用户名: 密码: 验证码:
晶圆低温键合技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为半导体制造领域的一项新兴的使能技术,晶圆直接键合已经在越来越多的领域发挥了重要的作用。晶圆键合可以使得经过抛光的半导体晶圆在不使用粘结剂的情况下结合在一起。这种技术可以用于微电子、微机械、光电子等诸多领域。因此,深入研究晶圆键合的技术和应用的细节,对于推进晶圆键合在半导体产业中的应用具有重要的意义。本研究工作将涉及晶圆键合的技术和应用的一些方面。晶圆键合技术是其得以用于实际器件制作的基础,研究中,完成了对晶圆低温键合进行理论建模、工艺改进以及质量的评估。在晶圆键合的应用方面,将工艺运用于多层晶圆键合,带图形晶圆键合以及微流管道器件的制备。
     在晶圆键合的理论研究中,本文利用平板接触的力学理论,结合硅晶圆键合的实际情况,建立了一套键合模型。该模型中,晶圆的表面形貌凹凸采用更接近实际的高斯分布。通过模型,详细地分析了晶圆在接触过程中,由于弹性形变造成的弹性力以及由于表面活化造成的吸附力与晶圆距离之间的关系,清晰地解释了晶圆键合中,不同接触距离对键合力的影响。通过将仿真结论与实际键合发生的条件进行对比,提出了晶圆发生自发键合的理论判据。这一判据给出了在不同活化质量下对晶圆表面粗糙度的要求,具有相当的实用性。
     在晶圆键合的工艺探索中,基于将干法和湿法活化相结合的思想,采用了紫外光辅助晶圆键合的工艺流程。通过对比实验发现,合适的紫外光照射能够大大提高晶圆键合的质量,对这一现象,研究工作从化学热力学的观点出发,对比了紫外光和各种化学共价键的键能,并根据紫外光的机制,阐述了其对于晶圆表面清洗和活化的详细机理,提出了其在晶圆表面聚集羟基的流程。
     在晶圆键合的质量评估中,对样片进行了恒温恒湿,高低温循环以及气密性的测试,对晶圆键合进行多方面的质量检测和可靠性评估。此外,针对经过长时间的紫外光照射,键合强度降低这一现象,本研究的测试环节中利用原子力显微镜对晶圆表面的粗糙度和承载率做了进一步的测试,并给出了合理的解释。
     将技术探索的成果用于晶圆键合的应用研究,我们尝试制备了三层晶圆键合,获得了良好的界面特性,为制备三维互联结构打下了良好的基础。此外,进行了带图形晶圆的键合,使用经过光刻,显影,刻蚀等流程的带图形晶圆与裸晶圆进行键合,键合结果表明,使用该工艺流程可以获得良好的界面一致性,进一步确认了其对晶圆表面的清洗活化能力。最后,将多种工艺结合,制备了血细胞计数器的微流体分析芯片。通过对血细胞计数器的工作原理,组成部分的详细分析,定制了其具体的制备流程,成功地使用硅晶圆直接键合技术,实现了微流管道芯片结构层和封盖层的键合,获得了均匀的键合界面。
As one of the newly-emerged enabling technologies, wafer direct bonding has been playing key roles in more and more fields. Without any kind of glue, wafer bonding technology is able to integrate two polished semiconductor wafers and thus be used widely in fields like micro-electronics micro-mechanics and opto-electronics. Researching deeply into detailed aspects of wafer bonding technologies and applications will help to promote its maturity in semiconductor industry. This research work covers some of the aspects in wafer bonding technologies and applications. As the foundation of device manufacturing, the bonding technologies introduced in this dissertation covers the aspects of theories, processes and reliability tests. For the applications, wafer bonding are applied to multi-layer wafer bonding, patterned wafer bonding and micro fluidic devices.
     In the research of bonding theories, starting from the basic mechanism of plate contacting theory, a set of bonding model is established according the properties of the silicon wafers. In the model, the surface topography is described to obey the Gaussian distribution. By calculating and analyzing the model in detail, the relations, in the silicon wafer direct bonding, among the elastic force due to surface deformation, the adhesive force due to surface activation and the distance due to surface separation are unveiled. The impact of separation distance on bonding force is explained in detail. By comparing the results of models and the conditions of the real bonding, a practical surface roughness criterion for spontaneous bonding, which includes the impact of surface activation quality, is proposed and proved to be in agreement with the experimental data.
     In the process exploration, based on the idea of combining both wet chemical activation and dry plasma activation, UV exposure is employed in wafer bonding process. Results of comparative trials show that proper UV exposure increases the bonding quality dramatically. From the view of the chemical thermodynamics, by comparing the energy between UV and chemical bonds, the mechanisms of UV cleaning and UV activation are explained in detail, as well as different ways by which hydroxyl groups are accumulated on the surfaces.
     In the quality tests and reliability evaluations, different aspects of bonded samples are examined by carrying out experiments of constant temperature and humidity treatment, thermal cycling treatment, as well as the air tightness evaluation. Besides, It is found that prolonging the exposure time may cause decrease in bond quality and the reason for which is explained based on the results of surface roughnesses and bear ratios from AFM measurement.
     Wafer bonding applications: By applying what we have explored into application of wafer bonding, triple-layer bonding is carried out and satisfying results are achieved to lay a foundation for 3D interconnected structures. Besides, the ability of this bonding process in cleaning and activating the silicon surface is confirmed again by observing uniform interfaces achieved by bonding bare silicon wafers with patterned wafers. Finally, by combining wafer bonging technology with other processes, a micro fluidic chip for hemocytometer is prepared. After analyzing the function, components and process in detail, wafer bonding is served as a packaging method to integrate the structural layer and sealing layer.
引文
[1]水木清华研究中心,2006年MEMS产业研究报告
    [2]李和太,李晔辰,硅片键合技术的研究进展,传感器世界, 2002, 9:6~10
    [3]黄庆安,硅微机械加工技术,北京:科学出版社,1996: 229~256
    [4] Tong QY, Lee TH, G?sele U, et al., Role of surface chemistry in bonding of standard silicon wafers, Journal of the Electrochemical Society, Jan, 1997, v 144, n 1: 384~389
    [5] STENGL R, TAN T, GOSELE U, A model for the silicon wafer bonding process, Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes, Oct. 1989, v 28, n 10: 1735~1741
    [6] Tong QY; G?sele U, Thickness consideration in direct silicon-wafer bonding, J. Electrochem. Soc., 1995, Vol. 142: 3975~3979
    [7] Turner KT, Spearing SM, Baylies WA, et al., Effect of Nanotopography in Direct Wafer Bonding: Modeling and Measurements, IEEE Transactions On Semiconductor Manufacturing, v18, No.2, MAY 2005
    [8] Turner KT, Spearing SM, Modeling of direct wafer bonding: Effect of wafer bow and etch patterns, Journal of Applied Physics, DEC 15 2002, V 92, N 12: 7658~7666
    [9] Turner KT, Thouless MD, Spearing SM, Mechanics of wafer bonding: Effect of clamping, Journal of Applied Physics, JAN 1 2004, Vol. 95, No. 1: 349~355
    [10] Gui C, Elwenspoek M, Tas N, et al., The effect of surface roughness on direct wafer bonding, J. Appl. Phys., 1999, vol. 86: 7448~7454
    [11] Miki N, Spearing SM, Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers, Journal of Applied Physics, Nov 2003, v 94, n 10, 15: 6800~6806
    [12] Rieutord F, Bataillou B, Moriceau H, Dynamics of a bonding front, Physical Review Letters, 2005, v 94, n 23, Jun 17: 236101
    [13] Kubair DV, Spearing SM, Cohesive zone model for direct silicon wafer bonding, Journal of Physics D: Applied Physics, May 21 2007, v 40, n 10: 3070~3076
    [14] Conrad D, Scheerschmidt K, G?sele U, Molecular dynamics simulations of silicon wafer bonding, Applied Physics A: Materials Science & Processing, Jan 1996, V 62, Issue 1: 7~12
    [15] Litton DA, Garofalini SH, Modeling of hydrophilic wafer bonding by molecular dynamics simulations, Journal of Applied Physics, 2001, Volume 89, Issue 11: 6013~6023
    [16] WALLIS G, POMERANT DI, Field assisted glass-metal sealing, J. Appl. Phys, 1969, v40, issue 10: 39~46
    [17] Li ZH, Hao YL, Zhang DC, et al., An SOI-MEMS technology using substrate layer and bonded glass as wafer-level package. Sensors and Actuators, 2002, 96: 34~42
    [18] Knowles KM, van Helvoort ATJ, Anodic bonding, International Materials Reviews, October 2006, v 51, n 5: 273~311
    [19] Saran A, Abeysinghe DC, Boyd JT, Microelectromechanical system pressure sensor integrated onto optical fiber by anodic bonding, Applied Optics, Mar 10, 2006, v 45, n 8: 1737~1742
    [20] Yu P, Pan C, Xue J, The anodic bonding between K-4 glass and Si, Materials Letters, August, 2005, v 59, n 19-20: 2492~2495
    [21] Ito T, Sobue K, Ohya S, Water glass bonding for micro-total analysis system, Sensors and Actuators B: Chemical, January 5, 2002 Vol. 81, Issue: 2-3: 187~195
    [22] Oberhammer J, Niklaus E, Stemme G , Selective wafer-level adhesive bonding with benzocyclobutene for fabrication of cavities, Sensors and Actuators, A: Physical, Aug 15, 2003, v 105, n 3: 297~304
    [23] Choi YS, Park JS, Park HD, et al., Effects of temperatures on microstructures and bonding strengths of Si-Si bonding using bisbenzocyclobutene, Sensors and Actuators, A: Physical, Nov 15, 2003, v 108, n 1-3: 201~205
    [24] Kwon Y, Seok J, Lu JQ, et al., Critical adhesion energy of benzocyclobutene-bonded wafers, Journal of the Electrochemical Society, April, 2006, v 153, n 4: G347~G352
    [25] Chen YT, Lee D, A bonding technique using hydrophilic SU-8, Journal of Micromechanics and Microengineering, Oct 1, 2007, v 17, n 10: 1978~1984
    [26] Pan CT, Cheng PJ, Chen MF, et al., Intermediate wafer level bonding and interface behavior, Microelectronics Reliability, March/April, 2005, v 45, n 3-4: 657~663
    [27] LASKY JB, Wafer bonding for silicon-on-insulator technologies, Appl. Phys. Lett, 1986, v 48, n 1: 78~82
    [28] Tong QY, G?sele U, Formation of ultrathin single crystalline Si on glass by low temperature wafer direct bonding, Proceedings of IEEE international SOI conference, 1994: 53~54
    [29] Secco F, A study of silicon direct wafer bonding for MEMS applications, J. MEMS, 1997, 97-2: 1~13
    [30] Tong QY, Low Temperature Wafer Direct Bonding, Journal Of Microelectromechanical Systems,1994, Vol. 3, No1: 29~35
    [31] Resnik D, Vrtacnik D, Aljancic U, et al., Study of low-temperature direct bonding of (111) and (100) silicon wafers under various ambient and surface conditions, Sensors and Actuators, 2000, 80: 68~76
    [32] Berthold A, wafer-to-wafer fusion bonding of oxidized silicon to silicon at low temperature, Sensors and Actuators, 1998, 68: 410~413
    [33] Nakanishi H, Studies on sio2-sio2 bonding with hydrofluoric acid, room temperature and low stress bonding technique for MEMS, Sensors and Actuators, 2000, 79: 237~244
    [34] Tong QY, Gan Q, Fountain G, et al., Fluorine-enhanced low-temperature wafer bonding for native-oxide covered Si Wafers, Applied physics letters, OCT 25 2004, v 85, issue 17: 3731~3733
    [35] Suni T, Henttinen K, Lipsanen A, et al., Wafer scale packaging of MEMS by using plasma-activated wafer bonding, Journal of the Electrochemical Society, 2006, v 153, n 1 :G78~G82
    [36] Dragoi V, Farrens S, Lindner P, Low temperature MEMS manufacturing processes: plasma activated wafer bonding, Micro- and Nanosystems- Materials and Devices, Symposium (Materials Research Society Symposium Proceedings Volume 872), 2005, : 85-90
    [37] Sanz-Velasco A, Amirfeiz P, Bengtsson S, et al., Room Temperature Wafer Bonding Using Oxygen Plasma Treatment in Reactive Ion Etchers With and Without Inductively Coupled Plasma, J. Electrochem. Soc., February 2003, Volume 150, Issue 2: G155~G162
    [38] Liu YC, Ho LT, Bai YB, et al., Growth of ultrathin sio2 on Si by surface irradiation with an O2+Ar electron cyclotron resonance microwave plasma at low temperatures, Journal of Applied Physics, February 1, 1999, Volume 85, Issue 3: 1911~1915
    [39] Choi WB, Ju CM, Ju BK, et al. Wafer to wafer direct bonding using surfaces activated by hydrogen plasma treatment, 1999 IEEE/CPMT Internal Electronics Manufacturing Technology Symposium, Austin, USA, 1999: 148~155
    [40] Yu WB, Tan CM, Wei J, et al., Influence of plasma treatment and cleaning on vacuum wafer bonding, Proc. Of 5th EPTC, Singapore, 2003: 294~297
    [41] Suga T, Kim TH, Howlader MMR T, Combined Process for Wafer Direct Bonding by Means of the Surface Activation Method, 2004 Electronic Components and Technology Conference, 2004: 484~490
    [42] YUN SJ, AHN KY, YI KS, et al. Studies on Microvoids at the Interface of Direct Bonded Silicon Wafers, Journal Of The Electrochemical Society, AUG 1992, Vol 139, Issue 8: 2326~2330
    [43] KHANH NQ, HAMORI A, FRIED M, et al., Nondestructive Detection of Microvoids at the Interface of Direct Bonded Silicon Wafers by Scanning Infrared Microscopy, J. Electrochem. Soc., JULY 1995, Vol 142, Issue 7: 2425~2429
    [44] Schulze S, Albrecht I, Kosbi K, et al., Investigation of bonded silicon-silicon-interfacesusing scanning acoustic microscopy, Proceedings of the Second International Symposium on Microstructures and Microfabricated Systems, Electrochemical Society, Pennington, NJ, 1995, 10: 309~318
    [45] Hayashi S, Bruno D, Sandhu R, et al.,X-ray scattering techniques for assessment of III-V wafer bonding, Journal Of Physics D-Applied Physics, MAY 21 2003, Vol 36, Issue 10A, Special Issue: Sp. Iss. SI: A236~A240
    [46] Okabayashi O, Shirotori H, Sakurazawa H, Et Al., Evaluation Of Directly Bonded Silicon-Wafer Interface By The Magic Mirror Method, Journal Of Crystal Growth, JUN 1990, Vol 103, Issue 1-4: 456~460
    [47] Hahn S, Kugimiya K, Vojtechovsky K, et al., Characterization of mirror-polished si wafers and advanced si substrate structures using the magic mirror method, Semiconductor Science And Technology, JAN 1992, V 7, Issue 1A: A80~A85
    [48]王海军,钱照明,刘宏岩等,红外热像法无损分析硅片直接键合界面的键合强度,半导体技术,1996,4(2): 12~15
    [49] Tseng AA, Park JS, Effects of surface roughness and oxide layer on wafer bonding strength using transmission laser bonding technique, Thermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference, v 2006, Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena and Emerging Technologies in Electronic Systems, itherm 2006, 2006: 1349~1357
    [50] Iijima Y, Tazawa T, Application of total reflection X-ray photoelectron spectroscopy to boron and phosphorus on Si wafer surface measurement, ectrochimica Acta Part B 59, 2004: 1273~1276
    [51] Ley L, Mantel BF, Matura K, et al., Infrared spectroscopy of C-D vibrational modes on diamond (100) surfaces, Surface Science, 1998, Volume: 428: 245~249
    [52] Cuadrado MU, de Castro MDL, Juan PMN, et al., Comparison and joint use of near infrared spectroscopy and Fourier transform mid infrared spectroscopy for the determination of wine parameters, 2005, Volume 66 Issue 1 : 218~224
    [53] Bae S, Farber DG, Fonash SJ, Characteristics of low-temperature silicon nitride (sinx: H) using electron cyclotron resonance plasma, Solid-State Electronics. 2000, Volume 44 Issue 8: 1355~1360
    [54]陈松岩,谢生,何国荣,Si/Si直接键合界面性质的研究,固体电子学研究与进展,2004,24(3): 390~395
    [55]陈立国,孙立宁,黄庆安等,硅片键合强度测试系统研究,测试技术学报, 2005,19(2):137~140
    [56] Ayon AA, Zhang X, Turner KT, et al., Characterization of silicon wafer bonding forpower MEMS application, Sensors and Actuators, 2003, A 103: 1~8
    [57] Charalambides PG, Cao HC, Lund J, et al., Development of a test method for measuring the mixed mode fracture resistance of biomaterial interfaces, Mechanics of Materials, 1990, Vol. 8, no. 4: 269~283
    [58] Doll A, Rabold M, Goldschmidtboing F, et al., Versatile low temperature wafer bonding and bond strength measurement by a blister test method, Microsystem Technologies, April, 2006, v 12, n 5: 418~429
    [59] Weste N, Eshraghian K, Principles of CMOS VLSI Design, a System Perspective, Reading, MA: A ddiso-Wesley, 1993
    [60] Zhuang N, Wu H, A new design of the CMOS full adder, IEEE J Solid-State Circuits, 1992, 27 (5) : 840~844
    [61]陈松岩,谢生,何国荣,Si/Si直接键合界面的FTIR和XPS研究,半导体光电,2004,25(5): 372~375
    [62] Christiansen, Silke H, Singh, et al., Wafer direct bonding: From advanced substrate engineering to future applications in micro/nanoelectronics, Proceedings of the IEEE, December, 2006, v 94, n 12,: 2060~2105
    [63] Lasky JB, Stifer FR, White FR, et al., Silicon-on-insulator by wafer bonding and etch back, Proc Int Electron Device Meeting, USA, 1985: 684~692
    [64] Huang, C, Chiou, H, Direct bonded SOI wafers technology, Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, v 27, n SUPPL., December, 2006: 392~395
    [65] Joo YC, Song OS, Heat transfer in fast linear annealing for direct bonding of SOI wafer pairs, Source: International Journal of Thermophysics, v 27, n 1, January, 2006: 314~331
    [66] Lin CW, Yang HA, Wang WC, et al., Implementation of three-dimensional SOI-MEMS wafer-level packaging using through-wafer interconnections, Source: Journal of Micromechanics and Microengineering, v 17, n 6, Jun 1, 2007: 1200~1205
    [67] Huang LJ, Chu JO, Goma SA, et al., Electron and hole mobility enhancement in strained SOI by wafer bonding, Source: IEEE Transactions on Electron Devices, v 49, n 9, September, 2002: 1566~1571
    [68] Radu I, Himcinschi C, Singh R, et al., ssoi fabrication by wafer bonding and layer splitting of thin sige virtual substrates, Materials Science and Engineering B: Solid-State Materials for Advanced Technology, v 135, n 3, Dec 15, 2006: 231~234
    [69] Himcinschi C, Radu I, Muster F, et al.,Uniaxially strained silicon by wafer bonding and layer transfer, SOLID-STATE ELECTRONICS, FEB 2007, V 51,Issue 2: 226-230
    [70] Gui C, Boer M D, Gardeniers J G E, et al., Fabrication of multilayer substrates for high aspect ratio single crystalline microstructures, Sensors and Actuators A, 1998, 70:61~66
    [71] Goustouridis D, Normand P, Tsoukalas D, Ultra miniature silicon capacitive pressure sensing elements obtained by silicon fusion bonding, Sensors and Actuators A, 1998, 68:269~274
    [72] Iyer SS, Auberton-HervéAJ, Silicon Wafer Bonding Technology, for VLSI and MEMS _INSPEC, London, UK, 2002
    [73] Alexe M and G?sele U, Wafer Bonding Applications and Technology, Springer-Verlag, Berlin, 2004
    [74] Chatterjee R, Fayolle M, Leduc P, et al., Three dimensional chip stacking using a wafer-to-wafer integration, Proceedings of the IEEE 2007 International Interconnect Technology Conference - Digest of Technical Papers, Proceedings of the IEEE 2007 International Interconnect Technology Conference, Digest of Technical Papers, 2007: 81~83
    [75] Matthias T, Wimplinger M, Pargfrieder S, et al., 3D process integration - Wafer-to-wafer and chip-to-wafer bonding, Materials Research Society Symposium Proceedings, v 970, Enabling Technologies for 3-D Integration, 2007: 231~237
    [76]陈新安,刘肃,黄庆安,硅-硅直接键合制造静电感应器件,电力电子技术,2004,38(2):92~94
    [77]杨国渝,税国华,张正元等,真空键合技术制作三层结构的MEMS器件的研究,微纳电子技术,2003,7/8:120~121
    [78] Feng YJ, Silicon direct bonding on vacuum and force, 2006 IEEE International Conference on Mechatronics and Automation, ICMA 2006, v 2006, 2006 IEEE International Conference on Mechatronics and Automation, ICMA 2006, 2006: 491~496
    [79] Wagner M, Zou J, Method for creating low cost 3D MEMS chemical sensors by using through wafer VIAS and wafer bonding, 2007 Electronic Components and Technology Conference, 2007: 1119~26
    [80] Wiget R, Pecz B, Burte EP, Silicon direct bonding (SDB)-a substrate material for electronic devices, Proc. Of 1995 International Conference, 1995, 1:75~81
    [81] Nakanishi H, Nishimoto T, Nakamura R, et al., Studies on SiO2-SiO2 bonding with hydrofluoric acid: Room temperature and low stress bonding technique for MEMS, Sensors and Actuators, 2000, 79: 237~244
    [82] Nakanishi H, Nishimoto T, Kanai M, et al., Condition optimization reliability evaluation of sio2-sio2 HF bonding and its application for UV detection micro flow cell, Sensors and Actuators, 2000, 83: 136~141
    [83] London AP, Ayon A, Epstein AH, et al., Microfabrication of a high pressurebipropellant rocket engine, Sensors and Actuators A, 2001, 92: 351~357
    [84] Oka K,Aoyagi S,Arai Y,et al.,Fabrication of a micro needle for a trace blood test, Sensors and Actuators A, 2002, 97: 478~485
    [85] Bakke T, Volker B, Schenk H, et al., Wafer bonding for optical MEMS, Meeting Abstracts, 207th Meeting of the Electrochemical Society - Meeting Abstracts, 2005: 495
    [86]于丽娟,赵洪泉,杜云等,键合法制备硅基1.55um inp-ingaasp量子阱激光器,半导体学报,2006,27(4): 741~743
    [87] Greenwood JA, Williamson JBP, Contact of Nominally Flat Surfaces, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Dec. 6, 1966, Vol. 295, No. 1442: 300~319
    [88] Greenwood JA, Tripp JH, The contact of two nominally flat rough surfaces, Proceedings of the Institution of Mechanical Engineers, 1970-1971, v 185, n 48: 625~33
    [89] PULLEN J, WILLIAMS JB, On the Plastic Contact of Rough Surfaces, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Mar. 7, 1972, Vol. 327, No. 1569: 159~173
    [90] CHANG WR, ETSION I, BOGY DB, An Elastic-Plastic Model For The Contact Of Rough Surfaces, JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, APR 1987, Vol 109 Issue 2 : 257~263
    [91] Chang WR, An Elastic-Plastic Contact Model for a Rough Surface With an Ion-Plated Soft Metallic Coating, Wear, 1997, 212: 229~237
    [92] Zhao Y, Maietta DM, Chang L, An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow, ASME J. Tribol., 2000, 122: 86~93
    [93] Kucharski S, Klimczak T, Polijaniuk A, et al., J., Finite-Elements Model for the Contact of Rough Surfaces, Wear, 1994, 177: 1~13
    [94] JOHNSON KL, KENDALL K, ROBERTS AD, SURFACE ENERGY AND CONTACT OF ELASTIC SOLIDS, Proc. R. Soc. London Ser. A -Mathematical And Physical Sciences, 1971, Volume 324 Issue 1558: 301
    [95] DERJAGUIN BV, MULLER VM, TOPOROV YP, Effect of contact deformations on the adhesion of particles, Journal of Colloid and Interface Science, November 1975, Volume 53, Issue 2: 314~326
    [96] MULLER VM, YUSHCHENKO VS, DERJAGUIN BV, On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane, Journal of Colloid and Interface Science, September 1980, Volume 77, Issue 1: 91~101
    [97] Maugis D, Adhesion of spheres: The JKR-DMT transition using a dugdale model, Journal of Colloid and Interface Science, April 1992, Volume 150, Issue 1: 243~269
    [98] Kogut L, Etsion I, Adhesion in elastic-plastic spherical microcontact, Journal of Colloid and Interface Science, May 15, 2003, v 261, n 2: 372~378
    [99] Zhao YW, Maietta DM, Chang L, An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow, Transactions of the ASME, Journal of Tribology, v 122, n 1, Jan. 2000: 86~93
    [100] Hertz H, Miscellaneous Papers by Heinrich Hertz, macmillan & Co, London, UK, 1896: 146~183
    [101]陈隆德,赵福令,互换性与测量技术基础(修订版),大连:大连理工大学出版社,1997: 123~125
    [102] Chang WR, Etsion I, Bogy DB, Static Friction Coefficient, Model for Metallic Rough Surfaces, ASME J. Tribol., 1988, 110: 57~63
    [103] Love AEH, the Stress Produced in a Semi-Infinite Solid by Pressure on Part of the Boundary, Philosophical Transactions of the Royal Society of London, Series A, Containing Papers of a Mathematical or Physical Character, 1929, Vol. 228: 377~420
    [104] Zhao Y, Chang L, A model of asperity interactions in elastic-plastic contact of rough surfaces, Journal of Tribology, October, 2001, v 123, n 4: 857~864
    [105] Sahoo P, Banerjee A, Asperity interaction in adhesive contact of metallic rough surfaces, Journal Of Physics D-Applied Physics, NOV 21 2005, Volume: 38, Issue: 22: 4096~4103
    [106] MULLER VM, DERJAGUIN BV, TOPOROV YP, On two methods of calculation of the force of sticking of an elastic sphere to a rigid plane, Colloids and Surfaces, Aug. 1983, v 7, n 3: 251~259
    [107] Fuller KNG, Tabor D, The Effect of Surface Roughness on the Adhesion of Elastic Solids, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Sep. 30, 1975, Vol. 345, No. 1642: 327~342
    [108] Plobl A, Krauter G, Wafer direct bonding: tailoring adhesion between brittle materials, Materials Science and Engineering, 1999, R25: 1~88
    [109] Hobart KD, Colinge CA, Ayele G, et al., UV/ozone activation treatment for wafer bonding, Proceedings - Electrochemical Society, v 19, Semiconductor Wafer Bonding VII: Science, Technology, and Applications - Proceedings of the International Symposium, 2003: 137~143
    [110] Holl SL, Colinge CA, Hobart KD, et al., UV activation treatment for hydrophobic wafer bonding, Journal of the Electrochemical Society, July, 2006, v 153, n 7: G613~G616
    [111] Vig JR, UV/ozone cleaning of surfaces, Journal of Vacuum Science & Technology A (Vacuum, Surfaces, and Films), May-June 1985, v 3, n 3, pt.1: 1027~34
    [112]化学反应动力学研究的新进展,研究成果报导37,自然科学简讯第十三卷第二期,民国90年5月
    [113] RUZYLLO J, DURANKO GT, HOFF AM, Preoxidation UV Treatment of Silicon Wafers, ECS, Vol. 134, No. 8: 2052~2055
    [114] Assaderaghi F, Shahidi GG, Silicon-on-Insulator Technology and Devices IX, Electrochem. Soc., Pennington, NJ, 1999, vol. PV99-3: 1
    [115] Miki N, Zhang X, Khanna R, et al., Multi-stack silicon-direct wafer bonding for 3D MEMS manufacturing, Sensors And Actuators A-Physical, JAN 15 2003, V 103, Issue: 1-2: 194~201
    [116] [Online]. Available: http://www.pb.izm.fhg.de/mdae/005_projects/advanced.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700