游离脂肪酸与代谢综合征中促凝血状态的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     代谢综合征患者表现为显著的促凝血状态,其中凝血功能增强,纤维溶解活性降低,血小板的活性和功能增强。促凝血状态的存在造成患者病理性血栓形成的风险增加,进而导致心肌梗死、脑卒中、外周血管疾病等临床事件的发生。虽然众多的临床研究证实了促凝血状态是代谢综合征的重要特征之一,但其病理生理学特点及具体的发生机制尚不明确。
     活性蛋白C(activated protein C, APC)是体内重要的抗凝分子。凝血酶(thrombin)与血栓调节蛋白(thrombomodulin, TM)结合后,能高效地促使蛋白C转化为活性蛋白C。APC能和辅助因子蛋白S结合,降解凝血因子Ⅷa和Va,从而发挥抗凝作用。另外,APC能抑制组织型纤溶酶原激活物抑制剂(PAl-1)的活性,进而促进纤维蛋白溶解。此外,APC还具有抗炎和抑制凋亡的功能。TM和内皮表面蛋白C受体(endothelial protein C receptor, EPCR)能够调控蛋白C的激活过程。以往的研究表明,TM表达减少能抑制蛋白C的激活,造成血栓形成。局部TM表达减少与动脉粥样硬化病变有关。因此,TM可能发挥血管保护作用从而发挥预防心血管疾病的作用。TM-蛋白C系统的调控异常可能与代谢综合征中促凝血状态的发生有关。
     代谢综合征中促凝血状态的发生是一个非常复杂的病理生理过程。循环中游离脂肪酸(free fatty acids, FFAs)水平升高是代谢综合征的重要特征。因此,代谢综合征患者的血管系统长期暴露于高FFAs状态中。临床研究表明,循环中FFAs水平升高能直接损害血管功能,与心肌梗死、脑卒中和猝死的发生密切相关。长期的高FFAs可能导致异常的血栓形成。但是游离脂肪酸能否调节TM的表达以及具体的机制如何,目前尚缺乏相关研究。
     针对以上问题,我们提出以下假设:高FFAs能导致TM-蛋白C系统表达失调,进而促使代谢综合征中促凝血状态的发生。通过本研究有助于进一步了解代谢综合征中促凝血状态的发生机制,为急性心脑血管疾病的预防和治疗提供新的思路和治疗靶点。
     研究目的
     1.观察高游离脂肪酸水平与代谢综合征中促凝血状态的关系。
     2.探讨游离脂肪酸对TM-蛋白C抗凝系统的作用以及可能的分子生物学机制。
     材料与方法
     1.动物模型
     8-10周龄的雄性小鼠30只,分为两组,每组15只。一组给与普通饮食(含10%脂肪),一组给与高脂饮食(含50%脂肪)20周。实验结束后,留取主动脉,用于后续的病理学检查和分子生物学检查。
     2.鼠尾静脉出血时间测定
     小鼠麻醉后,在鼠尾直径约为1mm左右处,用锐利的刀片横断鼠尾。然后迅速将鼠尾置于37摄氏度的PBS溶液中,记录从出血到血流终止的时间,记为出血时间。
     3.三氯化铁诱导的颈动脉血栓模型
     利用FeCl3损伤方法造成血栓形成。小鼠腹腔麻醉后,行颈部正中切口,钝性分离,暴露左侧颈总动脉,把超声探头置于颈动脉表面,监测基础状态下血流情况。把滤纸切成1.5 mm X 2 mm的细条,在10%的FeCl3溶液中充分浸泡,将滤纸片置于颈动脉表面,放置3分钟,然后去除滤纸片。迅速用超声探头持续监测颈动脉血流情况,监测时间为30分钟。记录从放置滤纸片到血流完全中断的时间。
     4.代谢指标检测
     实验结束前,抽取小鼠静脉血。利用常规生物学方法,检测血液中游离脂肪酸(FFA)、血糖、胰岛素,血脂TQ VLDL, LDL, HDL水平。
     5.病理学检测
     实验结束,留取小鼠主动脉,多聚甲醛固定,包埋,制作组织切片。免疫组织化学方法观察血管壁TM,PAI-1,TF的表达。
     6.内皮细胞培养
     人主动脉内皮细胞株(human aortic endothelial cells, HAECs),使用内皮细胞生长培养基-2(endothelial cell growth medium-2, EGM-2),在37℃和5%CO2孵育箱中进培养。每2-3天更换培养液。第5-9代细胞用于实验。
     7.脂肪酸制备
     首先将游离脂肪酸(FFAs)溶解在酒精中,并与10%的不含FFAs,低内毒素的BSA混合,使其终浓度在1-5 mM。所有溶液的PH值调整在7.5左右,使用滤器消毒,-200C储存。将不含有PA的BSA溶液作为对照。在处理细胞之前,将储存的PA按照1:10的比例,使用培养基进行稀释。
     8.蛋白C活性检测
     内皮细胞被种植在96孔板中,给与不同浓度、不同种类的FFAs刺激24小时,然后根据试剂盒说明,检测蛋白C的活性。
     9.siRNA诱导的基因沉默
     使用特异性的siRNA沉默相关基因,应用LipofectAMINETM 2000脂质体包裹,并转染HAECs.
     10.蛋白印迹分析
     使用细胞裂解液或组织裂解液提取细胞和小鼠主动脉的总蛋白。以SDS-PAGE电泳、转膜、一抗孵育、二抗孵育,最后采用化学发光法观察结果。
     11.实时定量PCR
     使用Trizol提取细胞的总RNA。应用iScript cDNA合成酶将mRNA逆转录成cDNA。使用iCycler iQ荧光探针系统进行实时PCR。
     12.质粒DNA转染
     分别使用野生型表达质粒(wide type plasmid)、持续激活型表达质粒(constitutively active plasmid)、显性负向表达质粒(dominant negative plasmid),首先使用LipofectAMINETM 2000脂质体包裹,并转染内皮细胞。然后再给与PA处理。
     结果
     1.动物的基本特征
     与普通饮食的小鼠相比,高脂饮食导致小鼠代谢指标明显异常。体重明显增加,血液中游离脂肪酸、血糖、胰岛素、血脂水平明显增加(P均<0.05)。
     2.高脂饮食导致小鼠体内出现明显的促凝血状态
     与对照组小鼠相比,高脂饮食导致小鼠尾静脉出血时间明显缩短,三氯化铁损伤后颈总动脉血栓形成时间明显缩短(P0.01),提示这些小鼠体内存在明显的凝血异常。
     3.高脂饮食导致小鼠体内TM表达明显减少,PAI-1和TF表达增加
     我们检测了小鼠主动脉中TM,PAI-1和TF等凝血指标的表达。免疫组化结果显示,与对照组比较,高脂喂养的小鼠血管壁TM表达明显减少,PAI-1和TF的表达增加。此外,Western blot结果表明,高脂喂养的小鼠主动脉TM表达明显减少(P<0.001),PAI-1和TF的表达增加(P<0.01)。
     4.高脂饮食能激活体内JNK和p38 MAPK应激信号通路
     Western blot结果表明,高脂饮食导致小鼠主动脉内JNK和p38 MAPK磷酸化蛋白/总蛋白的比值增加(P<0.01)。
     5.游离脂肪酸抑制内皮细胞中TM和EPCR的表达,并增加TF的表达
     内皮细胞给与不同浓度的棕榈酸(palmitic acid, PA)、亚油酸(linoleic acid,LA)、油酸(oleic acid, OA)刺激24小时。Western blot结果显示,PA和LA能显著抑制TM和EPCR的表达(P均<0.01),并增加TF的表达(P<0.05)。但是OA对TM,EPCR和TF的蛋白表达没有明显作用(P>0.05)。RT-PCR结果显示PA能剂量依赖性地抑制TM mRNA的表达(P<0.01)。
     6.游离脂肪酸抑制内皮细胞中蛋白c的激活
     用不同浓度的PA,LA和OA处理内皮细胞24小时,检测蛋白C的活性。PA和LA呈剂量依赖性的抑制蛋白C的活性(P<0.01),但是OA对蛋白C的活性没有明显作用(P>0.05)。
     7.JNK和p38信号通路参与PA抑制TM基因表达的过程
     使用特异性的siRNA分别敲除JNK和p38通路,PA导致的TM表达降低的作用减弱(P<0.01)。野生型JNK质粒DNA转染能加强PA对TM的抑制作用(P<0.05),而显性负向的JNK质粒DNA转染没有这一作用。
     8.转录因子Foxol参与PA抑制TM基因表达的过程
     使用特异性的Foxo1 siRNA沉默Foxol的表达,PA抑制的TM蛋白表达的作用减低(P<0.001)。野生型和持续激活型Foxol质粒DNA转染能加强PA对TM的抑制作用(P<0.05),而显性负向的Foxol质粒DNA转染能阻止这一作用(P>0.05)。
     结论
     1.高脂饮食导致小鼠血液中游离脂肪酸水平升高,出血时间缩短,血栓形成时间缩短,提示代谢综合征模型小鼠体内存在促凝血状态。
     2.高脂饮食小鼠主动脉中抗凝因子TM表达减少,促凝因子PAI-1和TF表达增加,提示这些小鼠体内凝血和抗凝调控异常。
     3.PA和LA抑制内皮细胞TM和EPCR的表达,并增加PAI-1的表达,降低蛋白C的活性,说明游离脂肪酸能导致细胞中凝血和抗凝因子表达失调。
     4.在PA抑制TM表达的过程中,应激信号通路JNK和p38MAPK参与了对TM表达的调节。
     5.在PA抑制TM表达的过程中,Foxol作为重要的转录因子参与了抑制TM表达的过程。
     总之,代谢综合征模型小鼠血液中游离脂肪酸水平升高,体内凝血和抗凝平衡失调,表现为明显的促凝血状态。PA能减少内皮细胞中TM的表达,降低蛋白C的活性。PA可以通过JNK,p38/Foxol信号传导通路抑制内皮细胞中TM的表达。
     背景
     代谢综合征患者表现为显著的促凝血状态,这些患者发生心肌梗死、脑卒中、外周血管疾病等血栓性并发症的风险增加。临床上抗血栓治疗能够改善急性心脑血管并发症患者的生存率。虽然既往的研究已经发现代谢综合征患者凝血和纤维溶解功能异常,但是有关促凝血状态的发生机制目前尚未完全明确。
     血管内皮能分泌多种活性物质,例如:vWF,血栓调节蛋白(thrombomodulin,TM),组织型纤溶酶原激活剂(tissue plasminogen activator, t-PA),组织型纤溶酶原激活物抑制剂(plasminogen activator inhibitor, PAI-1),在调控促凝和抗凝平衡过程发挥着重要作用。在这些活性分子中,TM-蛋白C系统是内皮组织重要的生理性抗凝系统。内皮细胞功能失调可导致凝血功能异常,并促使血栓形成。
     TM是一种定位于内皮细胞表面的糖蛋白,是激活蛋白C的一种重要的活性物质。TM与凝血酶(thrombin)结合后,促使蛋白C转化为有活性的蛋白C。活性蛋白C一方面通过降解凝血因子Ⅷa和Va发挥抑制凝血过程;一方面可使PAI-1失去活性从而增强纤维溶解过程。TM在抗凝血过程中发挥着重要作用。TM基因突变或表达减少能促使动脉血栓的形成;而局部TM基因过度表达能避免兔动脉血栓形成。另外,TM基因还具有抗炎和抑制凋亡的作用。多项研究发现,TM能抑制炎症反应,阻止细胞凋亡。在动脉粥样硬化等血管性疾病发生过程中,TM基因表达降低。多种刺激,诸如:炎症因子、管壁张力、氧化的脂质等能抑制TM基因的表达。虽然众多的研究发现TM表达降低与病理性血栓形成有关,但是导致TM表达降低的具体机制尚不完全明确。
     MAPKs作为体内广泛存在的丝氨酸/苏氨酸蛋白调节激酶,在细胞的增殖、分化、转化和凋亡过程中发挥着重要作用。现有研究表明,包括动脉粥样硬化在内的多种心血管疾病过程,伴随着JNK和p38 MAPK应激信号通路的异常激活。多种代谢刺激和炎症因子能激活JNK和p38 MAPK应激信号通路。游离脂肪酸(free fatty acids,FFAs)也能够激活JNK和p38 MAPK应激信号通路,并参与游离脂肪酸导致胰岛素抵抗的过程。我们已经发现JNK和p38 MAPK应激信号通路参与调控TM基因的表达,但是具体的分子生物学机制目前尚不清楚。
     ATF-2是位于JNK和p38 MAPK应激信号通路下游的转录因子。以往的研究显示ATF-2参与调控LPS诱导的组织因子(tissue factor,TF)表达的过程,因此转录因子ATF-2可能与血栓形成失调有关。但是,转录因子ATF-2能否参与调控TM基因的表达目前尚不明确。
     因此,在这项研究中,我们检测了转录因子ATF-2作为JNK的下游转录因子,通过与HDAC4结合形成转录抑制复合物从而抑制TM基因的表达的具体机制。这将为病理性血栓及心血管疾病的治疗干预提供新的干预靶点。
     研究目的
     1.明确转录因子ATF-2在调控TM基因表达过程中的作用。
     2.探讨ATF-2调控TM基因表达的可能的分子生物学机制。
     材科与方法
     1.细胞培养
     人主动脉内皮细胞株(human aortic endothelial cells, HAECs),使用含有2%的胎牛血清,FGF-2, VEGF, IGF-1, EGF等生长因子的内皮细胞生长培养基-2(endothelial cell growth medium-2, EGM-2),在37℃和5%CO2孵育箱中进培养。每2-3天更换培养液。第5-9代细胞用于实验。内皮细胞被种植在6孔板中,然后给与不同浓度的棕榈酸(palmitic acid,PA)或siRNA刺激。
     2.棕榈酸制备
     根据文献方法制备棕榈酸。首先用酒精溶解棕榈酸至终浓度为200mM,然后加入10%的不含游离脂肪酸的牛血清稀释至终浓度为1-5mM。调节pH值在7.5左右,放入-20℃冰箱中备用。
     3. siRNA转染方法
     使用特异的siRNA诱导基因沉默,应用LipofectAMINETM 2000脂质体包裹,并转染HAECs。被转染的HAECs再给与棕榈酸刺激24小时。
     4. Western blot分析
     收集细胞后,使用细胞裂解液提取总蛋白,煮沸5分钟。将15μg左右蛋白的标本和蛋白标记物一起加样,以SDS-PAGE电泳,然后用一湿电转移电转到聚偏氟乙烯膜(PVDF)上。封闭液封闭,一抗孵育过夜。洗膜后,用二抗孵育。用显色液显色。目的蛋白和β-actin条带积分光密度的比值表示蛋白表达的多少。
     5.细胞RNA提取和实时定量PCR
     根据试剂盒说明,使用Trizol提取细胞的总RNA。用iScript cDNA合成酶将mRNA逆转录成cDNA。应用iCycler iQ荧光探针进行实时定量PCR。TM基因mPCR扩增引物:上游序列5'-CCGATGTCATTTCCTTGCTA-3',下游序列5'-GTTGTCTCCCGTAACCCACT-3'。反应结束得到循环阈值(Ct值),用TM与β-actin的循环阈值的比值表示mRNA的相对水平。
     6.染色质免疫沉淀分析
     根据试剂盒说明,使用Chip试剂盒进行染色质免疫沉淀分析。首先将处理过的内皮细胞用1%的甲醛在37℃中孵育15分钟,以形成DNA-蛋白质复合体。裂解细胞,离心,应用特异抗体-蛋白A-琼脂糖浆对DNA-蛋白质复合体进行免疫沉淀(IgG作为阴性对照)。将这些免疫复合物珠子进行清洗,洗脱和解链。应用苯酚/氯仿/易戊酯酒精混合物萃取DNA片段。然后,将免疫沉淀的DNA片段作PCR,使用1.5%的琼脂糖胶分离PCR产物。
     7.免疫沉淀分析
     将处理过的细胞放置冰预冷的裂解液中裂解60分钟。然后与抗体和蛋白A/G-琼脂糖珠子在4℃中孵育过夜以进行免疫沉淀。使用提取液清洗两遍,然后再使用含有0.5 M氯化锂的提取液清洗两遍。使用SDS样本试剂直接洗脱蛋白质,然后进行蛋白印迹分析。
     8.统计分析
     实验数据以均数±标准差表示。应用SPSS13.0软件进行分析,多组之间采用单因素方差分析,P<0.05认为差异具有统计学意义。
     结果
     1.游离脂肪酸抑制内皮细胞中TM基因的表达
     人主动脉内皮细胞(HAECs)给与不同浓度的PA刺激24小时,Western blot结果显示PA能明显抑制TM蛋白的表达,差异有统计学意义(P<0.001)。
     2.游离脂肪酸能激活转录因子ATF-2
     人主动脉内皮细胞(HAECs)给与不同浓度的PA刺激24小时,Western blot方法检测ATF-2通路磷酸化蛋白和总蛋白的表达水平,用磷酸化蛋白/总蛋白的比值表示蛋白活性。PA能够增加转录因子ATF-2的活性,差异有统计学意义(P<0.05)。
     3.转录因子ATF-2能直接与TM基因启动子结合
     TM基因启动子区域包含多个ATF-2结合位点(agTGACGgatt at-1288/-1277, gcTGACTcgct at-1026/-1016, and ccTGACAgtgt at-939/-929)。首先用ChiP分析检测ATF-2能否与TM启动子区域结合。ChiP结果显示,ATF-2能与TM启动子gcTGACTcgct (-1026/-1016)和ccTGACAgtgt (-939/929)位点结合。并且,PA能增强ATF-2与TM启动子的结合。
     4.转录因子ATF-2参与PA抑制TM基因表达的过程
     检测转录因子ATF-2能否调控TM表达。使用特异性的ATF-2 siRNA沉默ATF-2表达,能阻止PA抑制的TM mRNA的表达(P<0.05)。
     5.ATF-2与HDAC4结合在TM基因启动子区域形成转录抑制复合物
     ChiP结果显示,PA能明显增强转录抑制分子HDAC4与TM基因启动子相结合。双ChiP结果表明ATF-2能与HDAC4结合形成转录抑制复合物从而抑制TM基因的表达。
     结论
     1.在PA抑制内皮细胞中TM表达的过程中,转录因子ATF-2参与了调控TM基因的表达过程。
     2.ATF-2通过与HDAC4结合,在TM基因启动子区域形成转录抑制复合物从而抑制TM的表达。这将有助于进一步明确TM表达降低的分子生物学机制,从而为基因治疗提供新的靶点。
Backgroud
     Metabolic syndrome displays a significant prothrombotic state with increased coagulation, inhibited fibronolysis and increased platelet activation. The prothrombotic state induces the increased risk of pathological thrombosis, and renders patients highly susceptible to myocardial infarction, ischemic stroke and peripheral vascular diseases. Although many clinical studies showed that the prothrombotic state is a key feature of metabolic syndrome, the pathogenesis and mechanisms of the state is not completely understood.
     Protein C, a key endogenous anticoagulant molecule, is efficiently activated on the surface of endothelial cells by the binding of thrombin to the endothelial transmembrane glycoprotein, Thrombomodulin. Once activated, protein C, together with its cofactor protein S, inhibits coagulation by proteolytic degradation of factor Villa and factor Va. In addition, activated protein C (APC) promotes fibrin degradation by inhibiting the activity of plasminogen activator inhibitor—1 (PAI-1). Moreover, APC has significant anti-inflammatory and anti-apoptotic functions. Thus, APC not only regulates hemostasis and inflammation, but also provides additional levels of cellular protection. Thrombomodulin and endothelial protein C receptor (EPCR) control the protein C anticoagulation pathway. Maximal rates of protein C activation require thrombin binding to thrombomodulin and protein C binding to EPCR. Loss of thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis. Localized loss of thrombomodulin from endothelium has been associated with arteriosclerotic lesions, therefore, thrombomodulin may act in a vasoprotective manner to prevent cardiovascular diseases. Deregulation of this system may be responsible for the prothrombotic state in metabolic syndrome.
     The prothrombotic state in metabolic syndrome has a complex pathogenesis. Metabolic syndrome is often characterized by high circulating concentrations of FFAs. Thus, the vasculature of patients with metabolic syndrome is constantly exposed to high levels of FFAs. Clinical studies have shown that high FFA levels directly impair vascular functions are associated with myocardial infarction, stroke, and sudden death. Long-term increases in FFA levels may have an adverse effect on the regulation of thrombosis. But it is not understood whether FFAs can regulate TM expression and the mechanisms involved.
     In this study, we hypothesize that the metabolic stress of high concentrations of FFAs may deregulate the thrombomodulin-APC system, which in turn may be responsible for the development of the prothrombotic state in metabolic syndrome. Our study may be helpful to understand the mechanisms of the prothrombotic state in metabolic syndrome, and supply a new therapeutic target in treating and preventing cardiovascular diseases in metabolic syndrome.
     Objectives
     1. Elucidate the effects of high serum FFAs level on the prothrombotic state in metabolic syndrome.
     2. Examine the effects of FFAs on the expression of TM-protion C system and the possible mechanisms involved.
     Methods
     1. Animal model
     8 to 10 weeks of male wide-type mice were divided into two groups. One group of mice were fed a chow diet containing 10% fat, while the other group of mice were fed a high-fat diet containing 50% fat for 20 weeks. The aortas were rapidly excised and rinsed in ice-cold saline, and then stored for histology and further use.
     2. Tail-bleeding time
     Mice were anesthetized and placed on a 37℃heating pad. The tail was transected with a sterile scalpel at a point where the tail diameter was approximately 1 mm wide. After transection, the tail was immediately placed in a 50 mL tube containing 0.9% NaCl warmed to 37℃. The time between bleeding to stop was recorded.
     3. FeCl3 induced carotid artery thrombosis model
     FeCl3 induced thrombosis was used in this study. In brief, mice were anesthetized. An incision was made, and a segment of the right common carotid artery was exposed with blunt dissection. A small piece of filter paper(2 mm X 3 mm) was saturated with 10% FeCl3 was deposited on the isolated artery for 3 min, followed by washing with saline. Blood flow was monitored using a Doppler flow probe for 30 min after FeCl3 application. The occlusion time was recorded as the first image that showed 0 flow.
     4. Metabolic factors measurements
     Blood samples were collected from retio-orbital sinus. Circulating free fatty acids, glocuse, insulin, TG, VLDL, LDL, HDL were measured.
     5. Histological and morphology analyses
     Sections were stained with hematoxylin and eosin(H&E). TM, PAI-1, TF were detected with immunostaining.
     6. Cell culture
     Primary human aortic endothelial cells (HAECs) were cultured at 37℃in 5% CO2 in endothelial cell growth medium-2 (EGM-2). Cells between passages 5 to 9 were used for all of the experiments. The medium was changed every two or three days.
     7. Preparation of fatty acid-albumin complexes.
     Saturated PA, polyunsaturated LA, and monounsaturated OA were used in this study. Lipid-containing media were prepared by conjugation of FFAs with BSA using a modification of the method described previously. Briefly, FFAs were first dissolved in ethanol at 200mM, and then combined with 10% FFA-free low endotoxin BSA to final concentrations of 1-5mM. The pH of all solutions was adjusted to approximately 7.5, and the stock solutions were filter-sterilized and stored at-20℃until use. Control solution containing ethanol and BSA was prepared similarly. Working solutions were prepared fresh by diluting stock solution (1:10) in 2% FCS-EBM.
     8. Protein C activation.
     HAECs in 96-well plates were treated with different kind and different dose of FFAs for 24 hours.Then the activation of protein C was detected according to the manufacturer's instructions.
     9. siRNA-induced gene sliencing
     Sliencing gene expression wsas achieved by using specific siRNAs. HAECs were transfected with siRNAs using Lipofectamine2000 according to the manufacture's instructions.
     10. Western blot analysis
     Cell extracts and mice aortas were prepared with lysis buffer. Equal amounts of protein were separated by SDS-PAGE and transferred to a nitrocellulose membrane. Following blocking with 5% non-fat milk, the blots were incubated with a primary antibody at 4℃overnight. Then the blots were washed with TBST and incubated with HRP-conjugated secondary antibody. The blots were then visualized by use of enhanced chemiluminescence.
     11. RT-PCR
     Total RNA was extracted from HAECs with Trizol according to the manufacturer's instructions. Signal-strand cDNA was synthesized with iScript cDNA synthesis kit. Semi-quantitative real-time PCR was performed with iCycler iQ real-time PCR detection system.
     12. Plasmid DNA transfection
     HAECs were transfected with different types of plasmids including wide type, constitutively active and dominant-negative by using LipofectAMINETM 2000 according to the manufacturer's instructions. Transfected cells were then treated with PA.
     Results
     1. Mice model
     Mice fed a high-fat diet showed notable characteristics of metabolic syndrome with higher body weight and elevated blood levels of FFAs, TG, VLDLs, glucose and insulin(P<0.05).
     2. Prothrombotic state in mice fed a high-fat diet
     The tail bleeding time was significantly lower in mice fed a high-fat diet than that in chow diet. Furthermore, the occlusion time following FeCl3 injury of the carotid artery was significantly shorter in mice fed a high-fat diet compared to that in control mice, indicating that the development of prothrombotic state in mice fed a high-fat diet(P<0.01).
     3. Reduced expression of thrombomodulin and increased expression of PAI-1 and TF in mice fed a high-fat diet
     We examined the expression of TM, PAI-1 and TF in the aorta of obese mice. Immunostaining of the vascular wall showed significantly decreased expression of thrombomodulin(P<0.001), and increased expression of PAI-1 and TF(P<0.01) on the surface of the endothelium in the aorta of mice fed a high-fat diet. This finding is consistent with the results of Western blot. These results show that thrombomodulin is down-regulated in obese mice, which may contribute to the hypercoagulable state in obesity and metabolic syndrome.
     4. JNK and p38 MAPK stress signaling pathways were activated in mice fed a high-fat diet
     Western blot showed that JNK and p38 MAPK stress pathways were activated in mice fed a high-fat diet(P<0.01), indicating that the activation of stree pathways may contribute to the prothrombotic state in these mice.
     5. Suppression of thrombomodulin and EPCR expression and increased expression of TF by FFAs.
     To determine the potential role of FFAs in thrombosis dysregulation, we examined the effect of FFAs on the expression of prothrombotic factors and antithrombotic factors in endothelial cells. Saturated fatty acid PA, polyunsaturated fatty acid LA, and monounsaturated fatty acid oleic acid (OA) were used for the study. PA and LA significantly decreased the expression of thrombomodulin in a dose-dependent fashion(P<0.01), whereas OA had a minimal effect on thrombomodulin(P>0.05). Similarly, treatment with PA and LA substantially inhibited EPCR expression and increased to varying degrees the expression of the prothrombotic factor, PAI-1(P<0.01). PA significantly decreased mRNA for thrombomodulin in a dose-dependent manner.
     6. FFAs inhibited endothelial-mediated protein C activation
     We compared the activation of protein C in FFA-treated and untreated HAECs. PA and LA caused a significant dose-dependent decrease in protein C activation(P<0.01), whereas OA had no effect(P>0.05).
     7. JNK and p38 stress pathways were involved in PA's inhibitory effect on the expression of TM.
     Silencing JNK and p38 with specific siRNAs decreased PA-induced thrombomodulin suppression(P<0.01), indicating that JNK and p38 pathways mediated PA-induced inhibition of thrombomodulin expression. Furthermore, wide type of JNK plasmid can enhance PA's inhibitory effect on TM expression, while dominant-negative of JNK plasmid can abrogate the effect.
     8. Foxol was involved in PA-inhibited TM expression
     When HAECs cells were transiently transfected with Foxol-specific siRNAs before treated with PA, PA-induced inhibition of TM expression was significantly decreased(P<0.001). Wide type and constitutively active of Foxol plasmids enhanced PA's inhibitory effect of TM expression(P<0.05), while dominant-negative of Foxol plasmid can abrogate the effect(P>0.05).
     Conclusions
     1. A high-fat diet induced high elevated circulating FFAs level, the shortened bleeding time, indicating that the prothrombotic state in metabotic syndrome mice.
     2. The aortas from mice fed a high-fat diet showed decreased TM expression, and increased expression of PAI-1 and TF, indicating that the imbalance of coagulation and anticoagulation.
     3. PA and LA inhibited the expression of TM and EPCR, and increased PAI-1 expression in endothelial cells, indicating that FFAs can induce the imbalance of coagulation and anticoagulation in endothelial cells.
     4. JNK and p38 stress pathways mediated PA-inhibited TM expression in HAECs.
     5. Foxol was involved in PA-inhibited TM expression in HAECs.
     6. JNK, p38/Foxol pathway mediated free fat acid's inhibitory effect of thrombomodulin expression, which may be a new therapeutic target in treating cardiovascular and cerebrovascular complications.
     Backgroud
     Metabolic syndrome is associated with a prothrombotic state, which contributes to the atherothrombotic complications, such as myocardial infarction, stroke, and peripheral vascular complications. Antithrombotic therapy improves survival in acute cardiac and cerebrovascular complications patients. Although the dysregulation in coagulation and fibrinolysis has been reported, the development of prothrombotic state is not well understood.
     Endothelium plays an active role in regulating pro-coagulation and anti-coagulation balance by generating several active regulatory molecules, such as von Willebrand factor (vWF), thrombomodulin (TM), tissue plasminogen activator (t-PA), and plasminogen activator inhibitor (PAI-1). Among these factors, thrombomodulin-protein C pathway is a major physiological anticoagulation system of the endothelium. Endothelial dysfunction can cause coagulation dysregulation and promote vascular thrombosis.
     Endothelium plays an active role in regulating pro-coagulation and anti-coagulation balance by generating several active regulatory molecules, such as von Willebrand factor (vWF), thrombomodulin (TM), tissue plasminogen activator (t-PA), and plasminogen activator inhibitor (PAI-1). Among these factors, thrombomodulin-protein C pathway is a major physiological anticoagulation system of the endothelium. Endothelial dysfunction can cause coagulation dysregulation and promote vascular thrombosis.
     Thrombomodulin, a glycoprotein on the surface of endothelial cells, is a key factor in protein C activation3. When bound to thrombin, TM triggers the activation of protein C by facilitating the conversion of circulating protein C to activated protein C (APC). Activated protein C can inhibit coagulation by degradingⅧa and factor Va and enhance fibrinolysis by inactivating PAI-1. TM plays a key role in anticoagulation, and mutation or down-regulation of TM promotes while overexpression of TM prevents arterial thrombosis. In addition, TM functions as an anti-inflammatory and anti-apoptotic molecule. It has been shown that TM inhibited inflammatory response and blocked cell apoptosis. TM is down-regulated in vascular diseases including atherosclerotic lesions, and TM is negatively regulated by inflammatory factors, wall tension and oxidized lipids. However, many reports showed that the down-regulated expression of TM was associated with the pathologic thrombosis, the mechanisms involved in the down-regulation of TM expression are not completely understood.
     Mitogen-activated protein kinases (MAPKs) are serine/threonine-specific protein kinases that contribute to extracellular stimuli and regulate various cellular activities, such as gene expression, mitosis, transformation, apoptosis. Stress signaling JNK and p38 pathways are activated in many cardiovascular diseases including atherosclerosis and are involved in pathphysiological changes in these conditions. JNK and p38 signaling pathways are activated by metabolic stress and inflammatory factors. Previous study showed that JNK and p38 can be activated by free fatty acids (FFA) and were involved in vascular insulin resistance. We have found that JNK and p38 pathways are involved in the dowm-regulation of TM, but the detailed mechanisms involved are not well understood.
     How stress signaling down-regulates TM expression? ATF-2 is a downstream target transcription factor of JNK and p38 pathways. Previous study has reported that ATF-2 mediated LPS-induced TF expression and may be involved in thrombosis dysregulation. But whether transcriptional factor ATF-2 is involved in the regulation of TM expression is still unclear.
     So in this study, we examined the effects of transcriptional factor ATF-2 on the regulation of TM expression, which may be helpful for the development of therapeutic intervention for pathologic thrombosis and cardiovascular complications.
     Objectives
     1. Identify the effects of transcriptional factor ATF-2 in the regulation of TM expression in HAECs.
     2. Examine the possible mechanisms how ATF-2 mediated TM expression.
     Metarials and Methods
     1. Cell culture
     Primary human aortic endothelial cells (HAECs) were cultured at 37℃in 5% CO2 in endothelial cell growth medium-2 (EGM-2) containing 2% FBS, FGF-2, VEGF, IGF-1, EGF. Cells between passages 5 to 9 were used for all of the experiments. The medium was changed every two or three days. The endothelial cells were plated on 6-well plates, and then treated with different doses of palmitic acid or transfected with siRNAs.
     2. Preparation of palmitic acids:
     Preparation of PA was carried out as previously. Briefly, PA was dissolved in ethanol at 200mM, and then combined with 10% FFA-free low endotoxin BSA to final concentrations of 1-5mM. The pH of all solutions was adjusted to approximately 7.5, and the stock solutions were stored at-20℃.
     3. siRNA transfection
     Silencing gene expression was achieved using specific siRNA. HAECs were transfected with siRNAs using Lipofectamine2000 according to the manufacturer's instructions. Transfected cells were then treated with palmitic acid for 24h.
     4. Western blot analysis
     Cell extracts were prepared with lysis buffer, and boiled with 5 min. Protein samples(15μg per lane) and protein marker were seperated by SDS-PAGE gel electropohresis and transferred to PVDF membranes. The membranes were blocked with blocking buffer, and then incubated with the primary antibody overnight. The membranse were washed with PBST, and then incubated with the HRP-conjugated secondary antibody. The blots were then visualized with enhanced chemiluminescene. The expression of cytokine was demonstrated by the ration of integral optical density between cytokine and p-actin
     5. RNA extration and real-time quantitative PCR
     Total RNA was extracted from HAECs with Trizol according to the manufacturer's instructions. Signal-strand cDNA was synthesized with iScript cDNA synthesis kit. Semi-quantitative real-time PCR was performed with iCycler iQ real-time PCR detection system. The primers for human thrombomodulin mRNA were as follows:forward:5'-CCGATGTCATTTCCTTGCTA-3'; reverse:5'-GTTGTCTCCCGTAACCCACT-3'. The mRNA levels were estimated from the value of the threshold cycle (Ct) of the real-time PCR adjusted by that ofβ-actin.
     6. Chromatin immunoprecipitation assay
     The ChIP assay kit (Upstate) was used according to the manufacturer's instructions. Treated HAECs were first incubated with 1% formaldehyde at 37℃for 15 min to cross-link DNA-protein complexes. Cells were then rinsed and lysed. Cell lysates were sonicated and centrifuged to produce chromatin fragments. The supernatants were pre-cleared with a mixture of salmon sperm DNA/protein A/protein G, followed by immunoprecipitation with antibody-protein A-agarose slurry. (IgG served as the negative control.) The DNA was recovered by extraction with the phenol/chloroform/isoamyl alcohol mixture. The immunoprecipitated DNA was used as a template for PCR. The PCR products were separated by 1.5% agarose gel.
     7. Immunoprecipitation
     Immunoprecipitation was conducted as described previously.Treated cells were lysed for 60 min in ice-cold extraction buffer. For immunoprecipitation, cleared cell lysates were incubated with the appropriate antibody precoupled to protein A/G-agarose beads (Santa Cruz Biotechnology) at 4℃overnight. The beads were washed twice with extraction buffer and twice with extraction buffer containing 0.5 M LiCl. Proteins were eluted directly in SDS sample buffer for Western blot analysis.
     8. Statistical analysis
     Data are presented as mean±SEM. One-way ANOVA was used to analyze the differences among groups. P values< 0.05 were considered statistically significant.
     Results:
     1. Free fatty acids suppressed thrombomodulin expression in HAECs.
     HAECs were incubated with different concentrations of PA for 24h. Western blotting showed that PA significantly suppressed the expression of thrombomodulin in a dose-dependent manner. Furthermore, PA significantly inhibited the expression of thrombomodulin mRNA, indicating that PA suppressed thrombomodulin expression at the transcriptional level.
     2. Free fatty acids activated ATF-2 pathway.
     HAECs were treated with different doses of PA for 24h. The phosphorylated protein and total protein of ATF-2 were examined by Western blot. The activation of pathways was demonstrated by the ratio of phosphorylated and total protein. Consistent with previous observation, ATF-2 was activated by PA in a dose-dependent manner.
     3. Transcriptional factor ATF-2 binded directly to the TM promoter.
     The promoter region in the TM gene contained many ATF-2 binding sites(agTGACGgatt at-1288/-1277, gcTGACTcgct at-1026/-1016, and ccTGACAgtgt at-939/-929). ChiP assay was used to examine whether ATF-2 can bind to the TM promoter. The results of ChiP assay showed that ATF-2 can bind to the TM promoter at the gcTGACTcgct (-1026/-1016) and ccTGACAgtgt (-939/-929) sites. Importantly, the binding was significantly increased by PA treatment, indicating that binding of ATF-2 to TM promoter may be involved in PA-induced suppression of thrombomodulin transcription.
     4. ATF-2 was involved in PA-inhibited TM expression.
     We then examined whether ATF-2 can regulate TM expression. When HAECs cells were transiently transfected with ATF-2-specific siRNAs before treated with PA, PA-induced inhibition of TM expression was significantly prevented, which showed that a critical role for ATF-2 transcription factor in PA-induced down-regulation of thrombomodulin transcription (P<0.05).
     5. Recruitment of HDAC4 and formation of ATF-2/HDAC4 transcription repressor complex in the TM promoter.
     We finally investigated how the transcription factor ATF-2 can bind to the TM promoter and inhibit gene expression. ChiP assay showed that PA treatment significantly increased transcription repressor HDAC4 binding to the TM promoter. The double-chip assay showed that ATF-2 and HDAC4 were in the same transcription repression complex in the TM promoter.
     Conclusions
     1. PA significantly inhibited thrombomodulin expression in human aortic endothelial cells(HAECs).
     2. ATF-2 was involved in the down-regulation of thrombomodulin expression.
     3. ATF-2 was mediated TM suppression by recruitment of HDAC4 and formation of ATF-2/HDAC4 transcription repressor complex in the TM promoter.
引文
1. Bano KA, Batool A. Metabolic syndrome, cardiovascular disease and type-2 diabetes. J Pak Med Assoc.2007; 57(10):511-5.
    2. Durina J, Remkova A. Prothrombotic state in metabolic syndrome. Bratisl Lek Listy.2007; 108(6):279-80.
    3. Dittman, W. A., and Majerus, P. W:Recombinant human thrombomodulin. Regulation of cofactor activity and anticoagulant function by a glycosaminoglycan side chain.Biochem J,1992;283:151-157.
    4. Isermann B, Sood R, Pawlinski R. The thrombomodulin-protein C system is essential for the maintenance of pregnancy. Nat Med.2003; 9(3):331-7.
    5. Hermans PW, Hazelzet JA. Plasminogen activator inhibitor type 1 gene polymorphism and sepsis. Clin Infect Dis.2005; 41 (S7):S453-S458.
    6. D'Angelo A, Lockhart MS, D'Angelo SV, Taylor FB, Jr. Protein S is a cofactor for activated protein C neutralization of an inhibitor of plasminogen activation released from platelets. Blood.1987;69:231-7.
    7. Kuchenbauer F, Ken W, Schoch C. Detailed analysis of FLT3 expression levels in acute myeloid leukemia. Haematology.2005; 90(12):1617-25.
    8. Mosnier LO, Grifin JH. Protein C anticoagulant activity in relation to anti-inflammatory and anti-apoptotic activities. Front Biosci.2006; 11:2381-99.
    9. Feistritzer C, Riewald M. Endothelial barrier protection by activated protein C through PAP 1-dependent sp hingosinel-phosphate receptorl cross activation. Blood. 2005; 105(8):3178-84.
    10. Esmon NL, Owen WG, Esmon CT. Isolation of a membrane-bound cofactor for thrombin-catalyzed activation of protein C. J Biol Chem.1982;257:859-64.
    11. Esmon CT, Ding W, Yasuhiro K, Gu JM, Ferrell G, Regan LM, Stearns-Kurosawa DJ, Kurosawa S, Mather T, Laszik Z, Esmon NL. The protein C pathway:new insights. Thromb Haemost.1997;78:70-4.
    12. Isermann B, Hendrickson SB, Zogg M, Wing M, Cummiskey M, Kisanuki YY, Yanagisawa M, Weiler H. Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis. J Clin Invest.2001; 108:537-46.
    13. Van de Wouwer M, Conway EM. Novel functions of thrombomodulin in inflammation. Crit Care Med.2004;32:S254-61.
    14. Waugh JM, Yuksel E, Li J, Kuo MD, Kattash M, Saxena R, Geske R, Thung SN, Shenaq SM, Woo SL. Local overexpression of thrombomodulin for in vivo prevention of arterial thrombosis in a rabbit model. Circ Res.1999;84:84-92.
    15. Waugh JM, Li-Hawkins J, Yuksel E, Kuo MD, Cifra PN, Hilfiker PR, Geske R, Chawla M, Thomas J, Shenaq SM, Dake MD, Woo SL. Thrombomodulin overexpression to limit neointima formation. Circulation.2000; 102:332-7.
    16. Zoltan G, laszik, Xin J.Zhou, Gary L.Ferrell, Fred GSilva:Down-regulation of endothelial expression of endothelial cell Protein C Receptor and Thrombomodulin in coronary atherosclerosis.Am J Pathol,2001; 159:797-802.
    17. Jiamsripong P, Mookadam M, Alharthi MS, Khandheria BK, Mookadam F. The metabolic syndrome and cardiovascular disease. Prev Cardiol.2008;11(4):223-9.
    18. Phillips LK, Prins JB. The link between abdominal obesity and the metabolic syndrome. Curr Hypertens Rep.2008; 10(2):156-64.
    19. Laws A, Hoen HM, Selby JV, Saad MF, Haffner SM, Howard BV. Differences in insulin suppression of free fatty acid levels by gender and glucose tolerance status. Relation to plasma triglyceride and apolipoprotein B concentrations. Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Arterioscler Thromb Vasc Biol. 1997;17:64-71.
    20. Uwaifo GI, Ratner RE. The roles of insulin resistance, hyperinsulinemia, and thiazolidinediones in cardiovascular disease. Am JMed.2003;115 Suppl 8A:12S-19S.
    21. Egan BM, Lu G, Greene EL. Vascular effects of non-esterified fatty acids: implications for the cardiovascular risk factor cluster. Prostaglandins Leukot Essent Fatty Acids.1999;60:411-20.
    22. Skidmore PM, Woodside JV, Mc Master C, Bingham A, Mercer C, Evans A, Young IS, Yarnell JW. Plasma free fatty acid patterns and their relationship with CVD risk in a male middle-aged population. Eur J Clin Nutr.2010 Jan 20. [Epub ahead of print]
    23. Carlsson M, Wessman Y, Almgren P, Groop L. High levels of nonesterified fatty acids are associated with increased familial risk of cardiovascular disease. Arterioscler Thromb Vasc Biol.2000;20:1588-94.
    24. Steinberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD. Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes. 2000;49:1231-8.
    25. Jouven X, Charles MA, Desnos M, Ducimetiere P. Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation. 2001;104:756-61.
    26. Wang XS, Diener K, Manthey CL, Wang S, Rosenzweig B, Bray J, Delaney J, Cole CN, Chan-Hui PY, Mantlo N, Lichenstein HS, Zukowski M, Yao Z. Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J Biol Chem. 1997; 272(38):23668-23674.
    27. Nguyen MT, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI, Zalevsky J, Dahiyat BI, Chi NW, Olefsky JM. JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem. 2005;280:35361-71.
    28. Collins QF, Xiong Y, Lupo EG, Jr., Liu HY, Cao W. p38 Mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes. J Biol Chem. 2006;281:24336-44.
    29. Stahli BE, Camici GG, Steffel J, Akhmedov A, Shojaati K, Graber M, Luscher TF, Tanner FC. Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation. Circ Res.2006;99:149-55.
    28. Vulin AI, Stanley FM. Oxidative stress activates the plasminogen activator inhibitor type 1 (PAI-1) promoter through an AP-1 response element and cooperates with insulin for additive effects on PAI-1 transcription. J Biol Chem. 2004;279:25172-8.
    31. Huang H, Tindall DJ. Dynamic Foxo transcription facotors. J Cell Sci.2007; 120(15):2479-87.
    32. Asada S, Daitoku H, Matsuzaki H, Saito T, Sudo T, Mukai H, Iwashiti S, Kako K, Kishi T, Kasuya Y, Fukamizu A. Mitogen-activated protein kinase, Erk and p38, phosphorylate and regulate Foxol. Cell Signal.2007; 19(3):519-27.
    33. Shen B, Chao L, Chao J. Pivotal role of JNK-dependent Foxol activation in downregulation of kallistatin expression by oxidative stress. Am J Physiol Heart Circ Physiol.2010; 298(3):H1048-54.
    34. Alikhani M, Maclellan CM, Raptis M, Vora S, Trackman PC, Graves DT, Advanced glycation end products induce apoptosis in fibroblasts through activation of ROS, MAP kinases, and the Foxol transcription factor. Am J Physiol Cell Physiol. 2007; 292(2):C850-6.
    35. Angela R. Subauste, Charles F. Burant. Role of Foxol in FFA-induced oxidative stress in adipocytes. Am J Physiol Endocrinol Metab.2007; 293:E159-E164.
    36. Wang X, Smith PL, Hsu MY, Tamasi JA, Bird E, Schumacher WA. Deficiency in thrombin-activatable fibrinolysis inhibitor(TAFI) protected mice frome ferric chloride-induced vena cava thrombosis. J Thromb Thrombolysis.2007; 23(1):41-9.
    37. Pynn M, Schafer K, Konstantinides S, Halle M. Exercise training reduces growth and stabilizes vascular lesions developing after injury in apolipoprotein e-deficient mice. Circulation.2004; 109(3):386-92.
    37. Wang J, Shen YH, Utama B, Wang J, LeMaire SA, Coselli JS, Vercellotti GM, Wang XL.HCMV infection attenuates hydrogen peroxide induced endothelial apoptosis--involvement of ERK pathway.FEBS Lett.2006; 580(11):2779-87.
    38. Wang XL, Zhang L, Youker K, Zhang MX, Wang J, LeMaire SA, Coselli JS, Shen YH. Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase.Diabetes. 2006; 55(8):2301-10.
    39. Kobashi C, Urakaze M, Kishida M, Kibayashi E, Kobayashi H, Kihara S, Funahashi T, Takata M, Temaru R, Sato A, Yamazaki K, Nakamura N, Kobayashi M. Adiponectin inhibits endothelial synthesis of interleukin-8. Circ Res.2005; 97(12): 1245-52.
    40. Davi F, Kruhoffer M, Sabatier L, Orntoft TF, Delic J. The resistance of B-CLL cells to DNA damage-induced apoptosis defined by DNAmicroarrays. Blood.2003; 101(11): 4596-606.
    41. Li J, Levin MD, Xiong Y, Petrenko N, Patel W, Radice GL. N-cadherin haploinsufficiency affects cardiac gap junctions and arrhythmic susceptibility. J Mol Cell Cardiol.2008; 44(3):597-606.
    42. Hodgkinson CP, Laxton RC, Patel K, Ye S. Advanced glycation end-product of low density lipoprotein activates the toll-like4 receptor pathway implications for diabetic atherosclerosis. Arterioscler Thromb Vasc Biol.2008; 28(12):2275-81.
    43. Li H, Chehade M, Liu M, Xiong H, Mayer L, Berin MC. Allergen-IgE complexes trigger CD23-dependent CCL20 release from human intestinal epithelial cells. Gastroenterology.2007; 133(6):1905-15.
    44. Jiamsripong P, Mookadam M, Alharthi MS, Khandheria BK, Mookadam F. The metbaolic syndrome and cardiovascular disease:part 2. Prev Cardiol.2008; 11(4): 223-9.
    45. Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech. 2009; 2(5-6):231-7.
    46. Srinivasan K, Ramarao P. Animal models in type 2 diabetes research:an review.Indian JMed Res.2007; 125(3):451-72.
    47. Winzell MS, Ahren B. The high-fat diet-fed mouse:a model for studying mechanisms and treatment of impaired glucose and type 2 diabetes. Diabetes.2004; Suppl3:S215-9.
    48. Koppe SW, Elias M, Moseley RH, Green RM. Trans fat feeding results in higher serum alanine aminotransferase and increased insulin resitance compared with a standard murine high-fat diet. Am J Physiol Gastrointest Liver Physiol.2009; 297(2):G378-84.
    49. Conen D, Rexrode KM, Creager MA, Ridker PM, Pradhan AD. Metabolic syndrome, inflammation, and risk of symptonmatic peripheral artery disease in women: a prospective study. Circulation.2009; 120(12):1041-7.
    50. Assmann G, Schulte H, Seedorf U. Cardiovascular risk assessment in the metabolic syndrome:results from the prospective cardiovascular munster(PROCAM) study. Int J Obes.2008; Suppl2:S11-6.
    51. Cronin S, Kelly PJ. Stroke and the metabolic syndrome in populations:the challenge ahead. Stroke.2009; 40(1):3-4.
    52. Haffiier S, Temprosa M, Crandall J, Fowler S, Goldberg R, Horton E, et al:Diabetes Prevention Program Research Group. Intensive lifestyle intervention or metformin on inflammation and coagulation in participants with impaired glucose tolerance. Diabetes,2005; 54:1566-1572.
    53. Lamon-Fava S, Wilson PW and Schaefer EJ:Impact of body mass index on coronary heart disease risk factors in men and women. The Framingham Offspring Study. Arterioscler Thromb Vasc Biol,1996; 16:1509-1515.
    54. Beckman JA, Creager MA and Libby P:Diabetes and atherosclerosis:epidemiology, pathophysiology, and management JAMA,2002;287:2570-2581.
    55. Krasnobryzha leM, Savchuk OM, Platonova TM, Volkov HL. Effect of tissue-type plasminogen activator and its inhibitor in haemostasis system function in norm and pathology. Ukr Biokhim Zh.2004; 76(6):29-38.
    56. Kabbani SS, Watkins MW, Ashikaga T, Terrien EF, Holoch PA, Sobel BE,Schneider DJ:Platelet reactivity characterized prospectively:a determinant of outcome 90 days after percutaneous coronary intervention. Circulation,2001; 104:181-186.
    57. Westerbacka J,Yki-Jarvinen H, Turpeinen A, Rissanen A, Vehkavaara S, Syrjala M, Lassila R. Inhibition of platelet-collagen interaction:an in vivo action of insulin abolished by insulin resistance in obesity. Arterioscler Thromb Vasc Biol.2002; 22(1): 167-72.
    58. Yajima K, Shimada A, Hirose H, Oikawa Y, Yamada S, Meguro S, Irie J, Irie S. Effect on the atherogenic marker plasminogen activator inhibitor type-1 of addition of the ACE inhibitor imidapril to angiotensin type 1 receptor antagonist therpy in hypertensive patients with abnormal glucose metabolism: a prospective cohort study in primary care. Clin Drug Investig.2009; 29(11):811-9.
    59. Navab M, Gharavi N, Watson AD. Inflammation and metabolic disorders. Curr Opin Clin Nutr Metab Care.2008; 11(4):459-64.
    60. Laclaustra M, Corella D, Ordovas JM. Metabolic syndrome pathophysiology:the role of adipose tissue. Nutr Metab Cardiovasc Dis.20007; 17(2):125-39.
    61. Lapointe A, Piche ME, Weisnagel SJ, Bergeron J, Lemieux S. Associations between circulating free fatty acids, visceral adipose tissue accumulation, and insulin sensitivity in postmenopausal women. Metabolism.2009; 58(2):180-5.
    62. Haag M, Dippenaar NG Dietary fats, fatty acids and insulin resistance:short review of a multifaceted connection. Med Sci Monit.2005; 11(12):RA359-67.
    63. Misra A, Khurana L. Obesity and the metabolic syndrome in developing countries. J Chin Endocrinol Metab.2008; 93(11 Suppll):S9-30.
    64. Funahashi T, Matsuzawa Y. Metabolic syndrome: clinical concept and molecular basis. Ann Med.2007; 39(7):482-94.
    65. Kalra PS, Kalra SP. Obesity and metabolic syndrome:long-term benefits of central leptin gene therpy. Drugs Today.2002.38(1):745-57.
    66. Yoshikawa H, Tajiri Y, Sako Y, Hashimoto T, Umeda F, Nawata H:Effects of free fatty acids on β-cell functions:a possible involvement of peroxisome proliferators-activated receptors a or pancreatic/duodenal homeobox. Metabolism. 2001; 142:3590-7.
    67. Mason TM, Goh T, Tchipashvili V, Sandhu H, Gupta N, Lewis GF, Giacca A. Prolonged elevation of plasma free fatty acids desensitizes the insulin secretory response to glucose in vivo rats. Diabetes.1999; 48(3):524-30.
    68. Unger RH, Zhou YT. Lipotoxicity of beta-cells in obesity and other causes of fatty acid spill over. Diabetes.2001; 50(Suppl1):S118-S121.
    69. Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ, Atcheson B, White MF, Kraegen EW, Shulman GL. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem.2002; 277(52):50230-6.
    70. Sun Y, Liu S, Ferguson S, Wang L, Klepcyk P, Yun JS, Friedman JE. Phosphoenolpyyruvate carboxykinase overexpression selectively attenuates insulin signaling and hepatic insulin sensitivity in transgenic mice. J Biol Chem.2002; 277: 23301-7.
    71. Steinberg HO, Tarshoby M, Monestel R, Hook G, Cronin J, Johnson A, Bayazeed B, Baron AD. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation.J Clin Invest.1997; 100(5):1230-9.
    72. Inagi R. Oxidative stress in cardiovascular disease: a new avenue toward future therapeutic approaches. Recent Pat Cardiovasc Drug Discov.2006 Jun; 1(2):151-9.
    73. Zanetti M, Barazzoni R, Bosutti A, Stocca A, Grassi G, Guarnieri GVascular sources of oxidative stress:implications for uremia-related cardiovascular disease. J Ren Nutr.2007; 17(1):53-6.
    74. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C dependent activation of NADPH oxidase in cultured vascular cells. Diabetes.2000; 49(11):1939-45.
    75. Skidmore PM, Woodside JV, Mc Master C, Bingham A, Mercer C, Evans A, Young IS, Yarnell JW. Plasma free fatty acid patterns and their relationship with CVD risk in a male middle-aged population. Eur J Clin Nutr.2010 Jan 20.
    76. Steinberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD. Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes. 2000;49:1231-8.
    77. Carlsson M, Wessman Y, Almgren P, Groop L. High levels of nonesterified fatty acids are associated with increased familial risk of cardiovascular disease. Arterioscler Thromb Vasc Biol.2000;20:1588-94.
    78. Jouven X, Charles MA, Desnos M, Ducimetiere P. Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation. 2001;104:756-61.
    79. Esmon CT, Owen WG Identification of an endothelial cell cofactor for the thrombin-catalyzed activation of protein. Proc Natl Acad Sci.1981; 78(4):2249-52.
    80. Medina P, Navarro S, Estelles A, Espana F. Polymorphisms in the endothelial protein C receptor gene and thrombophilia. Thromb Haemost.2007; 98(3):564-9.
    81. Griffin JH, Fernandez JA, Gale AJ, Mosnier LO. Activated protein C. J Thromb Haemost.2007; Suppl 1:73-80.
    82. Cerchiara E, Tirindelli MC, Glannetti B, Dicuonzo G, Avvisati G. The numerous properties of the anticoagulant protein C. Clin Ter.2007; 158(2):181-7.
    83. Weiler H, Lindner V, Kerlin B Characterization of a mouse model for thrombomodulin deficiency. Arterioscler Thromb Vasc Biol.2002; 21(9):1531-7.
    84. Wu KK. Soluble thrombomodulin and coronary heart disease. Curr Opin Lipidol. 2003; 14(4):373-5.
    85. Le Flem L, Picard V, Emmerich J, Gandrille S, Fiessinger JN, Aiach M, Alhenc-Gelas M. Mutations in promoter region of thrombomodulin and venous thromboembolic disease. Arterioscler Thromb Vasc Biol.1999; 19(4):1098-1104.
    86. Li YH, Chen JH, Wu HL, Shi GY, Huang HC, Chao TH, Tsai WC, Tsai LM, Guo HR, Wu WS, Chen ZC. G33A mutation in the promoter region of thrombomodulin gene and its association with coronary artery disease and plasma soluble thrombomodulin levels. Am J Cardiol.2000; 85(1):8-12.
    87. Doggen CJ,Kunz G,Rosendaal FR, et al. A mutation in the thrombomodulin gene,127 G to A coding for Ala25Thr,and the risk of myocardial infarction. Thromb Haemost.1998; 80 (5):743-748.
    88. Hartmut Weiler-Guettler,Patricia D. Christie,David L. Beeler,Aileen M. Healy, Wayne W. Hancock,Helen Rayburn,Jay M. Edelberg,and Robert D. Rosenberg:A Targeted Point Mutation in Thrombomodulin Generates Viable Mice with a Prethrombotic State. J Clin Invest,1998; 101:1983-1991.
    89. Nena Aleksic, Yao-Wei W. Wang a, Chul Ahna, Harinder S. Juneja a, Aaron R. Folsom b, Kenneth K. Wu:Assessment of coronary heart disease risk by combined analysis of coagulation factors Atherosclerosis,2008; 198:294-300.
    90. White B, Schmidt M, Murphy C Activated protein C inhibits lipopolysaccharide-induced nuclear translocation of nuclear factor kappaB and tumour necrosis factor alpha production in the THP-1 munocytic cell line. Br J Haematol. 2000; 110(1):130-4.
    91. Muslin AJ. MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci.2008; 115(7):203-218.
    92. Nguyen MT, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI, Zalevsky J, Dahiyat BI, Chi NW, Olefsky JM. JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem. 2005;280:35361-71.
    93. Collins QF, Xiong Y, Lupo EG, Jr., Liu HY, Cao W. p38 Mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes. J Biol Chem. 2006;281:24336-44.
    94. Stahli BE, Camici GG. Steffel J, Akhmedov A, Shojaati K, Graber M, Luscher TF, Tanner FC. Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation. Circ Res.2006;99:149-55.
    95. Vulin AI, Stanley FM. Oxidative stress activates the plasminogen activator inhibitor type 1 (PAI-1) promoter through an AP-1 response element and cooperates with insulin for additive effects on PAI-1 transcription. J Biol Chem. 2004;279:25172-8.
    96. Lin SJ, Hsieh FY, Chen YH, Lin CC, Kuan, II, Wang SH, Wu CC, Chien HF, Lin FY, Chen YL. Atorvastatin induces thrombomodulin expression in the aorta of cholesterol-fed rabbits and in TNFalpha-treated human aortic endothelial cells. Histol Histopathol.2009;24:1147-59.
    97. Shioda N, Han F, Moriguchi S, Fukunaga K. Constitutively active calcineurin mediates delayed neuronal death through Fas-ligand expression via activation of NFAT and FKHR transcriptional activates in mouse brain ischemia. Neurochem.2007; 102(5): 1506-17.
    98. Greer EL, Brunet A. Foxo transcription factors at the interfact between longevity and tumor suppression. Oncogene.2005; 24(50):7410-25.
    99. Meng Z, Lv J, Luo Y, Zhu Y, Nie J, Yang T, Sun Y, Han X. Forkhead box O1/pancreatic and duodenal homeobox 1 intracellular translocation is regulated by c-Jun N-terminal kinase and involved in prostaglandin E2-induced pancreatic beta-cell dysfunction. Endocrinology.2009; 150(12):5284-93.
    100. Li X, Rong Y, Zhang M, Wang XL, LeMaire SA, Coselli JS, Zhang Y, Shen YH. Up-regulation of thioredoxin interacting protein(Txnip) by p38 MAPK and Foxol contributes to the impaired thioredoxin activity and increased ROS in glucose-treated endothelial cells. Biochem Biophys Res Commun. 2009; 381(4):660-5.
    101. Martinez SC, Tanabe K, Cras-Meneur C, Abumrad NA, Bernal-Mizrachi E, Permutt MA. Inhibition of Foxol protects pancreatic islet beta-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes.2008; 57(4):846-59.
    1. Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, Van Pelt RE, Wang H. The metabolic syndrome. Endocr Rev,2008; 29(7):777-882.
    2. Lusis AJ, Attie AD, Reue K. Metabolic syndrome:from epidemiology to systems biology. Nat Rev Genet;2008; 9(11):819-30.
    3. Carter AM. Inflammation,thrombosis and acute coronary syndromes.Diab Vasc Dis Res,2005; 2(3):113-21.
    4. Wardlaw JM, Murray V, Berge E, Der Zoppo GJ. Thrombolysis for acure ischaemic stroke. Cochrane Database Syst Rev.2009; (4):CD000213.
    5. Kohsaka S, Homma S. Anticoagulation for heart failure:selecting the best therapy. Expert Rev Cardiovasc Ther.2009; 7(10):1209-17.
    6. Franchini M, Mannucci PM. A new era for anticoagulants. Eur J Intern Med.2009; 20(6):582-8.
    7. Grover-Paez F, Zavalza-Gomez AB. Endothelial dysfunction and cardiovascular risk factors. Diabetes Res Clin Pract.2009; 84(1):1-10.
    8. Levi M, ten Cate H, van der Poll T. Endothelium:interface between coagulation and inflammation. Crit Care Med.2002;30:S220-4.
    9. Vallet B, Wiel E. Endothelial cell dysfunction and coagulation. Crit Care Med. 2001;29:S36-41.
    10. Freestone B, Lip GY. The endothelium and aterial fibrillation. The prothrombotic state revisisted. Hamostaseologie.2008; 28(4):207-12.
    11. Schafer A, Bauersachs J. Endothelial dysfunction, impaired endogenous platelet inhibition and platelet activation in diabetes and atherosclerosis. Curr Vasc Pharmacol. 2008; 6(1):52-60.
    12. Dittman, W. A., and Majerus, P. W: Recombinant human thrombomodulin. Regulation of cofactor activity and anticoagulant function by a glycosaminoglycan side chain.Biochem J,1992;283:151-157.
    13. Dahlback B, Villoutreix BO. The anticoagulant protein C pathway. Febs Lett.2005; 579(15):3310-6.
    14. Dahlback B, Villoutreix BO. Regulation of blood coagulation by the protein C anticoagulant pathway: novel insights into structure-function relationships and molecular recognition. Arterioscler Thromb Vasc Biol.2005; 25(7):1311-20.
    15. Van de Wouwer M, Collen D, Conway EM. Thrombomodulin-protein C-EPCR system:integrated to regulate coagulation and inflammation. Arterioscler Thromb Vasc Biol.2004:24(8):1374-83.
    16. Mosnier LO, Griffin JH. Protein C anticoagulant activity in relation to anti-inflammatory and anti-apoptotic activities. Front Biosci.2006; 11:2381-99.
    17. Espana F, Medina P, Navarro S, Zorio E, Estelles A, Aznar J. The multifunction protein C system. Curr Med Chem Cardiovasc Hematol Agnets.2005; 3(2):119-31.
    18. Okajima K. Prevention of endothelial cell injury by activated protein C:the molecular mechanism(s) and therapeutic implications. Curr Vasc Pharmacol.2004; (2): 125-33.
    19. Zoltan G, laszik, Xin J.Zhou, Gary L.Ferrell, Fred GSilva:Down-regulation of endothelial expression of endothelial cell Protein C Receptor and Thrombomodulin in coronary atherosclerosis.Am J Pathol,2001; 159:797-802.
    20. Nena Aleksic, Yao-Wei W. Wang a, Chul Ahna, Harinder S. Juneja a, Aaron R. Folsom b, Kenneth K. Wu:Assessment of coronary heart disease risk by combined analysis of coagulation factors Atherosclerosis,2008; 198:294-300.
    21. Waugh JM, Yukesl E, Li J, Kuo MD, Kattash M, Saxena R, Geske R, Thung SN, Shenaq SM, Woo SL. Local overexpression of thrombomodulin for in vivo prevention of arterial thrombosis in a rabbit model. Circ Res.1999; 84(1):84-92.
    22. Sohn RH, Deming CB, Johns DC, Champion HC, Bian C, Gardner K, Rade JJ. Regulation of endothelial thrombomodulin expression by inflammatory cytokines is mediated by activation of nuclear factor-kappa B. Blood.2005;105:3910-7.
    23. Malek AM, Jackman R, Rosenberg RD, Izumo S. Endothelial expression of thrombomodulin is reversibly regulated by fluid shear stress. Circ Res. 1994;74:852-60.
    24. Ishii H, Kizaki K, Horie S, Kazama M. Oxidized low density lipoprotein reduces thrombomodulin transcription in cultured human endothelial cells through degradation of the lipoprotein in lysosomes. JBiol Chem.1996;271:8458-65.
    25. Grey ST, Csizmadia V, Hancock WW. Different effect of tumor necrosis factor-alpha on thrombomodulin gene expression by human monocytoid(THP-1) cell versus endothelial cells. Int J Hematol.1998; 67(1):53-62.
    26. Boutros T, Chevet E, Metrakos P. Mitogen-activated protein(MAP) kinase/MAP kinase phosphatase regulation:roles in cell growth, death, and cancer. Pharmacol Rev. 2008; 60(3):261-310.
    27. Sumara G, Belwal M, Ricci R. "Jnking" atherosclerosis. Cell Mol Life Sci. 2005;62:2487-94.
    28. Adhikari N, Charles N, Lehmann U, Hall JL. Transcription factor and kinase-mediated signaling in atherosclerosis and vascular injury. Curr Atheroscler Rep. 2006;8:252-60.
    29. Wang XL, Zhang L, Youker K, Zhang MX, Wang J, LeMaire SA, Coselli JS, Shen YH. Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase. Diabetes. 2006;55:2301-10.
    30. Baan B, van Dam H, van der Zon GC, Maassen JA, Ouwens DM. Thr role of c-Jun N-terminal kinase, p38, and extracellular signal-regulated kinase in insulin-induced Thr69 and Thr71 phosphorylation of activating transcription factor 2. Mol Endocrinol. 2006; 20(8):1786-95.
    31. Luyendyk JP, Schabbauer GA, Tencati M, Holscher T, Pawlinski R, Mackman N. Genetic analysis of the role of the PI3K-Akt pathway in lipopolysaccharide-induced cytokine and tissue factor gene expression in monocytes/macrophages. J Immunol. 2008;180:4218-26.
    32. Shen YH, Zhang L, Gan Y, Wang X, Wang J, Lemaire SA, Coselli JS, Wang XL. Up-regulation of PTEN (Phosphatase and Tensin Homolog Deleted on Chromosome Ten) Mediates p38 MAPK Stress Signal-induced Inhibition of Insulin Signaling:A Cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells. JBiol Chem.2006;281:7727-36.
    33. Wang XL, Zhang L, Youker K, Zhang MX, Wang J, LeMaire SA, Coselli JS, Shen YH. Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase.Diabetes. 2006; 55(8):2301-10.
    34. Li XN, Rong YY, Zhang M, Wang XL, Lemaire SA, Coselli JS, Zhang Y, Shen YH. Up-regulation of thioredoxin interacting protein(Txnip) by p38 MAPK and Foxol contributes to the impired thioredoxin activity and increased ROS in glucose-treated endothelial cells. Biochem Biophys Res Commun.2009;381(4):660-5.
    35. Ossipow V, Laemmli UK, Schibler U. A simple method to renature DNA-binding proteins separated by SDS-polyacrylamide gel electrophoresis. Nucleic Acids Res, 1993,21(25):6040-6041.
    36. Wang J, Shen YH, Utama B, Wang J, LeMaire SA, Coselli JS, Vercellotti GM, Wang XL.HCMV infection attenuates hydrogen peroxide induced endothelial apoptosis--involvement of EKK pathway.FEBS Lett.2006; 580(11):2779-87.
    37. Ritchie MF, Yue C, Zhou Y, Houghton PJ, Soboloff J. Wilms tumor suppressor 1 and early growth response 1 are regulation of STIM1 expression. J Biol Chem.2010 Feb1.
    38. Gao X. Patel TB. Regulation of protein kinase A activity by p90 ribosomal S6 kinase 1. J Biol Chem.2009; 284(48):33070-8.
    39. Esmon CT,Owen WG. Identification of an endothelial cell cofactor for the Thrombin Catalyzed activation of Protein C. Proc Natl Acad Sci,1981,78(4): 2249-2252.
    40. Constans J, Conri C. Circulation markers of endothelial function in cardiovascular disease. Clin Chim Acta.2006; 368(1-2):33-47.
    41. Wu KK, Matijevic-Aleksic N. Thrombomodulin: a linker of coagulation and fibrinolysis and predictor of risk of arterial thrombosis. Ann Med.2000; Suppl 1:73-7.
    42. Boffa MC, Karmochkine M. Thrombomodulin:an overview and potential implications in vascular disorders. Lupus.1998; Suppl 2:S120-5.
    43. Kokame K,Zheng X,Sadle J. Actiratin of thrombin2activatable fibrinolysis inhibitor requires epidermal growth factor21ike domain 3 of thrombomodulin and is inhibited competitively by protein C. J Biol Chem.1998,273 (20):12135-12139.
    44. Le Flem L,Picard V,Emmerich J, et al. Mutations in promoter region of thrombomodulin and venous thromboembolic disease. Arterioscler Thromb Vasc Biol. 1999;19(4):1098-1104.
    45. Li YH,Chen JH,Wu HL, et al. G233A mutation in the promoter region of thrombomodulin gene and its association with coronary artery disease and plasma soluble thrombomodulin levels. Am J Cardiol.2000; 85(1):8-12.
    46. Doggen CJ,Kunz G,Rosendaal FR, et al. A mutation in the thrombomodulin gene,127 G to A coding for Ala25Thr,and the risk of myocardial infarction. Thromb Haemost.1998; 80 (5):743-748.
    47. Norlund L,Holm J,Zoller B, et al. A common thrombomodulin amino acid dimorphism is associated with myocardial infarction. Thromb Haemost.1997; 77 (2):248-251.
    48.常国栋,喻卓,李晓文,高传玉.冠心病患者TM基因1418位C/T多肽性的研究.山东医药.2008;48(14):84-85.
    49. Blann AD, Amizai J, McCollum CN. Prognostic value of increased soluble thrombomodulin and increased soluble E-selection in chaemic heart disease. Eur J Haematol 1997; 59:115-120.
    50.黄丽红,郭民,候纯荣,孟春.急性冠脉综合征患者血栓调节蛋白水平及临床意义.临床研究.2009;6(28):25-26.
    51. Wang XS, Diener K, Manthey CL, Wang S, Rosenzweig B, Bray J, Delaney J, Cole CN, Chan-Hui PY, Mantlo N, Lichenstein HS, Zukowski M, Yao Z. Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J Biol Chem. 1997; 272(38):23668-23674.
    52. Bluthgen N, Legewie S. Systems analysis of MAPK signal transduction. Essays Biochem.2008; 45:95-107.
    53. Muslin AJ. MAPK signalling in cardiovascular health and disease:molecular mechanisms and therapeutic targets. Clin Sci.2008; 115(7):203-218.
    54. Zhang Y, Dong C. Regulatory mechanisms of mitogen-activated kinase signaling. Cell Mol Life Sci.2007; 64(2):2771-89.
    55. Lenhard SC, Nerurkar SS, Schaeffer TR. P38 MAPK inhibitors ameliorate target organ damage in hypertension:part 2. Improved tenal functions as assessed by dybamic cpntrast-enhanced magnetic resonance imaging. J Phamacol Exp Ther.2003; 307(3):939-946.
    56. Metzler B, Hu Y, Dietrich H. Increased expression and activation of stress activated protein kinase/c-Jun NH(2)-terminal protein kinase in atherosclerotic lesions coincide with p53. Am JPathol.2000; 156(6):1875-86.
    57. Norata GD, Banfi C, Pirillo A. Oxidised-HDL3 induces the expression of PAI-1 in human endothelial cells-role of p38 MAPK activation and mRNA stabilization. Br J Haematol 2004; 127(1):97-104.
    58. Eto M, Kozai T, Cosentino F. Statin prevents tissue factor expression in human endothelial cells: role of Rho/Rho-kinase and Akt pathways. Circulation.2002; 105(15):1756-59.
    59. Steffel J, Hernann M, Greutert H. Celecoxib decreases endothelial tissue factor expression through inhibition of c-Jun terminal NH2 kinase phosphorylation. Circulation.2005; 111(13):1685-89.
    60. Lin SJ, Hsieh FY, Chen YH, Lin CC, Kuan, II, Wang SH, Wu CC, Chien HF, Lin FY, Chen YL. Atorvastatin induces thrombomodulin expression in the aorta of cholesterol-fed rabbits and in TNFalpha-treated human aortic endothelial cells. Histol Histopathol.2009;24:1147-59.
    61. Wang XL, Zhang L, Youker K, Zhang MX, Wang J, LeMaire SA, Coselli JS, Shen YH. Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase. Diabetes. 2006;55:2301-10.
    62. Reimold AM, Grusby MJ, Kosaras B. Chondrodysp lasia and neurological abnormalities in ATF-2-deficient mice. Nature.1996; 379(6562):262-65.
    63. Herdegen T, Leah JD. Inducible and constitutive transcription factors in the mammalian nervous system:control of gene expression by Jun, Fos and Krox, and CREB/ATF-2 proteins. Brain Res Brain Res Rev.1998; 28(3):370-490.
    64. Chen KC, Chiou YL, Chang LS. JNK1/c-Jun and p38 alpha MAPK/ATF-2 pathways are responsible for upregulation of Fas/Fasl in human chronic myeloid leukemia K562 cells upon exposure to Taiwan cobra phospholipase A2. J Cell Biochem. 2009; 108(3):612-20.
    65. Wei L, Zhu Z, Wang J, Liu J. JNK and p38 mitogen-activated protein kinase pathways contribute to porcine circovirus type 2 infection. J Virol.2009; 83(12): 6039-47.
    66. Royuela M, Rodriguez-Berriguete G, Fraile B, Paniagua R. TNE-alpha/IL-1/NF-KappaB transduction pathway in human cancer prostate. Histol Histopathol.2008; 23(10):1279-90.
    67. Kong AN, Owuor E, Yu R, Hebbar V, Chen C, Hu R, Mandlekar S. Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element(ARE/EpRE). Drug Metab Rev.2001; 33(3-4):255-71.
    68. Wilhelm D, van Dam H, Herr I, Baumann B, Herrlich P, Angel P. Both ATF-2 and c-Jun are phosphorylated by stress-activated protein kinase in response to UV irradiation. Immunobiology.1995; 193(2-4):143-8.
    69. Takada S, Koike K. Mechanism of hepatocarcinogenesis by hepatitis B virus. Nippon Rinsho.1993; 51(2):364-9.
    70. Luyendyk JP, Schabbauer GA, Tencati M, Holscher T, Pawlinski R, Mackman N. Genetic analysis of the role of the PI3K-Akt pathway in lipopolysaccharide-induced cytokine and tissue factor gene expression in monocytes/macrophages. J Immunol. 2008; 180:4218-26.
    71. Fledderus JO, van Thienen JV, Boon RA, Dekker RJ, Rohlena J, Volger OL, Bijnens AP, Daemen MJ, Kuiper J, van Berkel TJ, Pannekoek H, Horrevoets AJ. Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2. Blood.2007; 109:4249-57.
    72. Sharma N, Nyborg JK. The coactivators CBP/p300 and the histone chaperone NAP1 promote transcription-independent nucleosome eviction at the HTLV-1 promoter. Proc Natl Acad Sci USA.2008; 105(23):7959-7963.
    73. Iyer NG, Ozdag H, Caldas C. p300/CBP and cancer. Oncogene.2004; 23: 4225-4231.
    74. Gallinari P, Marco S, Jones P, Pallaoro M, Steinkuhler C. HDACs, histone deacetylation and gene transcription:from molecular biology to cancer therapeutics. Cell Res.2007; 17(3):195-211.
    75. Blanchard F, Chipoy C. Histone deacetylase inhibitors:new drugs for the treatment of inflammatory diseases? Drug Discov Today.2005; 10(3):197-204.
    76. Sengupta N, Seto E. Regulation of histone deacetylase activities. J Cell Biochem. 2004; 93(1):57-67.
    1. Levi M, ten Cate H, van der Poll T. Endothelium:interface between coagulation and inflammation. Crit Care Med.2002;30:S220-4.
    2. Vallet B, Wiel E. Endothelial cell dysfunction and coagulation. Crit Care Med. 2001;29:S36-41.
    3. Esmon NL, Owen WG, Esmon CT. Isolation of a membrane-bound cofactor for thrombin-catalyzed activation of protein C. JBiol Chem.1982;257:859-64.
    4. Vehar GA, Davie EW. Preparation and properties of bovine factor VIII (antihemophilic factor). Biochemistry.1980;19:401-10.
    5. Kisiel W, Canfield WM, Ericsson LH, Davie EW. Anticoagulant properties of bovine plasma protein C following activation by thrombin. Biochemistry. 1977; 16:5824-31.
    6. Weiler H, Isermann BH. Thrombomodulin. J Thromb Haemost. 2003; 1:1515-24.
    7. D'Angelo A, Lockhart MS, D'Angelo SV, Taylor FB, Jr. Protein S is a cofactor for activated protein C neutralization of an inhibitor of plasminogen activation released from platelets. Blood.1987;69:231-7.
    8. Ireland H, Kunz G, Kyriakoulis K, Stubbs PJ, Lane DA. Thrombomodulin gene mutations associated with myocardial infarction. Circulation.1997;96:15-8.
    9. Isermann B, Hendrickson SB, Zogg M, Wing M, Cummiskey M, Kisanuki YY, Yanagisawa M, Weiler H. Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis. J Clin Invest.2001; 108:537-46.
    10. Waugh JM, Yuksel E, Li J, Kuo MD, Kattash M, Saxena R, Geske R, Thung SN, Shenaq SM, Woo SL. Local overexpression of thrombomodulin for in vivo prevention of arterial thrombosis in a rabbit model. Circ Res.1999;84:84-92.
    11. Boffa MC, Karmochkine M. Thrombomodulin: an overview and potential implications in vascular disorders. Lupus.1998;7 Suppl 2:S120-5.
    12. Waugh JM, Li-Hawkins J, Yuksel E, Kuo MD, Cifra PN, Hilfiker PR, Geske R, Chawla M, Thomas J, Shenaq SM, Dake MD, Woo SL. Thrombomodulin overexpression to limit neointima formation. Circulation.2000; 102:332-7.
    13. Weiler H, Lindner V, Kerlin B, Isermann BH, Hendrickson SB, Cooley BC, Meh DA, Mosesson MW, Shworak NW, Post MJ, Conway EM, Ulfman LH, von Andrian UH, Weitz JI. Characterization of a mouse model for thrombomodulin deficiency. Arterioscler Thromb Vasc Biol.2001;21:1531-7.
    14. Van de Wouwer M, Conway EM. Novel functions of thrombomodulin in inflammation. Crit Care Med.2004;32:S254-61.
    15. Sturn DH, Kaneider NC, Feistritzer C, Djanani A, Fukudome K, Wiedermann CJ. Expression and function of the endothelial protein C receptor in human neutrophils. Blood.2003;102:1499-505.
    16. Liaw PC, Esmon CT, Kahnamoui K, Schmidt S, Kahnamoui S, Ferrell G, Beaudin S, Julian JA, Weitz JI, Crowther M, Loeb M, Cook D. Patients with severe sepsis vary markedly in their ability to generate activated protein C. Blood.2004; 104:3958-64.
    17. Esmon CT. Inflammation and the activated protein C anticoagulant pathway. Semin Thromb Hemost.2006;32 Suppl 1:49-60.
    18. Laszik ZG, Zhou XJ, Ferrell GL, Silva FG, Esmon CT. Down-regulation of endothelial expression of endothelial cell protein C receptor and thrombomodulin in coronary atherosclerosis. Am J Pathol.2001; 159:797-802.
    19. Calnek DS, Grinnell BW. Thrombomodulin-dependent anticoagulant activity is regulated by vascular endothelial growth factor. Exp Cell Res.1998;238:294-8.
    20. Sohn RH, Deming CB, Johns DC, Champion HC, Bian C, Gardner K, Rade JJ. Regulation of endothelial thrombomodulin expression by inflammatory cytokines is mediated by activation of nuclear factor-kappa B. Blood. 2005;105:3910-7.
    21. Rabausch K, Bretschneider E, Sarbia M, Meyer-Kirchrath J, Censarek P, Pape R, Fischer JW, Schror K, Weber AA. Regulation of thrombomodulin expression in human vascular smooth muscle cells by COX-2-derived prostaglandins. Circ Res.2005;96:e1-6.
    22. Malek AM, Jackman R, Rosenberg RD, Izumo S. Endothelial expression of thrombomodulin is reversibly regulated by fluid shear stress. Circ Res. 1994;74:852-60.
    23. Sperry JL, Deming CB, Bian C, Walinsky PL, Kass DA, Kolodgie FD, Virmani R, Kim AY, Rade JJ. Wall tension is a potent negative regulator of in vivo thrombomodulin expression. Circ Res.2003;92:41-7.
    24. Ishii H, Kizaki K, Horie S, Kazama M. Oxidized low density lipoprotein reduces thrombomodulin transcription in cultured human endothelial cells through degradation of the lipoprotein in lysosomes. J Biol Chem. 1996;271:8458-65.
    25. Ohsawa M, Koyama T, Yamamoto K, Hirosawa S, Kamei S, Kamiyama R. lalpha,25-dihydroxyvitamin D(3) and its potent synthetic analogs downregulate tissue factor and upregulate thrombomodulin expression in monocytic cells, counteracting the effects of tumor necrosis factor and oxidized LDL. Circulation.2000; 102:2867-72.
    26. Ishii H, Tezuka T, Ishikawa H, Takada K, Oida K, Horie S. Oxidized phospholipids in oxidized low-density lipoprotein down-regulate thrombomodulin transcription in vascular endothelial cells through a decrease in the binding of RARbeta-RXRalpha heterodimers and Spl and Sp3 to their binding sequences in the TM promoter. Blood.2003; 101:4765-74.
    27. Sumara G, Belwal M, Ricci R. "Jnking" atherosclerosis. Cell Mol Life Sci. 2005;62:2487-94.
    28. Adhikari N, Charles N, Lehmann U, Hall JL. Transcription factor and kinase-mediated signaling in atherosclerosis and vascular injury. Curr Atheroscler Rep.2006;8:252-60.
    29. Wang XL, Zhang L, Youker K, Zhang MX, Wang J, LeMaire SA, Coselli JS, Shen YH. Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase. Diabetes.2006;55:2301-10.
    30. Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C, Hofinann MA, Kislinger T, Ingram M, Lu A, Tanaka H, Hori O, Ogawa S, Stern DM, Schmidt AM. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature.2000;405:354-60.
    31. Shen YH, Zhang L, Gan Y, Wang X, Wang J, Lemaire SA, Coselli JS, Wang XL. Up-regulation of PTEN (Phosphatase and Tensin Homolog Deleted on Chromosome Ten) Mediates p38 MAPK Stress Signal-induced Inhibition of
    Insulin Signaling:A CROSS-TALK BETWEEN STRESS SIGNALING AND INSULIN SIGNALING IN RESISTIN-TREATED HUMAN ENDOTHELIAL CELLS. JBiol Chem.2006;281:7727-36.
    32. Shen YH, Godlewski J, Zhu J, Sathyanarayana P, Leaner V, Birrer MJ, Rana A, Tzivion G Cross-talk between JNK/SAPK and ERK/MAPK pathways: sustained activation of JNK blocks ERK activation by mitogenic factors. J Biol Chem.2003;278:26715-21.
    33. Li X, Rong Y, Zhang M, Wang XL, LeMaire SA, Coselli JS, Zhang Y, Shen YH. Up-regulation of thioredoxin interacting protein (Txnip) by p38 MAPK and FOXO1 contributes to the impaired thioredoxin activity and increased ROS in glucose-treated endothelial cells. Biochem Biophys Res Commun. 2009;381:660-5.
    34. Hockings SC, Kahn JD, Crothers DM. Characterization of the ATF/CREB site and its complex with GCN4. Proc Natl Acad Sci USA.1998;95:1410-5.
    35. Esmon CT. Protein C pathway in sepsis. Ann Med.2002;34:598-605.
    36. Wu KK. Soluble thrombomodulin and coronary heart disease. Curr Opin Lipidol.2003;14:373-5.
    37. Mustonen P, van Willigen G, Lassila R. Epinephrine-via activation of p38-MAPK--abolishes the effect of aspirin on platelet deposition to collagen. Thromb Res.2001;104:439-49.
    38. Stahli BE, Camici GG, Steffel J, Akhmedov A, Shojaati K, Graber M, Luscher TF, Tanner FC. Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation. Circ Res. 2006;99:149-55.
    39. Steffel J, Hermann M, Greutert H, Gay S, Luscher TF, Ruschitzka F, Tanner FC. Celecoxib decreases endothelial tissue factor expression through inhibition of c-Jun terminal NH2 kinase phosphorylation. Circulation.2005; 111:1685-9.
    40. Pontrelli P, Ranieri E, Ursi M, Ghosh-Choudhury G, Gesualdo L, Paolo Schena F, Grandaliano G. jun-N-terminal kinase regulates thrombin-induced PAI-1 gene expression in proximal tubular epithelial cells. Kidney Int.
    2004;65:2249-61.
    41. Vulin AI, Stanley FM. Oxidative stress activates the plasminogen activator inhibitor type 1 (PAI-1) promoter through an AP-1 response element and cooperates with insulin for additive effects on PAI-1 transcription. JBiol Chem. 2004;279:25172-8.
    42. Lin SJ, Hsieh FY, Chen YH, Lin CC, Kuan, II, Wang SH, Wu CC, Chien HF, Lin FY, Chen YL. Atorvastatin induces thrombomodulin expression in the aorta of cholesterol-fed rabbits and in TNFalpha-treated human aortic endothelial cells. Histol Histopathol.2009;24:1147-59.
    43. Luyendyk JP, Schabbauer GA, Tencati M, Holscher T, Pawlinski R, Mackman N. Genetic analysis of the role of the PI3K-Akt pathway in lipopolysaccharide-induced cytokine and tissue factor gene expression in monocytes/macrophages. JImmunol.2008; 180:4218-26.
    44. Fledderus JO, van Thienen JV, Boon RA, Dekker RJ, Rohlena J, Volger OL, Bijnens AP, Daemen MJ, Kuiper J, van Berkel TJ, Pannekoek H, Horrevoets AJ. Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2. Blood.2007; 109:4249-57.
    1. Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. Jama.1979;241:2035-8.
    2. Ceriello A, Giacomello R, Stel G, Motz E, Taboga C, Tonutti L, Pirisi M, Falleti E, Bartoli E. Hyperglycemia-induced thrombin formation in diabetes. The possible role of oxidative stress. Diabetes.1995;44:924-8.
    3. Kario K, Matsuo T, Kobayashi H, Matsuo M, Sakata T, Miyata T. Activation of tissue factor-induced coagulation and endothelial cell dysfunction in non-insulin-dependent diabetic patients with microalbuminuria. Arterioscler Thromb Vasc Biol.1995;15:1114-20.
    4. Pandolfi A, Cetrullo D, Polishuck R, Alberta MM, Calafiore A, Pellegrini G, Vitacolonna E, Capani F, Consoli A. Plasminogen activator inhibitor type 1 is
    increased in the arterial wall of type II diabetic subjects. Arterioscler Thromb Vasc Biol.2001;21:1378-82.
    5. Hafer-Macko CE, Ivey FM, Gyure KA, Sorkin JD, Macko RF. Thrombomodulin deficiency in human diabetic nerve microvasculature. Diabetes.2002;51:1957-63.
    6. Esmon NL, Owen WG, Esmon CT. Isolation of a membrane-bound cofactor for thrombin-catalyzed activation of protein C. JBiol Chem.1982;257:859-64.
    7. Vehar GA, Davie EW. Preparation and properties of bovine factor VIII (antihemophilic factor). Biochemistry.1980;19:401-10.
    8. Kisiel W, Canfield WM, Ericsson LH, Davie EW. Anticoagulant properties of bovine plasma protein C following activation by thrombin. Biochemistry. 1977;16:5824-31.
    9. Weiler H, Isermann BH. Thrombomodulin. J Thromb Haemost. 2003;1:1515-24.
    10. D'Angelo A, Lockhart MS, D'Angelo SV, Taylor FB, Jr. Protein S is a cofactor for activated protein C neutralization of an inhibitor of plasminogen activation released from platelets. Blood.1987;69:231-7.
    11. Esmon CT. New mechanisms for vascular control of inflammation mediated by natural anticoagulant proteins. JExp Med.2002; 196:561-4.
    12. Haley M, Cui X, Minneci PC, Deans KJ, Natanson C, Eichacker PQ. Activated protein C in sepsis:emerging insights regarding its mechanism of action and clinical effectiveness. Curr Opin Infect Dis.2004; 17:205-11.
    13. Contreras JL, Eckstein C, Smyth CA, Bilbao G, Vilatoba M, Ringland SE, Young C, Thompson JA, Fernandez JA, Griffin JH, Eckhoff DE. Activated protein C preserves functional islet mass after intraportal transplantation:a novel link between endothelial cell activation, thrombosis, inflammation, and islet cell death. Diabetes.2004;53:2804-14.
    14. Cheng T, Liu D, Griffin JH, Fernandez JA, Castellino F, Rosen ED, Fukudome K, Zlokovic BV. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med.
    2003;9:338-42.
    15. Esmon CT, Ding W, Yasuhiro K, Gu JM, Ferrell G, Regan LM, Steams-Kurosawa DJ, Kurosawa S, Mather T, Laszik Z, Esmon NL. The protein C pathway:new insights. Thromb Haemost.1997;78:70-4.
    16. Isermann B, Hendrickson SB, Zogg M, Wing M, Cummiskey M, Kisanuki YY, Yanagisawa M, Weiler H. Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis. J Clin Invest.2001; 108:537-46.
    17. Van de Wouwer M, Conway EM. Novel functions of thrombomodulin in inflammation. Crit Care Med.2004;32:S254-61.
    18. Waugh JM, Li-Hawkins J, Yuksel E, Kuo MD, Cifra PN, Hilfiker PR, Geske R, Chawla M, Thomas J, Shenaq SM, Dake MD, Woo SL. Thrombomodulin overexpression to limit neointima formation. Circulation.2000;102:332-7.
    19. Waugh JM, Yuksel E, Li J, Kuo MD, Kattash M, Saxena R, Geske R, Thung SN, Shenaq SM, Woo SL. Local overexpression of thrombomodulin for in vivo prevention of arterial thrombosis in a rabbit model. Circ Res.1999;84:84-92.
    20. Laszik ZG, Zhou XJ, Ferrell GL, Silva FG, Esmon CT. Down-regulation of endothelial expression of endothelial cell protein C receptor and thrombomodulin in coronary atherosclerosis. Am JPathol.2001;159:797-802.
    21. Esmon CT. Regulation of blood coagulation. Biochim Biophys Acta. 2000;1477:349-60.
    22. Laws A, Hoen HM, Selby JV, Saad MF, Haffner SM, Howard BV. Differences in insulin suppression of free fatty acid levels by gender and glucose tolerance status. Relation to plasma triglyceride and apolipoprotein B concentrations. Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Arterioscler Thromb Vasc Biol.1997;17:64-71.
    23. Groop LC, Saloranta C, Shank M, Bonadonna RC, Ferrannini E, DeFronzo RA. The role of free fatty acid metabolism in the pathogenesis of insulin resistance in obesity and noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1991;72:96-107.
    24. Steinberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD. Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes.2000;49:1231-8.
    25. Carlsson M, Wessman Y, Almgren P, Groop L. High levels of nonesterified fatty acids are associated with increased familial risk of cardiovascular disease. Arterioscler Thromb Vasc Biol 2000;20:1588-94.
    26. Jouven X, Charles MA, Desnos M, Ducimetiere P. Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation.2001; 104:756-61.
    27. Wang XL, Zhang L, Youker K, Zhang MX, Wang J, LeMaire SA, Coselli JS, Shen YH. Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase. Diabetes.2006;55:2301-10.
    28. Shen YH, Zhang L, Gan Y, Wang X, Wang J, Lemaire SA, Coselli JS, Wang XL. Up-regulation of PTEN (Phosphatase and Tensin Homolog Deleted on Chromosome Ten) Mediates p38 MAPK Stress Signal-induced Inhibition of Insulin Signaling:A CROSS-TALK BETWEEN STRESS SIGNALING AND INSULIN SIGNALING IN RESISTIN-TREATED HUMAN ENDOTHELIAL CELLS. JBiol Chem.2006;281:7727-36.
    29. Hockings SC, Kahn JD, Crothers DM. Characterization of the ATF/CREB site and its complex with GCN4. Proc Natl Acad Sci USA.1998;95:1410-5.
    30. Carr ME. Diabetes mellitus:a hypercoagulable state. J Diabetes Complications. 2001;15:44-54.
    31. Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL. Platelet dysfunction in type 2 diabetes. Diabetes Care.2001;24:1476-85.
    32. Iwashima Y, Sato T, Watanabe K, Ooshima E, Hiraishi S, Ishii H, Kazama M, Makino I. Elevation of plasma thrombomodulin level in diabetic patients with early diabetic nephropathy. Diabetes.1990;39:983-8.
    33. Hafer-Macko CE, Ivey FM, Gyure KA, Sorkin JD, Macko RF. Reduced thrombomodulin in human peripheral nerve microvasculature. Muscle Nerve.
    2002;26:218-24.
    34. Lentz SR, Tsiang M, Sadler JE. Regulation of thrombomodulin by tumor necrosis factor-alpha:comparison of transcriptional and posttranscriptional mechanisms. Blood.1991;77:542-50.
    35. Kim HK, Kim JE, Chung J, Kim YT, Kang SH, Han KS, Cho HI. Lipopolysaccharide down-regulates the thrombomodulin expression of peripheral blood monocytes:effect of serum on thrombomodulin expression in the THP-1 monocytic cell line. Blood Coagul Fibrinolysis.2007; 18:157-64.
    36. Ishii H, Kizaki K, Horie S, Kazama M. Oxidized low density lipoprotein reduces thrombomodulin transcription in cultured human endothelial cells through degradation of the lipoprotein in lysosomes. J Biol Chem. 1996;271:8458-65.
    37. Sperry JL, Deming CB, Bian C, Walinsky PL, Kass DA, Kolodgie FD, Virmani R, Kim AY, Rade JJ. Wall tension is a potent negative regulator of in vivo thrombomodulin expression. Circ Res.2003;92:41-7.
    38. Yamashita T, Sekiguchi A, Iwasaki YK, Sagara K, Hatano S, Iinuma H, Aizawa T, Fu LT. Thrombomodulin and tissue factor pathway inhibitor in endocardium of rapidly paced rat atria. Circulation.2003; 108:2450-2.
    39. Wilson PW, Grundy SM. The metabolic syndrome:practical guide to origins and treatment:Part I. Circulation.2003; 108:1422-4.
    40. Baldeweg SE, Golay A, Natali A, Balkau B, Del Prato S, Coppack SW. Insulin resistance, lipid and fatty acid concentrations in 867 healthy Europeans. European Group for the Study of Insulin Resistance (EGIR). Eur J Clin Invest. 2000;30:45-52.
    41. Bolinder J, Kerckhoffs DA, Moberg E, Hagstrom-Toft E, Arner P. Rates of skeletal muscle and adipose tissue glycerol release in nonobese and obese subjects. Diabetes.2000;49:797-802.
    42. Perseghin G, Ghosh S, Gerow K, Shulman GI. Metabolic defects in lean nondiabetic offspring of NIDDM parents:a cross-sectional study. Diabetes. 1997;46:1001-9.
    43. Uwaifo GI, Ratner RE. The roles of insulin resistance, hyperinsulinemia, and thiazolidinediones in cardiovascular disease. Am J Med.2003;115 Suppl 8A:12S-19S.
    44. Egan BM, Lu G, Greene EL. Vascular effects of non-esterified fatty acids: implications for the cardiovascular risk factor cluster. Prostaglandins Leukot Essent Fatty Acids.1999;60:411-20.
    45. Steinberg HO, Tarshoby M, Monestel R, Hook G, Cronin J, Johnson A, Bayazeed B, Baron AD. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest.1997;100:1230-9.
    46. Nguyen MT, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI, Zalevsky J, Dahiyat BI, Chi NW, Olefsky JM. JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. JBiol Chem.2005;280:35361-71.
    47. Collins QF, Xiong Y, Lupo EG, Jr., Liu HY, Cao W. p38 Mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes. JBiol Chem.2006;281:24336-44.
    48. Stahli BE, Camici GG, Steffel J, Akhmedov A, Shojaati K, Graber M, Luscher TF, Tanner FC. Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation. Circ Res. 2006;99:149-55.
    49. Steffel J, Hermann M, Greutert H, Gay S, Luscher TF, Ruschitzka F, Tanner FC. Celecoxib decreases endothelial tissue factor expression through inhibition of c-Jun terminal NH2 kinase phosphorylation. Circulation.2005; 111:1685-9.
    50. Mustonen P, van Willigen G, Lassila R. Epinephrine--via activation of p38-MAPK-abolishes the effect of aspirin on platelet deposition to collagen. Thromb Res.2001; 104:439-49.
    51. Koistinen HA, Chibalin AV, Zierath JR. Aberrant p38 mitogen-activated protein kinase signalling in skeletal muscle from Type 2 diabetic patients. Diabetologia. 2003;46:1324-8.
    52. Carlson CJ, Koterski S, Sciotti RJ, Poccard GB, Rondinone CM. Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes:potential role of p38 in the downregulation of GLUT4 expression. Diabetes.2003;52:634-41.
    53. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for JNK in obesity and insulin resistance. Nature.2002;420:333-6.
    54. Manning AM, Davis RJ. Targeting JNK for therapeutic benefit:from junk to gold? Nat Rev Drug Discov.2003;2:554-65.
    55. Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). JBiol Chem.2000;275:9047-54.
    56. Shen YH, Godlewski J, Zhu J, Sathyanarayana P, Leaner V, Birrer MJ, Rana A, Tzivion G. Cross-talk between JNK/SAPK and ERK/MAPK pathways: sustained activation of JNK blocks ERK activation by mitogenic factors. JBiol Chem.2003;278:26715-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700