瓜尔胶的干法改性及其在活性印花中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自活性染料问世以来,国内外一直主要沿用海藻酸钠(SA)作为活性染料印花糊料增稠剂,因为海藻酸钠具有易着色、得色量高、色泽鲜艳及印花后织物手感柔软等特点。近年来,随着印花技术的不断发展,对印花色浆特别是印花糊料增稠剂提出了更高的要求,仅使用海藻酸钠已远远不能满足高质量印花的要求。另外,由于海藻酸钠资源紧张,价格日趋上涨,使印花成本不断提高,直接影响到生产厂家的经济效益。因此,寻找海藻酸钠的理想替代品不但可以改善印花性能,而且可以降低生产成本。本论文以瓜尔胶为原料,采用干法对其进行氧化和羧甲基化改性,研究改性后的产物与多种天然聚多糖的复配性能,并对复配以后的混合糊料用于活性印花及印花后的各项性能进行了初步探讨。具体包括以下几方面的内容:
     (1)用双氧水作氧化剂,采用干法对瓜尔胶进行氧化改性,制备了氧化瓜尔胶(OGG)。为了得到一种适合活性印花的产品,考察了各反应条件如氧化剂用量、溶剂用量、反应温度、反应时间对产物粘度的影响,得到制备OGG的最优条件为:氧化剂用量7%,溶剂用量30%,反应温度65℃,反应时间1h;通过傅里叶变换红外(FTIR)分光光度计、凝胶渗透色谱(GPC)、扫描电子显微镜(SEM)及示差扫描量热仪(DSC)对产物进行了表征;测定了原胶及OGG的水合速率,研究了OGG水溶液在不同条件下的流变性能,考察了盐浓度及pH值对产物水溶液粘度的影响;将改性后的产物用于活性印花,从印花后织物纤维硬度、得色及边缘清晰度等方面进行了考察,结果表明,OGG可以用作活性染料印花糊料增稠剂。
     (2)采用干法对瓜尔胶进行羧甲基化改性,优化了反应条件,得到制备高取代度羧甲基瓜尔胶(CMGG)的最优条件为:氢氧化钠与一氯乙酸的摩尔比为0.55,95%乙醇的体积为15mL,一次反应与二次反应的温度分别为30℃和60℃,一次反应和二次反应的时间分别为40min和10h;通过FTIR, SEM、X射线衍射仪(XRD)及DSC等测试手段对产物进行了表征;研究了CMGG水溶液在不同条件下的流变性能,从CMGG水溶液的粘度测定可以看出,CMGG水溶液是一种非牛顿型流体,存在剪切变稀的假塑性行为,溶液粘度随着浓度的升高而增加,随着温度的升高而降低,随着储存时间的增加先升高后下降;将改性后的产物用于活性印花,结果表明,CMGG作为活性印花增稠剂与SA作为活性印花增稠剂相比,除了得色不如SA深之外,色浆的渗透性及印花后织物的手感均与SA相当,这说明在一定的条件下CMGG可以作为SA的替代品用于活性印花
     (3)采用小型实验室平网印花机对OGG和CMGG与SA、羧甲基淀粉(CMS)、羧甲基纤维素(CMC)、黄原胶(XG)的二元和三元复配糊料用于活性印花进行了初步研究。从复配糊料的粘度数据可以看出:无论是二元还是三元复配,各高分子之间均有较强的协同增稠作用,可显著提高混合糊料的粘度。在印染行业中通常用印花粘度指数(PVI)来评估印花色浆的流变性。从色浆的流变性可以看出:SA的加入能显著提高色浆的PVI,使其流变性更适用于活性印花;CMC的加入对混合糊的PVI值影响不大;而CMS和XG的加入只能使混合糊的PVI值降低,这也是CMS和XG用于活性印花的不足之处。印花实验结果表明:与OGG相比,CMGG与SA复配的混合糊所印制织物的手感较软、得色较好,说明CMGG比OGG更适宜用于活性印花;CMGG与CMS复配的印花结果说明在要求不是特别高的情况下,该混合糊可以部分取代SA糊,降低生产成本;从三元复配的印花结果可知,CMC能部分替代SA,降低成本,而XG的加入使得色浆出现胶凝现象,色浆的流动性变差,在印花过程中色浆不能顺利地流下,因此不宜用于活性印花
At present, sodium alginate (SA) is most widely used as a thickener in reactive printing for its easy colored, high quality of color, bright in color and soft handle of fabric after printing. In recent years, with the continuous development of printing technology, it raises high request about printing paste especially printing paste thickener. It doesn't meet the requirements of high quality printing that only use the sodium alginate as printing paste thickener. Moreover, the fluctuation in price and quality, as well as the limited supply of alginates, has increased the printing cost and affected the manufacturer's economic benefit directly. Therefore, it is very important to look for the alternatives of sodium alginate, which will not only improve the printing performance but also reduce the production cost. The aim of this thesis was to prepare oxidized guar gum and carboxymethyl guar gum with a simple dry method with guar gum as raw material, study the compatible behavior of modified product and the other natural polysaccharides and study the printing proprieties of all kinds of mixed paste. The main contents were summarized as follows:
     (1) The aim of this part of the work was to prepare oxidized guar gum (OGG) with a simple dry method and use hydrogen peroxide as oxidant. To obtain a product with suitable viscosity for reactive dye printing, the effects of various factors such as the amount of oxidant and solvent, reaction temperature and time were studied with respect to the viscosity of reaction products. The optimized reaction conditions in the oxidation reaction are:usage of H2O2,7%; percentage of solvent,30%; reaction temperature,65℃; and reaction time,1h. The product was characterized by FTIR, GPC, SEM and DSC. The hydrated rate of guar gum and oxidized guar gum was estimated. The rheological properties of OGG pastes were studied using a rotational viscometer. The effects of the salt concentration and pH on viscosity of the resultant product were studied. In addition, the applied effect of OGG paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with sodium alginate. And the results indicated that the OGG paste could use as thickener in reactive dye printing.
     (2) Carboxymethyl guar gum (CMGG) was synthesized with a simple dry method. The influences of a variety of reaction parameters for degree of substitution were evaluated. All these are with a view to optimizing the synthesis conditions for high degree of substitution. The optimized reaction conditions in the reaction are: nMCA/nNaOH,0.55; the volume of95%ethanol,15mL; the reaction temperature of the first and second step,30and60℃; and reaction time of the first and second step,40min and10h. The product was characterized by FTIR, SEM, XRD and DSC. The rheological properties of product pastes were studied using a rotational viscometer. The viscosity of products'solution decreased with increasing temperature and increased with increasing concentration. With the increase of storage time, the viscosity increased at first, and then decreased. In addition, a shear thinning pseudoplastic behavior was observed at all concentrations, temperatures and storage times. In addition, the applied effect of CMGG paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with sodium alginate. And the results indicated that the CMGG paste had a good performance as thickener in reactive dye printing.
     (3) The mixed paste among OGG, CMGG, SA, CMS, CMC and XG was prepared and their viscosities were determined by the viscometer. It can be seen from the viscosity of mixed paste that there existed strong synergistic interactions among the different polysaccharides. The rheological property of the mixed paste was appraised by the printing viscosity index (PVI). From the value of PVI, it can be seen that SA and CMC had a high PVI, but CMS and XG had a low PVI. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with sodium alginate. And the results indicated that CMGG had a better applied effect compared with OGG. The mixed paste of CMGG and CMS could partially replace sodium alginate as thickener in reactive dye printing in some situations. In addition, CMC could use as thickener in reactive dye printing but XG couldn't because of its worse flowability in the process of printing.
引文
[1]E.S. Abdel-Halim, H.E. Emam, M.H. EI-Rafie. Utilization of hydroxypropyl cellulose and poly(acrylic acid)-hydroxypropyl cellulose composite as thickeners for textile printing[J]. Carbohydrate Polymers. 2008, 74:938-941.
    [2]E. Perrin Akcakoca Kumbasar. Mixture printing pastes from high substitued guar gum and alginates on reactive printing of viscose[J]. Journal of Applied Polymer Science. 2007, 103: 745-751.
    [3]M. Kanik, P.J. Hauser. Printing of cationised cotton with reactive dyes[J]. Coloration Technology. 2002, 118:300-306.
    [4]E. Perrin Akcakoca Kumbasar, M. Bide. Reactive dye printing with mixed thickeners on viscose[J]. Dyes and Pigments. 2000, 47:189-199.
    [5]黄艳.活性染料印花糊料复配体系研究[硕士论文].青岛:青岛大学.2008.
    [6]唐增荣.活性染料印花糊料概述[J].印染助剂.2000,17:1-6.
    [7]S. Sostar, R. Schneider. A study of fabric stiffness with guar gum in reactive printing[J]. Dyes and Pigments. 1999, 41:167-175.
    [8]C. Sandolo, P. Matricardi, F. Alhaique, T. Coviello. Effect of temperature and cross-linking density on rheology of chemical cross-linked guar gum at the gel point[J]. Food Hydrocolloids. 2009, 23:210-220.
    [9]D.R. Picout, S.B. Ross-Murphy, N. Errington, S.E. Harding. Pressure cell assisted solution characterization of polysaccharides. 1. Guar gum[J]. Biomacromolecules. 2001,2: 1301-1309.
    [10]B.R. Nayak, R.P. Singh. Development of graft copolymer flocculating agents based on hydroxypropyl guar gum and acrylamide[J]. Journal of Applied Polymer Science. 2001,81: 1776-1785.
    [11]V. Singh, S.K. Singh, S. Pandey, R. Sanghi. Synthesis and characterization of guar gum templated hybrid nano silica[J]. International Journal of Biological Macromolecules. 2011,49: 233-240.
    [12]J. Tripathy, D.K. Mishra, A. Srivastava, M.M. Mishra, K. Behari. Synthesis of partially carboxymethylated guar gum-g-4-vinyl pyridine and study of its water swelling, metal ion sorption and flocculation behaviour[J]. Carbohydrate Polymers. 2008, 72:462-472.
    [13]M. Pawlik, J.S. Laskowski. Stabilization of mineral suspensions by guar gum in potash ore flotation systems[J]. The Canadian Journal of Chemical Engineering. 2006, 84:532-538.
    [14]G. Sen, S. Mishra, U. Jha, S. Pal. Microwave initiated synthesis of polyacrylamide grafted guar gum (GG-g-PAM)-Characterizations and application as matrix for controlled release of 5-amino salicylic acid[J]. International Journal of Biological Macromolecules. 2010, 47: 164-170.
    [15]S. Thakur, G.S. Chauhan, J.H. Ahn. Synthesis of acryloyl guar gum and its hydrogel materials for use in the slow release of 1-DOPA and l-tyrosine[J]. Carbohydrate Polymers. 2009, 76: 513-520.
    [16]R. Caenn, G.V. Chillingar. Drilling fluids:State of the art[J]. Journal of Petroleum Science and Engineering. 1996, 14:221-230.
    [17]R.T. Thimma, S. Tammishetti. Barium chloride crosslinked carboxymethyl guar gum beads for gastrointestinal drug delivery[J]. Journal of Applied Polymer Science. 2001,82: 3084-3090.
    [18]S. Sostar, R. Schneider. Guar gum as an environment-friendly alternative thickener in printing with reactive dyes[J]. Dyes and Pigments. 1998, 39:211-221.
    [19]R. Schneider, S. Sostar-Turk. Good quality printing with reactive dyes using guar gum and biodegradable additives[J]. Dyes and Pigments. 2003,57: 7-14.
    [20]肖锦,周勤编.天然高分子絮凝剂[M].北京:化学工业出版社.2005.
    [21]吉毅,李宗石,乔卫红.瓜尔胶的化学改性[J].日用化学工业.2005,2:111-114.
    [22]朱昌玲,薛华茂,孙达峰.改性瓜尔胶的研究进展[J].中国野生植物资源.2005,4:9-12.
    [23]邹时英,王克,殷勤俭,江波.瓜尔胶的改性研究[J].化学研究与应用.2003,3:317-320.
    [24]胡益,罗儒显.瓜尔胶改性方法研究进展[J].广东化工.2004,6:25-27.
    [25]M.R. Gittings, L. Cipelletti, V. Trappe. The Effect of solvent and ions on the structure and rheological properties of guar gum solutions[J]. The Journal of Physical Chemistry. 2001, 105:9310-9315.
    [26]M.R. Gittings, L. Cipelletti, V. Trappe. Structure of guar in solutions of H2O and D2O: An ultra-small-angle light-scattering study[J]. The Journal of Physical Chemistry. 2000, 104: 4381-4386.
    [27]李蔚萍,向兴金,魏平方.瓜尔胶与改性淀粉的协效应及配比研究[J].化学与生物工程.2005,1:45-46.
    [28]王元兰,黄寿恩,李忠海.黄原胶与瓜尔胶混胶黏度的影响因素及微结构研究[J].中国食品学报.2009,4:118-123.
    [29]L.M. Zhang, J.F. Zhou. Synergistic viscosity characteristics of aqueous mixed solutions of hydroxypropyl-and carboxymethyl hydroxypropyl-substituted guar gums[J]. Colloids and Surfaces. 2006,279:34-39.
    [30]M. Chaisawang, M. Suphantharika. Pasting and rheological properties of native and anionic tapioca starches as modified by guar gum and xanthan gum[J]. Food Hydrocolloids. 2006, 20:641-649.
    [31]M.V. Galmarini, R. Baeza, V. Sanchez. Comparison of the viscosity of trehalose and sucrose at various temperatures:Effect of guar gum addition[J]. LWT-Food Science and Technology. 2010:1-5.
    [32]孔俊豪,史劲松,孙达峰,张卫明,陈坤.瓜尔胶及其衍生物最新研究进展[J].食品研究与开发.2009,4:167-170.
    [33]E. Frollino, W.F. Reed, M. Milas. Polyelectrolytes from polysaccharides:Selective oxidation of guar gum-a revisited reaction[J]. Carbohydrate Polymers. 1995,27:129-135.
    [34]X.Y. Wu, Y.Q. Chen, B. Ding. Selective oxidation and determination of the substitution pattern of hydroxypropyl guar gum[J]. Carbohydrate Polymers. 2010, 80:1178-1182.
    [35]丁彬,杨舒涵,彭树花.TEMPO促成的瓜尔胶及羟丙基瓜尔胶的选择性氧化[J].高分子材料科学与工程.2007,4:211-214.
    [36]S. Pal. Carboxymethyl guar: Its synthesis and macromolecular charactetization[J]. Journal of Applied Polymer Science. 2009, 111:2630-2636.
    [37]H.Y. Michael, Hanilton. Guar gum composition and process for making it[P]. United States Patent. 1996, US005489674A.
    [38]H.Y. Michael. Amphoteric polysaccharide compositions[P]. United States Patent. 1995, US005378830A.
    [39]M.A. Shenoy, D.J. D'Melo. Synthesis and characterization of acryloyloxy guar gum[J]. Journal of Applied Polymer Science. 2010, 117:148-154.
    [40]L. Wang, L.M. Zhang. Viscoelastic characterization of a new guar gum derivative containing anionic carboxymethyl and cationic 2-hydroxy-3-(trimethylammonio)propyl substituents[J]. Carbohydrate Polymers. 2009, 29:524-529.
    [41]邹时英,王克,殷勤俭.羟丙基瓜尔胶的制备及表征[J].化学研究与应用.2004,1:73-75.
    [42]熊蓉春,陈建明,周楠.相转移催化法合成羟丙基瓜尔胶[J].北京化工大学学报.2005,1:43-46.
    [43]王军利,陈夫山,刘忠.瓜尔胶及改性瓜尔胶的性质及应用[J].纸和造纸.2003,1:59-60.
    [44]秦丽娟,陈夫山,王高升.阳离子瓜尔胶半干法合成及其在造纸湿部的应用[J].中国造纸.2005,2:11-13.
    [45]马冰洁,唐洪波.季铵盐型阳离子瓜尔胶的制备[J].哈尔滨工业大学学报.2009,5:260-262.
    [46]顾宏新,陈雁南,王亚玲.羧甲基羟丙基瓜尔胶的流变特性[J].化学研究与应用.2008,2:198-200.
    [47]K. Behari, K. Taunk, M. Tripathi. Cu2+/Mandelic acid redox pair initiated graft copolymerization acrylamide onto guar gum[J]. Journal of Applied Polymer Science. 1999, 71:739-745.
    [48]B.R. Nayak, R.P. Singh. Comparative studies on the flocculation characteristics of polyacrylamide grafted guar gum and hydroxypropyl guar gum[J]. Polymer International. 2001,50:875-884.
    [49]B.R. Nayak, R.P. Singh. Developnent of graft copolymer flocculating agents based on hydroxypropyl guar gum and acrylamide[J]. Journal of Applied Polymer Science. 2001,81: 1776-1785.
    [50]K. Behari, M. Tripathi, K. Taunk. Studies of graft copolymerization of acrylamide onto guar gum using peroxydipphosphate-metabisulphite redox pair[J]. Polymer International.2000, 49:153-157.
    [51]K. Taunk, K. Behari. Studies on graft copolymerization of 4-vinylpyridine onto guar gum[J]. Journal of Applied Polymer Science. 2002, 84:2380-2385.
    [52]P. Chowdhury, S. Samui, T. Kundu. Graft polymerization of methyl methacrylate onto guar gum with eerie ammonium sulfate/dextrose redox pair[J]. Journal of Applied Polymer Science. 2002,84:2380-2385.
    [53]R.T. Thimma, N.S. Reddy, S. Tammishetti. Synthesis and characterization of guar gum-graft-polyacrylonitrile[J]. Polymers for Advanced Technologies. 2003,14:663-668.
    [54]K. Taunk, K. Behari. Graft copolymerization of acrylic acid onto guar gum[J]. Journal of Applied Polymer Science.2000,77:39-44.
    [55]V. Singh, A. Tiwari, D.N. Tripathi. Grafting of polyacrylonitrile onto guar gum under microwave irradiation[J]. Journal of Applied Polymer Science. 2004, 92:1569-1575.
    [56]J.H. Trivedi, K. Kalia. Ceric-induced grafting of acrylonittile onto sodium salt of partially carboxymethylated guar gum[J]. Carbohydrate Polymers. 2005, 60:117-125.
    [57]J.H. Trivedi, K. Kalia, N.K. Patel. Graft copolymerization of sodium salt of partially carboxymethylated guar gum with methyl methacrylate: An examination of the reaction variables[J]. Journal of Applied Polymer Science. 2005,96:1855-1864.
    [58]J. Tripathy, D.K. Mishra, A. Srivastava. Synthesis of partially carboxymethylated guar gum-g-4-vinylpyridine and study of its water swelling, metal ion sorption and flocculation behaviour[J]. Carbohydrate Polymers. 2008, 72:462-472.
    [59]H.Y. Shi, L.M. Zhang. New grafted polysaccharides based on O-carboxymethyl-O-hydroxypropyl guar gum and N-isopropylacrylamide: Synthesis and phase transition behavior in aqueous media[J]. Carbohydrate Polymers. 2007, 67:337-342.
    [60]赵晓峰,姚评佳,魏远安.瓜尔胶辐射法接枝甲基丙烯酸共聚物的制备及应用[J].化工技术与开发.2008,9:1-4.
    [61]A. Tayal, V.B. Pai, S.A. Khan. Rheology and microstructural changes during enzymatic degradation of a guar-borax hydrogel[J]. Macromolecules. 1999,32:5567-5574.
    [62]A. Tayal, R.M. Kolly, S.A. Khan. Rheology and molecular weight changes during enzymatic degradation of a water-soluble polymer[J]. Macromolecules. 1999, 32:294-300.
    [63]C.W. Chiu, M.J. Henley, J.P. Zallie. Bulking agents and processes for preparing them from food gums[P]. United States Patent. 2002, US2002001841AI.
    [64]赵晓峰.瓜尔胶的接枝改性和酶解法制备半乳甘露低聚糖的研究[硕士论文].桂林:广西大学.2008.
    [65]R.T. Thimma, S. Tammishetti. Barium chloride crosslingked carboxymethyl guar gum beads for gastrointestinal drug delivery[J]. Journal of Applied Polymer Science. 2001,82: 3084-3090.
    [66]S.K. Bajpai, S.K. Saxena, S. Sharna. Swelling behavior of barium ions-crosslinked bipolymeric sodium alginate-carboxymethyl guar gum blend beads[J]. Reactive and Functional Polymers.2006,66:659-666.
    [67]A. Tayal, S.A. Khan. Degradation of a water-soluble polymer: Molecular weight changes and chain scission characteristics[J]. Macromolecules. 2000,33:9488-9493.
    [68]Y.H. Huang, H.G. Yu, C.B. Xiao. Effects of Ca2+ crosslinking on structure and properties of waterborne polyurethane-carboxymethylated guar gum films[J]. Carbohydrate Polymers. 2006,66:500-513.
    [69]王著,张国宝,王颖,赵根锁.金属交联羧甲基羟丙基瓜胶的红外光谱研究[J].光谱学与光谱分析.1997,3:46-49.
    [70]王立军,刑思魏.不同分子量高阳离子度瓜尔胶控制废纸浆微胶黏物的特性[J].造纸科学与技术.2006,5:8-42.
    [71]宋林林,李友明,万小芳.阳离子瓜尔胶-丙烯酰胺枝接共聚物对蔗渣的助留性能的研究[J].造纸科学与技术.2006,6:78-80.
    [72]王喜金,郑国平,易周清.阳离子瓜尔胶在卷烟纸生产中的应用[J].造纸化学与应用. 2003,3:18-19.
    [73]陈阳明,刘英杰,黄建中.非离子性瓜尔胶对纸页性能的影响[J].造纸科学与技术.2007,5:35-37.
    [74]赵涛,李友明,万小芳.两性瓜尔胶的助留性能[J].纸和造纸.2007,4:53-56.
    [75]寇勇琦,段亚峰,党旭艳.瓜尔胶的研究及其在纺织印花中的应用[J].纺织染整.2009,1:56-60.
    [76]寇勇琦,段亚峰,洪益明.羟丙基瓜尔胶在活性染料印花中的应用[J].染整技术.2009,4:41-46.
    [77]R. Fijian, S.S. Turk, R. Lapasin. Rheological study of interactions between non-ionic surfactants and polysaccharide thickeners used in textile printing[J]. Carbohydrate Polymers. 2007,68:708-717.
    [78]V. Kokol, R. Schneider, S.S. Turk. Influence of additives on the fabric stiffness and colour depth of viscose printed with a guar gum thickener and a reactive dye[J]. Coloration Technology. 2002, 118:226-232.
    [79]R. Fijan, M. Basile, R. Lapasin. Rheological properties of pastes and their influence on quality-determining parameters in screen printing of cotton with reactive dyes using recycled polysaccharide thickeners[J]. Carbohydrate Polymers. 2009, 78:25-35.
    [80]S.Y.P. Chang, Y.C. Chao. Polymerization of fluoroacrylate and guar gum copolymer as a new pretreatment paste for ink-jet printing of polyester[J]. Journal of Applied Polymer Science. 2009,114:705-712.
    [81]E.P. A.Kumbasar. Mixture printing pastes from high substitued guar gum and alginates on reactive printing of viscose[J]. Journal of Applied Polymer Science. 2007, 103:745-751.
    [82]孙培冬,彭奇均,肖钢.食品增稠胶的性能比较和应用技术[J].中国食品添加剂.1996,3:21-23
    [83]R. Tuinier, E. ten Grotenhuis, C.G. de Kruif. The effect of depolymerised guar gum on the stability of skim milk[J]. Food Hydrocolloids. 2000, 14:1-7.
    [84]吴根苗.冰淇淋与复合乳化剂及亲水胶体[J].食品与机械.1994,42:30-30.
    [85]石永峰.乳化剂和水解胶体对全麦面包质星的影响[J].四川粮油科技.1998,59:29-33.
    [86]王军利,陈夫山,刘忠.瓜尔胶的应用研究[J].天津造纸.2002,3;10-12.
    [87]赵争鸣.中草药去屑防脱发香波的研制[J].五邑人学学报(自然科学版).2002,16:63-66.
    [88]徐敏杰,胥云,崔明月.一种疏水性集团接枝改性的瓜胶压裂液冻胶[P].中国发明专利.2010, CN101633840A.
    [89]刘莉,高丽.剪切交联敏感性堵漏剂及制备方法[P].中国发明专利.2009,CN101519585A.
    [90]M. Pawlik, J.S. Laskowski. Stabilization of mineral suspensions by guar gum in potash ore flotation systems[J]. The Canadian Journal of Chemical Engineering. 2006, 84:532-538.
    [91]张黎明,欧富初,陈汝福.可降解瓜尔胶载药微胶囊的聚乙二醇修饰[J].中山大学学报.2005,1:45-48.
    [92]李秀瑜,吴文辉.瓜胶及其衍生物在药物控制释放领域的研究进展[J].现代化工.2007,1:23-26.
    [93]S. Thakur, G.S. Chauhan, J.H. Ahn. Synthesis of acryloyl guar gum and its hydrogel materials for use in the slow release of 1-DOPA and l-tyrosine[J]. Carbohydrate Polymers. 2009, 76: 513-520.
    [94]赵涛.染整工艺学教程[M].北京:中国纺织出版社.2005.
    [95]李晓春.纺织品印花[M].北京:中国纺织出版社.2002.
    [96]李丽.高取代CMC糊料用于活性染料印花的研究[硕士论文].无锡:江南大学.2007.
    [97]叶金兴.关于印花糊料流变性的测定[J].丝绸.2005,5:34-35.
    [98]S. Sostar Turk, R. Schneider. Printing properties of a high substituted guar gum and its mixture with alginate[J]. Dyes and Pigments. 2000, 47:269-275.
    [99]K. Vanja. Interactions between polysaccharide polymer thickener and bifunctional bireactive dye in the presence of nonionic surfactants. Part 1:Surface tension and rheological behavior of different polysaccharide solutions[J]. Carbohydrate Polymers.2002, 50: 227-236.
    [100]K. Vanja. Interactions between polysaccharide polymer thickener and bifunctional bireactive dye in the presence of nonionic surfactants. Part 2:Investigation of interactions using SEC method[J]. Carbohydrate Polymers. 2002, 50:237-247.
    [101]李文英,刘馨,张晓东.新型活性染料印花糊料QDU的性能研究[J].印染助剂.2002,19:28-30.
    [102]闵洁.复合变性玉米淀粉印花糊料的性能研究[J].东华大学学报(自然科学版).2002,28:97-101.
    [103]黄小华,黄为忠,杨英,孔永.玉米淀粉接枝改性糊料及其印花性能[J].印染.2006,3:7-9.
    [104]范秀芝,董德敢.混合糊料在活性染料平网印花中的应用[J].印染.2002,28:19-20.
    [105]李丽,范雪荣,王强,康青成.高取代度CMC/SA混合糊料活性染料印花性能[J].印染.2007,2:4-6.
    [1]E. Perrin Akcakoca Kumbasar. Mixture printing pastes from high substitued guar gum and alginates on reactive printing of viscose[J]. Journal of Applied Polymer Science. 2007, 103: 745-751.
    [2]M. Kanik, P.J. Hauser. Printing of cationised cotton with reactive dyes[J]. Coloration Technology. 2002, 118:300-306.
    [3]E. Perrin Akcakoca Kumbasar, M. Bide. Reactive dye printing with mixed thickeners on viscose[J]. Dyes and Pigments. 2000, 47:189-199.
    [4]T. Hosokawa, S. Kako, K. Hagino. Textile printing paste composition with highly substituted carboxymethyl cellulose[P]. United States Patent. 1984, 502847.
    [5]S. Sostar, R. Schneider. A study of fabric stiffness with guar gum in reactive printing[J]. Dyes and Pigments. 1999, 41:167-175.
    [6]R. Fijan, M. Basile, R. Lapasin, S. Sostar-Turk. Rheological properties of printing pastes and their influence on quality-determining parameters in screen printing of cotton with reactive dyes using recycled polysaccharide thickeners[J]. Carbohydrate Polymers. 2009, 78:25-35.
    [7]D.R. Picout, S.B. Ross-Murphy, N. Errington, S.E. Harding. Pressure cell assisted solution characterization of polysaccharides. 1. Guargum[J]. Biomacromolecules. 2001,2:1301-1309.
    [8]B.R. Nayak, R.P. Singh. Development of graft copolymer flocculating agents based on hydroxypropyl guar gum and acrylamide[J]. Journal of Applied Polymer Science. 2001,81: 1776-1785.
    [9]V. Singha, S.K. Singha, S. Pandeya, R. Sanghib. Synthesis and characterization of guar gum templated hybrid nano silica[J]. International Journal of Biological Macromolecules. 2011,49: 233-240.
    [10]J. Tripathy, D.K. Mishra, A. Srivastava, M.M. Mishra, K. Behari. Synthesis of partially carboxymethylated guar gum-g-4-vinyl pyridine and study of its water swelling, metal ion sorption and flocculation behaviour[J]. Carbohydrate Polymers. 2008, 72:462-472.
    [11]M. Pawlik, J.S. Laskowski. Stabilization of mineral suspensions by guar gum in potash ore flotation systems[J]. Canadian Journal of Chemistry Engineering. 2006, 84:532-538.
    [12]G. Sen, S. Mishra, U. Jha, S. Pal. Microwave initiated synthesis of polyacrylamide grafted guar gum (GG-g-PAM)-Characterizations and application as matrix for controlled release of 5-amino salicylic acid[J]. International Journal of Biological Macromolecules. 2010, 47: 164-170.
    [13]S. Thakur, G.S. Chauhan, J.H. Ahn. Synthesis of acryloyl guar gum and its hydrogel materials for use in the slow release of 1-DOPA and l-tyrosine[J]. Carbohydrate Polymers. 2009, 76: 513-520.
    [14]M. Melbouci, T.T. Nguyen, T.S. Young. Oxidized guar for oilfield servicing fluids[P]. United States Patent. 2010, 7851416 B2.
    [15]R.T. Thimma, S. Tammishetti. Barium chloride crosslinked carboxymethyl guar gum beads for gastrointestinal drug delivery[J]. Journal of Applied Polymer Science. 2001,82: 3084-3090.
    [16]S. Sostar, R. Schneider. Guar gum as an environment-friendly alternative thickener in printing with reactive dyes[J]. Dyes and Pigments.1998,39:211-221.
    [17]R. Schneider, S. Sostar-Turk. Good quality printing with reactive dyes using guar gum and biodegradable additives[J]. Dyes and Pigments. 2003,57:7-14.
    [18]M. Oblonsek, S. Sostar-Turk, R. Lapasin. Rheological studies of concentrated guar gum[J]. Rheologica Acta. 2003,42:491-499.
    [19]S. Pal. Carboxymethyl guar: Its synthesis and macromolecular characterization[J]. Journal of Applied Polymer Science. 2009, 111:2630-2636.
    [20]C. Klein-Koerkamp, R. Granet, R. Zerrouki, N. Villandier, F. Jerome, J. Barrault, P. Krausz. Efficient oxidative modification of polysaccharides in water using H2O2 activated by iron sulfophthalocyanine[J]. Carbohydrate Polymers. 2009, 78:938-944.
    [21]Y. Huang, H. Yu, C. Xiao. Effects of Ca2+ crosslinking on structure and properties of waterborne polyurethane-carboxymethylated guar gum films[J]. Carbohydrate Polymers. 2006,66:500-513.
    [22]P. Tolvanen, A. Sorokin, P.M. Arvelar, S. Leveneur, D.Y. Murzin, T. Salmi. Batch and semibatch partial oxidition of starch by hydrogen peroxide in the presence of an iron tetrasulfophthalocyanine catalyst: The effect of ultrasound and the catalyst addition policy[J]. Industrial & Engineering Chemistry Research. 2011,50:749-757.
    [23]X. Jun, Z. Yanping. The preparation and function of oxidized starch prepared by hydrogen-peroxide with different materials[J]. Food and Fermentation Industries. 2007, 33: 85-88.
    [24]B. Kang, Y.D. Dai, H.Q. Zhang, D. Chen. Synergetic degradation of chitosan with gamma radiation and hydrogen peroxide[J]. Polymer Degradation and Stability. 2007, 92: 359-362.
    [25]I. Gliko-Kabir, A. Penhasi, A. Rubinstein. Characterization of crosslinked guar by thermal analysis[J]. Carbohydrate Research. 1999, 316:6-13.
    [26]Y. Huang, J. Lu, C. Xiao. Thermal and mechanical properties of cationic guar gum/poly(acrylic acid) hydrogel membranes[J]. Polymer Degradation and Stability. 2007, 92: 1072-1081.
    [27]Y.S.R. Krishnaiah, R.S. Karthikeyan, V. Gouri Sankar, V. Satyanarayana. Three-layer guar gum matrix tablet formulations for oral controlled delivery of highly soluble trimetazidine dihydrochloride[J]. Journal of Controlled Release. 2002, 81:45-56.
    [28]S.L.K. Sorokina, P. Gallezot, A.B. Sorokin. A novel clean catalytic method for waster-free modification of polysaccharides by oxidation[J]. Chemical Communications. 2004, 24: 2844-2845.
    [29]A.B. Sorokin, S.L. Kachkarova-Sorokina, C. Donze, C. Pinel, P. Gallezot. From native starch to hydrophilic and hydrophobic products: A catalytic approach[J]. Topics in Catalysis. 2004, 27:67-76.
    [30]A. Hebeish, A. Abdel-Rahman, Z. El-Hilw, M. Hashem. Cationized starch derived from pre-oxidized starch for textile sizing and printing[J]. Starch-Starke. 2005,57:616-623.
    [31]C.Q. Qin, Y.M. Du, L. Xiao. Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan[J]. Polymer Degradation and Stability. 2002, 76: 211-218.
    [32]Y.L. Wang, W.Y. Gao, X. Li. Carboxymethyl Chinese yam starch: Synthesis, characterization, and influence of reaction parameters[J]. Carbohydrate Research. 2009, 344:1764-1769.
    [33]J.Y. Qian, W. Chen, W.M. Zhang, H. Zhang. Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation:A primary approach[J]. Carbohydrate Polymers. 2009, 78:620-625.
    [34]S. Pal, D. Mal, R.P. Singh. Synthesis and characterization of cationic guar gum:A high performance flocculating agent[J]. Journal of Applied Polymer Science. 2007, 105: 3240-3245.
    [35]R. Kumar, A. Srivastava, K. Behari. Graft copolymerization of methacrylic acid onto xanthan gum by Fe2+/H2O2 redox initiator[J]. Journal of Applied Polymer Science. 2007, 105: 1922-1929.
    [36]J.H. Trivedi, K. Kalia, N.K. Patel, H.C. Trivedi. Ceric-induced grafting of a crylonitrile onto sodium salt of partially carboxymethylated guar gum[J]. Carbohydrate Polymers. 2005, 60: 117-125.
    [37]B.R. Sharma, V. Kumar, P.L. Soni. Graft copolymerization of acrylonitrile onto cassia tora gum with ceric ammonium nitrate-nitric acid as a redox initiator[J]. Journal of Applied Polymer Science. 2003,90:129-136.
    [38]D. Risica, A. Barbetta, L. Vischetti, C. Cametti, M. Dentini. Rheological properties of guar and its methyl, hydroxypropyl and hydroxypropyl-methyl derivatives in semidilute and concentrated aqueous solutions[J]. Polymer. 2010, 51:1972-1982.
    [39]C. Xu, S. Willfor, P. Holmlund, B. Holmbom. Rheological properties of water-soluble spruce O-acetyl galactoglucomannans[J]. Carbohydrate Polymers. 2009, 75:498-504.
    [40]P. Chan, J. Chen, R. Ettelaie, Z. Law, S. Alevisopoulos, E. Day, S. Smith. Study of the shear and extensional rheology of casein, waxy maize starch and their mixtures[J]. Food Hydrocolloids. 2007, 21:716-725.
    [41]A. Xiu, M. Zhou, B. Zhu, S. Wang, J. Zhang. Rheological properties of salecan as a new source of thickening agent[J]. Food Hydrocolloids. 2011,25:1719-1725.
    [42]M. Nickzare, M.J. Zohuriaan-Mehr, A.A. Yousefi, A. Ershad-Langroudi. Novel acrylic-modified acacia gum thickener: Preparation, characterization and rheological properties[J]. Starch-Starke. 2009, 61:188-198.
    [43]R. Fijan, S. Sostar-Turk, R. Lapasin. Rheological study of interactions between non-ionic surfactants and polysaccharide thickeners used in textile printing[J]. Carbohydrate Polymers. 2007,68: 708-717.
    [44]F. Chenlo, R. Moreira, C. Silva. Rheological behaviour of aqueous systems of tragacanth and guar gums with storage time[J]. Journal of Food Engineering. 2010, 96:107-113.
    [45]R. Farhoosh, A. Riazi. A compositional study on two current types of salep in Iran and their rheological properties as a function of concentration and temperature[J]. Food Hydrocolloids. 2007,21:660-666.
    [46]M. Marcotte, A.R. Taherian, M. Trigui, H.S. Ramaswamy. Evaluation of rheological properties of selected salt enriched food hydrocolloids[J]. Journal of Food Engineering. 2001, 48:157-167.
    [47]H.M. Choi, B. Yoo. Rheology of mixed systems of sweet potato starch and galactomannans[J]. Starch-Starke. 2008,60:263-2.
    [48]M.R. Gittings, L. Cipelletti, V. Trappe, D.A. Weitz, M. In, J. Lal. The effect of solvent and irons on the structure and rheological properties of guar gum solution[J]. Journal of Physical Chemistry A. 2001,105:9310-9315.
    [49]Q. Wang, P.R. Ellis, S.B. Ross-Murphy. The stability of guar gum in an aqueous system under acidic conditions[J]. Food Hydrocolloids. 2000, 14:129-134.
    [1]D.R. Picout, S.B. Ross-Murphy, N. Errington, S.E. Harding. Pressure cell assisted solution characterization of polysaccharides. 1. Guar gum[J]. Biomacromolecules. 2001,2:1301-1309.
    [2]B.R. Nayak, R.P. Singh. Development of graft copolymer flocculating agents based on hydroxypropyl guar gum and acrylamide[J]. Journal of Applied Polymer Science. 2001,81: 1776-1785.
    [3]V. Singh, S.K. Singh, S. Pandey, R. Sanghi. Synthesis and characterization of guar gum templated hybrid nano silica[J]. International Journal of Biological Macromolecules. 2011,49: 233-240.
    [4]J. Tripathy, D.K. Mishra, A. Srivastava, M.M. Mishra, K. Behari. Synthesis of partially carboxymethylated guar gum-g-4-vinyl pyridine and study of its water swelling, metal ion sorption and flocculation behaviour[J]. Carbohydrate Polymers. 2008, 72:462-472.
    [5]M. Pawlik, J.S. Laskowski. Stabilization of mineral suspensions by guar gum in potash ore flotation systems[J]. The Canadian Journal of Chemical Engineering. 2006, 84:532-538.
    [6]G. Sen, S. Mishra, U. Jha, S. Pal. Microwave initiated synthesis of polyacrylamide grafted guar gum (GG-g-PAM)-Characterizations and application as matrix for controlled release of 5-amino salicylic acid[J]. International Journal of Biological Macromolecules. 2010, 47: 164-170.
    [7]S. Thakur, G.S. Chauhan, J.H. Ahn. Synthesis of acryloyl guar gum and its hydrogel materials for use in the slow release of 1-DOPA and l-tyrosine[J]. Carbohydrate Polymers. 2009, 76: 513-520.
    [8]R. Caenn, G.V. Chillingar. Drilling fluids: State of the art[J]. Journal of Petroleum Science and Engineering. 1996, 14:221-230.
    [9]R.T. Thimma, S. Tammishetti. Barium chloride crosslinked carboxymethyl guar gum beads for gastrointestinal drug delivery[J]. Journal of Applied Polymer Science. 2001,82:3084-3090.
    [10]S. Sostar, R. Schneider. Guar gum as an environment-friendly alternative thickener in printing with reactive dyes[J]. Dyes and Pigments. 1998, 39:211-221.
    [11]R. Schneider, S. Sostar-Turk. Good quality printing with reactive dyes using guar gum and biodegradable additives[J]. Dyes and Pigments. 2003,57:7-14.
    [12]D. Risica, A. Barbetta, L. Vischetti, C. Cametti, M. Dentini. Rheological properties of guar and its methyl, hydroxypropyl and hydroxypropyl-methyl derivatives in semidilute and concentrated aqueous solutions[J]. Polymer. 2010, 51:1972-1982.
    [13]S. Pal. Carboxymethyl guar: Its synthesis and macromolecular characterization[J]. Journal of Applied Polymer Science. 2009, 111:2630-2636.
    [14]C. Klein-Koerkamp, R. Granet, R. Zerrouki, N. Villandier, F. Jerome, J. Barrault, P. Krausz. Efficient oxidative modification of polysaccharides in water using H2O2 activated by iron sulfophthalocyanine[J]. Carbohydrate Polymers. 2009, 78:938-944.
    [15]Y. Huang, H. Yu, C. Xiao. Effects of Ca2+ crosslinking on structure and properties of waterborne polyurethane-carboxymethylated guar gum films[J]. Carbohydrate Polymers. 2006, 66:500-513.
    [16]C. Xu, S. Willfor, P. Holmlund, B. Holmbom. Rheological properties of water-soluble spruce O-acetyl galactoglucomannans[J]. Carbohydrate Polymers. 2009, 75:498-504.
    [17]E. Stojanovic, K. Jeremic, S. Jovanovic, M.D. Lechner. A comparison of some methods for the determination of the degree of substitution of carboxymethyl starch[J]. Starch-Starke. 2005, 57:79-83.
    [18]J.H. Trivedi, K. Kalia, N.K. Patel, H.C. Trivedi. Ceric-induced grafting of acrylonitrile onto sodium salt of partially carboxymethylated guar gum[J]. Carbohydrate Polymers. 2005, 60: 117-125.
    [19]L.F. Wang, S.Y. Pan, H. Hu, W.H. Miao, X.Y. Xu. Synthesis and properties of carboxymethyl kudzu root starch[J]. Carbohydrate Polymers. 2010, 80:174-179.
    [20]Y.H. Bi, M.Z. Liu, L. Wu, D.P. Cui. Synthesis of carboxymethyl potato starch and comparison of optimal reaction conditions from different sources[J]. Polymers for Advanced Technologies. 2008,19:1185-1192.
    [21]S. Pal, D. Mal, R.P. Singh. Synthesis and characterization of cationic guar gum:A high performance flocculating agent[J]. Journal of Applied Polymer Science. 2007, 105: 3240-3245.
    [22]I. Gliko-Kabir, A. Penhasi, A. Rubinstein. Characterization of crosslinked guar by thermal analysis[J]. Carbohydrate Research. 1999, 316:6-13.
    [23]Y. Huang, J. Lu, C. Xiao. Thermal and mechanical properties of cationic guar gum/poly(acrylic acid) hydrogel membranes[J]. Polymer Degradation and Stability. 2007, 92: 1072-1081.
    [24]W. Gao, X. Lin, X. Lin, J. Ding, X. Huang, H. Wu. Preparation of nano-sized flake carboxymethyl cassava starch under ultrasonic irradiation[J]. Carbohydrate Polymers. 2011,84: 1413-1418.
    [25]W. Yanli, G. Wenyuan, L. Xia. Carboxymethyl Chinese yam starch: Synthesis, characterization, and influence of reaction parameters [J]. Carbohydrate Research. 2009, 344: 1764-1769.
    [26]O.S. Lawal, M.D. Lechner, W.M. Kulicke. The synthesis conditions, characterizations and thermal degradation studies of an etherified starch from an unconventional source[J]. Polymer Degradation and Stability. 2008, 93:1520-1528.
    [27]P. Goyal, V. Kumar, P. Sharma. Carboxymethylation of tamarind kernel powder[J]. Carbohydrate Polymers. 2007, 69:251-255.
    [28]P. Chan, J. Chen, R. Ettelaie, Z. Law, S. Alevisopoulos, E. Day, S. Smith. Study of the shear and extensional rheology of casein, waxy maize starch and their mixtures[J]. Food Hydrocolloids. 2007,21:716-725.
    [29]A. Xiu, M. Zhou, B. Zhu, S. Wang, J. Zhang. Rheological properties of Salecan as a new source of thickening agent[J]. Food Hydrocolloids. 2011,25:1719-1725.
    [30]M. Nickzare, M.J. Zohuriaan-Mehr, A.A. Yousefi, A. Ershad-Langroudi. Novel acrylic-modified acacia gum thickener: Preparation, characterization and rheological properties[J]. Starch-Starke. 2009, 61:188-198.
    [31]R. Fijan, S. Sostar-Turk, R. Lapasin. Rheological study of interactions between non-ionic surfactants and polysaccharide thickeners used in textile printing[J]. Carbohydrate Polymers. 2007,68:708-717.
    [32]F. Chenlo, R. Moreira, C. Silva. Rheological behaviour of aqueous systems of tragacanth and guar gums with storage time[J]. Journal of Food Engineering. 2010, 96:107-113.
    [33]R. Farhoosh, A. Riazi. A compositional study on two current types of salep in iran and their rheological properties as a function of concentration and temperature[J]. Food Hydrocolloids. 2007,21:660-666.
    [34]M. Marcotte, A.R. Taherian, M. Trigui, H.S. Ramaswamy. Evaluation of rheological properties of selected salt enriched food hydrocolloids[J]. Journal of Food Engineering. 2001, 48:157-167.
    [35]H.M. Choi, B. Yoo. Rheology of mixed systems of sweet potato starch and galactomannans[J]. Starch-Starke. 2008,60:263-269.
    [1]E. Perrin Akcakoca Kumbasar. Mixture printing pastes from high substitued guar gum and alginates on reactive printing of viscose[J]. Journal of Applied Polymer Science. 2007, 103: 745-751.
    [2]唐增荣.活性染料印花糊料概述[J].印染助剂.2000,17:1-6.
    [3]赵军子,翁志学.活性染料印花糊料研究进展[J].精细石油化工.2002,1:53-56.
    [4]寇勇琦,段亚峰,党旭艳,洪益明.瓜尔胶的研究及其在纺织印花中的应用[J].纺织染整.2009,1:57-60.
    [5]寇勇琦,段亚峰,洪益明.羟丙基瓜尔胶在活性染料印花中的应用[J].染整技术.2009,4:41-43.
    [6]顾正彪.我国淀粉及其深加工工业现状和发展趋势[J].食品与饲料工业.2000,8:7-9.
    [7]赵凯.淀粉非化学变性技术[M].北京:化学工业出版社.2009.
    [8]徐忠,缪铭,王鹏等.羧甲基玉米多孔淀粉的制备及性能研究[J].食品科学.2005,26:116-120.
    [9]C. Loisel, Z. Maache-Rezzoug, C. Esneault, J.L. Doublier. Effect of hytrothermal treatment on the physical and rheological properties of maize starches[J]. Journal of Food Science. 2006, 73: 45-54.
    [10]C. Galassi, E. Roneari, C. Capiani, G. Fabbri, A. Pianeastelli, M. Peselli, F. Silvano. Processing of porous PZT materials for underwater acoustics[J]. Ferroelectrics. 2002, 268: 47-52.
    [11]钱和,朱仁宏,姚卫蓉等.多孔淀粉在低脂贡丸中的代脂研究[J].食品科技.2005,2:68-70.
    [12]D.H. Powers, Moorestown, S.N. Glarum, Ardmore. Textile printing paste. United States Patent. 1938, 210794.
    [13]L.S. Lai, Y.L. Liu, P.H. Lin. Rheological/textural properties of starch and crude hsian-tsao leaf gum mixed systems[J]. Journal of the Science of Food and Agriculture.2003,83: 1051-1058.
    [14]L.M. Zhang, J.F. Zhou. Synergistic viscosity characteristics of aqueous mixed solutions of hydroxypropyl- and carboxymethyl hydroxypropyl-substituted guar gums[J]. Colloids and Surfaces A. 2006,279:34-39.
    [15]M. Alloncle, J. Lefebvre, G. Llamas, J.L. Doublier. A rheological characterization of cereal starch-galactomannan mixtures[J]. Cereal Chemistry. 1989, 66:90-93.
    [16]J. Tripathy, D.K. Mishra, A. Srivastava, M.M. Mishra, K. Behari. Synthesis of partially carboxymethylated guar gum-g-4-vinyl pyridine and study of its water swelling, metal ion sorption and flocculation behaviour[J]. Carbohydrate Polymers. 2008, 72:462-472.
    [17]X.D. Zhang, X. Liu, W.Y. Li. Synthesis and applied properties of carboxymethyl cornstarch[J]. Journal of Applied Polymer Science. 2003,89:3016-3020.
    [18]D. Risica, A. Barbetta, L. Vischetti, C. Cametti, M. Dentini. Rheological properties of guar and its methyl, hydroxypropyl and hydroxypropyl-methyl derivatives in semidilute and concentrated aqueous solutions[J]. Polymer. 2010, 51:1972-1982.
    [19]C.L. Xu, S. Willfor, P. Holmlund, B. Holmbom. Rheological properties of water-soluble spruce O-acetyl galactoglucomannans[J]. Carbohydrate Polymers. 2009, 75:498-504.
    [20]S. Sostar Turk, R. Schneider. Printing properties of a high substituted guar gum and its mixture with alginate[J]. Dyes and Pigments. 2000, 47:269-275.
    [21]E.P. A.Kumbasar. Mixture printing pastes from high substitued guar gum and alginates on reactive printing of viscose[J]. Journal of Applied Polymer Science. 2007, 103:745-751.
    [22]李蔚萍,向兴金,魏平方.瓜尔胶与改性淀粉的协效应及配比研究[J].化学与生物工程.2005,1:45-46.
    [23]H.M. Choi, B. Yoo. Rheology of mixed systems of sweet potato starch and galactomannans[J]. Starch-Starke. 2008,60:263-269.
    [24]S. Sostar, R. Schneider. A study of fabric stiffness with guar gum in reactive printing[J]. Dyes and Pigments. 1999, 41:167-175.
    [25]S. Sostar, R. Schneider. Guar gum as an environment-friendly alternative thickener in printing with reactive dyes[J]. Dyes and Pigments. 1998, 39:211-221.
    [26]R. Schneider, S. Sostar-Turk. Good quality printing with reactive dyes using guar gum and biodegradable additives[J]. Dyes and Pigments. 2003,57:7-14.
    [27]王元兰,黄寿恩,李忠海.黄原胶与瓜尔胶混胶黏度的影响因素及微结构研究[J].中国食品学报.2009,4:118-123.
    [28]M.Chaisawang, M.Suphantharika. Pasting and rheological properties of native and anionic tapioca starches as modified by guar gum and xanthan gum[J]. Food Hydrocolloids.2006, 20:641-649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700