黑洞系统的大尺度磁场提能机制与准周期振荡
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑洞等致密天体的辐射通常呈现出快速的变化,有些x射线光变表现出持续稳定的近似周期性,被称为准周期振荡(QPO)。黑洞双星、中等质量黑洞和活动星系核(AGNs)都被观测到存在QPO。由于其时标与黑洞吸积盘内区的动力学时标相当,QPO被认为是探测黑洞附近吸积过程的有效途径。大尺度磁场在高能天体物理中扮演了重要角色,本文在大尺度磁场提能的基础上建立了黑洞双星的3:2高频QPO模型以及不同尺度黑洞系统的QPO统一模型,将QPO频率的产生与辐射谱联系起来。
     本轮共振模型自然地解释了3:2高频QPO的小整数比,但是能否克服吸积流的阻尼力对其来说是严重的困难。黑洞与吸积盘之间的磁耦合过程将旋转黑洞的能量和角动量转移到吸积盘内区,克服了共振团块在吸积流中遇到的阻尼力问题,并有利于建立QPO与谱态之间的联系。本文第二章将共振模型和黑洞与吸积盘之间的磁耦合过程结合起来,拟合了三个黑洞双星的3:2高频QPO以及对应的x射线谱形,表明3:2高频QPO是与陡幂律态成协的。
     黑洞双星、中等质量黑洞和AGNs在观测上表现出相似性和统一性,本文第三章尝试建立不同尺度黑洞系统的QPO统一模型。Kerr度规下黑洞吸积盘上的环向面电流分布会产生盘盘耦合的闭合大尺度磁场位形,我们考虑了磁耦合过程与盘冕系统的相互作用,利用盘上闭合磁力线的磁重联分别拟合了三种不同尺度黑洞系统的QPO以及对应的x射线谱形。
     黑洞双星的谱态转变呈现出纷繁复杂的现象,本文第四章试图用大尺度磁场位形的演化描述态转变,其中涉及到BZ、MC、BP三种大尺度磁场的提能机制。描述盘上磁场集中程度的幂律指数n起着关键作用,随着n的减小,BZ和BP过程的磁场先后消失,黑洞双星由低硬态过渡到硬中间态再转变到陡幂律态。我们拟合了这几个态的主要特征,并估计了由陡幂律态向热主导态转变的时标。描述黑洞双星态转变的HID图中的“喷流线”可以用a*和n参数空间中的临界线得到很好的说明。
     吸积盘上的发射线是探测盘内区的另一个有效途径,由于相对论效应,发射线被远处的观测者接收时变得很宽,铁Kα线最为明显。如果将QPO与铁Kα线结合起来,则有可能对吸积盘内区的特性作出更准确的判断。本文第五章利用大尺度磁场的磁耦合过程讨论了黑洞双星的3:2高频QPO与展宽的铁Kα线之间的可能关联。施加在吸积盘内边缘的外部力矩和非轴对称大尺度磁场的螺旋不稳定性分别在盘上产生内外热斑,双热斑的开普勒运动形成3:2 QPO。另一方面,由于内边缘力矩和大尺度磁场MC过程的作用,盘上的辐射很集中,随着半径的增加发射率衰减很快,由该发射率指数计算得到的铁Kα线展宽轮廓与观测值相吻合。
Rapid variations are usually found in the radiation from black hole (BH) systems and other astrophysical compact objects. Some X-ray variations are quasi-periodic, stationary and continuing, which are called Quasi-Periodic Oscillations (QPOs). QPOs have been observed in BH binaries, intermediate mass BHs and active galactic nuclei (AGNs). QPO is believed to be an effective approach to detect the accretion process near BHs since its time scale is equivalent to the dynamical time scale in the inner region of an accretion disk. Large-scale magnetic fields play an important role in high energy astrophysics. In this thesis, a model for 3:2 high frequency QPO (HFQPO) pairs in BH binaries and a unified model for QPOs in BH systems of different scales are established, which link QPO frequencies and emitted spectra based on energy extraction via large-scale magnetic fields.
     The epicyclic resonance models interpret the small integer ratio of QPO frequency pairs naturally, but there remain serious uncertainties as to whether epicyclic resonance could overcome the severe damping forces in accretion flows. The severe damping can be overcome by transferring energy and angular momentum from a spinning BH to the inner disk via magnetic connection (MC) between the hole and the disk. And the MC process is helpful to understand the link between QPO frequencies and spectra. In Chapter 2, we combine epicyclic resonance and the MC process to fit the 3:2 HFQPO pairs and the corresponding spectra of three BH banaries. It turns out that the 3:2 HFQPO pairs are associated with the steep power-law (SPL) states.
     Observations show similarity and unity among BH binaries, intermediate mass BHs and AGNs. In Chapter 3, we attempt to establish a unified model for QPOs in BH systems of different scales. The toroidal electric currents distributed in accretion disk around a Kerr BH will generate closed large-scale magnetic fields connecting the inner and outer regions of accretion disk. We fit QPOs with the corresponding X-ray spectra in BH systems of different scales based on the MC effects on disk-corona system with magnetic reconnection of the closed field lines.
     Complicated phenomena have been observed in BH X-ray binaries. In Chapter 4, we attempt to describe the state transitions based on the evolution of large-scale magnetic fields and energy extraction invoking of the BZ, BP and MC processes. The power index n indicating the concentration of magnetic fields on the disk is a key parameter in state transitions. Magnetic fields with BZ and BP processes disappear successively with the decreasing n, and the low hard (LH) state transferred into hard intermediate (HIM) state, and then into SPL state. We fit the main characteristics of these states and the time scale of the transition from SPL state to thermal dominated (TD) state is roughly estimated. The 'jet line'in HID can be interpreted naturally by the critical line in a*-n parameter space.
     The relativistic X-ray emission line is another effective approach to detect the inner region of an accretion disk. The lines become very broad when received by distant observers due to the relativistic effects and Fe Ka lines are the most obvious. The characteristics of inner disk region may probably be understood better if we use the methods of QPOs and Fe Ka lines together. In Chaper 5, we discuss the probable connection between 3:2 HFQPOs and broad Fe Ka lines in two BH binaries based on the MC process.3:2 HFQPOs are generated by the Kepler motion of inner and outer hotspots in the disk which are produced by the external torque exerted at the inner edge of the disk and screw instability of non-axisymmetric large-scale magnetic field respectively. On the other hand, the radiation of the inner disk is very concentrative and the emissivity decreases rapidly with the increasing radius due to the torque exerted at the inner edge of the disk and the MC process. The curves of broad Fe Ka lines calculated from the steep emissivity index are in accordance with observations.
引文
[1]Zhang S. N. Astrophysical Black Holes in the Physical Universe. to appear in New Vision 400:Engaging Big Questions in Astronomy and Cosmology Four Hundred Years after the Invention of the Telescope, eds. D. G. York, O. Gingerich, S.-N. Zhang, C. L. Harper, Jr., Taylor & Francis Group LLC/CRC Press, arXiv:1003. 0291v1
    [2]Webster B. L., Murdin P. Cygnus X-1-a Spectroscopic Binary with a Heavy Companion. Nature,1972,235:37-38
    [3]Bolton C. T. Dimensions of the Binary System HDE 226868=Cygnus X-1. Nature, 1972,240:124
    [4]Cowley A. P., Crampton D., Hutchings J. B., et al. Discovery of a massive unseen star in LMC X-3. ApJ,1983,272:118-122
    [5]McClintock J. E., Remillard R. A. The black hole binary A0620-00. ApJ,1986,308: 110-122
    [6]Remillard R. A., McClintock J. E. X-Ray Properties of Black-Hole Binaries. ARA&A,2006,44:49-92
    [7]Ozel F., Psaltis D., Narayan R., et al. The Black Hole Mass Distribution in the Galaxy. ApJ,2010,725:1918-1927
    [8]Feng H., Kaaret P. Spectral States and Evolution of Ultraluminous X-Ray Sources. ApJ,2009,696:1712-1726
    [9]Kajava J. J. E., Poutanen J. Spectral variability of ultraluminous X-ray sources. MNRAS,2009,398:1450-1460
    [10]Belloni T. M. Black-hole states in external galaxies. to appear in the proceedings of the conference "Ultra-Luminous X-ray sources and Middle Weight Black Holes" (Madrid, May 24-26,2010), accepted for publication in Astronomische Nachrichten, arXiv:1012.0783
    [11]黄克谅.类星体与活动星系核.北京:中国科学技术出版社,2005
    [12]Hazard C., Mackey M. B., Shimmins A. J. Investigation of the Radio Source 3C 273 By The Method of Lunar Occultations. Nature,1963,197:1037-1039
    [13]Schmidt M.3C 273:A Star-Like Object with Large Red-Shift. Nature,1963,197: 1040
    [14]Oke J. B. Absolute Energy Distribution in the Optical Spectrum of 3C 273. Nature, 1963,197:1040-1041
    [15]Greenstein J. L. Red-Shift of the Unusual Radio Source:3C 48. Nature,1963,197: 1041-1042
    [16]Seyfert C. K. Nuclear Emission in Spiral Nebulae. ApJ,1943,97:28
    [17]Sparke L. S., Gallagher J. S.著.宇宙中的星系.邹振隆译.北京:中国科学技术出版社,2010
    [18]Urry C. M., Padovani P. Unified Schemes for Radio-Loud Active Galactic Nuclei. PASP,1995,107:803
    [19]Tananbaum H., Gursky H., Kellogg E., et al. Observation of a Correlated X-Ray Transition in Cygnus X-1. ApJ,1972,177:L5
    [20]Miyamoto S., Kitamoto S. A jet model for a very high state of GX 339-4. ApJ, 1991,374:741-743
    [21]Miyamoto S., Iga S., Kitamoto S., et al. Another canonical time variation of X-rays from black hole candidates in the very high flare state? ApJ,1993,403:L39-L42
    [22]McClintock J. E., Remillard R. A. Black hole binaries. in Lewin, van der Klis, eds. Compact Stellar X-ray Sources, Cambridge Univ. Press, Cambridge,2006:157
    [23]Brocksopp C., McGowan K. E., Krimm H., et al. The 2005 outburst of GRO J1655-40:spectral evolution of the rise, as observed by Swift. MNRAS,2006,365: 1203-1214
    [24]Fender R. P., Belloni T. M., Gallo E. Towards a unified model for black hole X-ray binary jets. MNRAS,2004,355:1105-1118
    [25]Bondi H. On spherically symmetrical accretion. MNRAS,1952,112:195
    [26]Frank J., King A., Raine D. Accretion Power in Astrophysics. Cambridge Univ. Press (Third Edition), Cambridge,2002
    [27]尤峻汉.天体物理的辐射机制.北京:科学出版社(第2版),1998:220
    [28]Shakura N. I., Sunyaev R. A. Black holes in binary systems. Observational appearance. A&A,1973,24:337-355
    [29]卢炬甫.黑洞吸积盘理论进展.天文学进展,2001,19:365-374
    [30]Novikov I. D., Thome K. S. Astrophysics of black holes. In Black holes,1973: 343-450
    [31]Page D. N., Thorne K. S. Disk-Accretion onto a Black Hole. Time-Averaged Structure of Accretion Disk. ApJ,1974,191:499-506
    [32]Bardeen J. M., Press W. H., Teukolsky S. A. Rotating Black Holes:Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation. ApJ, 1972,178:347-370
    [33]Narayan R., Yi I. Advection-dominated accretion:A self-similar solution. ApJ,1994, 428:L13-L16
    [34]Abramowicz M. A., Chen X.-M., Granath M., et al. Advection-dominated Accretion Flows around Kerr Black Holes. ApJ,1996,471:762
    [35]Peitz J., Appl S. Viscous accretion discs around rotating black holes. MNRAS,1997, 286:681-695
    [36]Gammie C. F., Popham R. Advection-dominated Accretion Flows in the Kerr Metric. I. Basic Equations. ApJ,1998,498:313
    [37]Narayan R., Yi I., Mahadevan R. Explaining the spectrum of Sagittarius A* with a model of an accreting black hole. Nature,1995,374:623-625
    [38]Lasota J.-P., Abramowicz M. A., Chen X., et al. Is the Accretion Flow in NGC 4258 Advection Dominated? ApJ,1996,462:142
    [39]Lasota J.-P. Accretion disc instabilities and advection dominated accretion flows. In Theory of Black Hole Accretion Disks, eds. M. A. Abramowicz, G Bjornsson, and J. E. Pringle. Cambridge University Press,1998:183
    [40]Penrose R. Gravitational Collapse:the Role of General Relativity. Nuovo. Cim., 1969,1:252
    [41]Teukolsky S. A., Press W. H. Perturbations of a rotating black hole. Ⅲ-Interaction of the hole with gravitational and electromagnetic radiation. ApJ,1974,193: 443-461
    [42]Blandford R. D., Znajek R. L. Electromagnetic extraction of energy from Kerr black holes. MNRAS,1977,179:433-456
    [43]MacDonald D., Thorne K. S. Black-hole electrodynamics-an absolute-space /universal-time formulation. MNRAS,1982,198:345-382
    [44]Li L. X. Extracting Energy from a Black Hole Through its disk. ApJ,2000,533: L115-L118
    [45]Wang D. X., Xiao K., Lei W. H. Evolution characteristics of the central black hole of a magnetized accretion disc. MNRAS,2002,335:655-664
    [46]Wang D. X., Ma R. Y., Lei W. H., et al. Magnetic Coupling of a Rotating Black Hole with Its Surrounding Accretion Disk. ApJ,2003,595:109-119
    [47]Blandford R. D., Payne D. G. Hydromagnetic flows from accretion discs and the production of radio jets. MNRAS,1982,199:883-903
    [48]Bisnovatyi-Kogan G. S., Ruzmaikin A. A. The accretion of matter by a collapsing star in the presence of a magnetic field. Ⅱ-Selfconsistent stationary picture. Astrophysics and Space Science,1976,42:401-424
    [49]Spruit H. C. Theory of magnetically powered jets. in Belloni, T. (ed.):The Jet Paradigm-From Microquasars to Quasars, Lect. Notes Phys. Springer-Verlag Berlin Heidelberg,2010,794:233
    [50]arXiv:0804.3096v4
    [51]Ghosh P., Abramowicz M. A. Electromagnetic extraction of rotational energy from disc-fed black holes-The strength of the Blandford-Znajek process. MNRAS,1997, 292:887
    [52]Livio M., Ogilvie G. I., Pringle J. E. Extracting Energy from Black Holes:The Relative Importance of the Blandford-Znajek Mechanism. ApJ,1999,512:100-104
    [53]van der Klis M. Rapid X-ray Variability. in Lewin, van der Klis, eds. Compact Stellar X-ray Sources, Cambridge Univ. Press, Cambridge,2006, p39
    [54]Muno M. P., Remillard R. A., Morgan E. H., et al. Radio Emission and the Timing Properties of the Hard X-Ray State of GRS 1915+105. ApJ,2001,556:515-532
    [55]Sobczak G. J., McClintock J. E., Remillard R. A., et al. Correlations between Low-Frequency Quasi-periodic Oscillations and Spectral Parameters in XTE J1550-564 and GRO J1655-40. ApJ,2000,531:537-545
    [56]Vignarca F., Migliari S., Belloni T., et al. Tracing the power-law component in the energy spectrum of black hole candidates as a function of the QPO frequency. A&A, 2003,397:729-738
    [57]Kalemci E., Tomsick J. A., Rothschild R. E., et al. The Galactic Black Hole Transient H1743-322 during Outburst Decay:Connections between Timing Noise, State Transitions, and Radio Emission. ApJ,2006,639:340-347
    [58]McClintock J. E., Remillard R. A., Rupen M. P., et al. The 2003 Outburst of the X-Ray Transient H1743-322:Comparisons with the Black Hole Microquasar XTE J1550-564. ApJ,2009,698:1398-1421
    [59]Wijnands R., Homan J., van der Klis M. The Complex Phase-Lag Behavior of the 3-12 HZ Quasi-Periodic Oscillations during the Very High State of XTE J1550-564. ApJ,1999,526:L33-L36
    [60]Tagger M., Pellat R. An accretion-ejection instability in magnetized disks. A&A, 1999,349:1003-1016
    [61]Titarchuk L., Osherovich V. The Global Normal Disk Oscillations and the Persistent Low-Frequency Quasi-periodic Oscillations in X-Ray Binaries. ApJ,2000,542: L111-L114
    [62]Chakrabarti S. K., Manickam S. G Correlation among Quasi-Periodic Oscillation Frequencies and Quiescent-State Duration in Black Hole Candidate GRS 1915+105. ApJ,2000,531:L41-L44
    [63]Nobili L., Turolla R., Zampieri L., et al. A Comptonization Model for Phase-Lag Variability in GRS 1915+105. ApJ,2000,538:L137-L140
    [64]Remillard R. A., Muno M. P., McClintock J. E., et al. Evidence for Harmonic Relationships in the High-Frequency Quasi-periodic Oscillations of XTE J1550-564 and GRO J1655-40. ApJ,2002,580:1030-1042
    [65]Remillard R. A., McClintock J. E., Orosz J. A., et al. The X-Ray Outburst of H1743-322 in 2003:High-Frequency QPOs with a 3:2 Frequency Ratio. ApJ,2006, 637:1002-1009
    [66]Abramowicz M. A., Kluzniak W. A precise determination of black hole spin in GRO J1655-40. A&A,2001,374, L19
    [67]Kato S., Fukue J. Trapped Radial Oscillations of Gaseous Disks around a Black Hole. PASJ,1980,32:377
    [68]Okazaki A. T., Kato S., Fukue J. Global trapped oscillations of relativistic accretion disks. PASJ,1987,39:457-473
    [69]Nowak M. A., Lehr D. E. Stable oscillations of black hole accretion discs. in Abramowicz M. A., Bjornsson G., Pringle J. E., eds., Theory of Black Hole Accretion Discs, Cambridge Univ. Press, Cambridge,1998:233
    [70]Rezzolla L., Yoshida S., Maccarone T. J., et al. A new simple model for high-frequency quasi-periodic oscillations in black hole candidates. MNRAS,2003, 344:L37-L41
    [71]Schnittman J. D., Bertschinger E. The Harmonic Structure of High-Frequency Quasi-periodic Oscillations in Accreting Black Holes. ApJ,2004,606:1098-1111
    [72]Remillard R. A., Morgan E. H., McClintock J. E., et al. RXTE Observations of 0. 1-300 HZ Quasi-periodic Oscillationsin the Microquasar GRO J1655-40. ApJ,1999, 522:397-412
    [73]Strohmayer T. E. Discovery of a 450 HZ Quasi-periodic Oscillation from the Microquasar GRO J1655-40 with the Rossi X-Ray Timing Explorer. ApJ,2001,552: L49-L53
    [74]Miller J. M., Wijnands R., Homan J., et al. High-Frequency Quasi-Periodic Oscillations in the 2000 Outburst of the Galactic Microquasar XTE J1550-564. ApJ, 2001,563:928-933
    [75]van der Klis M. Millisecond Oscillations in X-ray Binaries. ARA&A,2000,38: 717-760
    [76]Abramowicz M. A., Karas V., Kluzniak W., et al. Non-Linear Resonance in Nearly Geodesic Motion in Low-Mass X-Ray Binaries. APSJ,2003,55:467
    [77]Kluzniak W., Abramowicz M. A., Lee W. High-frequency QPOs as a problem in physics:non-linear resonance. in Kaaret P., Swank J. H., Lamb F. K., eds, AIP Conf. Ser. Vol.714, X-Ray Timing 2003:Rossieand Beyond. Am. Inst. Phys., New York, 2004,379
    [78]Torok G., Abramowicz M. A., Kluzniak W., et al. The orbital resonance model for twin peak kHz quasi periodic oscillations in microquasars. A&A,2005,436:1-8
    [79]Remillard R. A. X-ray spectral states and high-frequency QPOs in black hole binaries. AN,2005,326:804-807
    [80]Gan Z. M., Wang D. X., Lei W. H. A model of magnetically induced disc-corona for black hole binaries. MNRAS,2009,394:2310-2320
    [81]Liu B. F., Mineshige S., Shibata K. A Simple Model for a Magnetic Reconnection-heated Corona. ApJ,2002,572:L173-L176
    [82]Moderski R., Sikora M., Lasota J. P., in Ostrowski M., Sikora M., Madejski G, Belgelman M., eds, Proc. Int. Conf, Relativistic Jets in AGNs. Krakow,1997:110
    [83]Li L. X. Accretion Disk Torqued by a Black Hole. ApJ,2002,567:463-476
    [84]Aschenbach B. Measuring mass and angular momentum of black holes with high-frequency quasi-periodic oscillations. A&A,2004,425:1075-1082
    [85]Remillard R. A. X-ray QPOs from Black Hole Binary Systems. in Kaaret P., Lamb F. K., Swank J. H., eds, Proc. AIP Conf. Vol.714, X-Ray Timing 2003:Rossi and Beyond. Am. Inst. Phys., New York,2004:13
    [86]Homan J., Miller J. M., Wijnands R., et al. High-and Low-Frequency Quasi-periodic Oscillations in the X-Ray Light Curves of the Black Hole Transient H1743-322. ApJ,2005,623:383-391
    [87]Genzel R., Schodel R., Ott T., et al. Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre. Nature,2003,425:934-937
    [88]Aschenbach B., Grosso N., Porquet D., et al. X-ray flares reveal mass and angular momentum of the Galactic Center black hole. A&A,2004,417:71-78
    [89]Belanger G., Terrier R., de Jager O. C., et al. Periodic Modulations in an X-ray Flare from Sagittarius A*. Journal of Physics:Conference Series,2006,54:420-426
    [90]Espaillat C., Bregman J., Hughes P., et al. Wavelet Analysis of AGNs X-Ray Time Series:A QPO in 3C 273? ApJ,2008,679:182-193
    [91]Gierlinski M., Middleton M., Ward M., et al. A periodicity of ~1hour in X-ray emission from the active galaxy RE J1034+396. Nature,2008,455:369-371
    [92]Strohmayer T. E., Mushotzky R. F. Discovery of X-Ray Quasi-periodic Oscillations from an Ultraluminous X-Ray Source in M82:Evidence against Beaming. ApJ, 2003,586:L61-L64
    [93]Strohmayer T. E., Mushotzky R. F., Winter L., et al. Quasi-periodic Variability in NGC 5408 X-1. ApJ,2007,660:580-586
    [94]Strohmayer T. E., Mushotzky R. F. Evidence for an Intermediate-mass Black Hole in NGC 5408 X-1. ApJ,2009,703:1386-1393
    [95]Corbel S., Fender R. P., Tzioumis A. K., et al. Coupling of the X-ray and radio emission in the black hole candidate and compact jet source GX 339-4. A&A,2000, 359:251-268
    [96]Gallo E., Fender R. P., Pooley G. G. A universal radio-X-ray correlation in low/hard state black hole binaries. MNRAS,2003,344:60-72
    [97]Merloni A., Heinz S., di Matteo T. A Fundamental Plane of black hole activity. MNRAS,2003,345:1057-1076
    [98]Kording E. G, Jester S., Fender R. Accretion states and radio loudness in active galactic nuclei:analogies with X-ray binaries. MNRAS,2006,372:1366-1378
    [99]Fender R., Koerding E., Belloni T., et al. Eight powers of ten:similarities in black hole accretion on all mass scales. Invited Review at the VI Microquasar Workshop: Microquasars and beyond, Sept 18-22 2006, Como, Italy, arXiv:0706.3838
    [100]Lawrence A., Watson M. G., Pounds K. A., et al. Low-frequency divergent X-ray variability in the Seyfert galaxy NGC4051. Nature,1987,325:694-696
    [101]McHardy I., Czerny B. Fractal X-ray time variability and spectral invariance of the Seyfert galaxy NGC5506. Nature,1987,325:696-698
    [102]Migliari S., Fender R., van der Klis M. Correlation between radio luminosity and X-ray timing frequencies in neutron star and black hole X-ray binaries. MNRAS, 2005,363:112-120
    [103]McHardy I. M., Koerding E., Knigge C., et al. Active galactic nuclei as scaled-up Galactic black holes. Nature,2006,444:730-732
    [104]Petterson J. A. Stationary axisymmetric electromagnetic fields around a rotating black hole. PRD,1975,12:2218-2225
    [105]King A. R., Lasota J. P., Kundt W. Black holes and magnetic fields. PRD,1975,12: 3037-3042
    [106]Chitre D. M., Vishveshwara C. V. Electromagnetic field of a current loop around a Kerr black hole. PRD,1975,12:1538-1543
    [107]Znajek R. L. Charged current loops around Kerr holes. MNRAS,1978,182: 639-646
    [108]Li L. X. Toy model for the magnetic connection between a black hole and a disk. PRD,2002,65,084047
    [109]Ge Z. J., Wang D. X., Lei W. H. Geophysics, Astronomy, and Astrophysics:A Toy Model for Magnetic Field Configurations in Black Hole Accretion Discs. CPL,2008, 25:2327-2330
    [110]Zhao C. X., Wang D. X., Gan Z. M. Magnetic connection and current distribution in black hole accretion discs. MNRAS,2009,398:1886-1890
    [111]Wang D. X. Relations between Black Hole Spin and Angular Velocity of Accreting Particles near the Horizon. GRG,2000,32:553-564
    [112]Liu D. M., Ye Y. C., Wang D. X. Extracting Energy Magnetically from Plunging Region of Black-Hole Accretion Disk. CTP,2007,47:374-378
    [113]Orosz J. A., McClintock J. E., Remillard R. A., et al. Orbital Parameters for the Black Hole Binary XTE J1650-500. ApJ,2004,616:376-382
    [114]Cui W., Shrader C. R., Haswell C. A., et al. Discovery of High-Frequency Quasi-periodic Oscillations in the Black Hole Candidate XTE J1859+226. ApJ, 2000,535:L123-L127
    [115]Miller J. M., Reynolds C. S., Fabian A. C., et al. Stellar-Mass Black Hole Spin Constraints from Disk Reflection and Continuum Modeling. ApJ,2009,697: 900-912
    [116]Homan J., Klein-Wolt M., Rossi S., et al. High-Frequency Quasi-periodic Oscillations in the Black Hole X-Ray Transient XTE J1650-500. ApJ,2003,586: 1262-1267
    [117]Genzel R., Eisenhauer F., Gillessen S. The Galactic Center massive black hole and nuclear star cluster. Reviews of Modern Physics,2010,82:3121-3195
    [118]Belloni T. Black-hole transients:From QPOs to relativistic jets. Advances in Space Research,2006,38:2801-2804
    [119]Esin A. A., McClintock J. E., Narayan R. Advection-dominated Accretion and the Spectral States of Black Hole X-Ray Binaries:Application to Nova MUSCAE 1991. ApJ,1997,489:865
    [120]Belloni T., Mendez M., King A. R., et al. An Unstable Central Disk in the Superluminal Black Hole X-Ray Binary GRS 1915+105. ApJ,1997,479:L145
    [121]Belloni T., Mendez M., King A. R., et al. A Unified Model for the Spectral Variability in GRS 1915+105. ApJ,1997,488:L109
    [122]Belloni T., Klein-Wolt M., Mendez M., et al. A model-independent analysis of the variability of GRS 1915+105. A&A,2000,355:271-290
    [123]Livio M., Pringle J. E., King A. R. The Disk-Jet Connection in Microquasars and Active Galactic Nuclei. ApJ,2003,593:184-188
    [124]Blandford R. D. To the Lighthouse. Lighthouses of the Universe:The Most Luminous Celestial Objects and Their Use for Cosmology, Proceedings of the MPA/ESO/MPE/USM Joint Astronomy Conference Held in Garching, Germany, 6-10 August 2001, ESO ASTROPHYSICS SYMPOSIA. ISBN 3-540-43769-X. Edited by M. Gilfanov, R. Sunyaev, and E. Churazov. Springer-Verlag,2002, p.381
    [125]Blandford R. D. Relativistic Accretion. in Astrophysical Discs:An EC Summer School, Astronomical Society of the Pacific, Conference Series, eds. Sellwood J. A., Goodman J.,1999,160:265
    [126]Wilms J., Reynolds C. S., Begelman M. C., et al. XMM-EPIC observation of MCG-6-30-15:direct evidence for the extraction of energy from a spinning black hole? MNRAS,2001,328:L27-L31
    [127]Wang D. X., Ye Y. C., Yao G. Z., et al. A model of rotating hotspots for the 3:2 frequency ratio of high-frequency quasi-periodic oscillations in black hole X-ray binaries. MNRAS,2005,359:36-42
    [128]Wang D. X., Ye Y. C., Li Y., et al. The BZ-MC-BP model for jet production from a black hole accretion disc. MNRAS,2008,385:841-848
    [129]Wang D. X., Gan Z. M., Huang C. Y., et al. Association of the 3:2 HFQPO pairs with the broad Fe K line in XTE J1550-564 and GRO J1655-40. MNRAS,2008, 391:1332-1340
    [130]van Putten M. H. P. M., Levinson, A. Theory and Astrophysical Consequences of a Magnetized Torus around a Rapidly Rotating Black Hole. ApJ,2003,584:937-953
    [131]Blandford R. D. Accretion disc electrodynamics-A model for double radio sources. MNRAS,1976,176:465-481
    [132]Wang D. X., Ma R. Y., Lei W. H., et al. Screw Instability of the Magnetic Field Connecting a Rotating Black Hole with its Surrounding Disk. ApJ,2004,601: 1031-1037
    [133]McClintock J. E., Shafee R., Narayan R., et al. The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105. ApJ,2006,652:518-539
    [134]Shafee R., McClintock J. E., Narayan R., et al. Estimating the Spin of Stellar-Mass Black Holes by Spectral Fitting of the X-Ray Continuum. ApJ,2006,636: L113-L116
    [135]Davis S. W., Done C., Blaes O. M. Testing Accretion Disk Theory in Black Hole X-Ray Binaries. ApJ,2006,647:525-538
    [136]Reis R. C., Fabian A. C., Ross R. R., et al. A systematic look at the very high and low/hard state of GX339-4:constraining the black hole spin with a new reflection model. MNRAS,2008,387:1489-1498
    [137]Mirabel I. F. Microquasar-AGNs-GRB Connections, in Proceedings of the 5th INTEGRAL Workshop on the INTEGRAL Universe, eds. V. Schonfelder, G. Lichti & C. Winkler, Munich,2004:175
    [138]Meier D. L. The theory and simulation of relativistic jet formation:towards a unified model for micro-and macroquasars. New Astron. Rev.,2003,47:667-672
    [139]Strohmayer T. E. Discovery of a Second High-Frequency Quasi-periodic Oscillation from the Microquasar GRS 1915+105. ApJ,2001,554:L169-L172
    [140]Wagoner R. V., Silbergleit A. S., Ortega-Rodriguez M. "Stable" Quasi-periodic Oscillations and Black Hole Properties from Diskoseismology. ApJ,2001,559: L25-L28
    [141]Silbergleit A. S., Wagoner R. V. Corotation Resonance and Diskoseismology Modes of Black Hole Accretion Disks. ApJ,2008,680:1319-1325
    [142]Sobczak G J., McClintock J. E., Remillard R. A., et al. Complete RXTE Spectral Observations of the Black Hole X-ray Nova XTE J1550-564. ApJ,2000,544: 993-1015
    [143]Miller J. M., Marshall H. L., Wijnands R., et al. Chandra and RXTE spectroscopy of the Galactic microquasar XTE J1550-564 in outburst. MNRAS,2003,338:7-13
    [144]Miller J. M., Raymond J., Fabian A. C., et al. Chandra/High Energy Transmission Grating Spectrometer Spectroscopy of the Galactic Black Hole GX 339-4:A Relativistic Iron Emission Line and Evidence for a Seyfert-like Warm Absorber. ApJ, 2004,601:450-465
    [145]Miniutti G., Fabian A. C., Miller J. M. The relativistic Fe emission line in XTE J1650-500 with BeppoSAX:evidence for black hole spin and light-bending effects? MNRAS,2004,351:466-472
    [146]Diaz Trigo M., Parmar A. N., Miller J., et al. XMM-Newton and INTEGRAL spectroscopy of the microquasar GRO J1655-40 during its 2005 outburst. A&A, 2007,462:657-666
    [147]Miller J. M. Relativistic X-Ray Lines from the Inner Accretion Disks Around Black Holes. ARAA,2007,45:441-479
    [148]Haardt F., Maraschi L. A two-phase model for the X-ray emission from Seyfert galaxies. ApJ,1991,380:L51-L54
    [149]Ma R. Y., Wang D. X., Zuo X. Q. Influences of the magnetic coupling process on the spectrum of a disk covered by the corona. A&A,2006,453:1-7
    [150]Wang D. X., Ma R. Y., Lei W. H., et al. An analytic model of a rotating hotspot and kilohertz quasi-periodic oscillations in X-ray binaries. MNRAS,2003,344:473-480
    [151]Gammie C. F. Efficiency of Magnetized Thin Accretion Disks in the Kerr Metric. ApJ,1999,522:L57-L60
    [152]Krolik J. H. Magnetized Accretion inside the Marginally Stable Orbit around a Black Hole. ApJ,1999,515:L73-L76
    [153]Agol E., Krolik J. H. Magnetic Stress at the Marginally Stable Orbit:Altered Disk Structure, Radiation, and Black Hole Spin Evolution. ApJ,2000,528:161-170
    [154]Kadomtsev B. B. Hydromagnetic Stability of a Plasma. Rev. Plasma Phys.,1966,2: 153
    [155]Bateman G MHD instabilities. The MIT Press, Cambridge,1978
    [156]Shapiro S. L., Teukolsky S. A. Black holes, white dwarfs, and neutron stars:The physics of compact objects. Wiley, New York,1983
    [157]Miller J. M., Fabian A. C., Nowak M. A., et al. Relativistic Iron Lines in Galactic Black Holes:. Recent Results and Lines in the ASCA Archive. Proceedings of the 10th Marcel Grossmann Meeting, Rio de Janiero, Brazil, eds. M. Novello, S. P. Bergliaffa, R. Ruffini, Singapore:World Sci,2005:1296-1301
    [158]Galsgaard K., Parnell C. Fragment Driven Magnetic Reconnection. in Walsh R. W., Ireland J., Danesy D., Fleck B., eds, ESA SP-575, Proc. SOHO 15, Coronal Heating. ESA, Noordwijk,2004:351
    [159]Peter H., Gudiksen B., Nordlund A. Coronal Heating through Braiding of Magnetic Field Lines. ApJ,2004,617:L85-L88
    [160]Torok G. QPOs in microquasars and Sgr A* measuring the black hole spin. AN, 2005,326:856-860
    [161]Torok G. A possible 3:2 orbital epicyclic resonance in QPO frequencies of Sgr A*. A&A,2005,440:1-4
    [162]Lachowicz P., Czerny B., Abramowicz M. A. Wavelet analysis of MCG-6-30-15 and NGC 4051:a possible discovery of QPOs in 2:1 and 3:2 resonance.2006, preprint (astroph/0607594)
    [163]Gilfanov M. X-Ray Emission from Black-Hole Binaries. in Belloni, T. (ed.):The Jet Paradigm-From Microquasars to Quasars, Lect. Notes Phys. Springer-Verlag Berlin Heidelberg,2010,794:17
    [164]Feng H., Kaaret P. Spectral States and Evolution of Ultraluminous X-Ray Sources. ApJ,2009,696:1712-1726
    [165]McHardy I. X-Ray Variability of AGNs and Relationship to Galactic Black Hole Binary Systems. in Belloni, T. (ed.):The Jet Paradigm-From Microquasars to Quasars, Lect. Notes Phys. Springer-Verlag Berlin Heidelberg,2010,794:203
    [166]Uttley P., McHardy, I. M., et al. Measuring the broad-band power spectra of active galactic nuclei with RXTE. MNRAS,2002,332:231-250
    [167]McHardy I. M., Papadakis I. E., Uttley P., et al. Combined long and short time-scale X-ray variability of NGC 4051 with RXTE and XMM-Newton. MNRAS,2004,348: 783-801
    [168]McHardy I. M., Gunn K. F., Uttley P., et al. MCG-6-30-15:long time-scale X-ray variability, black hole mass and active galactic nuclei high states. MNRAS,2005, 359:1469-1480
    [169]Uttley P., McHardy I. M. X-ray variability of NGC 3227 and 5506 and the nature of active galactic nucleus 'states'.MNRAS,2005,363:586-596
    [170]Balbus S. A., Hawley J. F. A powerful local shear instability in weakly magnetized disks. Ⅰ-Linear analysis. Ⅱ-Nonlinear evolution. ApJ,1991,376:214-233
    [171]Igumenshchev I. V, Beloborodov A. M. Numerical simulation of thick disc accretion on to a rotating black hole. MNRAS,1997,284:767-772
    [172]Gammie C. F., McKinney J. C., Toth G. HARM:A Numerical Scheme for General Relativistic Magnetohydrodynamics. ApJ,2003,589:444-457
    [173]Anton L., Zanotti O., Miralles J. A., et al. Numerical 3+1 General Relativistic Magnetohydrodynamics:A Local Characteristic Approach. ApJ,2006,637:296-312

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700