基于混沌与分形理论的缸套—活塞环磨损过程动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以实际缸套-活塞环摩擦副为研究对象,以实际采集得到的摩擦信号和表面形貌为载体,综合运用混沌与分形理论对磨损过程中的摩擦信号与磨损表面形貌进行分析与表征计算,以此揭示缸套-活塞环磨损过程中存在的非线性行为规律并为缸套-活塞环的磨损状态的识别和预测提供理论依据。研究结果对丰富摩擦学理论和对相关技术人员进行内燃机的摩擦学设计具有参考意义。
     在混沌特征量计算时,无标度区间的选取极为重要。为此,本文首先提出研究无标度区间识别的新方法。通过对Lorenz等理论混沌吸引子信号及W-M分形函数产生的信号进行关联维数计算来验证所提出方法的有效性。计算结果均表明新方法能够客观准确并自动快速地识别无标度区间。这为混沌特征参数计算结果的准确性提供了保证。
     时间序列信号的采样长度、采样间隔和噪声等因素对混沌特征量关联维数的计算结果具有重要影响,本文分别对不同采样长度和采样间隔的理论混沌时间序列和实测时间序列,以及含有不同信噪比的混沌时间序列的关联维数进行了计算。结果表明关联维数的计算值随着采样长度的增加而增加,但当数据长度达到一定值后,维数值趋于稳定;维数值随着采样间隔的增大而增大,仅在一定的间隔范围内保持相对稳定;维数值随着信噪比的减小而增大。对此,本文提出了合理确定采样长度的维数饱和方法和通过建立延迟坐标时间差与采样间隔关系曲线来确定采样间隔的方法,并采用小波分析技术来消除实际采集信号中的噪声成分以提高信噪比。
     在对实际系统中的信号运用混沌理论进行研究分析之前必须验证信号是否具有混沌特性。本文综合运用功率谱法、主分量法、最大Lyapunov指数法、替代数据法及Kolmogorov熵法对缸套-活塞环系统的摩擦信号进行检验。结果表明摩擦信号具有显著的混沌特性,如连续宽带的功率谱、正的最大Lyapunov指数和Kolmogorov熵等,因此可以运用混沌理论对实际摩擦信号进行研究。
     进行了多种工况条件下的缸套-活塞环摩擦磨损试验并获取摩擦信号时间序列,运用相空间重构理论研究磨损过程的动力学行为。结果表明:缸套-活塞环的摩擦磨损过程存在混沌行为的“磨合吸引子”,通过磨合吸引子的相轨迹演变可以定性地观察摩擦系统的磨损状态。对不同工况条件下磨合吸引子的关联维数进行了计算,结果表明:速度对吸引子关联维数值的影响最大,其次为载荷与温度。随着速度的增加,吸引子的关联维数先在一定范围内变化不大随后迅速增大;随着载荷的增加,吸引子的关联维数先是线性减小随后迅速增大;随着温度的增加,关联维数呈现出先缓慢减小后快速增加的趋势。磨合吸引子关联维数随着载荷与速度的乘积先逐渐减小后在一定的范围内保持相对稳定,当载荷与速度乘积达到一定值后,吸引子的关联维数值急剧增大。该结论对磨合状态识别和磨损过程预测具有应用意义。
     综合运用混沌和分形理论对缸套-活塞环摩擦磨损过程中的摩擦信号进行研究来识别磨损状态。结果表明混沌和分形特征参数均能有效地表征不同磨损阶段摩擦信号的复杂性与不规则程度。因而可以用混沌与分形特征参数来定量识别磨损状态。在磨合磨损、正常磨损和急剧磨损三个阶段,关联维数、Kolmogorov熵、多重分形谱宽和谱值差呈“正浴盆曲线”的变化规律,而最大Lyapunov指数的变化规律呈“倒浴盆曲线”的变化规律。通过计算关联维数与多重分形谱宽研究工况条件对磨损过程时间影响的结果表明,温度对磨损过程时间的影响最大,其次分别为速度与载荷;磨合时间与磨损过程总时间均随着速度、载荷及载荷与速度的乘积的增大而呈总体下降的趋势,当速度与载荷乘积在一定范围内,磨合时间与总磨损时间变化不大。因此,应恰当地选取缸套-活塞环工况参数的大小。
     研究了分形粗糙表面的生成与表征方法,并运用单重分形和多重分形参数分别对磨合过程不同时刻的缸套磨损表面形貌进行了表征计算。结果表明:随着磨合过程的进行,缸套表面的分形维数逐渐增大,多重分形谱的谱宽参数逐渐减小,并且谱线的形状逐渐由“倒钟状”过渡到向左的钩状。这表明在磨合过程中缸套表面形貌变得越来越均匀。并且运用多重分形谱能够更加全面地表征表面形貌的变化规律。
     此外,为了进一步研究缸套-活塞环磨损过程中表面间的接触、传热等行为规律,本文对表面接触模型和接触热导模型进行了初步研究。采用三维W-M分形函数模拟粗糙表面,综合考虑接触微凸体的弹性、弹塑性和塑性三种变形形式,建立了一个表面接触分形模型;在该模型的基础上,进一步建立了预测接触界面热导的分形模型;最后还对单个微凸体的接触模型进行了修正,使得基于分形理论和基于传统理论建立的微凸体接触模型相统一。计算结果表明了上述所建模型的有效性。这为进一步研究缸套-活塞环摩擦副表面间的接触、磨损和热学等行为奠定了理论基础。
     该论文有图115幅,表23个,参考文献213篇。
In this paper, cylinder linear-piston ring was adopted as research object, based on theresearch of actual friction signal and surface topography during wear process via fractaland chaos analysis and characterization, the variation of nonlinear behavior during thewear process of cylinder linear-piston ring was investigated, which provides theoreticalbasis for identification and prediction of wear stage. The results contribute on bothabundance of theoretical study of tribology and tribological design of the internalcombustion engine.
     The selection of scaling region is essential for calculation of chaotic characteristicquantities. In this paper, a novel non-scale region identification methodology was proposedand validated based on the correlation dimensions of four well known chaotic attractorsincluding Lorenz and five curves generated by the W-M function. The results show that theproposed new methodology can identify the scaling region objectively, accurately,automatically and quickly, which guaranteed the accuracy of numerical calculation.
     Sampling length, sampling interval and noise have great impact on the correlationdimension calculation results. In this paper, the correlation dimensions of theoretical timeseries and a measured nonlinear time series with different sampling length and samplinginterval as well as chaotic signals with mixed noise of different signal to noise ratio wereinvestigated. The calculation results show that the dimension increases as the samplinglength increases, and when the data points reach a certain number, the dimension basicallystabilized; the dimension increases with the increasing of the sampling interval andmaintain relatively stable within a certain interval; the lower the signal to noise ratio, thelarger the value of dimension. As a result, saturation dimension method and methodologybased on establishment of delay time and the sampling interval curve were proposed fordetermination of sampling length and sampling interval respectively. Wavelet analysis wasrecommended to eliminate the noise in actual signal.
     The chaotic characteristics of the friction signal must be verified before chaos analysis.The friction signal of cylinder linear-piston ring was proved possess significant chaoscharacteristics based on the integrated study of friction signal using power spectrummethod, main component method, maximum Lyapunov exponent, surrogate data methodand the Kolmogorov entropy method. The results show that the friction signal havesignificant chaotic characteristics, such as continuous power spectrum, a positivemaximum Lyapunov exponent and Kolmogorov entropy. Thus, chaos theory is qualified for the study of the actual friction signal.
     The wear tests of piston ring-cylinder liner under different conditions were carried outto investigate the nonlinear dynamical behaviors during the wear process based on thephase space reconstruction technology. Studies show that there exists "Running-inattractor" in cylinder linear-piston ring wear process, the wear state of the friction systemcan be qualitatively observed effectively by the evolution of the Running-in attractor’sphase trajectory. Correlation dimension was used to characterize the chaotic characteristicsof the running-in attractor and the results indicate that: speed has great impact on thecorrelation dimension values, followed by load and temperature. As the speed increases,the correlation dimension increases slowly within a certain range and then rapidlyincreased; with the increase of load, the correlation dimension first decreases linearlyfollowed by a rapid increase; as the temperature increases, the correlation show a rapidincrease trend after the first slowly decreasing. The correlation dimension of the running-inattractor decreases gradually and then maintain relatively stable in a certain range as thechanges of the product of load and speed. The value of the correlation dimension increasessharply when the product of load and speed reaches a certain value. The above conclusionscontribute applicable significance of identification and prediction of wear process.
     Fractal and chaotic characteristics parameters were used to characterize the frictionsignal of cylinder linear-piston ring wear process and quantitatively identify the wear stage.The research indicate that both chaotic and fractal characteristic parameters are able toeffectively characterize the complexity and irregularity degree of friction signal in differentwear stages, which verifies the feasibility of chaos and fractal characteristics parameters toquantitatively identify the wear state. In the three stages of running-in wear, normal wearand rapid wear, the correlation dimension, Kolmogorov entropy, multi-fractal spectrumwidth and the spectrum difference show the variation of "bathtub curve", while thevariation of the maximum Lyapunov exponent presents "inverted bathtub curve". Theinfluence of working conditions on the wear process time was investigated by calculationof the correlation dimension and research of multi-fractal spectrum width. The resultsindicate that, the temperature have the greatest impact on the running-in time, followed byspeed and load, with the increasing of load, speed and the product of load and speed, therunning-in time as well as the total time of the wear process decline, which changeinconspicuous within a certain range of the product of load and speed. Therefore,appropriate working parameters should be chosen before the wear tests.
     In this paper, the generation and characterization methods of rough surfaces withfractal characteristics were investigated, single-fractal and multi-fractal theory were used to characterize the surface topography of the cylinder linear in different wear stages. Theanalysis shows that: with the process of running-in, the fractal dimension of the cylinderlinear increases, the shape of the multi-fractal spectrum transit gradually from "invertedbell" to left hook and the spectrum width parameter decreases progressively, which meansthe distribution of the surface tend to be uniform with the conduct of running-in process.Besides, multi-fractal spectrum is able to characterize the variation of surface topographymore comprehensively.
     In addition, we carried out a preliminary study of surface contact model and thermalconductivity model for further research on the variation of contact and hear transfer duringthe wear process of cylinder linear-piston ring. A fractal contact model of rough surfaceswas established based on the three-dimensional W-M function and three kinds of asperitydeformation patterns, including elastic, elastic-plastic and plastic, further established afractal prediction model of thermal conductivity of the interface on the basis of thepresented contact model. At last, a single fractal asperity contact model was revised basedon the integration of fractal and traditional theory and numerical results indicate thevalidity of the model above, which provides theoretical foundation for further studies onfriction and wear, thermal resistance and conductivity between friction surfaces.
引文
[1] Neville A, Morinaa A, Haque T, et al. Compatibility between tribological surfaces and lubricantadditives--How friction and wear reduction can be controlled by surface/lube synergies[J].Tribology International,2007(40):1680-1695.
    [2] Korcek S, Sorab J, Johnson M D, et al. Automotive lubricants for the next millennium[J].Industrial Lubrication and Tribology,2000,52(5),209-220.
    [3]王宪成,张晶,孙耀文等.发动机缸套-活塞环磨损数值计算研究[J].兵工学报,2010,31(8):1014-1019.
    [4]邓志明,欧阳光耀.内燃机缸套-活塞环润滑和磨损研究的现状和对策[J].内燃机与配件,2010(6):1-4.
    [5]王平.内燃机缸套-活塞环摩擦系统的磨损研究[D].上海:上海交通大学,2008.
    [6]葛世荣,朱华.摩擦学复杂系统及其问题的量化研究方法[J].摩擦学学报,2002(5):405-408.
    [7] Urbakh M, Klafter J, Gourdon D, et al. The nonlinear nature of friction[J]. Nature,2004(403):525-528.
    [8] Majumdar A, Tien C L. Fractal characterization and simulation of rough surfaces[J]. Wear,1990,136(2):313-327.
    [9] Buzio R, Boragno C, Biscarini F, et al. The contact mechanics of fractal surfaces[J]. NatureMaterials,2003,2(4):233-236.
    [10] Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between rough surfaces[J].Journal of Tribology,1991,113(1):1-11.
    [11] Wang S, Komvopoulos K. A fractal theory of the interfacial temperature distribution in the slowsliding regime: Part I Elastic contact and heat transfer analysis[J]. Journal of Tribology,1993,116(4):812-822.
    [12] Wang S, Komvopoulos K. A fractal theory of the jnterfacial temperature distribution in the slowsliding regime: Part II-Multiple domains, elastoplastic contacts and applications[J]. Journal ofTribology,1994,116(4):824-832.
    [13] Yan W, Komvopoulos K. Contact analysis of elastic-plastic fractal surfaces[J]. Journal ofApplied Physics,1998,84(7):3617-3624.
    [14] Yin X, Komvopoulos K. An adhesive wear model of fractal surfaces in normal contact[J].International Journal of Solids and Structures,2010,47(7-8):912-921.
    [15] Zou M, Yu B, Cai J, et al. Fractal model for thermal contact conductance[J]. Journal of HeatTransfer,2008,130(10):101301-101309.
    [16] Jiang S, Zheng Y. An analytical model of thermal contact resistance based on theWeierstrass-Mandelbrot fractal function[J]. Proceedings of the Institution of MechanicalEngineers, Part C: Journal of Mechanical Engineering Science,2010,224(4):959-967.
    [17] Chen Y, Fu P, Zhang C, et al. Numerical simulation of laminar heat transfer in microchannelswith rough surfaces characterized by fractal Cantor structures[J]. International Journal of Heatand Fluid Flow,2010,31(4):622-629.
    [18] Ji C C, Zhu H, Jiang W, et al. Running-in test and fractal methodology for worn surfacetopography characterization[J]. Chinese Journal of Mechanical Engineering,2010,23(5):600-605.
    [19] Zhu H, Ge S R, Cao X C, et al. The changes of fractal dimensions of frictional signals in therunning-in wear process[J]. Wear,2007,263(7-12):1502-1507.
    [20] Zhou G, Leu M, Blackmore D. Fractal geometry modeling with applications in surfacecharacterisation and wear prediction[J]. International Journal of Machine Tools andManufacture,1995,35(2):203-209.
    [21]刘洪涛,葛世荣.磨屑轮廓的雷达图分形表征[J].科学通报,2007,52(13):1586-1590.
    [22]刘洪涛,葛世荣.超高分子量聚乙烯磨屑厚度与正压力关系研究[J].科学通报,2008,53(5):605-613.
    [23]朱华,葛世荣,李刚等.磨合试验及磨合吸引子初探[J].润滑与密封,2007,32(1):1-3.
    [24]朱华,葛世荣,吕亮等.磨合吸引子的演变规律[J].2008,44(3):99-104.
    [25] Ting L L. Development of a reciprocating test rig for tribological studies of pistion enginemoving components-Part I: Rig Design and Piston Ring Friction Coefficients MeasuringMethod [J]. Journal of Fuels and Lubricants,1993,102(4):462-469.
    [26] Tung S C, Schwartz S E, Brogan K B, et al. Assessment of correlation between bench wear testresults and engine cylinder wear[J]. SAE Transactions,2000,109(4):2906-2918.
    [27]鹿云,韩志勇,潘艳春.柴油机活塞环镀层摩擦学特性研究[J].材料保护,2004,37(7B):49-53.
    [28] Furuhama S, Takiguchi M. Measurement of piston frictional force in actual operate dieselengine[J]. SAE790855
    [29] Yoshida H, Kusama K, Sagawa J. Effects of surface treatment on piston ring friction force andwear[J]. SAE transactions,1990,99(3):1236-1245.
    [30] Ryk G, Kligerman Y, Etsion I. Experimental investigation of laser surface texturing forreciprocating automotive components[J]. Tribology Transactions,2002,45(4):444-449.
    [31] Johanssona S, Nilssona P H, Ohlssonb R, et al. Experimental friction evaluation of cylinderliner/piston ring contact[J]. Wear,2011,271(3-4):625-633.
    [32]徐双满,曾昭翔.对钢套-活塞环材料在往复滑动中摩擦系数的实验研究[J].北方交通大学学报,1998,22(4):102-104.
    [33]韩德宝,关德林.内燃机气缸套-活塞环磨合过程的模拟试验研究[J].内燃机,2004,(6):23-25,54.
    [34]李国宾,关德林,魏海军等.气缸套-活塞环磨合过程摩擦力矩分形行为研究[J].辽宁工程技术大学学报,2005,(2):182-184.
    [35]宋炳珅,王文中,王慧等.发动机缸套-活塞环摩擦磨损特性试验研究[J].摩擦与润滑,2004,(3):29-32.
    [36]任旻,张培鋆,孙灼等.缸套-活塞环摩擦磨损模拟实验方法研究[J].北京工业大学学报,2002,28(1):62-65.
    [37]合肥工业大学摩擦学研究所, http://www1.hfut.edu.cn/organ/aresearch/mocasuo/.
    [38]施洪生,郭炎,高晓军等.缸套/活塞环摩擦学性能试验机的设计研究[J].润滑与密封.2004,(3):76-79.
    [39]刘伟达.内燃机缸套-活塞环摩擦磨损过程性能研究[J].柴油机设计与制造,2006,14(3):25-28.
    [40]张移山,孔宪梅.关于内燃机缸套活塞环磨合过程的数学模型[J].机械科学与技术,1997,16(1):1-6.
    [41]张家玺,王海林,朱均.内燃机缸套-活塞环磨合动力学模型研究[J].西安交通大学学报,1999,33(2):34-37.
    [42] Greenwood, J A, Tripp, J H. The Contact of Two Nominally Flat Rough Surface[J].Proceedings of the Institution of Mechanical Engineers,1971,185:625-633.
    [43]夏延秋,刘维民,薛群基.几种内燃机磨合油的摩擦学性能评价及在缸套和活塞环摩擦副上的应用[J].摩擦学学报,2001,21(5):358-361.
    [44]张家玺.内燃机磨合及其规范研究[J].农业机械学报,2003,34(3):35-38.
    [45]刘颖,杜健,朱振波.基于正交试验设计的内燃机缸套和活塞环磨合过程数学模型的建立[J].装甲兵工程学院学报,2005,19(2):70-73.
    [46]马晨波,朱华.缸套-活塞环磨合过程中微凸体承载的理论研究[J].车用发动机,2008,(4):32-35.
    [47]朱华,马晨波,历建全.内燃机缸套-活塞环磨合过程中微凸体承载研究[J].摩擦学学报,2009,29(6):559-564.
    [48] Neale M J. Piston ring scuffing-A broad survey of problems and practice[C]. Proceedings of theInstitution of Mechanical Engineers,1970-71,185(2):21-32.
    [49] Ting L L, Mayer J E. Piston ring lubrication and cylinder bore wear anlysis, Part2: TheoryVerification [J]. ASME Journal of Lubrication Technolgoy.1974,96(2):258-266.
    [50] Nautiyal P C, Singhal S, Sharma J P. Friction and Wear Process in Piston Rings[J]. TribologyInternational,1983,16(1):43-49.
    [51] Sudarshan T S, Bhaduri S B. Wear in cylinder liners[J]. Wear,1983,91(3):269-279.
    [52] Eyre T S, Dent N, Dale P. Wear characteristics of piston rings and cylinder liners[J].Lubrication Engineering.1983,39(4):216-221.
    [53] Priest M,Dowson D,Taylor C M. Predictive wear modelling of lubricated piston rings in adiesel engine[J]. Wear,1999,231(1):89-101.
    [54] Gangopadhyay A. Development of a Piston Ring-Cylinder Bore Wear Model[J]. SAEtransactions,2000,109(3):1726-1735.
    [55] Boon-Keat C. Elastohydrodynamic modeling and measurement of cylinder-kit assemblytribological performance[D]. Michigan: Michigan State University,2005.
    [56]桂长林. Archard的磨损设计计算模型及其应用方法[J].润滑与密封,1990,(l):12-21.
    [57]孔凌嘉,谢友柏.缸套-活塞环摩擦学系统漏气与润滑和摩擦与磨损的计算[J].内燃机学报,1992,10(3):267-274.
    [58]刘馄.缸套-活塞环系统摩擦、润滑特性的研究及磨损模型的建立[D].西安:西安交通大学.1995.
    [59]张勇.内燃机活塞环一气缸套润滑磨损的数值模拟研究[D].武汉:华中理工大学,1999.
    [60]王宪成,和穆,张晶等.高原柴油机气缸套-活塞环磨损计算研究[J].润滑与密封,2011,36(1):13-16.
    [61]徐燕,周月亭.活塞环端面磨损研究[J].内燃机与配件,2010,(12):1-3.
    [62]鹿云.柴油机活塞环缸套摩擦学特性研究[J].汽车技术,2008,(12):48-51.
    [63] Stanton, T.E. The Friction of Piston and Piston Rings[J]. The Engineer, Vol.139,1925:70-72.
    [64] Castleman R A. Hydrodynamic Theory of Piston Ring Lubrication[J]. Physics,1936,7:364-367.
    [65] Patir N, Cheng H S. An average flow model for determining effects of three-dimensionalroughness on partial hydrodynamic lubrication[J]. ASME Transaction Journal of LubricationTechnology,1978,100(1):12-17.
    [66] Parir N, Cheng H S. Application of average flow model to lubrication between rough slidingsurfaces[J]. ASME Transaction Journal of Lubrication Technology,1979,101(2):220-230.
    [67] Dowson D, Economou P N, Ruddy B L. Piston Ring Lubrication-Part II, Theoretical Analysisof A Single Ring and A Complete Ring Pack[C]. Energy Conservation Through Fluid FilmLubrication Technology: Frontiers in Research and Design. ASME, New York,1979:23-52.
    [68] Rhode, S M. Mixed Friction Model for Dynamically Loaded Contacts With Application toPiston Ring Lubrication. Proceedings of The Leeds-Lyon Symposium on Tribology[C].Westbury House,1980:262-287.
    [69]周保全.内燃机活塞环组的混合润滑模型及其应用[J].内燃机学报.1991,9(1):83-90.
    [70]孔凌嘉.内燃机缸套-活塞环摩擦学系统研究[D].西安:西安交通大学.1991.
    [71] Jaana Tamminen, Carl-Erik Sandstrom, Peter Andersson. Influence of load on the tribologicalconditions in piston ring and cylinder liner contacts in a medium-speed diesel engine[J].Tribology International,2006,39(12):1643-1652.
    [72] Felter C L. Numerical simulation of piston ring lubrication[J]. Tribology International,2008,41(9-10):914-919.
    [73]张勇,简弃非,张有.气缸套二维磨损对活塞环-气缸套摩擦副润滑特性的影响[J].内燃机学报,2001,19(1):84-87.
    [74]白敏丽,丁铁新,董卫军.活塞环-气缸套润滑摩擦研究[J].内燃机学报,2005,23(1):72-76.
    [75]朱代根,樊瑜瑾.内燃机缸套-活塞环润滑状态分析[J].机械工程与自动化,2006,(6):70-72.
    [76]叶晓明,蒋炎坤,郝秀丽等.气缸套径向变形对活塞环弹流润滑性能的影响[J].车用发动机,2007,(2):22-25.
    [77] Etsion, I. State of the art in laser surface texturing [J]. Journal of Tribology,2005,127(1):248-253.
    [78]袁明超,钱双庆,刘一静等.利用表面织构提高活塞环/缸套摩擦性能的实验研究[J].机械科学与技术,2009,(12):1630-1633.
    [79] Ronen A, Etsion I. Friction-reducing surface-texturing in reciprocating automotivecomponents[J]. Tribology Transactions,2001,44(3):359-366.
    [80] Kligerman Y, Etsion I, Shinkarenko A. Improving tribological performance of piston rings bypartial surface texturing[J]. Journal of Tribology,2005,127(3):632-638.
    [81] Ryk G, Kligerman Y, Etsion I. Experimental investigation of partial laser surface texturing forpiston-ring friction reduction[J]. Tribology Transactions,2005,48(4):583-588.
    [82] Ryk G, Etsion I. Testing piston rings with partial laser surface texturing for friction reduction[J].Wear,2006,261(7-8):792-796.
    [83]符永宏,陆华才,华希俊等.激光微绗磨缸套润滑耐磨性能理论分析[J].内燃机学报,2006,24(6):559-564.
    [84]符永宏,张华伟,纪敬虎等.微造型活塞环表面的润滑性能数值分析[J].内燃机学报,2009,27(2):180-185.
    [85]王晓雷,王静秋,韩文非.边界润滑条件下表面微细织构减摩特性的研究[J].润滑与密封,2007,32(12):36-39.
    [86]刘一静,袁明超,王晓雷.表面织构对发动机活塞/缸套摩擦性能的影响[J].中国矿业大学学报,2009,38(6):866-871.
    [87] Ruddy B L, Parsons B, Dowson D, et al. The influence of thermal distortion and wear of pistonring grooves upon the lubrication of piston rings in diesel engines[C]. Proceedings of the6thLeeds-Lyon Symposium on Tribology.1979.
    [88] Ruddy B L, Dowson D, Economou P N, et al. Piston Ring Lubrication-Part III, The Influenceof Ring Dynamics and Ring Twist in Energy Conservation through Fluid Film LubricationTechnology[C]. Frontiers in Research and Design ASME,1979,191-215.
    [89] Namazian M, Heywood J B. Flow in the Piston-Cylinder-Ring Crevices of a Spark-IgnitionEngine: Effect on Hydrocarbon Emissions, Efficiency and Power. SAE820088.
    [90] Keribar R, Dursunkaya Z, Flemming M F. An integrated model of ring pack performance[J].ASME Jounal of Engineering for Gas Turbines and Power,1991,113(3),382-389.
    [91]戴旭东,王义亮,谢友柏.以润滑油膜为动力耦合件的内燃机缸套-活塞系统中动力耦合方程的建立及求解方法[J].润滑与密封,2001,(5):5-7.
    [92]戴旭东,袁小阳,谢友柏.内燃机缸套-活塞系统摩擦学与动力学行为耦合分析[J].西安交通大学学报,2003,37(7):683-687.
    [93]戴旭东,袁小阳,谢友柏.缸套-活塞系统润滑行为与动力学行为耦合分析[J].摩擦学学报,2003,23(6):519-523.
    [94] Urbakh M, Klafter J, Gourdon D, et al. The nonlinear nature of friction[J]. Nature,430(29):525-528.
    [95]戴振东,薛群基.摩擦磨损过程的非平衡态热力学研究[J].自然科学,1998,20(4):220-228.
    [96]朱华,陆斌斌,历建全等.摩擦学问题研究的非线性理论方法[J].机械工程学报,2010,46(15):82-88.
    [97]葛世荣,朱华.摩擦学的分形[M].北京:机械工业出版社,2004.
    [98] Canuds D W C, Olsson H, Astrom K J, et al. A new model for control of systems withfriction[J]. IEEE Trans Automat contr.1995,40(3):419-425.
    [99] Li Y, Feng Z C. Bifurcation and chaos in friction-induced vibration[J]. Communications inNonlinear Science and Numerical Simulation.2004,9(6):633-647.
    [100] Fe kan M. Chaos in ordinary differential equations with multivalued perturbations:applications to dry friction problems[J]. Nonlinear Analysis: Theory, Methods&Applications,1997,30(3):1355-1364.
    [101] Feckan M. Chaotic solutions in differential inclusions: chaos in dry friction problems[J].Transactions of the American Mathematical Society,1999,351(7):2861-2873.
    [102] Moon F C, Reddy A J, Holmes W T. Experiments in control andanti-control of chaos in a dryfriction oscillator[J]. Journal of Vibration and Control,2003,9(3-4):387-397.
    [103] Feeny B. A nonsmooth coulomb friction oscillator[J]. Physical,1992,59(1-3):25-38.
    [104] Feeny B, Moon F C. Bifurcation sequences of a coulomb friction oscillator[J]. NonlinearDynamics,1993,4(1):25-37.
    [105] Feeny B. Chaos in a dry-friction oscillator: experiment and numerical modeling[J]. Journal ofSound and Vibration,1994,170(3):303-323.
    [106] Galvanetto U. Bifurcations and chaos in a four dimension mechanical system with dryfriction[J]. Journal of sound and vibration,1997,204(7):690-695.
    [107] Andrzej S, Wojewoda J, Wiercigroch M, et al. Chaos caused by non-reversible dry friction[J].Chaos, Solitons and Fractals,2003,16(5):661-664.
    [108]黄进,叶尚辉.摩擦振子的混沌振荡研究[J].机械科学与技术,1999,18(2):176-179.
    [109]黄进,叶尚辉.含摩擦环节伺服系统的混沌振荡的研究[J].西安电子科技大学学报,1999,26(2):210-213.
    [110] Yang F H, Zhang W, Wang J. Sliding bifurcations and chaos induced by dry friction in abraking system[J]. Chaos, Solitons&Fractals,2007,40(3):1060-1075.
    [111]温建明,冯奇.两自由度随机干摩擦系统的Stick-slip运动[J].科学技术与工程,2010,(6):1341-1346.
    [112]朱华,葛世荣.摩擦学系统的混沌特性[J].机械工程学报,2004,40(12):10-13.
    [113] Zhu H, Ge S R, Huang X L, et al. Experimental study on the characterization of worn surfacetopography with characteristic roughness parameter [J]. Wear,2003,255(1-6):309-314.
    [114]吕亮.关联维数计算技术与磨合吸引子演变规律研究[D].徐州:中国矿业大学,2008.
    [115]陆斌斌.基于分形与混沌理论的磨合、磨损和润滑状态识别研究[D].徐州:中国矿业大学,2010.
    [116]田建明.基于分形理论的柴油机缸套-活塞环磨合期摩擦磨损特性研究[D].大连:大连海事大学,2006.
    [117] Sayles R S, Thomas T R. Surface topography as a non-stationary random process[J]. Nature,1978,271:431-434.
    [118] Greenwood J A, Willimson J B P. Contact of nominally flat surfaces[J]. Proceedings of theRoyal Society of London, Series A, Mathematical and Physical Sciences,1966,295(1442):300-319.
    [119] Thomas A P, Thomas T R. Engineering surface as fractals, fractal aspect of mateials[M].Pittsburgh: Materials Research Society,1986.
    [120] Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization and contactmechanics of surfaces[J]. Journal of Tribology,1990,112(2):205-216.
    [121] Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between rough surfaces[J].Journal of Tribology,1991,113(1):1-11.
    [122] Majumdar A, Tien C L. Fractal characterization and simulation of rough surfaces[J]. Wear,1990,136(2):313-327.
    [123] Ganti S, Bhushan B. Generalized fractal analysis and its applications to engineering surfaces[J].Wear,1995,180(1-2):17-34.
    [124]葛世荣, Tonder K.粗糙表面的分形特征与分形表达研究[J].摩擦学学报,1997,17(1):73-80.
    [125]朱华,李刚,唐玮.均方根测度方法表征粗糙表面的有效性研究[J].机械工程学报,2006,42(9):140-144.
    [126] Pentland A P. Fractal-based description of natural scenes[J]. Pattern Analysis and MachineIntelligence,1984,6(6):661-674.
    [127]蒋书文,姜斌,李燕.磨损表面形貌的三维分形维数计算[J].摩擦学学报,2003,23(6):533-536.
    [128]陈辉,胡元中,王慧等.粗糙表面分形特征的模拟及其表征[J].机械工程学报,2006,42(9):219-223.
    [129] Bowden F P, Tabor D. The friction and lubrication of solids, part II[M]. Oxford: ClarendonPress,1964.
    [130] Archard J F. Elastic deformation and the laws of friction[J]. Proceedings of The Royal Societyof London,1957,243:190-205.
    [131] Whitehouse D J, Archard J F. The properties of random surface of significance in theircontact[J]. Proceedings of The Royal Society of London,1970,316(1524):97-121.
    [132] Morag Y, Etsion I. Resolving the contradiction of asperities plastic to elastic mode transition incurrent contact models of fractal rough surfaces[J]. Wear,2007,262(5-6):624-629.
    [133] Kogut L, Etsion I. A static friction model for elastic-plastic contacting rough surfaces[J]. ASMETransactions Journel of Tribology,2004,126(1):34-40.
    [134] You J M, Chen T N. A static friction model for the contact of fractal surfaces[J]. Proceedings ofthe Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology,2010,224(5):513-518.
    [135] Warren T L, Krajcinovic D. Fractal models of elastic-perfectly plastic contact of rough surfacesbased on the cantor set[J]. International Journal Solids&Structures,1995,32(19):2907-2922.
    [136]尤晋闽,陈天宁.结合面法向动态参数的分形模型[J],西安交通大学学报,2009,43(9):91-94.
    [137]刘红斌.万大平,胡德金.分形表面接触变形对部分膜润滑的影响[J],摩擦学学报,2008,28(3):244-247.
    [138]张学良,温淑花,徐格宁等.结合部切向接触刚度分形模型研究[J].应用力学学报,2003,20(1):70-72.
    [139] Wang S, Komvopoulos K. A fractal theory of the temperature distribution at elastic contacts offast sliding surfaces[J]. ASME Transactions Journel of Tribology,1995,117(2):203-215.
    [140]冯秀,陆锋.法兰与金属垫片密封表面接触分形模型[J].苏州大学学报(工科版),2008,28(2):29-33.
    [141] Sun J J, Wei L, Feng X, et al. Leakage prediction method for contacting mechanical seals withparallel face[J]. Chinese Journal Mechanical Engineering,2010,23:7-15.
    [142] Zhou G Y, Liu M C, Blackmore D. Fractal geometry model for wear prediction[J]. Wear,1993,170(1):1-14.
    [143] Brovon C A, Savary G. Describing grunge surface texture using contact profilometry andfractal analysis [J]. Wear,1991,147:211.
    [144] Ge S, Chen G. Fractal prediction models of sliding wear during the running-in process [J]. Wear,1999,231(2):249-255.
    [145] Ge S, Chen G, Zhang X. Fractal characterization of wear particle accumulation in the wearprocess[J]. Wear,2001,251(1-12):1227-1233.
    [146]陈国安,葛世荣,刘金龙.滑动摩擦力分形预测模型[J].中国矿业大学学报,2000,29(5):492-495.
    [147] Sahoo P, Chowdhury R S K. A fractal analysis of adhesive wear at the contact between roughsolids in gentle sliding[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology,2002,214(9-10):583-595.
    [148] Sahoo P, Chowdhury R S K. A fractal analysis of adhesive wear at the contact between roughsolids[J]. Wear,2002,253(9-10):924-934.
    [149]李国宾,田建明,关德林.缸套-活塞环磨合过程摩擦力矩多重分形研究[J].润滑与密封,2006,(4):39-41.
    [150]罗永前.气缸套-活塞环磨合过程摩擦磨损特性分析[J].内燃机,2007,(1):58-60.
    [151] Raadnui S. Wear debris analysis-utilization of quantitative computer image analysis: Areview[J]. Tribology International,2005,38(10):871-878.
    [152] Stachowiak G W, Podsiadlo P. Towards the development of an automated wear debrisclassification system[J]. Tribology International,2006,39(12):1615-1623.
    [153] Zhang M Q, Lu Z P, Friedrich K. On the wear debris of polyetheretherketone: fractaldimensions in relation to wear mechanisms[J]. Tribology International,1997,30(2):87-102.
    [154] Stachowiak G W, Hamblin M G. Application of fractals to the description of shape of the debrisfound in tribological systems[C]. Proceedings of the4th International Tribology Conference,1994,1:181-190.
    [155] Kirk T B, Stachowiak G W, Batchelor A W. Fractal parameters and computer image analysisapplied to wear debris isolated by Ferro graph[J]. Wear,1991,145:347-365.
    [156] Thomas L, Warren T L, Krajcinovi C D. Random cantor set models for the elastic-perfectlyplastic contact of rough surfaces[J]. Wear,1996(1-2),196:1-15.
    [157]潘建军,孔宪梅,陈大融.铁谱磨粒的分形纹理特征提取[J].机械科学与技术(增刊),1997,16:226-229.
    [158]黄传辉,朱华,葛世荣.磨粒轮廓分形维数与磨损状态的关联性研究[J].摩擦学学报,2003,23(4):336-339.
    [159]修春波,刘向东,张宇河.相空间重构延迟时间与嵌入维数的选择[J].北京理工大学学报,2003,23(2):219-224.
    [160] Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series[J].Physica D: Nonlinear Phenomena,1985,16(3):285-317.
    [161] Rosenstein M T, Collins J J, Luca C J D. A practical method for calculating largest Lyapunovexponents from small data sets[J]. Physica D: Nonlinear Phenomena,1993,65(1-2):117-134.
    [162] Schouten J C, Takens F, Bleek C M. Maximum-likelihood estimation of the entropy of anattractor[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics,1994,49(1):126-129.
    [163] Eckmann J P, Ruelle D. Fundamental limitation for estimating dimensions and Lyapunovexponents in dynamical systems[J]. Physica D: Nonlinear Phenomena,1992,56(2-3):185-187.
    [164] Schouten J C, Takens F, van den Bleek C M. Maximum-likelihood estimation of the entropy ofan attractor[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics,1994,49(1):126-129.
    [165]朱焰宇,林振山.利用一维资料重现n-维系统吸引子结构的试验[J].热带气象学报,1997,13(1):68-74.
    [166]于会生,孙霞,罗守福等.非晶Ni-Cu-P合金化学沉积过程的多重分形谱研究[J].物理学报,2002,51(5):999-1003.
    [167]孙霞,熊刚,傅竹西等. ZnO薄膜原子力显微镜图像的多重分形谱[J].物理学报,2000,49(5):854-862.
    [168]李平,胡可乐,汪秉宏.多重分形谱在材料分析中的应用研究[J].南京航空航天大学学报,2004,36(1):77-81.
    [169]王祖林,周荫清.多重分形谱及其计算[J].北京航空航天大学学报,2000,26(3):256-258.
    [170]刘洪涛,葛世荣,罗勇.磨屑破碎及其分布的多重分形模拟[J].中国矿业大学学报,2007,36(2):182-187.
    [171] Tang G J, Du B Q, Wang S L. Scaleless band automatic identification for fractal fault diagnosisof rotor system[J]. Journal of Power Engineering,2009,29(5):440-444.
    [172]柳景青.用水量时间观测序列中的分形和混沌特性[J].浙江大学学报,2004,31(2):236-240
    [173] Yokoya N, Yamamoto K, Funakubo N. Fractal-based analysis and interpolation of3D naturalsurfaces and their applications to terrain modeling[J]. Computer Vision, Graphics, and ImageProcessing,1989,46(3):284-302.
    [174]汪富泉,罗朝盛. G-P算法的改进及其应用[J].计算物理,1993,10:345-351
    [175] Maragos P, Sun F K. Measuring the fractal dimension of signals[J]. IEEE Transactions onSignal Processing,1993,41(1):108-121.
    [176]洪时中,洪时明.一种客观确定分形“无标度区”的方法-自相似比法.大自然探索,1993,13:53-57.
    [177]费斌,蒋庄德,王海容.基于遗传算法求解分形无标度区的方法[J].西安交通大学学报,1998,32(7):72-75.
    [178]党建武,施怡,黄建国.分形研究中无标度区的计算机识别[J].计算机工程与应用,2003,39(12):25-27.
    [179] Yang H Y, Ye H, Wang G Z, et al. Identification of scaling regime in chaotic correlationdimension calculation[C]. International3rd IEEE Conference on Industrial Electronics andApplications, ICIEA,2008,(3-5):1383-1387.
    [180] Lai Y C, Lerner D. Effective scaling regime for computing the correlation dimension fromchaotic time series[J]. Physica D: Nonlinear Phenomena,1998,115(1-2):1-18.
    [181] MacQueen J. Some methods for classification and analysis of multivariate observations[J].Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,1967,(1):281-297.
    [182] Hartigan J A, Wong M A. A K-Means clustering algorithm[J]. Applied statistics,1979,28(1):100-108.
    [183] Russel D A, Hanson J D, Ott E. Dimension of strange attractors[J]. Phys Rev Lett,1980,45(14):1175-1178.
    [184] Grassberger P, Procaccia I. Characterization of strange attractors[J]. Phys Rev Lett,1983,50(5):346-349.
    [185] Grassberger P, Procaccia I. Measuring the strangeness of strange attractors[J]. Physica D:Nonlinear Phenomena,1983,9(1-2):189-208.
    [186] Peitgen H, Jurgens H, Saupe D. Chaos and Fractals: New Frontiers of Science.2nd ed[M]. NewYork: Springer-Verlag,2004.
    [187] Sprott J C. Chaos and Time-Series Analysis[M]. Oxford: Oxford University Press,2003.
    [188] Liao X, Wang G. Employing fractals and FEM for detailed variation analysis of non-rigidassemblies[J]. International Journal of Machine Tools and Manufacture,2005,45(4-5):445-454.
    [189]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [190] Cellucci C J, Albano A M, Rapp P E. Comparative study of embedding methods[J]. Physicalreview E, Statistical, nonlinear, and soft matter physics,2003,67(6):066210.
    [191] Theiler J. Efficient algorithm for estimating the correlation dimension from a set of discretepoints[J]. Physical review A, General physics,1987,36(9):4456-4462.
    [192] Bueno-Orovio A, P′erez-Garc′a V M. Enhanced box and prism assisted algorithms forcomputing the correlation dimension[J]. Chaos, Solitons&Fractals,2007,34(2):509-518.
    [193] Skinner J E, Carpeggiani C, Landisman C E, et al. Correlation dimension of heartbeat intervalsis reduced in conscious pigs by myocardial ischemia[J]. Circulation Research,1991,68(4):966-966.
    [194]汪慰军,陈进,吴昭同等.关联维数的计算及其在大机组故障诊断中的应用[J].上海交通大学学报,2000,34(9):1265-1268.
    [195] Wang H C, Chen G R, Lü J H. Complex dynamical behaviors of daily data series in stockexchange[J]. Physics Letters A,2004,333(3-4):246-255.
    [196] Small M. Applied nonlinear time series analysis: Applications in physics, physiology andfinance[M]. Singapore: World Scientifc,2005.
    [197] LüJ H, Han F L, Yu X H, et al. Generating3-D multi-scroll chaotic attractors: A hysteresisseries switching method[J]. Automatica,2004,40(10):1677-1687.
    [198] Lü J H, Yu S M, Leung H, et al. Experimental verifcation of multidirectional multiscrollchaotic attractors[J]. IEEE Transactions On Circuits And Systems-I: Regular Papers,2006,53(1):149-165.
    [199] Lü J H, Chen G R. Generating multiscroll chaotic attractors: theories, methods andapplications[J]. IEEE Transactions on Circuits and Systems-I,2006,16(4):775-858.
    [200]朱华,葛世荣.摩擦力和摩擦振动的分形行为研究[J].摩擦学学报,2004,24(5):433-437.
    [201] Greenwood J, Tripp J. The contact of two nominally flat rough surfaces, Proceedings of theInstitution of Mechanical Engineers,1970-71,185:625-633.
    [202] Kogut L, Etsion I. Elastic-plastic contact analysis of a sphere and a rigid flat[J]. Journal ofApplied Mechanics,2002,69(5):657-622.
    [203]赵永武,吕彦明,蒋建忠.新的粗糙表面弹塑性接触模型[J].机械工程学报,2007,43(3):95-101.
    [204] Cooper M G, Mikic B B, Yovanovich M M. Thermal contact conductance[J]. InternationalJournal of Heat and Mass Transfer,1969,12(3):279-300.
    [205] Bush A W, Gibsona R D, Thomasb T R. The Elastic Contact Of A Rough Surface[J]. Wear,1975,35(1):87-111.
    [206] Yovanovich M M, Tien C H, Schneider G E. General solution of constriction resistance withina compound disk[J]. Progress In Astronautics And Aeronautics: Heat Transfer, Thermal Control,and Heat Pipes,1979,70:47-62.
    [207] Antonetti V W, Yovanovich M M. Using Metallic coatings to enhance thermal contactconductance of electronic packages[J]. Heat Transfer Engineering,1988,44(5):85-92.
    [208] Williamson M, Majumdar A. Effect of surface deformations on contact conductance[J]. Journalof Heat Transfer,1992,114(4)802-810.
    [209] Sridhar M R, Yovanovich M. M. Review of elastic and plastic contact conductance models:comparison with experiment[J]. Journal of Thermophysics and Heat Transfer,1994,8(4):633-640.
    [210] Sridhar M R, Yovanovich M M. Elastoplastic contact conductance model for isotropicconforming rough surfaces and comparison with experiments[J]. Journal of Heat Transfer,1996,118(1):3-9.
    [211] Zhao J F, Wang A L, Yang C X. Prediction of thermal contact conductance based on thestatistics of the roughness profile characteristics[J]. International Journal of Heat and MassTransfer,2005,48(5):974-985.
    [212] Jeng Y R, Chen J T, Cheng C Y. Thermal contact conductance of coated surfaces[J]. Wear,2006,260(1-2):159-167.
    [213]赵兰萍,徐烈.低温真空下固体界面间接触热导的实验研究[J].中国空间科学技术,2003,23(4):6-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700