销盘滑动磨损试验的仿真方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦学仿真是现代信息技术和计算机仿真技术并结合各种数学方法在摩擦学领域发展起来一门新的研究课题。由于实际摩擦学系统的复杂性和工况的不同,使传统模拟试验方法获得的结果往往只是定性的,不能很好地应用于摩擦学系统的设计和实际工程应用。有必要寻求新的方法和手段深入研究磨损的定量规律,否则就不可能期望在磨损的预防与控制上取得根本性突破。本课题研究的正是通过计算机技术和数学分析方法,选择销盘滑动磨损试验这类典型磨损试验系统为研究对象,进行滑动磨损试验的摩擦学仿真研究,以期提供一种新的磨损研究分析方法和相应的磨损仿真模型,实现基本的摩擦学接触问题和磨损问题的仿真。
     本文主要研究内容及结果如下:
     (1)选择机械零件常用材料45钢制作磨损试件,在MMW-1立式万能摩擦磨损试验机进行销盘滑动磨损试验。通过改变载荷、转速和热处理状态(硬度),获得了这些参数对磨损的影响规律。
     (2)在试验数据和理论分析基础上,建立了包含多个参数的磨损仿真模型;用试验数据确定了模型的参数,并用试验数据对模型进行了验证,结果表明,仿真模型基本能反映销盘干滑动磨损试验的输入输出关系。
     (3)在对摩擦副接触特性和接触应力计算理论分析基础上,推导了销盘接触应力理论计算模型。利用ANSYS软件分别对销盘接触副进行二维和三维的接触应力模拟分析。有限元模拟分析结果表明,接触界面压力分布是不均匀的,接触面中间接触压力小、边缘大,峰值达到外加载荷的2.786倍。销盘接触由静态变为动态时,接触应力场在形态和数值上都发生很大变化。三维和二维模型的计算结果类似,只是在数值有少量变化。分析结果表明,ANSYS有限元法可以用来对理想接触状态进行模拟,便于从直观上分析销盘的受力状态和它的摩擦磨损机理。
     (4)通过对销盘摩擦副试验工况条件的分析,建立起销盘试样摩擦表面温度及温度场分布的理论模型,对45钢销盘销试样摩擦表面温度及温度场分布进行模拟计算;并采用有限元法对摩擦表面温度场进行了仿真计算。计算结果表明,一维温度场稳态理论模型及二维差分稳态模型计算结果一致;二维和三维的有限元瞬态模型的计算结果进一步验证了一维稳态理论计算模型的可信性。有限元计算结果表明,销盘摩擦副在滑动磨损过程中,从开始滑动40s左右,温度场达到稳态,沿销轴线方向,稳态温升基本呈线性分布;二维和三维有限元模型计算的接触面最高温升基本一致;
     (5)针对销盘干滑动磨损率试验数据,分别进行了一元非线性回归模型、多元非线性回归模型和BP神经网络模型研究。通过对不同函数类型的一元非线性回归、多元非线性回归模型的分析,结果表明,指数回归模型的预测效果最好。通过比较不同隐层接点数的网络模型的预测结果分析,发现隐层接点数在7时,可获得较佳的预测结果,据此确定了网络模型的结构和具体参数。回归模型和BP网络模型都能够用来对销盘磨损率进行预测,但BP模型预测的精度更高。
Tribological simulation was a new study problem developed from modern information technology and computer simulation technology in combination with a variety of mathematical methods in the field of tribology. Due to the complexity of actual tribological systems and different working conditions, the results obtained from traditional simulation test method were often qualitative only, and couldn't be used to the designs of tribological system and practical engineering applications. There is a need to seek new ways and means of in-depth study of the wear quantitative law ,otherwise the fundamental breakthrough of the prevention and control of the wear could not be achieved. The tribological simulation research of the typical pin on disc sliding wear test system was carried by the adoption of computer technology and mathematical analysis methods, with a view to provide a new wear analysis method and the corresponding wear simulation model and to achieve simulation of the basic tribological contact problems and the wear problems.
     The content and results of this thesis were as follows:
     (1) The materials of 45 steel commonly used as mechanical parts was selected as wear specimens and the pin on disc sliding wear tests were carried on the MMW-1 vertical universal friction and wear test machine. By changing the load, speed and heat treatment state (hardness), the effect laws on wear of . these parameters were obtained
     (2) The wear simulation model including multiple parameters was established based on the experimental data and theoretical analysis. The parameters of the model were determined by the test data and to and the model was verified by the test data and the results showed that the simulation model could reflect the basic relationship between input and output of the pin on disc dry sliding wear test.
     (3) The contact stress theoretical calculating model of the pin on disc was deduced on the basis of the theoretical analysis of contact characteristics and contact stress calculation of the frictional couple. The two-dimensional and three-dimensional contact stress simulation analysis of the pin on disc contact couple were carried by the ANSYS software. The finite element simulation analysis results showed that the interface contact pressure distribution was uneven, contact pressure was small in the interspace of the contact interface and was big among the edge of the contact interface the small, the contact pressure peak reached 2.786 times of the load. The numerical value and conformation of the contact stress field arised great changes when the contact of Pin on disk was changed from static to dynamic state. The calculation results of three-dimensional and two-dimensional model were similar, only a small amount of change in value. The analysis results showed that ANSYS finite element method could be used to simulate the ideal contact state and it facilitated the analysis of stress state and friction and wear mechanism of the pin on disc from an intuitive view.
     (4) The theoretical modes of pin-on-disc specimens friction surface temperature and temperature field distribution were established through the test conditions analysis of the pin-on-disc friction couple, the friction surface temperature and temperature field distribution of 45 steel pin specimen was calculated by theoretical modes. Friction surface temperature fields were simulated also by finite element method. The calculating results of one-dimensional steady-state temperature field theoretical model of and two-dimensional steady-state differential model were same. The credibility of one-dimensional model of steady-state was further validated by the two-dimensional and three-dimensional transient finite element model results. The finite element analysis results showed that the friction temperature field of the pin on disc friction couple reached steady-state about 40s after start sliding in the sliding wear process, the steady-state temperature rise behaved basically linear distribution along the pin axis direction, the maximum temperature rise of the contact surfaces of the two-dimensional and three-dimensional finite element model are basically the same;
     (5) One dollar non-linear regression model, multivariate nonlinear regression model and BP neural network model were respectively studied for the pin on disk dry sliding wear rate data. The analysis results of different types of one dollar non-linear regression, multivariate nonlinear regression model showed that the forecast effects of the index regression model were the best. It was found that the forecast effects was the best when the number of points in hidden layer was seven by comparing forecast results the different number of points of hidden layer of the network model, accordingly the structure of the network model and specific parameters were determined. The regression model and BP network model all could be used to predict the pin on disk dry sliding wear rate, but the BP model forecast were more accurate.
引文
[1]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990.
    [2]张嗣伟.基础摩擦学[M].山东:石油大学出版社,2001.
    [3]张嗣伟.摩擦学向何处去-关于摩擦学科发展的思考[J].中国机械工程,2000(1):235-238
    [4]Fang L,Xing J,Liu W,et al.Computer simulation of two-body abrasion processes[J].Wear,2001,250-251:1356-1360.
    [5]严立.磨损问题的仿真求解研究[J].摩擦学学报,1999(1):50-55.
    [6]江亲瑜,葛宰林,李宝良。机车柴油机凸轮磨损的数值模拟[J].大连铁道学院学报.2001(6):27-34.
    [7]Franklin F J,Widiyarta I,Kapoor A.Computer simulation of and rolling contact fatigue[J].Wear,2001,251:949-955.
    [8]Kapoor,Franklin F J.Tribological layers and the wear of ductile materials[J].Wear,2000,245:204-215.
    [9]Zum Gahr KH.Modelling of two-body abrasive wear[J].Wear,1988,124:87-103.
    [10]Sundarajan G.A new model for two-ody abrasive wear based on the localization of plastic deformation[J].Wear,1987,117:1-35.
    [11]Hokkirigawa K,Kato K.Theoretical estimation of abrasive wear resistance based on microscopic wear mechanism[M].Wear of Materials,1989.
    [12]Kitsunai H,Kato K,Hokkirigawa K,etal.The transition of microscopic wear modes during repeated sliding friction observed by SEM-tribo system[M].Wear of Materials,1989.
    [13]Kato K.Micro-mechanisms of wear-wear modes[J].Wear,1992,153::277-295.
    [14]Torrance A A,Buckley T R.A slip-line field model of abrasive wear[J].Wear,1996,196::35-45.
    [15]张波.磨损动态过程理论及其在磨削加工中应用的研究[D].西安:西安交通大学,1988.
    [16]张波,谢友柚,两体微切割磨削理论(Ⅰ)[C].成都:第四届全国摩擦学学术会议论文集,1987.
    [17]张波,谢友柏,两体微切割磨削理论(Ⅱ)[C].成都:第四届全国摩擦学学术会议论文集,1987.
    [18]张波,谢友柏,两体微切割磨削理论(Ⅲ)[C].成都:第四届全国摩擦学学术会议论文集,1987.
    [19]Zhang B,Xie Y B.Two-body micro cutting wear model,Part Ⅰ:Two-dimensiona roughness mode[J],wear,1989,129:37-46
    [20]Zhang Bo,Xie You-Bai,Two body micro-cutting wear model,Part Ⅱ:Three-dimensional roughness model[J].Wear,1989,129:49-58.
    [21]Zhang Bo,Xie You-Bai,Two body micro-cutting wear model,Part Ⅲ:Stable profile height distribution of a worn surface[J].Wear,1989,129:59-66.
    [22]Zhang Bo,Xie You-Bai,Two body micro-cutting wear model,Part Ⅳ:Theoretical analysis of friction,[J].Wear,1989,129:67-79.
    [23]刘峰璧,谢友柏.二体磨损过程预测模型[J].西安交通大学学报,1998,32(2):20-23.
    [24]Liu F B,Li X E,Xie Y B.Theoretical Investigation on Three Body Contact about Rough Surface)[J].Chinese Journal of Mechanical Engineering.1997,33(3):27-31.
    [25]Liu F B,Li X E,Xie Y B.A New Model for Predicting Roughness of Rubbing Surface in Three Body Abrasive Wear[J].Chinese Journal of Mechanical Engineering.2000,19(1):9-12.
    [26]Jacobson S,Wallen P,Hogmark S.Fundamental aspects of abrasive wear studied by a new numerical simulation model[J].Wear,1988:595-606.
    [27]Jiaren Jiang,Fang hui Sheng,Feng shen Ren.Modelling of two-body abrasive wear under multiple contact conditions[J].Wear,1998,217:35-45.
    [28]Podra,P;Andersson,S.Finite element analysis wear simulation of a conical spinning contact considering surface topography[J].Wear,1999,224:13-21.
    [29]Peterseim,J;Elsing,R;Deuerler,F.Simulation of sliding wear of hard-phase-containing metallic compound materials.[J].Metall(Germany),1998,52:643-651.
    [30]Li D Y,Elalem K,Anderson M J,et al.A microscale dynamical model for wear simulation [J].Wear,1999,225-229:380-386.
    [31]Elalem K,Li D Y.Dynamical simulation of an abrasive wear process[J].Journal of Computer.Aided Materials Design,1999,(6):185-193.
    [32]Q Chen,Li D Y.Computer simulation of solid particle erosion[J].Wear,2003,254:203-210.
    [33]Chen Q,Li D Y.Computer simulation of solid-particle erosion of composite materials[J].Wear,2003,255:78-84.
    [34]Brown G J.Erosion prediction in slurry pipeline tee-junctions[J].Applied mathematical modeling,2002,26:155-170.
    [35]Cuastavsson M.Fluid dynamic mechanisms of particle flow causing ductile and brittle erosion[J].Wear,2002,252:845-858.
    [36]Nicholls J R.,Stephenson D J.Monte carlo modeling of erosion processes[J].Wear,1995,186-187:64-77.
    [37]吴国清,张晓峰,方亮,等.两体磨料磨损的三维动态模拟[J].摩擦学学报,2000,20(5):360-364
    [38]吴国清,方亮,邢建东,张晓峰.磨料尺寸对磨料磨损过程影响的的随机模拟[J].西安交通大学学报,2001,35(5):527-531
    [39]Fang L,Xing J,Liu W,et al.Computer simulation of two-body abrasion processes[J].Wear,2001,250-251:1356-1360.
    [40]Ingrid Serre,Marc,Bonnet.Modelling an abrasive wear experiment by the boundary element method[J].C.R.Acad.Sci.Paris.t.b,2001,329,serie Ⅱ:803-808.
    [41]Kapoor,Franklin F J.Tribological layers and the wear of ductile matrials[J].wear,2000,245:204-215
    [42]Franklin F J;Widiyarta,Kapoor I A.Computer simulation of wear and rolling contact fatigue[J].Wear,2001,250-251:949-955.
    [43]Kapoor,Johoson K L.A model for the mild ratcheting wear of metals[J].Wear,1996,200:38-44.
    [44]Kapoor,Williams J A.Shakedown limits in sliding contacts on a surface hardened half-space[J].Wear,1994,172:196-206.
    [45]Kapoor,Williams J A.,Johoson K.L.The steady state sliding of rough surface[J].Wear,1995,175:81-92.
    [46]Kapoor.Wear by plastic ratcheting[J].Wear,1997,212:119-130.
    [47]Molinari J F,Ortiz M,Radovitzky R,et al.Finite-element modeling of dry sliding wear in metals[J].Engineering Computations,2001,18:592-609.
    [48]Ren Z,Glodez S,Flasker J.Simulation of surface pitting due to contact loading[J].International Journal for Numerical Methods in Engineering(UK),1998,43:33-50.
    [49]Flasker J,Fajdiga G,Glodez S,et al.Numerical simulation of surface pitting due to contact loading[J].International Journal of Fatigue(UK),2001,23:599-605.
    [50]O'Neil D A,Wayne S F.Numerical simulation of fracture in coated brittle materials subjected to tribo-contact[J].J.Eng.Mater.Technol.(Trans.ASME)(USA),1994,116:471-478.
    [51]Komvopouls K,Cho S S.Finite element analysis of subsurface crack propagation in a half space due to a moving asperity contact[J].Wear,1997,209:57-68.
    [52]Ringsberg J W,Loo-Morrey M.Prediction of fatigue crack initiation for rolling contact fatigue[J].International Journal of Fatigue,2000,22:205-215.
    [53]Chue C H,Chung H H,J.F.Lin,et al.The effects of strain hardened layer on pitting formation during rolling contact[J].Wear,2001,249:109-116
    [54]林刚,谢敬佩,杨茹萍,等.疲劳磨损和压碎磨损的应力计算[J].洛阳工学院学报.1994(3):13-18.
    [55]Fleming J R,Sub N P.Mechanics of crack propagation in delamination wear.Wear,1977,44:39-56.
    [56]Rosenfiled A R.Fracture of brittle materials under a simulated wear stress system[J].J.Am.Ceram.Soc.,1989,72:2117-2120.
    [57]Kimura Y,Shima M.Longitudinal contact-point model for calculating stress-instensity at surface cracks in sliding wear[J].Wear,1991,141:335-347.
    [58]Ghorbanpoor A L,Ziiang J.Crack behavior for sliding contact problems[J].Eng.Fract.Mech,1992,41(1):41-48.
    [59]Glodez S.,Winter H,Stuwe H P.A fracture mechanics model for the wear of gear flanks by pitting[J].Wear,1997,208:177-183.
    [60]Komvopoulos K,Cho S S.Finite element analysis of subsurface crack propagation in a halfspace due to a moving asperity contact[J].Wear.1997,209:57-68.
    [61]Zhang H Q,Sadeghipour K,Baran G.Numericals study of polymer surface wear caused by sliding contact[J].Wear,1999,224:141-152.
    [62]Montmitounet P,Edlinger M L,Felder E.Finite element analysis of elastic plastic indentation:Part Ⅱ.Application to hard coatings[J].Ttans ASMEJ.Tribo,1993,115(1):15-19
    [63]Oneil D A,Wayne S F.Numerical simulation of fracture in coated brittle materials subjectedtotribo contact[J].Ttans ASMEJ.Eng.Mater.Tech.,1994,116(4):471-478.
    [64]Care G,Fischer Cripps A C.Elastic plastic indentation stress fileds usiong the finite elementmethod[J].J.Mater.Sci.,1997,32(21):5653-5659.
    [65]Sadeghipour K,Baran G,Fu Z,Jayaraman S.Finite element modeling of frack propagation inelastic plastic media.Part Ⅰ Vertical surface breaking cracks[J].J.Mater.Sci.,1996,31(12):3167-3172.
    [66]Ding Y,Jones R,kuhnell B T.Elastic plaetic finite element anaysis of pall formation in gears[J].Wear,1996,197(1-2):197-205.
    [67]Alfredsson B,Olsson M.Initiation and growth of standing contact factigue cracks[J].Eng.Fract.Mech.,2000,65:89-106
    [68]黄逸云,顾新建.随机表面形貌的计算机模拟[J].润滑与密封.1990(5):4-7.
    [69]顾新建,黄逸云.随机粗糙表面的幅值分布函数及其模拟方法的探讨机械科学与技术[J].1991,(2):78-82,39
    [70]Gu,X-J;Huang,Y-Y.The modelling and simulation of a rough surface[J].Wear,1990,13:275-285.
    [71]Majumdar A,Tien C L.Fractal characterization and simulation of rough surfaces[J].Wear,1990,136:313-327.
    [72]Jiunn-JONG Wu.Simulation of rough surface with FFT[J].Tdbology international,2000,33:47-58.
    [73]Yong Ao,Q.Jane Wang,Penag Chen.Simulating the wom surface in a wear process[J].Wear,2002,252:37-47.
    [74]Lundvall,O;Klarbring,A.Simulation of wear by use of a nonsmooth Newton method-a spur gear application Mechanics of Structures and Machines[J].Meeh Struct Math,2001,29:223-238.
    [75]Flodin A,Andersson S.Simulation of mild wear in spur gears[J].Wear,1997,207:16-23.
    [76]Flodin A,Andersson S.Simulation of mild wear in helical gears[J].Wear,2000,241:123-128.
    [77]Olofsson U,Andersson S;Bjorklund,S.Simulation of mild wear in boundary lubricated spherical roller thrust bearings[J].Wear,2000,241:180-185.
    [78]江亲瑜,董美云.数值仿真技术及其及其在磨损研究中的应用[J]。大连铁道学院学报,1997,18(2):39-44.
    [79]江亲瑜,李曼林,董美云.线接触零件磨损过程的数值仿真及试验研究[J].大连铁道学院学报,1998,19(3).27-32.
    [80]江亲瑜,李宝良.凸轮机构磨损数值仿真软件研究[J].润滑与密封,2000,(4):2-4.
    [81]江亲瑜,李曼林,董美云,等.渐开线齿轮的数值仿真[J].大连铁道学院学报,1999,20(1):13-18.
    [82]江亲瑜.齿轮抗磨损强度计算方法研究[J].润滑与密封,2000(6):5-7.
    [83]严立,徐久军.磨损问题的仿真求解研究[J].摩擦学学报,1999,19(1):50-55.
    [84]徐久军,严立.船舶柴油机汽缸套磨损寿命智能化仿真的研究[J].大连海事大学学报,1999,25(3):10-13
    [85]徐久军 严立.船舶柴油机缸套-活塞环磨损试验智能化仿真系统[J].交通与计算机.1997,15(2):1-4,9.
    [86]徐久军.船舶柴油机缸套活塞环磨损实验智能化仿真系统研究[D].大连:大连海事大 学.1996.
    [87]潘尔顺.齿轮啮合过程中载荷、应力及磨损的计算机模拟[J].机械科学与技术,2000,19(1):40-41.
    [88]左玉梅,马力等.内燃机凸轮挺柱磨损数值计算方法的研究[J].武汉理工大学学报(信息与管理工程版),2001,23(3):40-43.
    [89]孔凌嘉.内燃机缸套-活塞环摩擦学系统研究[D].西安.西安交通大学,1991.
    [90]谢友柏,孔凌嘉.缸套活塞环摩擦学系统磨损模型的建立及磨损预测[C].武汉:5th第五届全国摩擦学学术会议,1992.
    [91]孔凌嘉,谢友柏.缸套.活塞环摩擦学系统漏气与润滑和磨损的计算[J].内燃机学报,1992,10(3):267-264.
    [92]刘焜.缸套-活塞环系统摩擦、润滑特性的研究及磨损模型的建立[D].西安:西安交通大学,1995.
    [93]杨小震.分子模拟与高分子材料[M].北京:科学出版社,2002.
    [94]严志军,陈东.铜针尖嵌入晶体过程的分子动力学模拟[J].摩擦学学报,2002,22(增刊):317-320.
    [95]于敏,腾云.正十六烷LB膜承载过程的分子动力学模拟[J].摩擦学学报,2002,22(增刊):325-329.
    [96]邹鲲,胡元中,温诗铸.薄膜流变与微观结构关系的分子动力学模拟[J].摩擦学进展,1998,3(2):27-32.
    [97]王慧,胡元中,邹鲲.纳米摩擦学的分子动力学模拟研究[J].中国科学A,2001,31(3):261-266.
    [98]胡元中,王慧,郭炎.纳米液体润滑膜分子动力学模拟:球形分子的模拟结果[J].材料研究学报,1994,11(2):131-136.
    [99]张涛,王慧,胡元中.自组装膜原子尺度摩擦的分子动力学模拟[J].摩擦学学报,2002,22(增刊):387-390.
    [100]Mann D J,Hase W L.Computer simulation of sliding hydroxylated alumina surfaces[J].Tribology Letters,2000,(7):153-159.
    [101]Sasaki,Naoya;Iwasaki,Tomio;Chiba,Norimasa;Abe,Yasuo.Molecular dynamics simulation of atom-scale wear of thin film on metal surface[J].Nippon Kikai Gakkai Ronbunshu,A Hen/Transactions of the Japan Society of Mechanical Engineers,Part A [NIPPON KIKAI GAKKAI RONBUNSHU A HEN],1994,60:1682-1689,
    [102]周劲南.摩擦学原理[M].武汉:武汉水运工程学院,1993.
    [103]克拉盖尔斯基,陀贝钦,康巴洛夫.摩擦磨损计算原理[M].汪一麟,朱安仁,范明德,译. 北京:机械工业出版社,1982.
    [104]高彩桥,刘家浚.材料的粘着磨损与疲劳磨损[M].北京:机械工业出版社,1989.
    [105]克拉盖尔斯基.摩擦磨损与润滑手册(第二册)[M].余梦生,吴永伟,译.北京:机械工业出版社,1986.
    [106]戴雄杰著.摩擦学基础[M].上海:上海科学技术出版社,1984.
    [107]李润方,龚剑霞.接触问题数值方法及其在机械设计中的应用[M].重庆:重庆大学出版社,1991.
    [108]Johnson K L.接触力学[M].徐秉业,罗学富,等译.北京:高等教育出版社,1992.
    [109]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,2000.
    [110]刘相新,孟宪颐.ANSYS基础与应用教程[M].北京:科学出版社,2006.
    [111]Yevtushenko,O.Ukhanska,R.Chpovska,Friction heat distribution between a stationary pin and a rotation disk[J],wear,1996,196:219-225.
    [112]董光能,陈志澜,谢友柏,等.PEEK塑料摩擦销的温度场理论计算[J].摩擦学学报,2000,20(1):34-37.
    [113]朱爱强,刘佐民.材料匹配性对盘式制动器摩擦温度场的影响[J].润滑与密封,2008,33(3):62-65.
    [114]徐晓科,莫易敏,汤春球等.微型汽车离合器摩擦副温度场研究[J].现代制造工程,2009,1:74-76.
    [115]陆煜,程林.传热原理与分析[M].北京:科学出版社,2000.
    [116]Priit Podra,Soren Andersson.Simulating sliding wear with finite element method[J].Ttribology International.1999,32:71-81.
    [117]Hsu S M,Shen M C,Ruff A W.Wear prediction for metals[J].Ttribology International.1997,30:377-383.
    [118]Myshkin N K,Petrokovets M L,Chizhik S A.Simulation of real contact in tribology [J].Ttribology International.1998,31:79-86.
    [119]Meng H C,Ludema K C.Wear models and predictive equations:Their form and content[J].Wear,1995,181-183:443-457.
    [120]Adachi K,Hutchings I M.Wear-mode mapping for the micro-scale abrasion test[J].Wear,2003,255:23-29.
    [121]费业泰.误差理论与数据处理[M].北京:机械工业出版社出版社,2000.
    [122]丛爽.面向Matlab工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700