导电聚合物纳米复合薄膜的制备及其氨敏特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为气体传感器的核心,气敏材料正在由单一材料向复合材料发展。导电聚合物/无机纳米复合材料综合了导电聚合物和无机纳米材料的各自优点,在气敏特性方面拥有许多优异的性能。本论文运用原位自组装技术制备了一系列导电聚合物/无机纳米复合薄膜,并运用多种方法对其进行了表征和分析;设计并制备了平面微叉指电极式器件结构,深入研究了导电聚合物/无机纳米复合薄膜传感器的NH_3气敏性能。将不同的导电聚合物/无机纳米复合薄膜应用于微气体传感器阵列,同时与人工神经网络模式识别技术相结合构成气体辨识系统,初步实现了对多气体的定性分析。其主要内容归纳如下:
     1.室温条件下,运用原位自组装技术制备了聚吡咯(PPy)和聚吡咯/二氧化钛(PPy/TiO_2)气敏薄膜,并首次研究了PPy/TiO_2纳米复合薄膜的NH_3敏特性。光谱分析表明,PPy和TiO_2在形成纳米复合材料时二者之间存在一定的相互作用;热失重(TG)分析表明,PPy/TiO_2纳米复合材料较纯PPy材料的热稳定性好;形貌分析发现,PPy/TiO_2纳米复合材料呈典型的核-壳结构,其复合薄膜比单一的PPy薄膜生长地更均匀、致密,且颗粒粒径更小,这使得复合薄膜具有更大的比表面积及更多的表面活性位,结构缺陷减少,纳米粒子吸附能力增强,从而使得复合薄膜的敏感性能优于纯的PPy薄膜,这与气敏特性研究结果一致。当TiO_2溶胶浓度为0.1 wt%,薄膜沉积时间为20 min时,PPy/TiO_2纳米复合薄膜传感器的敏感性能最佳。建立了PPy基气体传感器微观气敏响应模型,并根据该模型计算出PPy和PPy/TiO_2气敏薄膜与NH_3气体之间的平衡常数分别为1.18×10~(-2)和1.32×10~(-2)。
     2.运用原位自组装法制备了聚苯胺(PANI)和聚苯胺/二氧化钛(PANI/TiO_2)薄膜,并研究了其NH_3敏性能。实验发现,在PANI链增长初期插入基片可获得光滑透明的薄膜;PANI/TiO_2纳米复合薄膜传感器能够有效探测较低浓度的NH_3(1 ppm),且其敏感性能明显优于纯的PANI薄膜,这是因为PANI/TiO_2复合薄膜的多孔纳米纤维网状结构更有利于气体的吸附和扩散,同时在TiO_2表面形成的正电荷消耗层造成了复合薄膜对NH_3气体活化能和物理吸附焓的降低。掺杂酸种类和聚合温度对PANI/TiO_2复合薄膜的形貌及气敏性能有一定的影响。结果表明,在10℃下以盐酸为掺杂酸制备的PANI/TiO_2复合薄膜传感器对NH_3(23-141 ppm)的响应时间达到2 s,恢复时间小于60 s,其灵敏度值与NH_3浓度具有良好的线性相关性;该传感器同时具有较好的重复性、选择性和稳定性。温度对该传感器的响应特性有较大影响,其对NH_3的灵敏度值随温度的升高呈倒数关系减小,而环境湿度的影响则相对较小。
     3.采用软模板法制备了聚苯胺/氧化铟(PANI/In_2O_3)、聚苯胺/氧化锡(PANI/SnO_2)和聚苯胺/多壁碳纳米管(PANI/MWNT)复合薄膜,并研究了其NH_3敏感性能;重点研究了阳离子表面活性剂十四烷基三甲基溴化铵(TTAB)和非离子表面活性剂聚氧乙烯(20)失水山梨醇单月桂酸酯(Tween-20)对PANI/In_2O_3纳米复合薄膜形貌及气敏特性的影响。X射线衍射分析(XRD)和形貌分析发现,TTAB和Tween-20在一定程度上减小了In_2O_3纳米颗粒的团聚,使得复合薄膜具有更致密的纳米纤维网状结构,且纳米纤维直径更小;但不同浓度的TTAB造成了不同的PANI/In_2O_3复合薄膜形貌和敏感性能,这一现象可能与TTAB在水介质中形成的超分子结构有关。气敏特性研究表明,采用TTAB且TTAB与纳米粉体的物质的量为0.5时,制备的复合薄膜具有最高的灵敏度,但其响应及恢复时间增长,这可能是由于致密的薄膜表面在一定程度上阻碍了气体分子的吸附和解析。基于Langmuir吸附模型建立了PANI及其复合薄膜传感器对NH_3气体的吸附/解吸附动力学方程,拟合结果与实际响应曲线有较好的一致性。
     4.采用4个半导体气体传感器分立元件构建了气体传感器阵列,并分别与基于误差反向传播算法(BP算法)的BP神经网络和自组织竞争网络相结合,实现了对40-1000 ppm浓度范围内CO和H_2气体的定量与定性分析。在此基础上,首次以PANI及PANI/无机纳米复合薄膜微传感器单元构成原始气体传感器阵列,并运用分步聚类分析对该阵列进行了优化,最终选取了PANI、PANI/TiO_2、PANI/In_2O_3和PANI/MWNT等4个薄膜微传感器单元构成优化阵列;将该优化阵列与概率神经网络(PNN)相结合构成气体辨识系统,完成了一定浓度范围内的NH_3、CO和H_2单一气体的定性识别。
As the nucleus of gas sensors,the gas-sensing material is changing from thesimplex material to the composite material.Conducting polymer/inorganic materialnanocomposites combine the advantages of conducting polymers and inorganicnano-materials,which endows the nanocomposite with excellent gas-sensingcharacteristics.In this dissertation,a series of conducting polymer/inorganic materialnanocomposite ammonia (NH_3) gas-sensing thin films were fabricated by an in-situself-assembly approach,which were characterized and analyzed with different methods.The planar micro-interdigital electrodes were designed and prepared,and the deep anddetailed investigation on their NH_3 gas-sensing properties was carried out.Furthermore,the discrimination of gas species was achieved by the gas recognition system composedof the gas sensor array with different nanocomposite thin films and the patternrecognition technique of the artificial neuron network (ANN).The main results are asfollows:
     1.Polypyrrole (PPy) and polypyrrole/titanium dioxide (PPy/TiO_2) gas sensitivethin films were developed by an in-situ self-assembly method at room temperature.NH_3gas sensitive properties of the PPy/TiO_2 nanocomposite thin film was firstlyinvestigated.Spectrum analyses indicated that some kind of interaction did take placebetween PPy and TiO_2 nanoparticles.Thermogravimetric analysis (TG) showed that thePPy/TiO_2 nanocomposite material exhibited an enhancement of thermal stabilitycompared with pure PPy.The morphology analyses revealed that,a typical core-shellstructure could be found in the PPy/TiO_2 nanocomposite material,and the PPy/TiO_2nanocomposite thin film with the smaller size of nanoparticles was more uniform andcompact,which resulted in larger surface area and more active sites,decreasingstructural defects and greater selective adsorption.This explained why the gas-sensingcharacteristics of the PPy/TiO_2 nanocomposite thin film were superior to a pure PPythin film.The optimum gas-sensing properties of PPy/TiO_2 nanocomposite thin filmsensors were obtained with 0.1 wt% colloidal TiO_2 under 20 min deposition.Themicroscopic gas-sensing model for the PPy gas sensor was developed,and based on this model,the equilibrium constants of PPy and PPy/TiO_2 sensitive thin films for NH_3 were1.18×10~(-2) and 1.32×10~(-2),respectively.
     2.Polyaniline (PANI) and polyaniline/titanium dioxide (PANI/TiO_2) thin filmswere fabricated,and NH_3 gas sensitivity was examined.It was found that smooth andtransparent thin films could be produced when the substrate was dipped into the reactionsolution at the initial stage of polymerization.The PANI/TiO_2 nanocomposite thin filmsensor exhibited good detecting ability to lower NH_3 gas concentration (1 ppm) andsuperior gas-sensing properties than a pure PANI thin film,which was attributed to theporous structure with an interconnected network of nanofibers that enhanced theadsorption and diffusion of gas molecules,and it was also supposed that a positivelycharged depletion layer on the surface of TiO_2 nanoparticles may cause a decrease of theactivation energy and enthalpy of physisorption for NH_3 gas.The doping acid and thepolymerization temperature had effects on the morphology and gas sensitivities ofPANI/TiO_2 nanocomposite thin film.The experimental results showed that,the responsetime of the sensor prepared using HCl as the doping acid at 10℃was 2 s,and therecovery time was less than 60 s when it was exposed to NH_3 (23-141 ppm).Thesensitivity was linear to the concentrations of NH_3.The sensor also had goodreproducibility,selectivity and long-term stability.The sensitivity of PANI/TiO_2nanocomposite thin film sensor decreased reciprocally with the increase of thetemperature,and the influence of humidity on the response was much less than that oftemperature.
     3.Polyaniline/indium oxide (PANI/In_2O_3),polyaniline/tin oxide (PANI/SnO_2) andpolyaniline/multi-walled carbon nanotube (PANI/MWNT) nanocomposite thin filmswere prepared by a soft-template technique,and their NH_3 gas-sensing performanceswere studied.The effects of a cationic surfactant,tetradecyltrimethylammoniumbromide (TTAB) and a non-ionic surfactant,poly (ethylene oxide) (20) sorbitanmonolaurate (Tween-20) on the morphology and gas-sensing properties of PANI/In_2O_3nanocomposite thin film were studied.X-ray diffraction spectrometry (XRD) andmorphology analyses showed that TTAB and Tween-20 prevented In_2O_3 nanoparticlesfrom aggregating to some extent,and hence the nanocomposite thin films by thesoft-template method had more compacted network structure with smaller diameter ofnanofibers.However,different concentrations of TTAB might induce different morphologies and sensitive characteristics of PANI/In_2O_3 thin films,which might berelated with the super-molecule structure of TTAB in the water-dispersed medium.Thegas-sensing characteristics showed that the nanocomposite thin film was the mostsensitive when TTAB/nanoparticles molar ratio was 0.5,but the response/recovery timeof sensors increased,which was postulated that the compact surface of the film affectedthe adsorption and desorption of gas molecules to a certain extent.The NH_3adsorption/desorption kinetics equation of PANI and its nanocomposite thin filmsensors based on the Langmuir adsorption model was established,which revealedeffective by comparing its predictions to experimental curves.
     4.The quantitative and qualitative analyses of CO and H_2 gases in the range of40-1000 ppm were accomplished by the combination of a gas-sensing array with fourseparate commercial semiconductor gas sensors and back-propagation neural network(BPNN) and self-organized competitive network.The original gas sensor array wasdeveloped with PANI and PANI/inorganic nanocomposite thin film micro-gas sensorsfor the first time,which was optimized by the step-clustering analysis.The optimizedarray was composed of PANI,PANI/TiO_2,PANI/In_2O_3 and PANI/MWNTnanocomposite thin film sensors.A gas recognition system composed of the optimizedarray and probabilistic neuron network (PNN) was developed,which distinguished NH_3,CO and H_2 within a certain concentration range.
引文
[1]M.K.Ram, O.Yavuz, M.Aldissi.NO_2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite.Synthetic Metals, 2005, 151:77-84
    [2]耿丽娜,王淑荣,李鹏,等.聚吡咯/二氧化锡杂化材料的制备及气敏性研究.无机化学学报,2005, 7: 977-981
    [3]J.Z.Wang, I.Matsubara, N.Murayama, et al.The preparation of polyaniline intercalated MoO_3 thin film and its sensitivity to volatile organic compounds.Thin Solid Films, 2006, 514:329-333
    [4]N.Parvatikar, S.Jain, S.Khasim, et al.Electrical and humidity sensing properties of polyaniline/WO_3 composites.Sensors and Actuators B, 2006, 114: 599-603
    [5]陈友汜,李杨,杨慕杰.高分子及其复合物气敏材料的研究进展.科技通报,2005,21(2): 226-232
    [6]A.Z.Sadek, W.Wlodarski, K.Shin, et al.A layered surface acoustic wave gas sensor based on a polyaniline/In_2O_3 nanofibre composite.Nanotechnology, 2006, 17: 4488-4492
    [7]Y.M.Shirshov, A.L.Kukla, L.P.Pochekaylova, et al.Influence of NH_3 adsorption on electron transfer in polyaniline thin films.SPIE, 2780: 253-256
    [8]H.Hu, M.Trejb, M.E.Nicho, et al.Adsorption kinetics of optochemical NH_3 gas sensing with semiconductor polyaniline films.Sensors and Actuators B, 2002, 82: 14-23
    [9]H.K.Jun, Y.S.Hoh, B.S.Lee, et al.Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions.Sensors and Actuators B, 2003, 96: 576-581
    [10]D.N.Debarnot, F.P.Epaillard.Polyaniline as a new sensitive layer for gas sensors.Analytica Chimica Acta, 2003, 475: 1-15
    [11]L.Geng, Y.Zhao, X.Huang, et al.Characterization and gas sensitivity study of polyaniline/SnO_2 hybrid material prepared by hydrothermal route.Sensors and Actuators B,2007, 120: 568-572
    [12]X.Ma, M.Wang, G.Li, et al.Preparation of polyaniline-TiO_2 composite film with in situ polymerization approach and its gas-sensitivity at room temperature.Materials Chemistry and Physics, 2006, 98: 241-247
    [13]杨建华,候宏,王磊,等.基T集成气体传感器阵列的电子鼻系统.传感器技术,2003,22(8):21-26
    [14]赵文元,赵文明,王亦军.聚合物材料的电学性能及其应用.化学工业出版社,2006
    [15]R.A.Barros, C.R.Martins, W.M.D.Azevedo.Writing with conducting polymer.Synthetic Metals, 2005, 155: 35-38
    [16]万梅香.导电高分子.高分子通报,1999, 3: 47-53
    [17]A.F.Nogueira, C.Longo, M.A.Paoli.Polymers in dye sensitized solar cells: overview and perspectives.Coordination Chemistry Reviews, 2004, 248: 1455-1468
    [18]F.Xu, C.wang, L.Y.Yang, et al.PPV-derivatives containing phenothiazine and alkyloxy-substituted oxadiazole/Phenyl units for OLED.Synthetic Metals, 2005, 152: 46-52
    [19]L.Quercia, F.Loffredo, B.Alfano, et al.Fabrication and characterization of carbon nanoparticles for polymer based vapor sensors.Sensors and Actuators B, 2004, 100: 22-28
    [20]H.K.Jun, Y.S.Hoh, B.S.Lee, et al.Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions.Sensors and Actuators B, 2003, 96: 576-581
    [21]C.P.de Melo, B.B.Neto, E.G.Lima, et al.Use of conducting polypyrrole blends as gas sensors.Sensors and Actuators B, 2005, 109: 348-354
    [22]D.Li, Y.D.Jiang, Z.M.Wu, et al.Self-assembly of polyaniline ultrathin films based on doping-induces deposition effect and applications for chemical sensors.Sensors and Actuators B, 2000, 66: 125-127
    [23]V.V.Chabukswar, S.Pethkar, A.A.Athawale.Acrylic acid doped polyaniline as an ammonia sensor.Sensors and Actuators B, 2001, 77: 657-663
    [24]N.K.Guimard, N.Gomez, C.E.Schmidt.Conducting polymers in biomedical engineering.Progress in Polymer Science, 2007, 32: 876-921
    [25]E.Armelin, R.Oliver, F.Liesa, et al.Marine paint fomulations: Conducting polymer as anticorrosive additives.Progress in Organic Coatings, 2007, 59: 46-52
    [26]李永舫.导电聚合物.化学进展,2002, 3: 207-211
    [27]李永舫.导电聚吡咯的研究.高分子通报,2005, 4: 51-57
    [28]1.Mogi, k.Watanabe, M.Motokawa.Magneto-electropolymerization of conducting polypyrrole,Journal of Physical Chemistry B, 1998, 246: 412-415
    [29]邢存章,于跃芹.有机化学.济南:山东大学出版社,2001
    [30]L.X.Wang, X.G.Li, Y.L.Yang.Preparation, properties and applications of polypyrroles.Reactive & Functional Polymers, 2001, 47: 125-139
    [31]任丽,张雪峰,王立新,等.化学氧化法聚吡咯导电性能与导电机理.半导体学报,2007,28 (9):1396-1400
    [32] M. Ferenets, A. Harlin. Chemical in situ polymerization of polypyrrole on poly (methyl metacrylate) substrate. Thin Solid Films, 2007, 515: 5324-5328
    [33] Q. Fang, D. G. Chetwynd, J. A. Covington, et al. Micro-gas-sensor with conducting polymers.Sensors and Actuators B, 2002,84: 66-71
    [34] S. Virji, R. B. Kaner, B. H. Weiller. Hydrazine detection by Polyaniline using fluorinated alcohol additives. Chemical Material, 2005, 17: 1256-1260
    [35] W. G. Li, M. X. Wan. Porous polyaniline films with conductivity. Synthetic Metals, 1998, 92:121-126
    [36] D. H. Zhang, Y. Y. Wang. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview. Materials Science and Engineering B, 2006, 134: 9-19
    [37] D. N. Debarnot, F. P. Epaillard. Polyaniline as a new sensitive layer for gas sensors. Analytica ChimicaActa, 2003,475: 1-15
    [38] S. Jain, S. Chakane, A. B. Samui, et al. Humidity sensing with weak acid-doped polyaniline and its composites. Sensors and Actuators B, 2003,96:24-129
    [39] S. Abe, M. Kijima, H. Shirakawa. Effect of mesogenic cores and length of spacers on liquid crystallinity of N-substituted polypyrrole derivatives. Synthetic Metals, 2001, 119(3): 421-422
    [40] K. S. Jang, H. Lee, B. Moon. Synthesis and characterization of water soluble polypyrrole doped with functional dopants. Synthetic Metals, 2004, 143(3): 289-294
    [41] M. G. Han, S. P. Armes. Preparation and characterization of polypyrrole-silica colloidal nanocomposites in water-methanol mixtures. Journal of Colloid and Interface Science, 2003,262(2): 418-427
    [42] R. S. Prakash, R. Marimuthu, U. P. Mulik, et al. High piezoresistivity and its origin in conducting polyaniline/TiO_2 composites. Synthetic Metals, 1999,106: 45-52
    [43] S. Wang, Z. C. Tan, Y. S. Li, et al. Synthesis, characterization and thermal analysis of polyaniline/ZrO_2 composites. Thermochimica Acta, 2006,441: 191-194
    [44] M. Goren, R. B. Lennox. Nanoscale polypyrrole patterns using block copolymer surface micelles as templates. Nanoletters, 2001, 12(1): 735-738
    [45] Z. kang, Y. Yong, Y. Jie. Preparation and properties of organosoluble montmorillonite/polyimide hybrid materials. Journal of Applied Polymer Science, 1999,73 (11): 2063-2068
    [46] Y. Haba, E. Segal, M. Narkis, et al. Polyaniline-DBSA polymer blends prepared via aqueous dispersions. Synthetic Metals, 2000,110: 189-193
    [47] P. Liu, W. M. Liu, Q. J. Xue. In situ chemical oxidative graft polymerization of aniline from silica nanoparticles. Materials Chemistry and Physics, 2004, 87: 109-113
    [48]W.Feng, X.D.Bai, Y.Q.Lian, et al.Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization.Carbon, 2003, 41:1551-1557
    [49]魏亦军,褚道葆,姚文俐.纳米TiO_2/聚苯胺复合膜电极的制备及其电化学性能.合成化学,2004, 12(1):69-72
    [50]K.Suri, S.Annapoorni, R.P.Tandon, et al.Nanocomposite of polypyrrole-iron oxide by simultaneous gelation and polymerization.Synthetic Metals, 2002, 126 (2): 137-142
    [51]M.K.Ram, O.Yavuz, V.Lahsangah, et al.CO gas sensing from ultrathin nano-composite conducting polymer film.Sensors and Actuators B, 2005, 106: 750-757
    [52]P.R.Somani, R.Marimuthu, U.P.Mulik, et al.High piezoresistivity and its origin in conducting polyaniline/TiO_2 composites.Synthetic Metals, 1999, 106: 45-52
    [53]S.J.Su, N.Kuramoto.Processable polyaniline-titanium dioxide nanocomposite: effect of titanium dioxide on the conductivity.Synthetic Metals, 2000, 114: 147-153
    [54]L.N.Geng, X.L.Huang, Y.Q.Zhao, et al.H_2S sensitivity study of polypyrrole/WO_3 materials.Solid-State Electronics, 2006, 50: 723-726
    [55]张玉泉,于跃华,丁雪佳,等.聚吡咯/纳米氧化钇复合材料的结构与性能研究.现代化工, 2004, 24(1):37-39
    [56]R.L.N.Chandrakanthi, M.A.Careem.Preparation and characterization of CdS and Cu_2S nanoparticley polyaniline composite films.Thin Solid Films, 2002, 417: 51-56
    [57]P.Liu, W.M.Liu, Q.J.Xue.In situ chemical oxidative graft polymerization of aniline from silica nanoparticles.Materials Chemistry and Physics, 2004, 87: 109-113
    [58]X.M.Sui, Y.Chu, S.X.Xing, et al.Synthesis of PANI/AgCl, PANI/BaSO4 and PANI/TiO_2 nanocomposites in CTAB/hexanol/water reverse micelle.Materials Letters, 2004, 58:1255-1259
    [59]Y.J.He.Synthesis of polyaniline/nano-CeO_2 composite microspheres via a solid-stabilized emulsion route.Materials Chemistry and Physics, 2005, 92: 134-137
    [60]S.X.Wang, Z.C.Tan, Y.S.Li, et al.Synthesis, characterization and thermal analysis of polyaniline/ZrO_2 composites.Thermochim□ca Acta, 2006, 441(?)191-194
    [61]G.P.Song, J.Han, R.Guo.Synthesis of polyaniline/NiO nanobelts by a self-assembly process.Synthetic Metals, 2007, 157: 170-175
    [62]L.N.чeng, S.R.Wang, Y.Q.□hao, et al.Study of the primary sensitivity of polypyrrole/r-Fe_2O_3 to toxic gases.Materials Chemistry and Physics, 2006, 99: 15-19
    [63]1.Boyano, M.Bengoechea, 1.D.Meatza, et al.Influence of acids in the PPy/V_2O_5 hybrid synthesis and performance as a cathode material, Journal of Power Sources.2007, 174:1206-1211
    [64]N.I.Kovtyukhova, A.D.Gorchinskiy, C.Waraksa.Self-assembly of nanostructured composite ZnO/polyaniline films.Materials Science and Engineering B, 2000,69:424-430
    [65]N.Densakulprasert, L.Wannatong, D.Chotpattananont, et al.Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO.Materials Science and Engineering B, 2005, 117: 276-282
    [66]K.Siong, L.W.Lin.A polypyrrole-carbon-nanotube (PPY-MWNT) nanocomposite glucose sensor.IEEE, 2004: 395-398
    [67]X.F.Ma, X.B.Zhang, G.Li, et al.Preparation of Nano-Structured Polyaniline Composite Film via “Carbon Nanotubes Seeding” Approach and its Gas-Response Studies.Macromol Material Engineering, 2006, 291: 75-82
    [68]S.Sharma, C.Nirkhe, S.pethkar, et al.Chloroform vapour sensor based on copper/polyaniline nanocomposite.Sensors and Actuators B, 2002, 85: 131-136
    [69]M.I.Baraton, L.Merhari, J.Z.Wang, et al.Investigation of the TiO_2/PPV nanocomposite for gas sensing application.Nanotechnology, 1998, 9: 356-359
    [70]T.Yamaki, R.Shinohara, K.Asai.Formation of hybrid monolayers and langmuir-lodgett-type mutilayers from ammonium cations and TiO_2 crystaline nanosheets.Thin Solid Films, 2001,393(1-2):154-160
    [71]李东升,吕功煊.制备导电聚合物—半导体纳米颗粒自组装膜.物理化学学报,2001,17 (3): 2=2-256
    [72]杨柏,黄金满,郝恩才.半导体纳米微粒在聚合物基体中的复合与组装.高等学校化学学报,1997, 7: 1219-1226
    [73]J.Jang, J.Bae.Carbon nanofiber/polypyrrole nanocable as toxic gas senso□.Sensors and Actuators B, 2007, 122: 7-13
    [74]董永贵.微型传感器.北京:清华大学出版社,2007
    [75]单成祥.传感器的理论与设计基础及其应用.北京:国防工业出版社,1999
    [76]罗利军,谭学才,邹小勇.导电聚合物传感器的研究进展.分析测试学报,2005,24(4):122-127
    [77]童基均,陈裕泉.共轭导电聚合物及其在传感器中的应用.传感技术学报,2003, 3: 335-340
    [78]M.L.Singla, S.Awasthi, A.Srivastava.Humidity sensing using polyaniline/Mn_3O_4 composite doped with organic/inorganic acids.Sensors and Actuators B, 2007, 127: 580-585
    [79]T.Itoh, I.Matsubara, W.Shin, et al.Preparation of layered organic-inorganic nanohybrid thin films of molybdenum trioxide with polyaniline derivatives for aldehyde gases sensors of several tens ppb level.Sensors and Actuators B, 2007, 128: 512-520
    [80]P.Su, L.Huang.Humidity sensors based on TiO_2 nanoparticles/polypyrrole composite thin films.Sensors and Actuators B, 2007, 123: 501-507
    [81]P.Su, Y.Chang.Low-humidity sensor based on a quartz-crystal microbalance coated with polypyrrole/Ag/TiO_2 nanoparticles composite thin films.Sensors and Actuators B, 2007, 129:915-920
    [82]J.Jang, J.Bae.Carbon nanofiber/polypyrrole nanocable as toxic gas sensor.Sensors and Actuators B, 2007, 122: 7-13
    [83]L.Geng, Y.Zhao, X.Huang, er al.The preparation and gas sensitivity study of polypyrrole/zinc oxide.Synthetic Metals, 2006, 156: 1078-1082
    [84]S.Virji, J.Huang, R.B.Kaner, et al.Polyaniline nanofiber gas sensors: examination of response mechanisms.Nanoletters, 2004, 4(3): 491-496
    [85]C.Conn, S.Sestak,A.T.Baker.A polyaniline-based selective hydrogen sensor.Electroanalysis,1998, 10(16): 1137-1141
    [86]B.P.Costello, P.Evans, R.J.Ewen, et al.Novel composite organic inorganic semiconductor sensors for the quantitative detection of target organic vapourd.Journal of Material Chemstry,1996,6(3):289-294
    [87]D.H.Yun, C.H.Kwon, H.K.Hong, et al.Highly sensitive and selective ammonia gas sensor.1997, International Conference on Solid-State Sensors and Actuators, 959-962
    [88]C.Nylander, M.Armgarth, 1.Lundstrom.An ammonia detector based on a conducting polymer.Analytical Chemistry Symposium Series, 1983, 17: 203-207
    [89]A.L.Kukla, Y.M.Shirshov, S.A.Piletsky.Ammonia sensors based on sensitive polyaniline films.Sensors and Actuators B, 1996,37: 135-140
    [90]M.Matsuguchi, J.lo, G.Sugiyama, et al.Effect of NH_3 gas on the electrical conductivity of polyaniline blend films.Synthetic Metals, 2002, 128: 15-19
    [91]刘萍云,张长瑞,冯坚,等.逐层自组装原位聚合聚苯胺复合膜的氨敏性能研究.传感技术学报,2007, 20 (9):1952-1956
    [92]J.W.Gardner, P.N.Bartlett.A brief history of electronic nose.Sensors and Actuators B, 1993,18:211-220
    [93]王.磊,曲建岭,杨建华.发展中的电子鼻技术.测试技术,1999, 18 (5):8-10
    [94]S.Marco, A.Ortega, A.Pardo, et al.Gas identification with tin oxide sensor array and self-organizing maps: adaptive correction of sensor drifts, IEEE Transactions on Instrumentation and Measurement, 1998, 47(1): 361-321
    [95]曲建岭,王磊,高峰.运用人工神经网络进行混合气体定量分析的研究.西北工业大学学报,2001,19 (3):399-402
    [96]D.S.Lee, D.D.Lee, S.W.Ban, et al.SnO_2 gas sensing array for combustible and explosive gas leakage recognition.IEEE Sensors Journal, 2002, 2(3):1-9
    [97]K.D.Mitzner, J.Sternhagen, D.W.Galipeau.Development of a micromachined hazardous gas sensor array.Sensors and Actuators B, 2003 (93): 92-99
    [98]邓俊泳,冯勇建,吴青海.微气体传感器阵列及神经网络的应用.传感器技术,2002,21 (8):44-46
    [99]M.S.Berberich, J.Goppert, A.Hierlemann, et al.Application of neural-network systems to the dynamic response of polymer-based sensor arrays.Sensors and Actuators B, 1995 (26):232-236
    [100]J.N.Barisci, G.G.Wallace, M.K.Andrews, et al.Conducting polymer sensors for monitoring aromatic hydro(?)arbons using an electronic nose.Sensors and Actuators B, 2002, 84:252-257
    [101]H.Xie, Q.Yang, X.Suna, et al.Gas sensor arrays based on polymer-carbon black to detect organic vapors at low concentration.Sensors and Actuators B, 2006(113): 887-891
    [102]A.Bermak, S.B.Belhouari.Bayesian learning using Gaussian process for gas identification.IEEE Transactions on Instrumentation and Measurement, 2006, 55(3): 787-792
    [103]Y.Yin, X.Tian.Classification of Chinese drinks by a gas sensors array and combination of the PCA with Wilks distribution.Sensors and Actuators B, 2007, 124: 393-397
    [104]D.Then, A.Vidic, C.Ziegler.A highly sensitive self-oscillating cantilever array for the quantitative and qualitative analysis of organic vapor mixtures.Sensors and Actuators B, 2006,117: 1-9
    [105]M.J.Fernandez, J.L.Fontecha, 1.Sayago, et al.Discrimination of volatile compounds through an electronic nose based on ZnO SAW sensors.Sensors and Actuators B, 2007, 127:277-283
    [106]B.S.Joo, J.S.Huh, D.D.Lee.Fabrication of polymer SAW sensor array to classify chemical warfare agents.Sensors and Actuators B, 2007, 121:47-53
    [107]J.N.Barisci, G.G.Wallace, M.K.Andrews, et al.Conducting polymer sensors for monitoring aromatic hydrocarbons using an electronic nose.Sensors and Actuators B, 2002, 84:252-257
    [108]W.Bourgeois, P.Hogben, A.Pike, et al.Development of a sensor array based measurement system for continuous monitoring of water and wastewater.Sensors and Actuators B, 2003, 88:312-319
    [109]H.Xie, Q.Yang, X.Sun, et al.Gas sensor arrays based on polymer-carbon black to detect organic vapors at low concentration.Sensors and Actuators B, 2006, 113: 887-891
    [110]K.Arshak, C.Adley, E.Moorea, et al.Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures.Sensors and Actuators B, 2007, 126: 226-231
    [111]A.Ozmena, F.Tekce, M.A.Ebeoglu, et al.Finding the composition of gas mixtures by a phthalocyanine-coated QCM sensor array and an artificial neural network.Sensors and Actuators B, 2006, 115: 450-454
    [112]Y.Lu, C.Partridge, M.Meyyappan, et al.A carbon nanotube sensor array for sensitive gas discrimination using principal component analysis.Journal of Electroanalytical Chemistry,2006, 593: 105-110
    [113]J.S.Do, P.J.Chen.Amperometric sensor array for NO_x, CO, O_2 and SO_2 detection.Sensors and Actuators B, 2007, 122: 165-173
    [114]B.A.Snopok, I.V.Kruglenko.Multisensor system for chemical analysis: state of the art in Electronic Nose technology and trends and new trends in machine olfaction.Thin Solid Films,2002,418:21-41
    [115]Y.S.Kim, S.C.Ha, Y Yang, et al.Portable electronic nose system based on the carbon black-polymer composite sensor array.Sensors and Actuators B, 2005, 108: 285-291
    [116]J.H.Cheung,A.F.Fou, M.F.Rubner.Molecular self-assembly of conducting polymers.Thin Solid Films, 1994, 244: 985-989
    [117]W.C.Bigelow, D.L.Allara, W.A.Zisman.Oleophobic monolayers I Films adsorbed from solution in nonpolar liquids.Journal of Colloid and Interface Science, 1946, 1:513-538
    [118]黄永辉,黄英,李玉青.导电聚吡咯/无机纳米复合材料研究进展.工程塑料应用,2007,35 (6): 78-81
    [119]黄锐,王旭,李忠明.纳米塑料—聚合物/纳米无机物复合材料研制、应用与进展.北京:中国轻工业出版社,2002
    [120]H.Wohltjen, W.R.Barger, A.W.Snow.A vapor-sensitive chemiresistor fabricated with planar microelectrodes and LB organic semiconductor film.IEEE, 1985, ED32: 1170-1174
    [121]杨得全,范垂祯.平面电极LB膜气体传感器的响应特性.传感器技术,1997, 16 (4):17-20
    [122]K.Arshak, I.Gaidan.Development of an array of polymer/MnO_2/Fe_2O_3 mixtures for use in gas sensing applications.Sensors and Actuators B, 2006, 118: 386-392
    [123]周名成,俞汝勤.紫外与可见分光光度分析法.北京:化学工业出版社,1986
    [124]王建棋,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS )引论.北京:国防工业出版社,1992
    [125]白春礼.扫描隧道显微技术及其应用.上海:上海科学技术出版社,1992
    [126]K.J.Albert, N.S.Lewis, C.L.Schauer.Cross-reactive chemical sensor arrays.Chemical Review, 2000, 100: 2595-2626
    [127]冯庆,王新强,刘高斌,等.TiO_2—WO_3复合薄膜型气敏传感器性质研究.真空科学与技术学报,2007, 27 (4):278-281
    [128]江涛,曾繁涤.自组装技术在分子水平上处理共轭高分子的应用.功能材料,2000, 31(6):577-579
    [129]M.K.Rama, M.Adamib, P.Faracib, et al.Physical insight in the in-situ self-assembled films of polypyrrole.Polymer, 2000, 41:7499-7509
    [130]Y.Kudoh.Properties of chemically prepared polypyrrole with an aqueous solution containing Fe_2(SO_4)_3, a sulfonic surfactant and a phenol derivative.Synthetic Metals, 1998, 95: 191-196
    [131]江建明,戚慰先.化学氧化聚吡咯的结构及导电性的研究.高分子材料科学与工程,1991,9 (5):94-98
    [132]P.Claude, P.Audebert, P.Hapiot.Identification of the first steps of the electrochemical polymerization of pyrrole by means of fast potential step techniques.Journal of Physical Chemistry, 1991,95(24): 10158-10164
    [133]M.Onoda, K.Tada, A.Shinkuma.In situ polymerization process of polypyrrole ultrathin films.Thin Solid Films, 2006, 499: 61-72
    [134]丁文艳,李丹,汪信.聚电解质自组装膜对聚吡咯原位沉积的影响.功能材料,2002,33(4): 437-439
    [135]R.P.Tandon, M.R.Tripathy, A.K.Arora, et al.Gas and humidity response of iron oxide-Polypyrrole nanocomposites.Sensors and Actuators B, 2006, 114: 768-773
    [136]M.V.Murugendrappa, A.Parveen, M.V.N.A.Prasad.Synthesis, characterization and acconductivity studies of polypyrrole-vanadium pentaoxide composites.Materials Science and Engineering A, 2007, 459: 371-374
    [137]S.A.Waghuley, S.M.Yenorkar, S.S.Yawale, et al.Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor.Sensors and Actuators B, 2007,128: 366-373
    [138]H.Yoon, M.Chang, J.Jang.Sensing behaviors of polypyrrole nanotubes prepared in reverse microemulsion: effects of transducer size and transduction mechanism.Journal of Physics and Chemistry B, 2006, 110: 14074-14077
    [139]苏碧桃,敏世雄,佘世雄,等.导电聚苯胺/TiO_2复合纳米纤维的制备和表征.西北师范大学学报(自然科学版),2006, 142 (14):67-70
    [140]王长松,周本濂.可溶性聚吡咯复合导电薄膜的研制.高等学校化学学报,1999,20(2):315-317
    [141]Y.Jiang, T.Wang, Z.Wu, et al.Study on the NH_3-gas sensitive properties and sensitive mechanism of polypyrrole.Sensors and Actuators B, 2000, 66: 208-282
    [142]B.J.Hwang, J.Y.Yang, C.W.Lin.A microscopic gas-sensing modle for ethanol sensors based on conductive polymer composites from polypyrrole and poly(ethylene oxide).Journal of the Electrochemical Society, 1999, 146(3): 1231-1236
    [143]陈晓伟,张秋禹,任华,等.化学传感器法检测硝基化合物.化学通报,2006, 69: 1-9
    [144]I.Sapurina, A.Riede, J.Stejskal.In-situ polymerized polyaniline films.Synthetic Metals, 2001,123: 503-507
    [145]P.P.Sengupta, B.Adhikari.Influence of polymerization condition on the electrical conductivity and gas sensing properties of polyaniline.Materials Science and Engineering A,2007,459:278-285
    [146]M.M.Ayad, N.Salahuddin, M.A.Sheneshin.Optimum reaction conditions for in situ polyaniline films.Synthetic Metals, 2003, 132: 185-190
    [147]M.Nandi, R.Gangopadhyay, A.Bhaumik.Mesoporous polyaniline having high conductivity at room temperature.Microporous and Mesoporous Materials, 2008, 109: 239-247
    [148]D.Li, W.Ding, X.Wang, et al.A simple approach to enhance the deposition of polyaniline films with self-assembled polyelectrolyte layers.Journal of Materials Science Letters, 2001, 20:1925-1928
    [149]X.Li, G.Wang, X.Li, et at.Surface properties of polyaniline/nano-TiO_2composites.Applied Surface Science, 2004, 229: 395-401
    [150]A.G.Yavuz, A.E.Gok.Preparation of TiO_2/PANI composites in the presence of surfactants and investigation of electrical properties.Synthetic Metals, 2007, doi:10.1016/j.synthmet.03.001
    [151]K.Dutta, S.K.De.Optical and nonlinear electrical properties of SnO_2-polyaniline nanocomposites.Materials Letters, 2007, 61(27): 4967-4971
    [152]林薇薇,南军义,田永辉,等.XPS研究聚苯胺的竞争掺杂行为.化学物理学报,2000,13(5):592-598
    [153]屠晶景,宁永功,李元勋.XPS对电导性纳米聚苯胺的性能表征.化学与生物工程,2006,23 (3):15-17
    [154]井新利,王杨勇,张东华.二氧化硅/聚苯胺复合粒子的制备与性能.材料工程,2004,1:20-24
    [155]K.G.Neoh, M.Y.Pun, E.T.Kang, et al.Polyaniline treated with organic acids Doping characteristics and stability.Synthetic Metals, 1995, 73: 209-215
    [156]F.Y.Chuang, S.M.Yang.Titanium Oxide and Polyaniline Core-Shell Nanocomposites.Synthetic Metals, 2005, 152: 361-364
    [157]周慧,陶杰.聚苯胺/纳米TiO_2复合粒子的制备.云南大学学报(自然科学版),2005,27 (3A):181-183
    [158]C.Bian, G.Xue.Nanocomposites based on rutile-TiO_2 and polyaniline.Materials Letters,2007, 61:1299-1302
    [159]G.K.Prasad, T.P.Radhakrishnan, D.S.Kumar, et al.Ammonia sensing characteristics of thin film based on polyelectrolyte templated polyaniline.Sensors and Actuators B, 2005, 106:626-631
    [160]谢丹.NO_2气敏LB膜及其微结构传感器研究:[博士学位论文],成都:电子科技大学, 2001
    [161]D.Li, R.B.Kaner.Shape and aggregation control of nanoparticles: not shaken, not stirred.Journal of American Chemistry Society, 2006, 128: 968-975
    [162]S.Wu, F.Zeng, F.Li, et al.Ammonia sensitivity of polyaniline films via emulsion polymerization.European Polymer Journal, 2000, 36: 679-683
    [163]S.Koul, R.Chandra, S.K.Dhawan.Conducting polyaniline composite: a reusable sensor material for aqueous ammonia.Sensors and Actuators B, 2001, 75: 151-158
    [164]H.Bai, Q.Chen, C.Li, et al.Electrosynthesis of polypyrrole/sulfonated polyaniline composite films and their applications for ammonia gas sensing.Polymer, 2007, 48: 4015-4020
    [165]S.Koul, R.Chandra.Mixed dopant conducting polyaniline reusable blend for the detection of aqueous ammonia.Sensors and Actuators B, 2005, 104: 57-67
    [166]D.S.Sutar, N.Padma, D.K.Aswal, et al.Preparation of nanofibrous polyaniline films and their application as ammonia gas sensor.Sensors and Actuators B, 2007, 128: 286-292
    [167]X.Zhang, J.Zhang, R.Wang, et al.Cationic surfactant directed polyaniline/CNT nanocables:synthesis, characterization, and enhanced electrical properties.Carbon, 2004, 42: 1455-1461
    [168]H.Guo, H.Zhu, H.Lin, et al.Polyaniline/Fe_3O_4 nanocomposites synthesized under the direction of cationic surfactant.Materials Letters, 2008, 62(14): 2200-2203
    [169]李桂村.聚苯胺微米/纳米结构的制备及表征:[博士学位论文],青岛:中国海洋大学,2004
    [170]X.Sui, Y.Chu, S.Xing, et al.Self-organization of spherical PANI/TiO_2 nanocomposites in reverse micelles.Colloids Surfaces A: Physiconchem.Engineer Aspects, 2004, 251:103-107
    [171]姚兴雄,杨穆.采用表面活性剂模板制备聚苯胺纳米纤维.科技咨询导报,2007, 8:10-13
    [172]J.Kong, N.R.Franklin, C.W.Zhou, et al.Nanotube molecular wires as chemical sensors, 2000, 287(5453): 622-625
    [173]万步勇,王万录,廖克俊,等.多壁碳纳米管气敏性质的研究.真空科学与技术,2003,23 (3):323-327
    [174]M.麦亚潘,刘忠范.碳纳米管—科学与应用.北京:科学出版社,2007
    [175]邱桂花,陈英红,夏和生.超声辐照制备聚苯胺/碳纳米管复合微管.四川大学学报(工程科学版),2006, 38 (3): 105-109
    [176]杨杰,沈曾民,熊涛.聚苯胺原位包覆碳纳米管材料的制备及性能.新型炭材料,2003,18 (2):95-100
    [177]Y.Li, H.Wang, X.Cao, et al.A composite of polyelectrolyte-grafted multi-walled carbon nanotubes and in situ polymerized polyaniline for the detection of low concentration triethylamine vapor.Nanotechnology, 2008, 19: 1-5
    [178]牛莉,罗延龄,李利维.碳纳米管气敏传感器响应机理研究进展.材料导报,2006, 20:103-107
    [179]H.Hu, M.Trejb, M.E.Nicho, et al.Adsorption kinetics of optochemical NH_3 gas sensing with semiconductor polyaniline films.Sensors and Actuators B, 2002, 82: 14-23
    [180]许东,吴铮.基于MATLAB 6.x的系统分析与设计—神经网络.西安:西安电子科技大学出版社,2002
    [181]M.A.Martin, J.P.Santos, J.A.Agapito.Application of artificial neural networks to calculate the partial gas concentrations in a mixture.Sensors and Actuators B, 2001, 77: 468-471
    [182]A.N.Chaudry, T.M.Hawkins, P.J.Travers.A method for selecting an optimum sensor array.Sensors and Actuators B, 2000, 69: 236-242
    [183]M.Marth, D.Maier, U.Stahl, et at.Optimization of surface acoustic wave sensor arrays and application to high performance liquid chromatography.Sensors and Actuators B, 1999, 61:191-198
    [184]J.R.Stetter, P.C.Jurs, S.L.Rose.Detection of hazardous gases and vapors: pattern recognition analysis of data from an electrochemical sensor array.Analytical Chemistry, 1986,58:860-866
    [185]苏金明,张莲花,刘波.MATLAB 工具箱应用.北京:电子工业出版社,2000
    [186]马常霞.基于传感器阵列与前馈神经网络的气体辨识系统.测控技术,2001, 20 (3):18-19
    [187]吕品,唐祯安,魏广芬.基于微气体传感器阵列和神经网络的VOCs的辨别.传感技术学报,2007, 20 (8): 1712-1716
    [188]R.Dutta, K.R.Kashwan, M.Bhuyan, et al.Electronic nose based tea quality standardization.Neural Networks, 2003, 16(5): 847-853
    [189]U.Siripatrawan.Self-organizing algorithm for classification of packaged fresh vegetable potentially contaminated with foodborne pathogens.Sensors and Actuators B, 128: 435-441
    [190]P.Micone, C.Guy.Odour quantification by a sensor array: An application to landfill gas odours from two different municipal waste treatment works.Sensors and Actuators B, 2007,120: 628-637
    [191]D.Q.Gao, S.Y.Wang, Y.Ji.An electronic nose and modular radial basis function network classifiers for recognizing multiple fragrant materials.Sensors and Actuators B, 2004, 97:391-401

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700