版社.1987,204.
    [28]闻学泽,范军,易桂喜,等.川西安宁河断裂上的地震空区.中国科学(D辑:地球科学),2008,38(7):797-807.
    [29]任纪舜,姜春发,张正坤,等-中国大地构造及其演化.北京:科学出版社,1980,124.
    [30]Allen C R,Luo Z,Qian H,et al.Field study of a high active fault zone:the Xian shuihe fault of southwestern China.Geol Soc Amer Bull,1991,103:1178-1190.
    [31]Allen C R,Gillespie A R,Han Y,et at.Red river and associated faults,Yunnan Province,China:Quatemary geology,slip rates,and seismic hazard.GeoI Soc Amer Bull,1984,95:686-700.
    [32]Tapponnier P,Lacassin R,Leloup P H,et al.The Ailao Shan/Red River metamorphic belt:Tertiary left-lateral shear between Indo-China and South China.Nature,1990,343:431-437.
    [33]Leloup P,Lacassin R,Tapponnier P,et al.The Ailao Shan-Red River shear zone(Yunnan,China),Tertiary transform boundary of Indochina.Tectonophysics,1995,251:73-84
    [34]Jiang C S.Volcanoes and earthquakes in Tengchong area,Yunnan province,China.J Seism Res,1985,8:107-120.
    [35]Fan P.Outline of the tectonic evolution of southwestern China.Tectonophysics,1978,45:261-267.
    [36]王阎昭,王恩宁,沈正康,等.基于GPS资料约束反演川滇地区主要断裂现今活动速率.中国科学(D辑:地球科学),2008,38(5):582-597.
    [37]王庆良,崔笃信,王文萍,等.川西地区现今垂直地壳运动研究.中国科学(D辑:地球科学),2008,38(5):598-610.
    [38]孙洁,徐常芳,江钊,等.滇西地区地壳上地幔电性结构与地壳构造运动的关系.地震地质,1989,11(1):35-45.
    [39]向宏发,虢顺民,徐锡伟,等.川滇南部地区活动地块划分与现今运动特征初析.地震地质,2000,22(3):253-264.
    [40]吕江宁,沈正康,王敏.川滇地区现代地壳运动速度场和活动块体模型研究.地震地质,2003,25(4):543-554.
    [41]Shen Z K,L(u|¨) J,Wang M,et al.Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau.J Geophys Res,2005,110:B11409.
    [42]唐文清,陈智梁.青藏高原东缘鲜水河断裂与龙门山断裂现今的构造活动.地质通报,2005,24(12):1169-1172.
    [43]Burchfiel B C.New technology:new geological challenges.GSA Today,2004,14(2):4-10
    [44]Gan W J,Zhang P Z,Shen Z K,et al.Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements.J Geophys Res,2007,112:B08416
    [45]徐锡伟,闻学泽,郑荣章,等.川滇地区活动块体最新构造变动样式及其动力来源.中国科学(D辑:地球科学),2003,33(增刊):151-162
    [46]向宏发,徐锡伟,虢顺民,等.丽江-小金河断裂第四纪以来的左旋逆推运动及其构造地质意义-陆内活动地块横向构造的屏蔽作用.地震地质,2002,22(2):188-198
    [47]刘建华,刘福田,吴华,等.中国南北带地壳和上地幔的三维速度图象.地球物理学报,1989,32(2):143-152
    [48]何正勤,曾融生,陈国英.南北地震带的瑞利波群速度与地壳结构,西北地震学报,1990,12(3):19-22
    [49]陈立华,宋仲和,安昌强,等.中国南北带地壳上地幔三维面波速度结构和各向晃性.地球物理学报,1992,35(5):575-583
    [50]吴建平,明跃红,王椿镛,云南数字地震台站下方的S波速度结构研究.地球物理学报,2001,44(2):228-238
    [51]胡家富,苏有锦,朱雄关,等.云南的地壳S波速度与泊松比结构及其意义.中国科学(D 辑),2003,33(8):714-722
    [52]王椿镛,Mooney W.D,王溪莉,等.川滇地区地壳上地幔三维速度结构研究.地震学报,2002,24(1):1-16
    [53]王椿镛,吴建平,楼海,等.川西藏东地区的地壳P波速度结构.中国科学D辑,2003,(S1):181-189.
    [54]黄金莉,宋晓东,汪素云.川滇地区上地幔顶部Pn速度细结构,中国科学(D 辑),2003,33(S):144-151
    [55]何正勤,叶太兰,苏伟.云南地区地壳中上部横波速度结构研究,地球物理学报,2004,47(5):838-844
    [56]白志明,王椿镛,云南遮放-宾川和孟连-马龙宽角地震剖面的层析成像研究.地球物理学报,2004,47(2):257-267
    [57]张智,赵兵,张晰,等.云南思茅-中甸地震剖面的地壳结构.地球物理学报, 2006,49(5):1377-1384
    [58]李永华,吴庆举,田小波等.用接收函数方法研究云南及其邻区地壳上地幔结构.地球物理学报,2009,52(1):67-80
    [59]徐果明,姚华建,朱良保,等.中国西部及其邻域地壳上地幔横波速度结构.地球物理学报,2007,50(1):193-208
    [60]Vergne J,Wittlinger G,Hui Q,et al.Seismic evidence for stepwise thickening of the crust across the NE Tibetan plateau.Earth Planet.Sci.Lett.,2002,203:25-33
    [61]Huang Z,Su W,Peng Y,et al.Rayleigh wave tomography of China and adjacent regions.J.Geophys.Res.,2003,103(B2):ESE4-1-14
    [62]张先康,李松林,王夫运,等.青藏高原东北缘、鄂尔多斯和华北唐山震区的地壳结构差异-深地震评测的结果.地震地质,2003,25(1):5260
    [63]周民都.青藏高原东北缘地壳上地幔速度结构的地震层析成像研究[博士学位论文],北京:中国地震局地球物理研究所,2005
    [64]杨海燕,胡家富,赵宏,等.川西地区壳幔结构与汶川Ms8.0级地震的孕震背景.地球物理学报,2009,52(2):356-364
    [65]郭飚,刘启元,陈九辉等.川西龙门山及邻区地壳上地幔远震P波层析成像.地球物理学报,2009,52(2):346-355
    [66]郭守年,李勇.南北地震带北段地壳上地幔电性结构及有关资料问题的讨论.西北地震学报,1999,21(3):285-295
    [67]马晓冰,孔祥儒,刘宏斌,等.青藏高原东北部地区地壳电性结构特征.地球物理学报,2005,48(3):689-697.
    [68]杨迪琨,羌塘地块地壳三维电性结构研究[硕士学位论文].武汉:中国地质大学,2007.
    [69]金胜,叶高峰,魏文博,等.2006.青藏高原东南部地壳导电性结构与断裂构造特征:下察隅-昌都剖面大地电磁探测结果.地学前缘,13(5):408-415.
    [70]王绪本,朱迎堂,赵锡奎,等.青藏高原东缘龙门山逆冲构造深部电性结构特征.地球物理学报,2009,52(2):564-571.
    [71]孔祥懦,刘士杰,等.攀西地区地壳和上地幔中的电性结构,地球物理学报,1987,30(2):136-143.
    [72]时振梁,阚荣举,滑离构造和地震,见:国家地震局地球物理研究所编,地球物理研究所建所35周年纪念文集,1985,153-154.
    [73]阚荣举,张四昌,晏风桐,等.我国西南地区现代构造应力场与现代构造运动特征的探讨,地球物理学报,1977,20(2):96-109
    [74]孙洁,晋光文,白登海,等.青藏高原东缘地壳、上地慢电性结构探测及其构造意义.中国科学(D辑),2003,33(S):173-181
    [75]王椿镛,王溪莉,苏伟,等.青藏高原东缘下地壳流动的地震学证据.四川地震,2006,(04):1-4.
    [76]王椿镛,楼海,吕智勇,等.青藏高原东部地壳上地幔S波速度结构-下地壳流的深部环境.中国科学(D辑:地球科学),2008,(01):22-32.
    [77]余绍立,季建清,陈建军,等.下地壳流变层对青藏高原及其周边大尺度地貌的制约.地质科技情报,2006,25(5):1-7
    [78]苏有锦,刘祖荫,蔡民军,等.云南地区强震分布的深部地球介质背景.地震学报,1999,21(3):313-322
    [79]向才英,周真恒.云南地震活动与岩石圈热结构的关系.中国地震,2000,16(3):263-272
    [80]李勇,周荣军,Alexander L.,等.青藏高原东缘大陆动力学过程与地质响应.北京:地质出版社,2006,33-39
    [81]孙其政,吴书贵,主编.中国地震监测预报40年:1966-2006.北京:地震出版社,2007
    [82]傅征祥,编著.中国大陆地震活动性力学研究.北京:地震出版社,1997.7:115
    [83]马宗晋,张家声,刘国栋,等.大陆多震层研究现状和讨论.地震地质,1990,12(3):262-264
    [84]陈学波,林中洋,吴宁远,等.青藏高原东缘低速上地幔.见:中国地震局地壳应力研究所编.地壳结构和应力论文集.北京:地震出版社.1988,2:159-166
    [85]胡鸿翔,陆涵行,王椿镛,等.滇西地区地壳结构的爆破地震研究[J].地球物理学报,1986,29(2):133-144
    [86]崔作舟,卢德源,陈纪平,等.花石峡-邵阳深部地壳结构和构造.北京:地质出版社,1996,49-168
    [87]林中洋,胡鸿翔,张文彬等.滇西地区地壳上地幔速度结构特征的研究.地震学报,1993,6(4):427-440
    [88]张中杰,白志明,王椿镛,等.冈瓦纳型和扬子型地块地壳结构:以川滇西孟连-马龙宽角反射剖面为例.中国科学(D辑),2005,34(5):387-392
    [89]张中杰,白志明,王椿镛,等.三江地区地壳结构及动力学意义:云南遮放-宾川地震反射/折射剖面的启示.中国科学(D辑),2005,35(4):314-319
    [90]吴建平,明跃红,王椿镛.川滇地区速度结构的区域地震波形反演研究.地球物理学报,2006,49(5):1369-1376
    [91]雷建设,赵大鹏,苏金蓉等.龙门山断裂带地壳精细结构与汶川地震发震机理.地球物理学报,2009,52(2):339-345
    [92]胥颐,黄润秋,李志伟等.龙门山构造带及汶川震源区的S波速度结构.地球物理学报,2009,52(2):329-338
    [93]吴建平,黄媛,张天中等.汶川Ms 8.0级地震余震分布及周边区域P波三维速度结构研究.地球物理学报,2009,52(2):320-328
    [94]刘启元,李昱,陈九辉等.汶Ms 8.0地震:地壳上地幔S波速度结构的初步研究.地球物理学报,2009,52(2):309-319
    [95]陈九辉,刘启元,李顺成等.汶川MS 8.0地震余震序列重新定位及其地震构造研究.地球物理学报,2009,52(2):390-397
    [96]Huang,J.L.,Zhao,D.P.,Zheng,S.H.Lithospheric structure and its relationship to seismic and volcanic activity in southwest China.J.Geophys.Res.,2002,107(B 10):doi:10.1029/2000JB000137.
    [97]Wang.C.Y.,Chan,W.W.,Mooney,W.D.Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications.J.Geophys.Res,2003,108(B9),2442,doi:10.1029/2002JB001973
    [98]Wang,C.and W.Mooney,et al.A study on 3-D velocity structure of crust and upper mantle in Sichuan-Yunan region,China.Acta Seismologica Sinica,2002,15(1):1-17.
    [99]马宏生,张国民,闻学泽,等.川滇地区三维P波速度结构反演与构造分析.地球科学-中国地质大学学报,2008,33(5):591-602
    [100]马宏生,张国民,周龙泉等.川滇地区中小震重新定位与速度结构的联合反演研究.地震,2008,28(2):29-38
    [101]熊绍柏,郑晔,尹周勋,等.丽江-攀枝花-者海地带二维地壳结构及其构造意义.地球物理学报,1993,36(4):434-443
    [102]杨晓松,金振民.壳内部分熔融低速层及其研究意义.地球物理学进展,1998,13(3):38-45
    [103]李立,金国元.攀西裂谷及龙门山断裂带地壳上地幔大地电磁测深研究.物探与化探,1987,11:161-169
    [104]孙洁,晋光文,白登海,等.青藏高原东缘地壳上地幔电性结构探测及其大地构造意义.中国科学(D辑:地球科学),2003,33(增刊):173-180
    [105]Wang,C.Y.,Han,W.B.,Wu,J.P.,et al.Crustal structure beneath the eastern margin of the Tibetan plateau and its tectonic implications.J Geophys Res,2007,112:B07307
    [106]赵国泽,陈小斌,王立凤,等.青藏高原东边缘地壳“管流”层的电磁探测证据.科学通报,2008,53(3):345-350
    [107]朱迎堂,王绪本,余年,等.龙门山大地电磁深部结构及汶川地震(Ms8.0).地质学报,2008,82(12):1770-1777
    [108]楼海,王椿镛,吕智勇,等.2008年汶川Ms8.0级地震的深部构造环境-远震P波接收函数和布格重力异常的联合解释.中国科学(D辑:地球科学),2008,38(10):1207-1220
    [109]袁玉松,马永生,胡圣标,等.中国南方现今地热特征.地球物理学报,2006,49(4):1118-1126
    [110]汪缉安,徐青,张文仁,等.1990.云南大地热流及地热地质问题.地震地质,12(4):367-377.
    [111]尹周勋,滕吉文,刘宏兵.西藏高原亚东至当雄地带二维地壳结构的研究.中国地质科学院院报.第21号,1990,239-245.
    [112]黄立言,卢德源,赵文津,等.藏南帕里至达吉地带的上地壳结构特征,REFTEK顺带广角地震观测结果分析.地球学报,1996,17(2):165-176.
    [113]Nelson,K.D.,Zhao,W.,Brown,L.D.,et al,Partially molten middle crust beneath southern Tibet:Synthesis of project INDEPTH results,Science,1996,274:1684-1688.
    [114]Kind,R.,Ni,J.,Zhao,W.,et al,Evidence from earthquake data or a partially moltencrustal layer in southern Tibet,Science,1996,274:1692-1694.
    [115]Schmitz,M.,Heinsohn,W.-D.,Schilling,F.R.Seismic,gravity and petrological evidence for partial melt beneath the thickened Central Andean crust (21-23°).Tectonophysics,1997,270:313-326.
    [116]赵国泽,汤吉,詹艳,等.青藏高原东北缘地壳电性结构和地块变形关系的研究.中国科学(D辑:地球科学),2004,34(10):908-918.
    [17]薛光琦,王有学,宿和平.拉萨地体内低速异常成因的探讨:壳内局部熔融的地震层析证据.地球学报,2005,26(5):411-415.
    [118]王辉,曹建玲,张怀,等.川滇地区下地壳流动对上地壳运动变形影响的数值模拟.地震学报,2007,29(6):581-591.
    [119]罗文行,李德威,汪校锋.青藏高原板内地震震源深度分布规律及其成因.地球科学-中国地质大学学报,2008,33(5):618-626.
    [120]潘桂堂,王培生,徐耀荣,等.青藏高原新生代构造演化.北京:地质出版社,1990,1-163.
    [121]李德威.大陆构造样式及大陆动力学模式初探.地球科学进展,1993,8(5):88-93.
    [122]李德威.关于大陆构造的思考.地球科学-中国地质大学学报,1995a,20(1):10-18.
    [123]李德威.再论大陆构造与动力学.地球科学-中国地质大学学报,1995b,20(1):19-26.
    [124]李德威,纪云龙.大陆下地壳层流作用及其大陆动力学意义.地震地质,2000,22(1):89-96.
    [125]李德威.青藏高原隆升机制新模式.地球科学-中国地质大学学报,2003,28(6):593-600.
    [126]李德威.青藏高原板内活动断层与地震成因.吴珍汉,赵志中,主编.青藏高原地质过程与环境灾害效应文集.北京:地震出版社,2005,118-124.
    [127]Marin K.Clark,John W.M.Bush and Leigh H.Royden.Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau.Geophys.J.Int.,2005,162:575-590.
    [128]Marin Kristen Clark,Leigh Handy Royden.Topographic ooze:Building the eastern margin of Tibet by lower crustal flow.Geology,2000,28(8):703-706.
    [129]周伏洪,姚正煦,刘振军,等.青藏高原中部北北东向深部负磁异常带的成因及其意义.物探与化探,2002,26(1):12-17.
    [130]张培震,王琪,马宗晋.中国大陆现今构造运动的GPS速度场与活动地块.2002,9(2):430-441.
    [131]马宗晋,李献智.地震迁移的规律解释和预报:中国大陆四条地震带的地震迁移.地震地质,1992.(14)2:129-139.
    [132]李德威.大陆板内地震的发震机理与地震预报-以汶川地震为例.地质科技情报,2008,27(5):01-06.
    [133]Cook,K.L.,Royden,L.H.The role of crustal strength variations in shaping orogenic plateaus,with application to Tibet.J.Gephys.Res.,2008,113.doi:10.1029/2007JB005457.
    [134]张培震,闻学泽,徐锡伟,等.2008年汶川8.0级特大地震孕育和发生的多单元组合模式.科学通报,2009,54(7):944-953.
    [135]蔡学林,曹家敏,朱介寿,等.龙门山岩石圈地壳三维结构及汶川大地震成因浅析.成都理工大学学报(自然科学版),2008,35(4):357-365
    [136]朱守彪,张培震.2008年汶川Ms8.0地震发生过程的动力学机制研究.地球物理学报,2009,52(2):418-427.
    [137]程万正.南北地震带地震转移图像与趋势预测.地震,2005,25(1):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700