回转窑挡轮液压缸的改进设计及其数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回转窑是一种广泛应用于有色冶金、水泥、化工等行业的大型长圆筒设备。回转窑的挡轮装置有机械挡轮和液压挡轮两种型式。液压挡轮作为一种比较先进的挡轮装置,具有省时省力、自动化程度高等特点,是回转窑挡轮装置的主要型式。
     挡轮液压缸是液压挡轮装置中的关键部件,其运行速度低、活塞杆承受径向力的作用、环境辐射温度高、污染严重、工作条件恶劣。目前,回转窑所用的挡轮液压缸存在的问题是内泄大、密封失效、产生爬行及使用寿命低等。由于要经常更换挡轮液压缸且更换不便,造成人力和物力的大量浪费,严重影响了挡轮装置性能的发挥和回转窑的运转率。因此,开发出结构合理,使用寿命长的挡轮液压缸是回转窑设备改造的重要课题。
     本文针对挡轮液压缸所存在的问题,提出了改进措施。在挡轮液压缸中采用了辅助支承;将活塞杆上的受力点置于活塞与缸盖上的导向套之间,以减小活塞及支承环上所受的径向力;采用斯特封组合密封件,液压缸几乎无内泄;在活塞及导向套上设置支承环,增加排气装置,可减小活塞与缸筒内孔、活塞杆与导向套之间的机械摩擦,减小磨损,并使液压缸运行稳定、无爬行且安全可靠。改进后的挡轮液压缸运行稳定,其使用寿命提高了十倍以上。
     本文采用Pro/MECHANICA有限元分析软件,建立了该挡轮液压缸的有限元模型;通过静态结构分析,得到挡轮液压缸在径向载荷作用下的变形和应力分布状况;通过对缸体结构的强度分析,验证了挡轮液压缸能够承受回转窑冲击载荷的作用。此外,根据密封技术的最新发展,对挡轮液压缸密封装置进行了正确选择和设计,这对防止挡轮液压缸的泄漏进而提高挡轮液压缸的工作性能及可靠性具有重要意义。最后,用边界元法对挡轮液压缸流体润滑进行了理论分析,提出了影响挡轮液压缸润滑性能的几个重要因素。
     改造后的挡轮液压缸可适用于温度达90℃、污染大以及环境恶劣的场合。这对于减少设备的维修量,节约维修费用,提高企业效益,具有积极地作用。改进后的挡轮液压缸还可为其它低速运行的单作用液压缸地研制提供借鉴作用。
Gyral kiln is a long tube-shape large-scale equipment,which is widely used in non-ferrous metallurgy,cement,chemical industry and so on.There are two kinds of patterns in its block-wheel device:mechanical block-wheel and hydraulic block-wheel.As a kind of quite advanced block-wheel device,the hydraulic block-wheel device saves time and manpower,and is the main type of block-wheel device in gyral kilns.
     The block-wheel cylinder is a key component of hydraulic block-wheel device,which is with low speed,high radiation temperature,serious pollution, bad working conditions and bears radial force on piston rod.At present,the problems of hydraulic cylinder is about serious internal leakage,seal failure, crawling and the short service life.
     For replacing the block-wheel cylinder frequently and inconveniently,it wastes of the manpower and material resource massively,and influences seriously the role of block-wheel device and gyral kiln.Therefore,to develop the block-wheel cylinder with reasonable structure and long service life is the important topic in the transforms of equipments in gyral kiln.
     Against a series of questions of blocking-wheel cylinder at present,the paper proposes improvement measures.Adopting auxiliary bearing components and changing the action point which push rod exert at piston rod located between the piston and guide sleeve can reduce the radial strength of the piston and support ring received at.With the use of Sitefeng seals,the cylinder does not release nearly. Putting on support ring in the piston and guide sleeve,increasing the air exhaust device,may reduce mechanical friction and the attrition between the piston and in the cylinder tube,as well as between the piston rod and guide sleeve,and causes the hydraulic cylinder moving stable,non-crawling and reliable.The improved blocking-wheel cylinder run steadily and may enhance its service life for ten times
     The paper sets up a finite element model of blocking-wheel cylinder in Pro/MECHANICA.The deformation and stress distribution of the cylinder under radial force are obtained by static structure analysis.Through the strength analysis of the main body,it verifies that blocking-wheel cylinder can bear impact loads by the gyral kilns.In addition,we pay attention closely to the most recent development in the seal technology,the correct choice,the installment and the use of seal,which have the great significance to prevent cylinder's divulging and the pollution causes from the former and enhance the operating performance and reliability of hydraulic cylinder.Finally,this paper makes the theoretical analysis to fluid lubrication BEM in the block-wheel cylinder,and proposed several important factors which influence the lubricity.
     After the transformation,the block-wheel cylinder can be suitable for the situation with the temperature 90℃,serious pollution,bad working conditions. This affects positively to reduce maintenance amount,save the maintenance cost, raise the benefit of enterprises.This new hydraulic cylinder may also provide reference for other single-acting cylinders with low speed.
引文
[1]江基旺.冷却机液压挡轮装置的技术改造[J].机械设计与制造,2004(3):120-121
    [2]陈湘辉.液压挡轮在水泥回转窑上的应用[J].河南建材,2001(3):30-31
    [3]陈湘辉.液压挡轮的应用[J].水泥技术,2001(6):82
    [4]张怀莲.液压挡轮在中小型回转窑应用的适用性分析[J].水泥,2005(11):52
    [5]刘衡.液压缸的技术发展[J].液压气动与密封,2004(3):10-12
    [6]路芳亭,任中伟.国内外大型液压缸活塞杆防腐技术的发展与现状[J].水利电力机械,2007,29(10):132-135
    [7]李良福.国外动力液压缸的发展状况[J].机械工程师,2002(9):9-11
    [8]李德军,王炽鸿.YE-2000液压式压力试验机油缸的有限元分析[J].试验技术与试验机,1994.34(4):33-36
    [9]陈国定,HA ISE H,HAASW et al.O形密封圈的有限元力学分析[J].机械科学与技术,2000(9):625-626
    [10]穆志韬,邢耀国.密封结构中超弹性接触问题的有限元分析方法[J].航空计算技术,2003.33(4):44-47
    [11]左正兴,廖日东.112150柴油机橡胶密封圈的有限元分析[J].内燃机工程,1996.17(2):46-49
    [12]贾世峰.回转窑液压挡轮压力系统的改造[J].水泥技术,2001(5):80
    [13]卢泽军.回转窑液压挡轮缸的结构分析与改进[J].液压与气动,2004(5):66-68
    [14]午泽俊.回转窑挡轮液压系统[J].液压与气动,2004(5):70-71
    [15]姚凤霞,商洪勇.回转窑液压挡轮油缸的改进实践[J].水泥,2002(7):60
    [16]明仁雄,王修敏,万会雄.回转窑挡轮液压缸运行中存在的问题及改进措施[J].液压与气动,2001(7):44-45
    [17]李三济.回转窑液压挡轮油缸支座的改进[J].水泥,2005(12):58
    [18]明仁雄,万会雄.液压与气压传动[M].北京:国防工业出版社,2003
    [19]许福玲.液压与气压传动[M].北京:机械工业出版社,1999
    [20]回转窑编写组.回转窑[M].北京:冶金工业出版社,1980
    [21]马长福.实用密封技术问答[M].北京:金盾出版社,1997
    [22]黄跃东,刘建雄.Pro/Mechanica的有限元分析应用[J].机电产品开发与创新,2007.20 (3):103-105
    [23]王强,齐晓杰,张娜等.基于Pro/E与ANSYS载重车辆轮胎有限元分析[J].交通科技与经济,2009(1):35-38
    [24]崔小松,曾志新,孟令东.基于Pro/E的装载机工作装置的运动仿真和有限元分析[J].机电工程技术,2005.34(3):70-72
    [25]周秦源,孔远翔,米建龙等.基于Pro/E和ANSYS的齿轮接触应力的有限元分析[J].沈阳航空工业学院学报,2007.24(4):34-37
    [26]陈发,王学农,朱林等.水平换向犁油缸底座的机构设计与有限元分析[J].农业机械学报,2004.35(5):62-66
    [27]黄世伟,黄俊明,谢薇等.N Z·L J Z20-8大型生活垃圾转运站设备挤压油缸、破碎油缸有限元分析[J].广西大学学报(自然科学版),2002.27(3):225-228
    [28]范文杰,张子达,文广.挖掘装载机装载工作装置有限元分析[J].土石方机械与施工技术,2005(2):45-47
    [29]张继春,徐斌,林波.Pro/ENGINEER Wildfire|结构分析[M].北京:机械工业出版社,2004
    [30]胡建英,叶金铎.残余应力对液压油缸缸筒承载能力影响的有限元分析[J].机床与液压,2006(10):111-114
    [31]陈茹仪,金长义.汽车起重机变幅油缸有限元网格图智能化剖分系统的研制[J].辽宁工学院学报,1995.15(2):54-57
    [32]陶亦寿.船闸人字门液压启闭机油缸有限元计算[J].长江科学院院报,2005.22(3):41-44
    [33]屈梁生,何正嘉.机械故障诊断学[M].上海:上海科学技术出版社,1986
    [34]李柱国.机械润滑与诊断IMl.北京:化学工业出版社,2005
    [35]J.A.Polson.Internal Combustion Engines.Standard Book House,1982
    [36]范光松.设备润滑与防腐[M].北京:机械工业出版社,2000
    [37]张成.润滑油固体颗粒污染物对活塞环-缸套润滑性能影响的研究:[硕士学位论文].昆明:昆明理工大学机械电子工程系,2008
    [38]R L Fusaro.Preventing spacecraft failures due to tribological problems.NASA/TM 2001-210806,2001
    [39]R L Fusaro.Lubrication of Space Systems.Lubr Eng,1995.51(3):182-193;
    [40]姚敏武.边界元法解决位势问题.第一届工程中的边界元法会议论文集,1985
    [41]薛永宽.大型水轮发电机推力轴承的广义热弹性流体动力润滑性能分析[J].西安交通大学,1992.26(1):69-79
    [42]薛永宽,朱均,朱勤.流体润滑问题的边界元分析[J].安交通大学学报,1992(10):77-84
    [43]彭建,左孝桐,王福.不同槽型气体端面密封的研究[J].流体机械,1996,24(11):8-12
    [44]顾永泉.机械端面密封[M].东营:石油大学出版社,1994
    [45]申国华.液压缸用新型组合密封装置[M].机械,1988.15(6):43-44
    [46]成大先等.机械设计手册(单行本).润滑与密封[M].北京:化学工业出版社,2003
    [47]陈占清,詹永麒,朱昌明.压缩率对O形橡胶密封圈密封性能的影响[J].流体传动与控制,2007(3):45-47
    [48]廖日东,左正兴,邹文胜.O形圈轴对称超弹性接触问题的有限元分析[J].润滑与密封,1996(5):30-33
    [49]刘溪娟.一种含超弹性接触问题的密封结构的有限元求解方法[J].中国机械工程,2001.12(11):1211-1213
    [50]任全彬,陈汝训,杨卫国.橡胶O形密封圈的变形及应力分析[J].航空动力学报,1995.10(3):241-244
    [51]L.Grasedyck.Adaptive Recompression of[Hierarchical]-Matrices for BEM Computing.Archives for Informatics and Numerical Computation.Wien:May 2005.Vol.74.:205-207
    [52]M.Bebendorf.Hierarchical LU Decomposition-based Preconditioners for BEM Computing.Archives for Informatics and Numerical Computation.Wien:May 2005.Vol.74:225-227
    [53]Fidelibus,C,Lenti,V.A BEM code for ground-water problems in multizoned domains with normal boundary flux discontinuities Ground Water.Dublin:Sep/Oct 1996.Vol.34:943-947
    [54]Anonymity Saving space with BEM Machine Design.Cleveland:Apr 9,1993.Vol.65:75-80
    [55]Y.Bulent Yildir BEM captures magnetic field designs.Machine Design.Cleveland:Aug 8,1991.Vol.63
    [56]Michael Heitzer.Structural Optimization with FEM-based Shakedown Analyses Journal of Global Optimization.Dordrecht:Nov 2002.Vol.24:371-373
    [57]B.N.Khoromskij,J.M.Melenk.An Efficient Direct Solver for the Boundary Concentrated FEM in 2D Computing.Archives for Informatics and Numerical Computation.Wien:Oct 2002.Vol.69:91-92
    [58]Dava Johnson.New technology converts CAD geometry to FEM.Plastics Engineering.Brookfield Center:Apr 1999.Vol.55:46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700