基于有限单元法的柴油机气缸套失圆研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着现代发动机向轻量化、高速化和高功率密度化发展,作为发动机的核心部件,气缸套在工作中承受着越来越高的热负荷、气动载荷和机械负荷,不可避免地出现缸套失圆现象。在发动机工作过程中,缸套的失圆直接影响到气缸套活塞环间的间隙以及缸套与缸盖间的密闭性,从而导致机油消耗增加、产生窜漏、增加磨损和燃油消耗。为了达到将来的排放法规要求和提高燃油经济性,研究气缸套失圆问题是十分必要的,因而具有重要意义。
     气缸套失圆问题的复杂性和发动机结构特性决定了使用解析的理论分析方法和试验研究方法研究该问题存在一定的局限性。随着CAE技术的不断发展,三维仿真技术越来越成熟,利用有限元法模拟计算气缸套失圆成为可能。本论文利用CAE技术的优势,重点研究预紧力作用下和热-机耦合状态下的气缸套失圆问题。
     参照4100QB柴油机机体模型,本文建立理想的薄壁桶模型和螺栓一体化模型,以研究预紧力合理的施加方式。结果表明,通过建立接触对来施加预紧力的方法是合理的,能达到计算精度要求。
     通过设置不同预紧力水平、材料属性、预紧螺栓长度和螺纹孔第一螺纹位置,研究薄壁桶件模型在不同状况下的缸套失圆,重点研究缸套失圆的规律性,对各变形影响因素进行定量分析。结果表明,气缸套在预紧力作用下整体呈现规律的四阶失圆,上部失圆度最大,下部失圆度较小;预紧力对失圆的贡献最大,随着预紧力的增大,气缸套失圆度增大;气缸套和气缸衬垫的刚度都直接和间接地影响到缸套的失圆度,较大的刚度可以降低缸套的失圆度;螺栓长度增加能够更平均地分配预紧力,从而对气缸套失圆有一定影响;螺栓孔第一螺纹位置的降低可以减小气缸套的失圆。
     利用薄壁桶模型的研究结果,通过建立某公司4100QB柴油机的实体及有限元模型,分析组合体的温度分布,并研究该机在预紧力作用下和热-机耦合作用下的气缸套失圆。结果表明,热-机耦合作用下的失圆度远大于预紧力工况下的失圆度,且整体呈二阶椭圆失圆。
With the modern engines designed to operate at higher engine speeds with lowerweight and higher power density, the cylinder liner, one of the pivotal parts of engine,works with higher thermal effects, combustion pressure and mechanical loads, withthe cylinder liner distortion which cannot be avoided. In the proceeding of engineoperating, the clearance between cylinder liner and piston rings, and the sealedbetween cylinder liner and cylinder head will be affected by the cylinder linerdistortion directly, which will cause the oil consumption, the blow-by, the wearbehavior and the fuel consumption. In order to achieve future requirements regardingexhaust emissions and fuel consumptions, the research of cylinder liner distortionproblem is essential, and plays a significant role.
     It is limited to studycylinder liner distortion bytheory analysis or experiment dueto the complicacy of this problem. By the development of CAE technology, thethree-dimensional simulation become more mature, and using Finite Element Methodto calculate cylinder liner distortion become feasible. Taking the advantage of CAEtechnology, this paper will study cylinder liner distortion under the function ofclamping loads and coupled thermal-stress.
     To discuss reasonable loading method of clamping loads, the article builds thethin wall barrel (TWB) model, and the bolt-block model, by the reference of 4100QBmodel. The result shows that it is logical to simulate preloads by establishing contactpairs, and the calculating accuracyis acceptable.
     By setting up different preloads, material property, length of bolts and location ofthe first whorl, this paper study cylinder liner distortion of TWB model, focuses onthe rule of distortion, and analyze influence factor. The consequence indicates that thecylinder liner under the clamping loads performs fourth-order distortion with higherdistortion on upper part and lower distortion on underside; clamping loads which willcause larger distortion with higher loads value are the major reason of forth-orderdistortion; the stiffness of cylinder liner and gasket have influence on the distortion,which means the lower stiffness generates lager distortion; owing to the long boltdistributing loads average, it can effect distortion and the lower location of the first whorl will reduce the distortion.
     Using the consequence above, this paper analyses the temperature distributionafter building 4100QB solid model and finite element model, to study cylinder linerdistortion under the function of clamping loads and coupled thermal-stress. The resultshows that the distortion under coupled is far larger than it under clamping loads, andthe cylinder liner performs second-order distortion.
引文
[1]Frank H.Kelley, Cumberland, md, Power Cylinder For Internal Combustion Engine,U.S.Patent, 328,554, 1940
    [2]Frederick Roy Stephens, Cylinder Head Gasket For Internal Combustion Engine,U.S.Patent, 602,690, 1932
    [3]V.V. Bakhvalova, Effective Area Of An Unstrained Piston In ADistorted Cylinder System,Translated fromIzmeritel'nayaTekhnika,No.1,January, 1966,pp.44~48
    [4]H.Fujimoto, Y.Yoshihara, T.Goto, S.Furuhama, Measurement of Cylinder BoreDeformation during ActualOperating Engines, SAE-Paper 910042
    [5]Timothy V.Johnson, Diesel Emission Control Technology-2003 in Review, SAE-Paper2004-01-0070
    [6]M.Manni-Euron, Effect of Physical Characteristics of Lubricating Oils on Emissions, FuelEconomyand Oil Consumption in a Light DutyDiesel Engine, SAE-Paper 952552
    [7]David L.Hilden, The Contribution of Engine Oil to Particulate Exhaust Emissions FromLight-Duty, Diesel-Powered Vehicles, SAE-Paper 841395
    [8]Gunder Essig, Diesel Engine Emissions Reduction--The Benefits of Low OilConsumption Design, SAE-Paper 900591
    [9]Kazutoshi Mori, Technology for Meeting the 1991 U.S.A. Exhaust Emission Regulationson Heavy-DutyDiesel Engines, SAE-Paper 902233
    [10]Hideshi Hitosugi, Study on Mechanism of Lubricating Oil Consumption Caused ByCylinder Bore Deformation, SAE-Paper 960305
    [11]Peter Andersson, Piston ring tribology, VTT RESEARCH NOTES 2178
    [12]Masatoshi Basaki, Analysis of Oil Consumption At High Engine Speed By Visualizationof the Piston Ring Behaviors, SAE-Paper 2000-01-2877
    [13]Schneider, E.W, Effect of cylinder bore out-of-roundness on piston ring rotation andengine oil consumption, SAE-Paper 930796
    [14]J. Prescot, Applied Elasticity, New York, DoverPublications, 1946.
    [15]S.Timoshenko, Theoryof Elastic Stability, New York: McGraw-Hill, 1936
    [16]C.Englisch, KolbenRinge, Vienna: Springer-Verlag, 1958
    [17]Affenzeller, J, Bearings and lubrication of internal combustion engines in German. DieVerbrennungskraftmaschine, Neues Folge, Band 8.Vienna, Austria, 1996,Springer-Verlag. 397p
    [18]Klaus Loenne, The Goetze Cylinder Distortion Measurement Systemand the Possibilitiesof Reducing Cylinder Distortions, SAE-Paper 880142
    [19]Chittenden R.J. and Priest M. Analysis of the piston assemply, bore distortion and futuredevelopments. In: Taylor, C.M.(ed.). Engine Tribology. Elsevier, 1993, Tribology series,26, pp. 241~270
    [20]Lawrence E.Bird and Robert M.Gartside, Measurement of Bore Distortion in a FiringEngine, SAE-Paper 2002-01-0485
    [21]Reipert, P. and Voigt, M.Simulation of the Piston/Cylinder Behavior for Diesel Engines,2001, SAE-Paper 2001-01-0563
    [22]Franz Koch, Cylinder Liner Deformation Analysis -Measurements and Calculations,SAE-Paper 980567
    [23]山田好男,气缸盖垫片与气缸孔的变形,国外内燃机, 1994(1):34~40
    [24]Stephen H.Hill, Piston Ring Designs for Reduced Friction, SAE-Paper 841222
    [25]AVLProduct description:“GLIDE”, fromAVLWebsite
    [26]Richard B. Hathaway, Evaluation of Cylinder Bore and Cylinder Head DeformationsUsing Holographic interferometry, SAE-Paper 910433
    [27]G.X.Zhang, Four-Point Method of Roundness and Spindle Error Measurements, Annalsof the CIRP Vol. 1993,1(42):593~596
    [28]Shizuo Abe, Analysis of Cylinder Bore Distortion during Engine Operation, SAE-Paper950541
    [29]Ali Soua, Computations of an engine to analyze cylinder distortion, EngineeringComputations, Vol. 1999(16): 9~25
    [30]Shuhei Adachi, Development of Low Distortion Cylinder Liners Using RapidlySolidified AluminumAlloy with High Silicon Content, SAE-Paper 2001-01-2040
    [31]邱会明,李小敏,计算机辅助技术CAD/CAE/CAPP/CAM应用教程,北京:清华大学出版社,2008
    [32]Altair HyperMesh 6.0 Advanced Tutorials, 2003
    [33]Hibbitt, Karlsson & Sorensan, Inc. ABAQUS/Standard User’s Manual, 2002
    [34]张萍,ANSYS建模过程中单元属性的定义,现代电子技术,2003(16)
    [35]李会勋,胡迎春,张建中,利用ANSYS模拟螺栓预紧力的研究,山东大学学报(自然科学版),2006(25)1:57~59
    [36]陆秉权,王海龙,周小飞等,应用有限元技术计算螺栓联接的方法研究,黑龙江电力,2006(26)2:100~102
    [37]张红兵,杜建红,有限元模型中螺栓载荷施加方法的研究,机械设计与制造,1996,6:32~33
    [38]王守信,有限元法教程,黑龙江:哈尔滨工业大学出版社
    [39]石亦平,周玉荣,ABAQUS有限元分析实例详解,北京:机械工业出版社
    [40]王希珍,S195柴油机气缸套温度场与热变形的三维有限元分析,[硕士论文],合肥:合肥工业大学,2000
    [41]Maassen F.Analytical and Empirical Methods for Optimization of Cylinder Liner Boredistortion, SAE-Paper 2001-01-0596

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700