内质网应激在糖尿病肾损害中的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     糖尿病肾病(diabetic nephropathy, DN)是糖尿病患者中最常见且危害最大的合并症之一。众多的DN患者最终出现慢性肾功能不全,使得糖尿病成为目前全球终末期肾病(end-stage renal disease, ESRD)中最重要的原发病。DN的病理和病理生理发展是一个缓慢且复杂的过程,但是目前有众多的实验研究证据支持过度的细胞凋亡是其中重要的发生机制。
     细胞凋亡是指在一定生理或病理条件下机体为维护内环境的稳定,通过有序的基因调控而诱导的细胞自杀。细胞凋亡和细胞增生共同调节各部分细胞总量的平衡。糖尿病状态下,促使细胞凋亡的诱导因素大大增多,使得凋亡的强度大于细胞增生,导致组织细胞数量减少,器官功能减退。目前认为有三条通路参与凋亡的发生:线粒体通路,死亡受体通路和内质网通路。
     内质网通路是新近研究发现的凋亡途径,其核心内容是内质网应激(endoplasmic reticulum stress, ERS)反应。内质网在细胞中具有重要的功能,主要是参与膜/分泌性蛋白、氨基多糖、磷脂、胆固醇及钙信号等的代谢,特别是分泌性蛋白的合成与空间折叠、蛋白质糖基化修饰、蛋白质分泌等。当细胞内外的因素打破了蛋白质合成、成熟与降解之间的稳态,造成细胞内异常蛋白堆集,将诱发ERS。ERS通过未折叠蛋白反应(unfolded protein response, UPR)来适应细胞内外的应激,维持细胞的存活,主要的细胞反应包括暂时性中断细胞内总体蛋白合成、上调内质网分子伴侣和折叠酶的表达,诱导内质网相关性降解(ER-associated degradation, ERAD)处理蓄积的蛋白分子等,但是如果应激因素持续存在或刺激过强时,细胞功能不能恢复时,内质网相关的细胞凋亡(ER-associated apoptosis)就会激活,受损细胞通过凋亡通路消亡,从而达到维护整体器官功能的目的。但是如果凋亡的范围过大,速度过快,失去正常的调控,将导致组织细胞的大量丧失,同样导致器官功能严重减退。
     肾脏细胞具有发达的内质网。电镜扫描显示,肾小球的系膜细胞(mesangialcell)、肾小囊的足细胞(podocyte)和肾小管的上皮细胞(tubular epithelial cell)的内质网结构丰富而复杂。从细胞功能上讲,肾脏细胞与蛋白的合成、分泌和降解关系密切:系膜细胞合成基膜和系膜基质成分,吞噬和降解沉积在系膜上的免疫复合物,分泌肾素等生物活性物质;足细胞是肾脏滤过屏障的组成部分,细胞膜外联结有丰富的糖蛋白,其完整性直接影响肾小球的滤过功能;肾小管上皮细胞除了重吸收管腔内的蛋白质并将其代谢掉,还可分泌激肽释放酶等活性分子。肾脏细胞的这些诸多功能很大程度上依赖于内质网来完成。因此,从细胞的结构和功能分析,肾脏具有发生ERS的条件和基础。
     从ERS激活的刺激因素来讲,糖尿病状态下可能的刺激因素大大增加,包括高血糖,氧化应激,蛋白尿以及细胞内外电解质紊乱等,但目前关于ERS与糖尿病肾损害的具体试验证据尚不充分。因此,阐明糖尿病肾脏损害中ERS相关细胞凋亡的概况,明确触发凋亡的应激因素,了解凋亡通路的过程,从而对细胞凋亡做到适当的干预调节,挽救残存的肾脏细胞,对保护糖尿病患者的肾脏功能具有重要的积极意义。
     研究目的
     1.构建糖尿病大鼠模型,验证糖尿病大鼠肾脏细胞凋亡增加;
     2.明确内质网应激在糖尿病大鼠肾脏细胞中是否激活;
     3.明确内质网应激相关凋亡通路在糖尿病大鼠肾脏细胞凋亡中的信号通路。
     研究方法
     1.糖尿病大鼠模型的构建
     7周左右的雄性Wistar大鼠30只,体重280±10g。随机分为2组:对照组10只,糖尿病组20只。标准大鼠饲料适应性喂养1周后,禁食12h,糖尿病组大鼠腹腔内注射链脲佐菌素(STZ)65mg/kg(溶于pH4.5的柠檬酸盐缓冲液),对照组大鼠则注射等量同pH值的柠檬酸盐缓冲液。糖尿病大鼠成模的诊断标准为:STZ注射7天后,尾静脉取血测定空腹血糖≥16.7mmol/L(300mg/d1)。未达此标准者则剔除。糖尿病组大鼠自血糖达到成模标准后,继续喂养16周,处死取材。
     2.血糖监测和24小时尿白蛋白的测定
     血糖每4周检测一次,造模后第1周和第16周利用代谢笼收集大鼠24小时尿液,测定尿白蛋白含量。
     3.肾脏组织病理学检查
     第16周末动物处死后,进行肾脏组织取材、固定、脱水、透明、浸蜡、石蜡包埋、切片,常规苏木素-伊红染色(H&E)和过碘酸雪夫染色(PAS),判断糖尿病大鼠是否出现DN的病理表现。
     4.TUNEL染色法检测细胞凋亡
     利用脱氧核糖核苷酸末端转移酶介导的缺口末端标记法(TUNEL)检测试剂盒,进行石蜡切片的TUNEL染色,观察并统计细胞凋亡水平。
     5.免疫组织化学检测
     取石蜡组织切片,进行GRP78, Caspase-12, p-JNK和CHOP免疫组织化学染色,观察各个指标阳性细胞的分布和强度。
     6.免疫印迹Western blot检测
     取-80℃保存肾脏组织,提取总蛋白,经过10%--14%SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)分离、转膜、抗体孵育、ECL显色等步骤,检测GRP78、Caspase-12、CHOP、Total-JNK和p-JNK的蛋白表达水平。
     7.实时定量RT-PCR法检测
     利用Trizol法提取两组肾脏组织RNA,经逆转录反应得到总cDNA,以β-actin作为参照,通过real-time PCR技术检测GRP78、Caspase-12、CHOP和JNK的mRNA表达水平。
     研究结果
     1.实验动物的基本情况
     对照组大鼠精神状态良好,体重增加明显,反应敏捷,毛色白而光泽。糖尿病组大鼠精神萎靡,体重增加迟缓,出现多食、多饮、多尿和消瘦等症状,皮毛脏乱无光泽,部分出现烂尾、白内障等。整个实验过程中3只大鼠死亡,均为糖尿病组,死亡原因可能与糖尿病酮症酸中毒、感染或其他相关并发症有关。最终共27只完成实验,其中对照组10只,糖尿病组17只。
     2.大鼠DN的确定
     实验组大鼠DN的确定通过血糖和24小时尿白蛋白的测定以及肾脏组织切片病理检查共同确定。糖尿病大鼠组血糖自成模后第一次测量后,一直维持在16.7mmol/L以上,与对照组相比,具有显著性差异(P<0.05)。16周末24小时尿蛋白测定,与对照组相比,糖尿病组大鼠明显升高(P<0.05)。病理切片检查示与对照组大鼠肾脏比较,糖尿病大鼠肾小球体积增大,系膜基质增多,肾小管上皮细胞出现空泡变性,小灶样萎缩,小动脉管壁增厚,肾间质纤维化和玻璃样变。因此可判断糖尿病大鼠组出现DN改变。
     3.糖尿病大鼠肾脏细胞凋亡增加
     TUNEL染色检测肾脏细胞凋亡水平,结果示与对照组大鼠相比较,糖尿病大鼠肾脏细胞凋亡明显增加(P<0.05),凋亡细胞在肾小球和肾小管中均可观察到。
     4.糖尿病肾脏中内质网分子伴侣GRP78表达上调
     GRP78是位于内质网中重要的分子伴侣,帮助蛋白质的折叠和成熟,是广泛使用的ERS激活的标志分子。免疫组织化学、免疫印迹法和实时定量PCR法检测GRP78在两组肾脏组织中的分布范围和表达水平。结果显示,正常肾脏组织中,GRP78在肾小管细段和远曲肾小管上皮细胞中有轻度表达,而在糖尿病肾脏中,GRP78在肾小球和近端肾小管表达升高,在肾小管细段以及远端肾小管的表达则有显著的升高(P<0.05)。蛋白水平和mRNA水平的检测结果与免疫组化结果相一致,GRP78在糖尿病肾脏中表达明显上调(P<0.05)。ERS在糖尿病肾损害中激活。
     5.内质网相关凋亡通路的检测
     CHOP, JNK和Caspase-12分别是三条内质网相关凋亡通路中的关键分子。三条通路相对独立,任一通路的激活均可导致细胞的凋亡。Western blot检测结果示与对照组相比,糖尿病组CHOP, p-JNK和Caspase-12的表达水平均明显升高(P<0.05)。mRNA水平检测,糖尿病组JNK mRNA水平与对照组比较无显著性差异(P>0.05),CHOP, Caspase-12 mRNA表达水平则明显升高(P<0.05)。免疫组化结果显示,与对照组相比,在糖尿病大鼠肾脏中,三个分子的分布范围和表达强度明显升高,但三个分子之间相比,分布范围存在显著差异。Caspase-12在对照组肾脏组织中不能检测到,在糖尿病肾脏中,阳性细胞主要分布在肾小球中;p-JNK的分布主要是肾小球和肾小管区间质中,尤其是间质的小血管中,呈强阳性表达;CHOP的分布则主要是远曲小管上皮细胞中,在肾小球和近端小管中也可检测到颗粒样阳性表达。因此,3条内质网相关凋亡通路都可能参与DN的病理发生,但具体的激活途径和应激细胞存在差异。
     结论
     1.STZ诱导的糖尿病大鼠16周,出现DN的表现,肾脏细胞凋亡增加;
     2.糖尿病大鼠肾脏GRP78的表达显著上调,ERS在糖尿病大鼠肾损害中激活;
     3. CHOP, JNK和Caspase-12介导的3条内质网相关凋亡通路在DN中都激活,但各自激活的方式和存在的细胞可能存在差异。
     研究背景
     肾小球硬化是糖尿病肾病DN最重要的特征性病理改变,其主要形成原因是肾小球系膜区系膜细胞增生和系膜基质的大量增加。但是到了DN的中晚期,硬化的肾小球内过多的系膜基质仍在,但系膜细胞的数量却呈耗竭状态。系膜细胞从过度增生到异常减少的过程中,过度的细胞凋亡被认为是肾小球系膜细胞缺失的重要机制。
     实验证据证明,在DN的发生发展过程中,伴随着肾小球内血管紧张素Ⅱ(angiotensin II, ANGⅡ)的高水平表达。无论是在生理还是病理状态下,ANGⅡ与肾脏系膜细胞都具有密切的关系。肾脏系膜细胞是肾小球主要的组成细胞之一,位于毛细血管球之间,不仅对血管球起到支持和连接的作用,而且是系膜基质的主要来源细胞,通过其收缩功能调节肾小球的滤过面积,可分泌多种细胞因子等,尤其是病理损害状态下。系膜细胞表面不仅有ANGⅡ的受体ATl,而且系膜细胞还可促进ANGⅡ的裂解生成。ANGⅡ与细胞表面的受体结合,从而产生收缩细胞,促进细胞外基质合成和分泌细胞因子等效应。除此以外,ANGⅡ还有导致细胞损伤,诱导细胞凋亡的效应。
     超微结构研究显示,肾脏系膜细胞具有发达的内质网系统。内质网是蛋白质翻译后加工的场所,尤其是蛋白质的糖基化修饰,分泌蛋白的空间折叠等,而系膜细胞的重要产物是细胞外基质,其成分主要是糖蛋白和蛋白多糖。系膜细胞的蛋白合成十分活跃,尤其是在肾小球硬化发展过程中,系膜基质处于过度增多状态。而各种原因造成内质网内未折叠蛋白蓄积,将诱发内质网应激(ERS)。适度的刺激,内质网通过暂时性中断细胞内蛋白合成、上调内质网分子伴侣和折叠酶的表达,诱导内质网相关性降解(ERAD)处理蓄积的蛋白等措施维持细胞存活,而持续或过度强烈的刺激,将导致内质网相关凋亡通路的激活,诱导细胞凋亡。
     近年来研究发现,ANGⅡ是多种细胞凋亡的诱发因素,其发生机制可能与ERS相关。但目前ANGⅡ诱导肾脏系膜细胞凋亡的ERS通路还缺乏明确的试验证据。体外实验证据证明,ANGⅡ可诱导系膜细胞活性氧自由基(ROS)的产生。而氧化应激可导致ERS发生的试验证据已经比较充足,因此ANGⅡ可能通过氧化应激激活ERS凋亡通路诱导系膜细胞凋亡的发生。除此以外,ANGⅡ的促进蛋白合成效应如果造成未折叠蛋白在内质网中的过度蓄积,也将诱发ERS。因此,本试验将进行ANGⅡ的系膜细胞体外诱导凋亡试验,验证ERS凋亡通路是否参与其中,从而为肾脏细胞的保护提供新的治疗靶点。
     研究目的
     1.观察ANGⅡ是否激活系膜细胞的ERS。
     2.明确ERS相关凋亡通路是否参与ANGⅡ诱导的系膜细胞凋亡。
     研究方法
     1.实验设计
     1)体外培养大鼠肾脏系膜细胞系HBZY-1,分别给与ANGⅡ不同浓度(0,1,10,100 nM)和不同时间梯度(0,12,24,48小时)刺激,利用Annexin V/PI试剂盒,在流式细胞仪上检测细胞凋亡率,筛选出ANGⅡ最佳刺激浓度和时间;
     2)给予系膜细胞最佳刺激浓度和时间ANGⅡ处理,检测ERS标志蛋白GRP78和ERS凋亡相关分子CHOP, Caspase-12和p-JNK的表达;
     3)根据步骤2的结果,对凋亡过程中表达上调的ERS凋亡分子,给予相对应的siRNA预处理,然后进行ANGⅡ最佳刺激浓度和时间处理,检测细胞凋亡率的变化。
     2.系膜细胞系的体外培养
     大鼠肾脏系膜细胞系HBZY-1购自中国武汉细胞库,在低糖DMEM培养基(葡萄糖浓度5.5mmol/L)中培养,取代数在10-20,处于生长对数期的细胞进行试验。
     3.细胞免疫荧光染色
     将系膜细胞种植在放有玻片的6孔板中,制作细胞爬片。待细胞生长至70%融合状态,给予ANGⅡ最佳浓度和时间刺激。刺激完毕后,取出爬片,清洗,固定,封闭,GRP78一抗孵育,FITC标记的二抗反应后,DAPⅠ染核,荧光显微镜下观察ERS标记分子GRP78的表达。
     4. Annexin V/PI试剂盒检测细胞凋亡率
     细胞刺激完毕,胰酶消化细胞,制作适当浓度细胞悬液,分别加入Annexin V-FITC和PI进行标记反应,随即进行流式细胞仪的检测。
     5. Western blot检测蛋白质的表达变化
     细胞刺激完毕,细胞刮刀收集细胞,提取总蛋白,进行SDS-PAGE电泳分离,转膜,蛋白印迹和免疫反应后检测GRP78, CHOP, Caspase-12和p-JNK的蛋白表达水平。
     6.实时定量RT-PCR法检测mRNA表达水平
     利用Trizol法提取刺激细胞总RNA,以β-actin作为参照,通过real-timeRT-PCR技术检测GRP78、Caspase-12、CHOP和JNK的mRNA表达水平。
     研究结果
     1.ANGⅡ呈浓度和时间梯度依赖性诱导系膜细胞的凋亡
     给予系膜细胞不同浓度(0,1,10,100 nM)ANGⅡ刺激24小时后,流式细胞仪检测细胞凋亡率。结果显示,细胞凋亡率呈逐渐上升趋势,分别为1.37%±0.41%,3.72%±1.23%,9.27%±3.53%,17.74%±5.19%(P<0.05)。而使用100nM的ANGⅡ给予系膜细胞不同时间段(0,12,24,48小时)的刺激,细胞凋亡率的结果分别为1.53%±0.49%,5.72%±1.97%,19.14%±6.53%,24.74%±9.19%(P<0.05)。但是在48小时组,细胞坏死率明显上升,与24小时组相比,细胞坏死率为4.53%±1.69%VS.15.76%±6.87%(P<0.05)。因此可知ANGⅡ呈浓度和时间梯度依赖性诱导系膜细胞的凋亡。在本试验中,最佳的ANGⅡ浓度为100nM,而最佳的刺激时间为24小时。
     2.ANGⅡ上调ERS标志分子GRP78的表达
     细胞免疫荧光染色,Western blot和Realtime PCR三种方法检测100nmol/LANGⅡ刺激24小时后,系膜细胞内GRP78的表达。结果示与空白刺激组相比,GRP78的mRNA和蛋白表达水平显著上调(P<0.05)。
     3. CHOP和Caspase-12在ANGⅡ的ERS凋亡诱导中表达上调
     ANGⅡ100 nmol/L刺激系膜细胞24小时后,收集细胞,Western blot和Realtime PCR分别检测ERS相关凋亡分子的表达变化,结果示:与对照组相比,CHOP和Caspase-12的蛋白质和mRNA表达水平显著增加(P<0.05),而p-JNK的表达无显著性差异(P>0.05)。提示ANGⅡ的ERS凋亡诱导可能通过CHOP和Caspase-12介导。
     4. CHOP和Caspase-12 siRNA转染降低ANGⅡ诱导的系膜细胞凋亡率
     系膜细胞生长至30-50%融合状态,分别转染CHOP和Caspase-12 siRNA。转染后24小时,再给以ANGⅡ100 nmol/L24小时刺激,流式细胞仪检测细胞凋亡率。结果示与ANGⅡ+对照转染组相比,CHOP和Caspase-12 siRNA组均可显著降低细胞凋亡率,对照转染组,CHOPsiRNA组和Caspase-12 siRNA组的凋亡率分别为31.74%±8.57%,20.61%±6.33%,18.94%±5.49%(P<0.05)。
     结论
     1. ANGⅡ可诱导肾脏系膜细胞ERS的激活;
     2. ANGⅡ可通过CHOP和Caspase-12通路介导诱导系膜细胞的ERS凋亡效应。
Background
     Diabetic nephropathy is a common and serious complication of diabetes mellitus, which leads to renal failure in up to 30% of individuals with diabetes and thus becomes the most important cause of end-stage renal diseases (ESRD). The pathogenesis of diabetic nephropathy is a chronic and complicated process, and more and more evidences support that apoptosis plays pivotal role in the development of nephropathy.
     Apoptosis is the process of gene-controlled programmed cell death that occurs under physiology or pathology condition to keep the homeostasis. Cell apoptosis with cell proliferation control the balance of total cell number in each organ. Under diabetic condition, factors inducing the apoptosis increase which result in the intense of apoptosis overwhelming proliferation, then the number of functional cells decreases and finally leads to the organ failure. At present 3 different pathways are considered that mediate the process of cell apoptosis:mitochondrial pathway, death receptor pathway and newly found endoplasmic reticulum (ER) stress associated pathway.
     ER is the largest organelle in the cell and involved in the metabolism of membrane/secreted protein, glycosaminoglucan, phospholipid, cholesterol, and calcium, especially in the secreted protein maturation, folding and transport. Once the insulting factors destroy the balance of protein production, maturation and degrading, the ER stress is activated. Several complex homeostatic signaling pathways, known as the unfolded protein response (UPR), have evolved to cope with the ER stress. The processes of UPR include:temporary suspension the general protein synthesis, up regulation the expression of ER resident proteins and molecular chaperons, inducing the ER associated degradation (ERAD). Though moderate ER stress could alleviate the damage caused by stress, prolonged or severe stress response leads to apoptosis and removes the damaged cells. But if the intense or the extent of apoptosis is out of control, excess functional cells lose, which result in the premature organ failure.
     Renal cells, including mesangial cell, podocyte, tubular epithelial cell and et al, have well-developed ER, which is tightly related to the cell physiological function. Mesangial cells are the primary manufacturers of basal membrane and mesangial matrix. They are also involved in the degrading of mesangial immune complex, and secreting the bioactive substances such as renin and angiotensin. Podocytes are the components of the glomerular filtration barrier. Glycoprotein connected to the outer membrane of the cells plays the vital role in the filtration. Besides re-absorbing and degrading the filtrated protein, tubular cells also produce the cytokines such as bradykinin. Above all, ER fulfills multiple protein related functions in the renal cells and ER stress might be easily activated in the renal disease.
     Under diabetic condition, ER stress insulting factors are prone to increase, including hyperglycemia, oxidative stress, proteinuria, and cellular electrolyte disorder. However, fewer publications are found between ER stress and diabetic kidney injury. So the aim of this research is to investigate the role of ER stress in the diabetic nephropathy, and then provide possible strategies on the kidney protection.
     Objectives
     1. To establish the diabetic rat model, and demonstrate the increment of apoptotic renal cells.
     2. To investigate the activation of ER stress in the diabetic kidney.
     3. To explore the signaling pathways of ER associated apoptosis in the diabetic kidney injury.
     Methods
     1. Establishment of diabetic rat model
     30 male Wistar rats (7 weeks of age; mean body weight 280±10 g) were used. After one week of acclimatization, of the 30 Wistar rats,20 were given a single intraperitoneal dose (65 mg/kg) of streptozotocin (STZ, dissolved in citrate buffer (pH 4.5)), while the remaining 10 rats were given the same dosage of citrate buffer (pH 4.5). Hyperglycemia was confirmed by measuring the venous circulating plasma concentrations of glucose. Seven days post-STZ injection, blood samples were obtained from the rat tail vein after 12 hours of fasting, and the rats with glucose concentration higher than 300 mg/dl were kept in diabetic group. All rats were killed at the 16th week after saline or STZ injection.
     2. Blood glucose test and 24-hour proteinuria examination
     Blood glucose was detected per 4 weeks. At the end of the 1st and 16th week,24-hour urine was collected with the metabolic cage and the levels of proteinuria were measured.
     3. Renal histopathological staining
     Kidneys were transversally sliced and fixed in 4% neutral formalin for over 24 hours, and then embedded in paraffin, cut into 4-μm thick sections for staining with H&E or PAS methods. Then slides were observed under the microscope to determine if the diabetic kidney injury occurred or not.
     4. TUNEL staining
     TUNEL staining was used to detect the expression of apoptotic cells in the diabetic kidney.
     5. Immunohistochemical staining
     Immunohistochemical staining was used to detect the protein expression of GRP78, CHOP, Caspase-12 and p-JNK. The intensity and extent of the positive area were calculated and compared.
     6. Western blot analysis
     Total proteins of the renal samples were extracted and conducted 10—14% SDS-PAGE. Then the protein expression levels of GRP78, CHOP, Caspase-12, Total-JNK and p-JNK were measured.
     7. Realtime RT-PCR analysis
     Realtime RT-PCR was used to detect the mRNA levels of GRP78, CHOP, Caspase-12, and JNK.
     Results
     1. General features of the experimental rats
     In the whole experiment,3 diabetic rats died and might be caused by diabetic ketoacidosis, infection or other diabetic complications. Finally 27 rats survived and 10 from control group and 17 from diabetic group. Compared to the control, diabetic rats seemed to be inactive, and with symptoms of lower body weights, polyuria and polyphagia, which are normally associated with diabetic state.
     2. The diagnosis of diabetic nephropathy
     The diagnosis of diabetic nephropathy was determined by blood glucose monitoring,24-hour proteinuria detection and renal pathology. Compared to the control, concentrations of glucose blood in diabetic rats were always higher than 16.7 mmol/L (P<0.05). At the end of 16th week, the level of 24-hour proteinuria increased obviously in diabetic rats (P<0.05). And the examination of renal pathology showed glomerular hypertrophy, glomerular basement membrane thickness, glomerulosclerosis, renal tubular atrophy and interstitial fibrosis in diabetic kidney.
     3. Enhanced apoptotic state in diabetic kidney
     The results of TUNEL assay showed that apoptosis was observed in both the cortex and medulla of the diabetic kidney. Estimation of renal apoptosis revealed a nearly fivefold increase in TUNEL-positive nuclei in diabetic kidneys compared to the normal (P<0.05).
     4. Up-regulation of ER chaperone GRP78 in kidneys of diabetes
     GRP78, one important molecular chaperone localized in ER, has been used extensively as an indicator for the induction of ER stress. Immunohistochemistry study showed that GRP78 was abundantly expressed in the renal tissue from diabetic rats (P<0.05). In contrast, normal rats exhibited modest or weak immunoreactivity for this molecule. The result of western blot analysis confirmed the finding. Furthermore, real-time PCR analysis showed the same trend of grp78 in mRNA level (P <0.05). All these findings suggested the activation of ER stress in the kidneys of diabetic rats.
     5. Involvement of the ER-associated apoptosis pathways
     CHOP, JNK and caspase-12 are the key molecules in the three branches of ER-associated apoptosis pathways. Firstly, western blots were used to check the involvement of these pathways in diabetic kidneys. The densitometric analysis of bands for CHOP, caspase-12, and p-JNK revealed a significant increase in relative protein content in renal tissue from diabetic rats in comparison with those from normal rats(P<0.05). This means CHOP was induced, and caspase-12 and JNK pathway were activated in the diabetic kidney. Changes in RNA expression of jnk, chop, and caspase-12 were quantified by RT-PCR in control and diabetic rat kidneys. Expressions of chop, and caspase-12 were significantly increased in the diabetic kidneys (P<0.05), paralleled with their enhanced protein expression. However, the result of jnk did not show any differences between the diabetes and control (P>0.05). At last, the results of immunostaining provided more useful information. In diabetic kidney, Caspase-12 positive area only appeared in the glomerulus; p-JNK was mainly expressed in the glomerulus and interstitial area, especially the small vessels; CHOP could be observed in the distal convoluted tubule area, and focal expression in the glomerulus and proximal tubular area. The differences might be caused by the variance of involved cells and insulting factors.
     Conclusion
     1. The STZ induced diabetic rats showed classic diabetic nephropathy performances and enhanced apoptotic state.
     2. The expression of ER chaperone GRP78 was up-regulated in diabetic kidney, which directly demonstrated the activation of ER stress.
     3. CHOP, JNK and Caspase-12, three branches of ER associated apoptosis, were all stimulated in diabetic kidney. However, the activated modes or the cells involved may be different.
     Background
     Glomerulosclerosis, which is characterized by the expansion of mesangium, is the most important pathological change in the early stage of diabetic nephropathy. The expanded mesangium is comprised of a large number of mesangial cells and increased amount of matrix. However, in the later course of the disease, there is an abundance of matrix and a limited number of mesangial cells. And apoptosis is assumed to play the vital role in the mesangial cell loss.
     Evidences show that intra-renal levels of angiotensinⅡ(ANGII) are elevated in the development of diabetic nephropathy. ANG II plays an important role in the function maintenance of mesangial cells in both normal and diseased states. Mesangial cells are specialized pericytes located among the glomerular capillaries within a renal corpuscle of a kidney. They are not only providing structural support for and regulate blood flow of the glomerular capillaries by their contractile activity, but also are the major contributors to the extracellular matrix which contains fibronectin, type IV collagen, perlecan, and laminin. All the functions mentioned above are tightly related to the ANGII regulation. However, ANGII could insult kinds of cells and induce the apoptosis or necrosis.
     Ultrastructural analysis results show that endoplasmic reticulum (ER) in mesangial cell is well-developed, and in an active state. The ER is the site of biosynthesis for steroids, cholesterol and other lipids. It is also the sub-cellular entrance for a number of secretory and structural proteins and provides a unique environment for appropriate protein folding and assembly to produce functional, mature proteins. What's more, protein glycosylation is complicated in the ER. As is known, extracellular matrix is mainly comprised by glycoprotein and proteoglycan. And under the diabetic state, matrix is overloaded in the glomerular mesangium. Homeostasis in the ER is maintained by a coordinated adaptive program, so-called the unfolded protein response (UPR). A number of microenvironmental, developmental and pathophysiological insults as well as a wide range of chemical substances cause accumulation of unfolded proteins in the ER and activate ER stress. In response to accumulation of unfolded proteins, cells adapt themselves to the stress conditions via UPR:attenuation of general translation, induction of ER chaperones and activation of ER-associated degradation (ERAD) to eliminate immature proteins. If the stress is beyond the capacity of the adaptive machinery, cells undergo apoptosis Accumulated evidences showed that ANGII could induce the apoptosis of many cells, and the mechanisms might involve the ERS response. However, whether ANGII inducing apoptosis of mesangial cells is mediated by ERS is still unknown. On the one hand, ANGII has been demonstrated to stimulate the generations of reactive oxygen species in mesangial cells, and the relationship between oxidative stress and ERS is undeniable; On the other hand, ANGII promotes the protein synthesis in ER and might result in the unfolded protein accumulation,thus activate the ERS. Therefore the aim of this study is to investigate the role of ERS in the ANGII-induced apoptosis of mesangial cell.
     Objectives
     1. To observe the hallmark of ERS activation in ANGII-induced apoptosis of mesangial cell.
     2. To explore the ERS associated apoptotic pathways in ANGII-induced apoptosis of mesangial cell.
     Methods
     1. Study design
     1) The established rat renal mesangial cell line HBZY-1 was incubated with ANGII at different concentration (0,1,10,100 nmol/L) and duration (0,12,24,48 hours) to select the best treatment condition. After harvesting, apoptotic cells were labeled with Annexin V/PI kit, and the percentage of apoptosis was calculated with flow cytometer.
     2) Cultured cells were treated with ANGII at the selected concentration and duration. Then Immunofluorescence staining, western blot and realtime PCR were used to measure the expression of GRP78, CHOP, Caspase-12 and p-JNK on protein and mRNA levels.
     3) According to result of 2nd step, to synthesize the siRNA against ERS apoptotic molecules. Treated cells with siRNA before ANGII incubation, and then detected the apoptotic percentage with flow cytometer.
     2. Cell culture
     The established rat renal mesangial cell line HBZY-1, which was purchased from Wuhan cell center, was cultured in low-glucose DMEM. Cells in generation 10-20 were used in the treatment.
     3. Immunofluorescence staining
     Cells were grown on glass slides in the presence of selected concentration of ANGII for the proper duration. Then the cells were fixed with 4% paraformaldehyde for 15 minutes at 4℃and permeabilized in 0.1% Triton X-100 for 10 minutes at 4℃. The cells were then blocked in 10% rabbit blocking serum at 37℃for 30 minutes followed by incubation with GRP78 goat polyclonal IgG (1:50) overnight at 4℃. After washes with PBS three times, cells were incubated with FITC-conjugated rabbit anti-goat IgG (1:50) at 37℃for 1 hour. The results were evaluated under fluorescing microscope.
     4. Annexin V/PI kit to measure the percentage of apoptosis When the stimulation was over, cells were digested with 0.25% trypsin and collected, then resuspended in binding buffer with annexin V-FITC and PI. After staining, cells were immediately analyzed with flow cytometer.
     5. Western blot The total protein was extracted from the harvested cells. Western blot was used to detect the protein levels of GRP78, CHOP, Caspase-12 and p-JNK.
     6. Realtime RT-PCR analysis The total RNA was extracted from the harvested cells with Trizol. Realtime RT-PCR was used to detect the mRNA levels of GRP78, CHOP, Caspase-12 and JNK.
     Results
     1. ANGII induced apoptosis of mesangial cells in a dose-and time-dependent manner
     Treated mesangial cells with ANGII of different concentration (0,1,10,100 nmol/L) for 24 hours and measured the percentage of apoptosis, the results showed that the apoptotic ratio was increased gradually, were 1.37%±0.41%, 3.72%±1.23%,9.27%±3.53%,17.74%±5.19%respectively (P <0.05) Exposed cells with 100nmol/L ANGII for different duration (0, 12,24,48 hours) and the results of apoptosis tests are 1.53%±0.49%,5.72%±1.97%,19.14%±6.53%,24.74%±9.19% for each time point (P<0.05). Thus ANGII induced apoptosis of mesangial cells in a dose-and time-dependent manner. And the best ANG concentration and duration selected were 100nmol/L and 24 hours.
     2. Up-regulation of ER chaperone GRP78
     Immunofluorescence staining, Western blot and Realtime PCR, three methods were used to detect the expression of GRP78 after the ANGII treatment in the mesangial cell. And the results showed that GRP78 was obviously upregulated on both mRNA and protein levels compared to the control group (P<0.05).
     3. The expressions of CHOP and Caspase-12 were elevated in ANGII
     induced mesangial cell apoptosis Three key molecules of ERS associated apoptosis, CHOP, Caspase-12 and JNK, were examined with western blot and real time PCR after cell exposed to ANGII at selected concentration and duration. Results showed that the expressions of CHOP and Caspase-12 were increased dramatically compared to the control (P<0.05), but there was no change for JNK expression (P>0.05).
     4. CHOP and Caspase-12 siRNA decreased the apoptosis induced by ANGII in mesangial cell Cells were transfected with CHOP and Caspase-12 siRNA 24 hours before ANGII treatment. And the results of apoptosis percentage showed that CHOP and Caspase-12 siRNA could decrease the apoptosis induced by ANGII in mesangial cell. The apoptotic percentages for control siRNA group, group CHOP siRNA and group Caspase-12 siRNA are 31.74%±8.57%, 20.61%±6.33%,18.94%±5.49%(P<0.05)。
     Conclusion
     1. ANGII could activate the ERS in renal mesangial cells.
     2. ANGII-induced ERS associated apoptosis of mesangial cell might be mediated by CHOP and Caspase-12 pathways.
引文
1.周洁:北京市2型糖尿病患者糖尿病肾病流行病学分析.医学研究通讯2004,33.
    2.翁建平:突出中国特点的2型糖尿病防治指南.中华内分泌代谢杂志2009,25.
    3. Gao WG, Dong YH, Pang ZC, Nan HR, Zhang L, Wang SJ, Ren J, Ning F, Qiao Q:Increasing trend in the prevalence of Type 2 diabetes and pre-diabetes in the Chinese rural and urban population in Qingdao, China. Diabet Med 2009,26:1220-1227.
    4. Rossing P:Diabetic nephropathy: worldwide epidemic and effects of current treatment on natural history. Curr Diab Rep 2006,6:479-483.
    5. Harvey JN:Trends in the prevalence of diabetic nephropathy in type 1 and type 2 diabetes. Curr Opin Nephrol Hypertens 2003,12:317-322.
    6. Steffes MW:Diabetic nephropathy:incidence, prevalence, and treatment. Diabetes Care 1997, 20:1059-1060.
    7. Wittmann I, Molnar GA, Degrell P, Wagner Z, Tamasko M, Laczy B, Brasnyo P, Wagner L, Nagy J: Prevention and treatment of diabetic nephropathy. Diabetes Res Clin Pract 2005,68 Suppll:S36-42.
    8. Balakumar P, Arora MK, Reddy J, Anand-Srivastava MB:Pathophysiology of diabetic nephropathy:involvement of multifaceted signalling mechanism. J Cardiovasc Pharmacol 2009,54:129-138.
    9. Isermann B, Vinnikov IA, Madhusudhan T, Herzog S, Kashif M, Blautzik J, Corat MA, Zeier M, Blessing E, Oh J, et al.:Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med 2001,13:1349-1358.
    10. Chuang PY, Yu Q, Fang W, Uribarri J, He JC:Advanced glycation endproducts induce podocyte apoptosis by activation of the FOXO4 transcription factor. Kidney Int 2001,72:965-976.
    11. Schena FP, Gesualdo L:Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol 2005,16 Suppl 1:S30-33.
    12. Verzola D, Gandolfo MT, Ferrario F, Rastaldi MP, Villaggio B, Gianiorio F, Giannoni M, Rimoldi L, Lauria F, Miji M, et al.:Apoptosis in the kidneys of patients with type Ⅱ diabetic nephropathy. Kidney Int 2007,72:1262-1272.
    13. Liu F, Brezniceanu ML, Wei CC, Chenier I, Sachetelli S, Zhang SL, Filep JG, Ingelfinger JR, Chan JS:Overexpression of angiotensinogen increases tubular apoptosis in diabetes. J Am Soc Nephrol 2008,19:269-280.
    14. Zhang W, Khanna P, Chan LL, Campbell G, Ansari NH:Diabetes-induced apoptosis in rat kidney. Biochem Mol Med 1997,61:58-62.
    15. Clarke PG:Apoptosis:from morphological types of cell death to interacting pathways. Trends Pharmacol Sci 2002,23:308-309; author reply 310.
    16. Faitova J, Krekac D, Hrstka R, Vojtesek B:Endoplasmic reticulum stress and apoptosis. Cell Mol Biol Lett 2006,11:488-505.
    17. Larman M, Lucy J:The endoplasmic reticulum:structure and function. Mol Membr Biol 1999, 16:313-316.
    18. Zhao L, Ackerman SL:Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 2006,18:444-452.
    19. Xu C, Bailly-Maitre B, Reed JC:Endoplasmic reticulum stress:cell life and death decisions. J Clin Invest 2005,115:2656-2664.
    20. Kapoor A, Sanyal AJ:Endoplasmic reticulum stress and the unfolded protein response. Clin Liver Dis 2009,13:581-590.
    21. Ponting CP:Proteins of the endoplasmic-reticulum-associated degradation pathway:domain detection and function prediction. Biochem J2000,351 Pt 2:527-535.
    22. Rasheva VI, Domingos PM:Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 2009,14:996-1007.
    23. Glembotski CC:Endoplasmic reticulum stress in the heart. Circ Res 2007,101:975-984.
    24. Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS:Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors:role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 2003,278:20915-20924.
    25. Wek RC, Jiang HY, Anthony TG:Coping with stress:eIF2 kinases and translational control. Biochem Soc Trans 2006,34:7-11.
    26. Doroudgar S, Thuerauf DJ, Marcinko MC, Belmont PJ, Glembotski CC:Ischemia activates the ATF6 branch of the endoplasmic reticulum stress response. J Biol Chem 2009, 284:29735-29745.
    27. Szegezdi E, Logue SE, Gorman AM, Samali A:Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 2006,7:880-885.
    28. Szegezdi E, Duffy A, O'Mahoney ME, Logue SE, Mylotte LA, O'Brien T, Samali A:ER stress contributes to ischemia-induced cardiomyocyte apoptosis. Biochem Biophys Res Commun 2006,349:1406-1411.
    29. Zhang C, Cai Y, Adachi MT, Oshiro S, Aso T, Kaufman RJ, Kitajima S:Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem 2001,276:35867-35874.
    30. Dickhout JG, Krepinsky JC:Endoplasmic reticulum stress and renal disease. Antioxid Redox Signal 2009,11:2341-2352.
    31. Inagi R:Endoplasmic reticulum stress as a progression factor for kidney injury. Curr Opin Pharmacol 2009.
    32. Peyrou M, Hanna PE, Cribb AE:Cisplatin, Gentamicin, and p-Aminophenol Induce Markers of Endoplasmic Reticulum Stress in the Rat Kidneys. Toxicol Sci 2007,99:346-353.
    33. Muruganandan S, Cribb AE:Calpain-induced endoplasmic reticulum stress and cell death following cytotoxic damage to renal cells. Toxicol Sci 2006,94:118-128.
    34. Liu F, Inageda K, Nishitai G, Matsuoka M:Cadmium induces the expression of Grp78, an endoplasmic reticulum molecular chaperone, in LLC-PK1 renal epithelial cells. Environ Health Perspect 2006,114:859-864.
    35. Lee AS:The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 2005,35:373-381.
    36. Russell TA:Diabetic nephropathy in patients with type 1 diabetes mellitus. Nephrol Nurs J 2006,33:15-28; quiz 29-30.
    37. Bilous R:The prevalence and management of cardiorenal risk factors in patients with diabetic nephropathy. Nat Clin Pract Endocrinol Metab 2006,2:548-549.
    38. Kanter M:Protective effects of thymoquinone on streptozotocin-induced diabetic nephropathy. J Mol Histol 2009,40:107-115.
    39. Brosius FC,3rd, Alpers CE, Bottinger EP, Breyer MD, Coffman TM, Gurley SB, Harris RC, Kakoki M, Kretzler M, Leiter EH, et al.:Mouse models of diabetic nephropathy. J Am Soc Nephrol 2009,20:2503-2512.
    40. Gurley SB, Clare SE, Snow KP, Hu A, Meyer TW, Coffman TM: Impact of genetic background on nephropathy in diabetic mice. Am JPhysiol Renal Physiol 2006,290:F214-222.
    41. Porst M, Plank C, Bieritz B, Konik E, Fees H, Dotsch J, Hilgers KF, Reinhardt DP, Hartner A: Fibrillin-1 regulates mesangial cell attachment, spreading, migration and proliferation. Kidney Int 2006,69:450-456.
    42. Phillips AO:The role of renal proximal tubular cells in diabetic nephropathy. Curr Diab Rep 2003,3:491-496.
    43. Birn H, Christensen El:Renal albumin absorption in physiology and pathology. Kidney Int 2006, 69:440-449.
    44. van Dijk C, Berl T:Pathogenesis of diabetic nephropathy. Rev Endocr Metab Disord 2004, 5:237-248.
    45. Giannico G, Miller FJ, Fogo AB:Diabetic nephropathy. Am J Kidney Dis 2006,47:A42, e61-43.
    46. Inagi R, Nangaku M, Onogi H, Ueyama H, Kitao Y, Nakazato K, Ogawa S, Kurokawa K, Couser WG, Miyata T:Involvement of endoplasmic reticulum (ER) stress in podocyte injury induced by excessive protein accumulation. Kidney Int 2005,68:2639-2650.
    47. Johansen JS, Harris AK, Rychly DJ, Ergul A:Oxidative stress and the use of antioxidants in diabetes:linking basic science to clinical practice. Cardiovasc Diabetol 2005,4:5.
    48. Saha A, Adak S, Chowdhury S, Bhattacharyya M:Enhanced oxygen releasing capacity and oxidative stress in diabetes mellitus and diabetes mellitus-associated cardiovascular disease:a comparative study. Clin Chim Acta 2005,361:141-149.
    49. van der Vlies D, Makkinje M, Jansens A, Braakman I, Verkleij AJ, Wirtz KW, Post JA:Oxidation of ER resident proteins upon oxidative stress:effects of altering cellular redox/antioxidant status and implications for protein maturation. Antioxid Redox Signal 2003,5:381-387.
    50. Kaneto H, Matsuoka TA, Nakatani Y, Kawamori D, Miyatsuka T, Matsuhisa M, Yamasaki Y: Oxidative stress, ER stress, and the JNK pathway in type 2 diabetes. J Mol Med 2005, 83:429-439.
    51. Song JH, Jung SY, Hong SB, Kim MJ, Suh CK:Effect of high glucose on basal intracellular calcium regulation in rat mesangial cell. Am J Nephrol 2003,23:343-352.
    52. Singh VP, Baker KM, Kumar R:Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose:role in extracellular matrix production. Am J Physiol Heart Circ Physiol 2008,294:H1675-1684.
    53. Ohse T, Inagi R, Tanaka T, Ota T, Miyata T, Kojima I, Ingelfinger JR, Ogawa S, Fujita T, Nangaku M:Albumin induces endoplasmic reticulum stress and apoptosis in renal proximal tubular cells. Kidney Int 2006,70:1447-1455.
    54. Sachse A, Wolf G:Angiotensin II-induced reactive oxygen species and the kidney. J Am Soc Nephrol 2007,18:2439-2446.
    55. Iturralde M, Gamen S, Pardo J, Bosque A, Pineiro A, Alava MA, Naval J, Anel A:Saturated free fatty acid release and intracellular ceramide generation during apoptosis induction are closely related processes. Biochim Biophys Acta 2003,1634:40-51.
    56. Konukoglu D, Serin O, Turhan MS:Plasma total homocysteine concentrations in obese and non-obese female patients with type 2 diabetes mellitus; its relations with plasma oxidative stress and nitric oxide levels. Clin Hemorheol Microcirc 2005,33:41-46.
    57. Ron D:Hyperhomocysteinemia and function of the endoplasmic reticulum. J Clin Invest 2001, 107:1221-1222.
    58. Ji C, Kaplowitz N:Hyperhomocysteinemia, endoplasmic reticulum stress, and alcoholic liver injury. World JGastroenterol 2004,10:1699-1708.
    59. Ni M, Lee AS: ER chaperones in mammalian development and human diseases. FEBS Lett 2007,581:3641-3651.
    60. Weitzmann A, Baldes C, Dudek J, Zimmermann R:The heat shock protein 70 molecular chaperone network in the pancreatic endoplasmic reticulum-a quantitative approach. FEBS J 2007,274:5175-5187.
    61. Lamb HK, Mee C, Xu W, Liu L, Blond S, Cooper A, Charles IG, Hawkins AR:The affinity of a major Ca2+ binding site on GRP78 is differentially enhanced by ADP and ATP. J Biol Chem 2006,281:8796-8805.
    62. Thomas CG, Spyrou G:ERdj5 sensitizes neuroblastoma cells to endoplasmic reticulum stress-induced apoptosis. J Biol Chem 2009,284:6282-6290.
    63. Nakanishi K, Kamiguchi K, Torigoe T, Nabeta C, Hirohashi Y, Asanuma H, Tobioka H, Koge N, Harada O, Tamura Y, et al.:Localization and function in endoplasmic reticulum stress tolerance of ERdj3, a new member of Hsp40 family protein. Cell Stress Chaperones 2004, 9:253-264.
    64. Gelebart P, Opas M, Michalak M:Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. IntJBiochem Cell Biol 2005,37:260-266.
    65. Okazaki Y, Ohno H, Takase K, Ochiai T, Saito T:Cell surface expression of calnexin, a molecular chaperone in the endoplasmic reticulum. J Biol Chem 2000,275:35751-35758.
    66. Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M: Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem.J 2009,417:651-666.
    67. Vembar SS, Brodsky JL:One step at a time:endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 2008,9:944-957.
    68. Metzger MB, Maurer MJ, Dancy BM, Michaelis S:Degradation of a cytosolic protein requires endoplasmic reticulum-associated degradation machinery.J Biol Chem 2008, 283:32302-32316.
    69. Kawakami T, Inagi R, Takano H, Sato S, Ingelfinger JR, Fujita T, Nangaku M: Endoplasmic reticulum stress induces autophagy in renal proximal tubular cells. Nephrol Dial Transplant 2009,24:2665-2672.
    70. Oyadomari S, Mori M: Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004,11:381-389.
    71. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D: CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 2004,18:3066-3077.
    72. Sekine Y, Takeda K, Ichijo H: The ASK1-MAP kinase signaling in ER stress and neurodegenerative diseases. Curr Mol Med 2006,6:87-97.
    73. Homma K, Katagiri K, Nishitoh H, Ichijo H:Targeting ASK1 in ER stress-related neurodegenerative diseases. Expert Opin Ther Targets 2009,13:653-664.
    74. Zhang C, Kawauchi J, Adachi MT, Hashimoto Y, Oshiro S, Aso T, Kitajima S:Activation of JNK and transcriptional repressor ATF3/LRF1 through the IRE1/TRAF2 pathway is implicated in human vascular endothelial cell death by homocysteine. Biochem Biophys Res Commun 2001,289:718-724.
    75. Hitomi J, Katayama T, Taniguchi M, Honda A, Imaizumi K, Tohyama M: Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. Neurosci Lett 2004,357:127-130.
    76. Sergeev IN: Genistein induces Ca2+ -mediated, calpain/caspase-12-dependent apoptosis in breast cancer cells. Biochem Biophys Res Commun 2004,321:462-467.
    77. Matzno S, Yasuda S, Kitada Y, Akiyoshi T, Tanaka N, Juman S, Shinozuka K, Nakabayashi T, Matsuyama K: Clofibrate-induced apoptosis is mediated by Ca2+ -dependent caspase-12 activation. Life Sci 2006,78:1892-1899.
    78. Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T, Tohyama M: Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 2001,276:13935-13940.
    79. Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC, Ellerby LM, Ellerby HM, Bredesen DE:Coupling endoplasmic reticulum stress to the cell death program:role of the ER chaperone GRP78. FEBS Lett 2002,514:122-128.
    80. Hetz CA:ER stress signaling and the BCL-2 family of proteins:from adaptation to irreversible cellular damage. Antioxid Redox Signal 2007,9:2345-2355.
    81. Zong WX, Li C, Hatzivassiliou G, Lindsten T, Yu QC, Yuan J, Thompson CB:Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 2003,162:59-69.
    82. van der Kallen CJ, van Greevenbroek MM, Stehouwer CD, Schalkwijk CG: Endoplasmic reticulum stress-induced apoptosis in the development of diabetes: is there a role for adipose tissue and liver? Apoptosis 2009,14:1424-1434.
    83. Nakatani Y, Kaneto H, Hatazaki M, Yoshiuchi K, Kawamori D, Sakamoto K, Matsuoka T, Ogawa S, Yamasaki Y, Matsuhisa M:Increased stress protein ORP150 autoantibody production in Type 1 diabetic patients. Diabet Med 2006,23:216-219.
    84. Marchetti P, Bugliani M, Lupi R, Marselli L, Masini M, Boggi U, Filipponi F, Weir GC, Eizirik DL, Cnop M: The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients. Diabetologia 2007,50:2486-2494.
    85. Huang CJ, Lin CY, Haataja L, Gurlo T, Butler AE, Rizza RA, Butler PC:High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated beta-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 2007, 56:2016-2027.
    86. Casas S, Gomis R, Gribble FM, Altirriba J, Knuutila S, Novials A:Impairment of the ubiquitin-proteasome pathway is a downstream endoplasmic reticulum stress response induced by extracellular human islet amyloid polypeptide and contributes to pancreatic beta-cell apoptosis. Diabetes 2007,56:2284-2294.
    87. Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, Biden TJ: Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 2007,50:752-763.
    88. Boden G: Endoplasmic reticulum stress:another link between obesity and insulin resistance/inflammation? Diabetes 2009,58:518-519.
    89. Nakatani Y, Kaneto H, Kawamori D, Yoshiuchi K, Hatazaki M, Matsuoka TA, Ozawa K, Ogawa S, Hori M, Yamasaki Y, et al:Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem 2005,280:847-851.
    90. Hotamisligil GS:Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes 2005,54 Suppl 2:S73-78.
    91. Liu H, Baliga R:Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol 2005,16:1985-1992.
    92. Montie HL, Kayali F, Haezebrouck AJ, Rossi NF, Degracia DJ:Renal ischemia and reperfusion activates the eIF 2 alpha kinase PERK. Biochim Biophys Acta 2005,1741:314-324.
    93. Cybulsky AV, Takano T, Papillon J, Bijian K: Role of the endoplasmic reticulum unfolded protein response in glomerular epithelial cell injury. JBiol Chem 2005,280:24396-24403.
    1. Adler S:Diabetic nephropathy:Linking histology, cell biology, and genetics. Kidney Int 2004, 66:2095-2106.
    2. Christensen PK:Renal structure and function in type 2 diabetic patients with or without diabetic nephropathy. Dan Med Bull 2004,51:82-103.
    3. Verzola D, Gandolfo MT, Ferrario F, Rastaldi MP, Villaggio B, Gianiorio F, Giannoni M, Rimoldi L, Lauria F, Miji M, et al.:Apoptosis in the kidneys of patients with type Ⅱ diabetic nephropathy. Kidney Int 2007,72:1262-1272.
    4. Ruster C, Wolf G:Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol 2006,17:2985-2991.
    5. Raij L:The pathophysiologic basis for blocking the renin-angiotensin system in hypertensive patients with renal disease. Am JHypertens 2005,18:95S-99S.
    6. Tamura J, Konno A, Hashimoto Y, Kon Y:Upregulation of renal renin-angiotensin system in mouse diabetic nephropathy. Jpn J Vet Res 2005,53:13-26.
    7. Zhang X, O'Malley Y, Robbins ME:Angiotensin Ⅱ-induced modulation of rat mesangial cell phenotype. Radiat Res 1999,151:725-735.
    8. Ray PE, Bruggeman LA, Horikoshi S, Aguilera G, Klotman PE:Angiotensin Ⅱ stimulates human fetal mesangial cell proliferation and fibronectin biosynthesis by binding to AT1 receptors. Kidney Int 1994,45:177-184.
    9. Lodha S, Dani D, Mehta R, Bhaskaran M, Reddy K, Ding G, Singhal PC:Angiotensin Ⅱ-induced mesangial cell apoptosis:role of oxidative stress. Mol Med 2002,8:830-840.
    10. Szegezdi E, Fitzgerald U, Samali A:Caspase-12 and ER-stress-mediated apoptosis:the story so far. Ann N YAcad Sci2003,1010:186-194.
    11. Faitova J, Krekac D, Hrstka R, Vojtesek B:Endoplasmic reticulum stress and apoptosis. Cell Mol Biol Lett 2006,11:488-505.
    12. Xu C, Bailly-Maitre B, Reed JC:Endoplasmic reticulum stress:cell life and death decisions. J Clin Invest 2005,115:2656-2664.
    13. Gurley SB, Coffman TM:The renin-angiotensin system and diabetic nephropathy. Semin Nephrol 2007,27:144-152.
    14. Haynes CM, Titus EA, Cooper AA:Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 2004,15:767-776.
    15. Cullinan SB, Diehl JA:Coordination of ER and oxidative stress signaling:the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol 2006,38:317-332.
    16. Ruilope LM: Renin-angiotensin-aldosterone system blockade and renal protection: angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers? Acta Diabetol 2005,42 Suppl 1:S33-41.
    17. Vieitez P, Gomez O, Uceda ER, Vera ME, Molina-Holgado E:Systemic and local effects of angiotensin II blockade in experimental diabetic nephropathy. J Renin Angiotensin Aldosterone Syst 2008,9:96-102.
    18. Nishiyama A, Seth DM, Navar LG: Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats. Hypertension 2002,39:129-134.
    19. Nishiyama A, Seth DM, Navar LG:Renal interstitial fluid angiotensin I and angiotensin II concentrations during local angiotensin-converting enzyme inhibition. J Am Soc Nephrol 2002,13:2207-2212.
    20. Husain A, Li M, Graham RM:Do studies with ACE N-and C-domain-selective inhibitors provide evidence for a non-ACE, non-chymase angiotensin Ⅱ-forming pathway? Circ Res 2003,93:91-93.
    21. Xue C, Siragy HM:Local renal aldosterone system and its regulation by salt, diabetes, and angiotensin Ⅱ type 1 receptor. Hypertension 2005,46:584-590.
    22. Durvasula RV, Petermann AT, Hiromura K, Blonski M, Pippin J, Mundel P, Pichler R, Griffin S, Couser WG, Shankland SJ:Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney Int 2004,65:30-39.
    23. Vidotti DB, Casarini DE, Cristovam PC, Leite CA, Schor N, Boim MA:High glucose concentration stimulates intracellular renin activity and angiotensin II generation in rat mesangial cells. Am JPhysiol Renal Physiol 2004,286:F1039-1045.
    24. Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD:Pivotal role of the renin/prorenin receptor in angiotensin Ⅱ production and cellular responses to renin. J Clin Invest 2002, 109:1417-1427.
    25. Miyata N, Park F, Li XF, Cowley AW, Jr.:Distribution of angiotensin AT1 and AT2 receptor subtypes in the rat kidney. Am J Physiol 1999,277:F437-446.
    26. McDougall SJ, Roulston CA, Widdop RE, Lawrence AJ:Characterisation of vasopressin V(1A), angiotensin AT(1) and AT(2) receptor distribution and density in normotensive and hypertensive rat brain stem and kidney:effects of restraint stress. Brain Res 2000, 883:148-156.
    27. Hu J, Tiwari S, Riazi S, Hu X, Wang X, Ecelbarger CM:Regulation of angiotensin Ⅱ type Ⅰ receptor (AT1R) protein levels in the obese Zucker rat kidney and urine. Clin Exp Hypertens 2009,31:49-63.
    28. Weidekamm C, Hauser P, Hansmann C, Schwarz C, Klingler H, Mayer G, Oberbauer R:Effects of AT1 and AT2 receptor blockade on angiotensin II induced apoptosis of human renal proximal tubular epithelial cells. Wien Klin Wochenschr 2002,114:725-729.
    29. Cao Z, Kelly DJ, Cox A, Casley D, Forbes JM, Martinello P, Dean R, Gilbert RE, Cooper ME: Angiotensin type 2 receptor is expressed in the adult rat kidney and promotes cellular proliferation and apoptosis. Kidney Int 2000,58:2437-2451.
    30. Moudgil R, Musat-Marcu S, Xu Y, Kumar D, Jugdutt BI:Increased AT(2)R protein expression but not increased apoptosis during cardioprotection induced by AT(1)R blockade. Can J Cardiol 2002,18:1107-1116.
    31. Moudgil R, Musat-Marcu S, Xu Y, Kumar D, Jugdutt BI:Increased AT2R protein expression but not increased apoptosis during cardioprotection induced by AT1R blockade. Can J Cardiol 2002,18:873-883.
    32. Dimmeler S, Rippmann V, Weiland U, Haendeler J, Zeiher AM:Angiotensin II induces apoptosis of human endothelial cells. Protective effect of nitric oxide. Circ Res 1997,81:970-976.
    33. Ni M, Lee AS:ER chaperones in mammalian development and human diseases. FEBS Lett 2007,581:3641-3651.
    34. Perlman A, Lawsin LM, Kolachana P, Saji M, Moore J, Jr., Ringel MD:Angiotensin II regulation of TGF-beta in murine mesangial cells involves both PI3 kinase and MAP kinase. Ann Clin Lab Sci 2004,34:277-286.
    35. Gorin Y, Ricono JM, Wagner B, Kim NH, Bhandari B, Choudhury GG, Abboud HE:Angiotensin Ⅱ-induced ERK1/ERK2 activation and protein synthesis are redox-dependent in glomerular mesangial cells. Biochem J 2004,381:231-239.
    36. Ikehara K, Tada H, Kuboki K, Inokuchi T: Role of protein kinase C-angiotensin II pathway for extracellular matrix production in cultured human mesangial cells exposed to high glucose levels. Diabetes Res Clin Pract 2003,59:25-30.
    37. Chen Y, Zhang AH, Huang SM, Ding GX, Zhang WZ, Bao HY, Wu HM, Chen RH:[NADPH oxidase-derived reactive oxygen species involved in angiotensin II-induced monocyte chemoattractant protein-1 expression in mesangial cells]. Zhonghua Bing Li Xue Za Zhi 2009,38:456-461.
    38. Kaneto H, Nakatani Y, Kawamori D, Miyatsuka T, Matsuoka TA, Matsuhisa M, Yamasaki Y:Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic beta-cell dysfunction and insulin resistance. Int J Biochem Cell Biol 2005, 37:1595-1608.
    39. Hanada S, Harada M, Kumemura H, Bishr Omary M, Koga H, Kawaguchi T, Taniguchi E, Yoshida T, Hisamoto T, Yanagimoto C, et al.:Oxidative stress induces the endoplasmic reticulum stress and facilitates inclusion formation in cultured cells. J Hepatol 2007,47:93-102.
    40. Wang WZ, Pang L, Palade P:Angiotensin II causes endothelial-dependent increase in expression of Ca(V)1.2 protein in cultured arteries. Eur J Pharmacol 2008,599:117-120.
    41. Eto K, Ohya Y, Nakamura Y, Abe I, Iida M:Intracellular angiotensin II stimulates voltage-operated Ca(2+) channels in arterial myocytes. Hypertension 2002,39:474-478.
    42. Aiello EA, Cingolani HE:Angiotensin II stimulates cardiac L-type Ca(2+) current by a Ca(2+)- and protein kinase C-dependent mechanism. Am J Physiol Heart Circ Physiol 2001,280:H1528-1536.
    43. Szegezdi E, Logue SE, Gorman AM, Samali A: Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 2006,7:880-885.
    44. Oyadomari S, Mori M: Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004,11:381-389.
    45. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D: CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998,12:982-995.
    46. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D: CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 2004,18:3066-3077.
    47. Lavrik IN, Golks A, Krammer PH:Caspases:pharmacological manipulation of cell death. J Clin Invest 2005,115:2665-2672.
    48. Sergeev IN:1,25-Dihydroxyvitamin D3 induces Ca2+-mediated apoptosis in adipocytes via activation of calpain and caspase-12. Biochem Biophys Res Commun 2009,384:18-21.
    49. Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T, Tohyama M:Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 2001,276:13935-13940.
    50. Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC, Ellerby LM, Ellerby HM, Bredesen DE:Coupling endoplasmic reticulum stress to the cell death program:role of the ER chaperone GRP78. FEBS Lett 2002,514:122-128.
    51. Liu H, Bowes RC,3rd, van de Water B, Sillence C, Nagelkerke JF, Stevens JL:Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. JBiol Chem 1997,272:21751-21759.
    52. Lee AS:The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 2005,35:373-381.
    53. Gorbatyuk MS, Knox T, Lavail MM, Gorbatyuk OS, Noorwez SM, Hauswirth WW, Lin JH, Muzyczka N, Lewin AS:Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Proc Natl Acad Sci USA.
    54. Hoglen NC, Chen LS, Fisher CD, Hirakawa BP, Groessl T, Contreras PC:Characterization of IDN-6556 (3-[2-(2-tert-butyl-phenylaminooxalyl)-amino]-propionylamino]-4-oxo-5-(2,3,5,6-tetraflu oro-phenoxy)-pentanoic acid):a liver-targeted caspase inhibitor. J Pharmacol Exp Ther 2004,309:634-640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700