功能性聚合物的合成及靶向载药纳米粒子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能性高分子材料与纳米技术相结合在生物医学领域具有十分重要的意义和应用价值。功能性两亲梳状聚合物形貌规整可控,既具有高度的两亲性同时能够包覆药物及纳米粒子,是良好的多功能纳米载药体系载体。荧光纳米量子点及氧化铁纳米粒子在生物医学领域应用广泛,具有良好光学性能的荧光纳米量子点及具有良好磁性能的氧化铁纳米粒子在医学成像方面具有独特的优势。本论文主要合成了多羧基聚合物及功能性两亲梳状共聚物,对聚合物的性质和结构进行了研究。利用这些聚合物制备水溶性纳米粒子,并考察这些纳米粒子的特性。最终,制备了具有成像、靶向、药物缓释的多功能纳米粒子载药体系,具体工作如下:
     首先,利用溶液聚合法合成生物可降解的多羧基聚合物,聚衣康酸甲基丙烯酸(PIA-MAA)。利用配体交换反应制备水溶性荧光纳米量子点PIA-MAA-QDs,该量子点水溶性好,性能稳定。其次,利用溶液聚合法合成两亲性聚合物,聚(甲基丙烯酸十八酯-co-甲基丙烯酸)(PSM)。通过相转移作用,制成水溶性好、性能稳定的量子点(PSM-QDs)。第三,利用酰胺化反应用乙醇胺及氨基聚乙二醇2000修饰PSM,合成了两亲性梳状聚合物聚(甲基丙烯酸十八酯-co-甲基丙烯酸)-乙醇胺(PSM-EtA)以及聚(甲基丙烯酸十八酯-co-甲基丙烯酸)-聚乙二醇胺(PSM-PEG)。利用PSM-EtA包埋叶酸(FA),通过相转移的方法制备聚合物载药体系PSM-EtA@FA,并利用PSM-PEG包埋盐酸阿霉素(DOX),制备聚合物载药体系PSM-PEG@DOX。两种载药体系的包埋率高,载药量大,缓释作用明显。最后,利用酰胺化反应将靶向分子尿激酶(uk)连接到两亲梳状共聚物PSM-PEG上,合成了具有靶向功能的聚(甲基丙烯酸十八酯-co-甲基丙烯酸)-聚乙二醇胺-尿激酶(PSM-PEG-uk)。利用PSM-PEG及PSM-PEG-uk作为相转移试剂,制得水溶性PSM-PEG-uk@IO纳米粒子,及PSM-PEG-uk@IO-DOX复合载药纳米粒子体系。该纳米粒子体系具有良好的超顺磁性、载药率大、包埋率高。由于荧光纳米粒子出色的光学特性及医学成像优势,进一步制得PSM-PEG@QDs,PSM-PEG-uk1@QDs,PSM-PEG-uk2@QDs及PSM-PEG-uk2@ QDs-DOX四种荧光纳米粒子。这些荧光纳米粒子的光学性能稳定并具有良好的药物包埋特性。
     总之,具有成像、靶向、药物缓释的多功能纳米粒子载药体系功能独特,优势突出,必将在生物医学领域得到广泛应用。
The integration of nanotechnology with molecular biology and medicine has resulted in active developments of a new emerging research area, nanobiotechnology,1 which offers exciting opportunities for discovering new materials, processes, and phenomena. Semiconductor quantum dots (QDs) are emerging as a new class of fluorescent labels for molecular, cellular, and in-vivo imaging applications, due to their narrow and size-tunable emission spectra, broad absorption profiles, and superior photostability.Nanoscale magnetic materials have their own advantages that provide many exciting opportunities in biomedical applications. First, they deliver controllable sizes ranging from a few up to tens of nanometers, so their optimization of sizes and properties easily matches with the interest of study. Second, the nanoparticles can be manipulated by an external magnetic force. Third, magnetic nanoparticles play an important role as MRI contrast enhancement agents because the signal of magnetic moment of a proton around magnetic nanoparticles can be captured by resonant absorption. Recently, the active explorations of the applications of nanoparticles have advanced considerably, including biomedicine.
     The development of multifunctional nanoparticles that have dual capabilities of tumor imaging and delivering therapeutic agents into tumor cells holds great promises for novel approaches for tumor imaging and therapy. In this paper, the multi-carboxyl copolymers and the multifunctional comb amphiphilic copolymers are synthesized, the properties and structure of the copolymers are studied. Using these copolymers, water soluble nanoparticles are prepared by different methods, at the same time, the properties of the nanoparticles are studies. In addition, we prepared the nanoparticles drug loading vehicles with multifunction of imaging, targeting and drug delivery, and their properties and the application in tumor imaging and therapy were studied.
     In Chapter 1, we firstly described the research progress and the synthesis of the amphiphilic copolymer. Next, we expounded the properties, synthesis and application of the luminescent nanoparticles and the magnetic nanoparticles. At last, we introduced the preparation, properties and application of the multifunctional nanoparticles drug loading vehicles.
     In Chapter 2, the itaonic Acid/methylacrylate copolymer, PIA-MAA, obtaining multi-carboxyl was synthesized using solution copolymerization, and we studied the influence of different reaction conditions on the viscosity-average molecular weight. The control of the copolymer’s molecular weight was realized by detecting the influence of reaction conditions on Mη, including monomer molar ratio, reaction time, tempature and initiator dosage. The PIA-MAA was used to replace the organic alkylamine ligands coated on CdSe/CdS core-shell nanocrystals. The PIA-MAA-QDs were characterized by TEM, DLS, PL and UV-vis measurements, further studies are carried out to determine the chemical, thermal and photochemical stability of the water-soluble QDs.
     In Chapter 3, the amphiphilic copolymer, poly (stearyl methacrylate-co- methylacrylic acid) (PSM) was synthesized using solution copolymerization. PSMs with different hydrophobic ratio were synthesized by controlling monomer molar ratio, and the PSMs with appropriate molecular weight were determined, which could be used to coat QDs. Base on the investigation of hydrophobic ratios of PSMs, PSM/QDs mass/volume ratios and reaction time, a simple but effective phase transfer method is developed to make the CdSe/ZnS QDs water-soluble completely. We characterize the optical properties and sizes of our QDs samples using multiple tools, we also examine the stability against chemical, photochemical, and thermal treatments of these QDs.
     In Chapter 4, the amphiphilic comb coplymers, poly (stearyl methacrylate-co- methylacrylic acid)-ethanolamine (PSM-EtA) and poly (stearyl methacrylate-co- methylacrylic acid)-polyethylene glycol amine (PSM-PEG), were synthesized by amidation reaction using EtA and amino- polyethylene glycol 2000 (NH2PEG2000). Next, FA was embedded by PSM-EtA to prepare PSM-EtA@FA drug loading. The maximum drug loading of the vehicle was 520 mg/g, and the embedding ratio was 90%. Adriamycin hydrochloride (DOX) was embedded by PSM-PEG to prepare PSM-PEG@DOX drug loading. The maximum drug loading of the vehicle was 460 mg/g, and the embedding ratio was 80%. The delivery properties of the two vehicles were detected with different pH and tempature conditions. The results showed that PSM-EtA and PSM-PEG were favourable drug carriers to realize sustained release, which could be applied in biomedicine.
     In Chapter 5, the amphiphilic comb targeting coplymers, poly (stearyl methacrylate-co- methylacrylic acid)-polyethylene glycol amine-urokinase (PSM- PEG-uk), were synthesized by amidation reaction. Next, water soluble PSM-PEG- uk@IO and PSM-PEG-uk@IO-DOX nanoparticles were prepared using PSM-PEG and PSM-PEG-uk as phase transfer agents. The diameter distribution, paramagnetism and embedding ratio were studied. The two nanoparticles were uniform and kept the similar superparamagnetism as the original IO nanoparticles. The maximum drug loading of PSM-PEG-uk@IO-DOX was 200 mg/g, and the embedding ratio was 80%. Furthermore, four fluorescent nanoparticles were prepared, that is, PSM-PEG@QDs, PSM-PEG-uk1@QDs, PSM-PEG-uk2@QDs and PSM-PEG-uk2@QDs-DOX. The four nanoparticles were uniform and kept the similar optical properties as the original QDs. The maximum drug loading of PSM-PEG-uk@QDs-DOX was 210 mg/g, and the embedding ratio was 83%. The nanoparticle drug loading vehicle was hoped to be applied in biomedicine field.
引文
[1] Huang K, Croce T A, Hamilton S K, et al. Effective Drug Therapies from Functional, Macromolecular Building Blocks with a Biomimetic Design [J]. Macromol. Symp, 2007, 255: 20-23.
    [2] Kim J K, Lee E, Lee M. Nanoribers with tunable stiffness fromself-assembly of an amphiphilic wedge-coil molecule[J]. Angew. Chem. Int. Ed, 2006, 45: 7195-7198.
    [3] Geng Y, Discher D E, Justynska J, et al. Grafting short peptides onto Polybutadiene-block-Poly(ethylene oxide): A platform for self-assembling hybrid amphiphiles [J]. Angew. Chem. Int. Ed, 2006, 45: 7578-7581.
    [4] An Z H, Lu G, Mohwald H, et al. Self-assembly of human serum albumin (HSA) and L-alpha-dimyristoylphosphatidc acid (DMPA) microcapsules for controlled drug release [J]. Chem. Eur. J, 2004, 10: 5848-5852.
    [5] Lin Y, Boker A, He J B, et al. Self-directed self-assembly of nanoparticle/ copolymer mixtures [J]. Nature, 2005, 434: 55-59.
    [6] Corma A, Rey F, Rius J, et al. Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites [J]. Nature, 2004, 431: 287-290.
    [7] Whitesides G M. The‘right’size in nanobiotechnology [J]. Nat. Biotechnol, 2003, 21: 1161-1165.
    [8] Niemeyer C M. Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science [J]. Angew. Chem. Int. Ed, 2001, 40: 4128-4158.
    [9] Michalet X, Pinaud F F, Bentolila L A, et al. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics [J]. Science, 2005, 307: 538-544.
    [10] Parak W J, Pellegrino T, Plank C. Labelling of cells with quantum dots [J]. Nanotechnology, 2005, 16: R9-R25.
    [11] Le-Gac S, Vermes I, van den Berg A. Quantum Dots Based Probes Conjugated to Annexin V for Photostable Apoptosis Detection and Imaging [J]. Nano Lett., 2006, 6: 1863-1869.
    [12] Pinaud F, Michalet X, Bentolila L A, et al. Advances in fluorescence imaging with quantum dot bio-Probes [J]. Biomaterials, 2006, 27: 1679-1687.
    [13] Sun S H. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles [J]. Adv. Mater, 2006, 18: 393-403.
    [14] Park J, Joo J, Kwon S G, et al. Synthesis of monodisperse spherical nanocrystals [J]. Angew. Chem., Int. Ed, 2007, 46: 4630-4660.
    [15] Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications [J]. Acc. Chen. Res, 2009, 42: 1097-1107.
    [16]冯新德,张中岳,施良和.高分子辞典[M].北京:中国石化出版社, 1998.
    [17] Szwarc M, Levy M, Milkovich R. Polymerization initiated by electron transfer to monomer. A new method of formation of block copolymers [J]. J. Am. Chem. Soc, 1956, 78: 2656-2657.
    [18]薛联宝,金关泰.阴离子聚合的理论和应用[M].北京:中国友谊出版社, 1990.
    [19] Hillmyer M A, Bates F S. Synthesis and characterization of model polyalkane -poly (ethylene oxide) block copolymers [J]. Macromolecules, 1996, 29: 6994-7002.
    [20]潘祖仁.高分子化学(第三版)[M].北京:化学工业出版社, 2003.
    [21] Faust R, Kennedy J P. Living carbocationic polymerization. IV. Living polymeri- zation of isobutylene [J]. Polym J Sci Part A: Polym Chem, 1987, 25: 1847-1869.
    [22] Miyamoto M, Sawamoto M, Higashimura T. Living polymerization of isobutyl vinyl ether with hydrogen iodide/iodine initiating system [J]. Macromolecules, 1984, 17: 265-268.
    [23] Patriekios C S, Forder C, Armes S P, et al. Synthesis and characterization of amphiphilic diblock copolymers of methyl tri(ethylene glycol) vinyl ether and isobutyl vinyl ether [J]. J. Polym. Sci. Part A: Polym. Chem, 1996, 34: 1529-1541.
    [24] Forder C, Armes S P, Billingham N C. Synthesis of Poly(vinyl alcohol)s with narrow molecular weight distribution from poly(benzyl vinyl ether) precursors [J]. Polym. Bull, 1995, 35: 291.
    [25]邱志平,邹友思.基团转移聚合新进展[J].高分子通报, 1998, 4: 34-40.
    [26] Webster O W, Hertler W R, Sogah D Y, et al. Group-Transfer Polymerization. 1. A New Concept for Addition Polymerization with Organosilicon Initiators [J]. J. Am. Chem. Soc, 1983, 105: 5706-5708.
    [27] Baines F L, Armes S R, Billingham N C, et al. Micellization of Poly (2-(dimethylamino) ethyl methacrylate-block-methyl methacrylate) copolymers in aqueous solution [J]. Macromolecules, 1996, 29: 8151-8159.
    [28] Su T J, Styrkas D A, Thomas R K, et al. Neutron and X-ray reflectivity studies of water-souble block and statistical copolymers adsorbed at the air water inierface [J]. Macromolecules, 1996, 29: 6892-6900.
    [29] Budde H, Horing S. Synthesis of ethylene oxide methyl methacrylate diblock copolymers by group transfer polymerization of methyl methacrylate with poly (ethylene oxide) macroinitiators[J]. Macromol Chem Phys, 1998, 199: 2541-2546.
    [30] Otsu T, Yoshida M, Tazaki T. A model for living radical polymerization [J]. Chem. Rapid Commun, 1982, 3: 133-140.
    [31] Geoges M K, Veregin R P N, Kazmaier P M. Narrow Molecular weight resins by a free radical polymerization process [J]. Macromolecules, 1993, 26: 2987-1988.
    [32] Le T P, Moad G., Rizzardo E, et al. PCT Int. Appl. WO 9801478 A1 980115; Chem. Abstr. 1998, 128, 115390.
    [33] Wang J S, Matyjaszewski K. Controlled/“living”radical polymerization. Atom transfer polymerization in the presence of transition-metal complexes [J]. J. Am. Chem. Soc, 1995, 117: 5614-5615.
    [34] Kato M, Kamigaito M, Sawamoto M, et al. Polymerization of methyl methacrylate with the carbon v tetrachloride J. dichlorotris (triphenylphosphine)- ruthenium(ll)J.methylaluminum bis(2,6-di-ferf- butylphenozide) initiating system: Possibility of living radical polymerization [J]. Macromolecules, 1995, 28: 1721-1723.
    [35] Coessens V, Pintauer T, Matyjaszewski K. Functional polymers by atom transfer radical polymerization [J]. Prog Polym Sci, 2001, 26: 337-377.
    [36] Wang J S, Matyjaszewski K.“Living”/ controlled radical polymerization transition-metal-catelyzed atom transfer radical polymerization in the presence of a conventional radical initiator [J]. Macromolecule, 1995, 28: 7572-7575.
    [37] Percec V, Barboiu B. "Living" radical polymerization of styrene initiated by are- nesulfonyl chlorides and CuI(bpy)nCl[J]. Macromolecules, 1995, 28: 7970-7972.
    [39] Coca S, Jasieczek C B, Beers K L, et al. Polymerization of acrylates by atom transfer radical polymerization. Homopolymerization of 2-hydroxyethyl acrylate [J]. J. Polym. Sci. Part A: Polym. Chem, 1998, 36: 1417-1424.
    [40] Mühlebach A, Gaynor S G, Matyjaszewski K. Synthesis of block copolymers by ATRP [J]. Macromolecules, 1998, 31: 6046-6052.
    [41] Millard P E, Barner L, Stenzel M H, et al. RAFT polymerization of N-isopropylacrylamide and acrylic acid under gamma-irradiation in aqueous media [J]. Macromol. Rapid. Comm, 2006, 27: 821-828.
    [42] Yin X, Hoffman A S, Stayton P S. Poly(N-isopropylacrylamide-co- propylacrylic acid) copolymers that respond sharply to temperature and pH [J]. Biomacromolecules, 2006, 7: 1381-1385.
    [43] Zhai G. Q, Yu W H, Kang E T, et al. Functionalization of hydrogen-terminated silicon with polybetaine brushes via surface-initiated reversible addition- fragmentation chain-transfer (RAFT) Polymerization [J]. Ind. Eng. Chem. Res, 2004, 43: 1673-1680.
    [44] Chiefari J, Chong Y K, Ercole F, et al. Living free-radical polymerization by reversible addition-fragmentation chai ntransfer: The RAFT process [J]. Macromolecules, 1998, 31: 5559-5562.
    [45] Sumerlin B S, Lowe A B, Thomas D B, et al. Aqueous solution Properties of pH-Responsive AB diblock acrylamido copolymers synthesized via aqueous RAFT [J]. Macromolecules, 2003, 36: 5982-5987.
    [46] Tsukahara Y, Mizuno K, Segawa A, et al. Study on the radical Polymerization behavior of macromonomers [J]. Macromolecules, 1989, 22: 1546-1552.
    [47] Wintermantel M, Gerle M, Fischer K, et al. Molecular Bottlebrushes [J]. Macromolecules, 1996, 29: 978-983.
    [48] Dziezok P, Sheiko S S, Fischer K, et al. Cylindrical Molecular brushes [J]. Angew. Chem. Int.Ed, l997, 36: 2812-2815.
    [49] Nomura E, Ito K, Kajiwara A, et al. Radical Polymerization Kinetics of Poly(ethylene oxide) Macromonomers [J]. Macromolecules, 1997, 30: 2811-2817.
    [50] Ito K, Kawaguchi S. Poly(macromonomers): Homo-and copolymerization [J].Adv. Polym. Sci, 1999, 142: 129-178.
    [51] Hadjichristidis N, Pitsikalis M, Iatrou H, et al. The strength of the macromonomer strategy for complex macromolecular architecture: Molecular characterization, properties and applications of polymacromonomers [J]. Macromol. Rapid. Commun, 2003, 24: 979-1013.
    [52] Neiser M W, Okuda J, Sehmidt M. Polymerization of Macromonomers to Cylindrical Brushes Initiated by Organolanthanides [J]. Macromolecules, 2003, 36: 5437-5439.
    [54] Senoo K, Endo K. Synthesis of a novel syndiotactic Poly(macromonomer) consisting of styrene-terminated polyisoprene macromonomers using half-titanocene catalysts [J]. Macromol. Ropid. Commun, 2000, 21: 1244-1247.
    [55] Candau F, Afchar F, Taromi F, et al. Synthesis and characterization of poly- styrene-poly(ethylene oxide) graft copolymer [J]. Polymer, 1977, 18: 1253-1257.
    [56] Deffieux A, Schappacher M. Synthesis and charaeterization of star and comb polystyrenes using isometric poly(chloroethyl vinyl ether) oligomers as reactive backbone [J]. Macromolecules, 1999, 32: 1797-1802.
    [57] Schappacher M, Bemard J, Deffieux A. Functional polystyrene combs and dendrigrafts, l-Selective introduction of dihydroxymethyl functions at their Periphery [J]. Macromol. Chem. Phys, 2003, 204: 762-769.
    [58] Bywater S. Anionic polymerization [J]. Prog. Polym.Sci, 1974, 4: 27-69.
    [59] Tomoi M, Abe O, Ikeda M, et al. Syntheses of hydroxy group containing crown ethers and polymer-supported crown ethers [J]. Tetrahedron Lett, 1978, 33: 3031-3034.
    [60] Kimara K, Inaki Y, Takemoto K. Vinyl polymerization by metal complexs, 30, initiation mechanism of vinyl polymerization by system copper (II) chelate of poly(vinyl alcohol)/carbon tetrachloride:spin trapping and gelatin studies [J]. Makro. Chem, 1977, 178: 317-328.
    [61] Ishizu K, Kakinuma H. Synthesis of nanocylinders consisting of graft block copolymers by the Photo-induced ATRP technique [J]. J. Polym. Sci: Polym. Chem, 2005, 43: 230-233.
    [62] Mori H, Müller A H E. New polymeric architectures with (meth)acrylic acid segments [J]. Prog. Polym. Sci, 2003, 28: 1403-1439.
    [63] Bennett C H, DiVincenzo D P. Quantum information and computation [J]. Nature, 2000, 404: 247-255.
    [64] Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics [J]. Science, 2005, 307: 538-544.
    [65] Chan W C W, Nie S M. Quantum Dot Bioconjugates for Uhrasensitire Nonisotopic Detection [J]. Science, 1998, 281: 2016-2018.
    [66] Nie S M, Emory S R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering [J]. Science, 1997, 275: 1102-1106.
    [67] Agrawal A, Tripp R A, Anderson L J, et al. Real-Time Detection of Virus Particles and Viral Protein Expression with Two-Color Nanoparticle Probes [J]. J. Virol, 2005, 79: 8625-8628.
    [68] Duan H, Nie S. Cell-Penetrating Quantum Dots Based on Multivalent and Endo- some-Disrupting Surface Coatings[J]. J Am Chem Soc, 2007, 129: 3333- 3338.
    [69] Qian X, Li J, Nie S M. Stimuli-Responsive SERS Nanoparticles: Conformational Control of Plasmonic Coupling and Surface Raman Enhancement [J]. J. Am. Chem. Soc, 2009, 131: 7540-7541.
    [70]张阳德.纳米生物技术学[M].北京:科学出版社. 2005.
    [71] Han M Y, Gao X H, Su J Z, et al. Quantum-dot tagged microbeads for multiplex- ed optical coding of Biomolecules [J]. Nature. Biotech, 2001, 19: 631-635.
    [72] Marcel B J, Mario M, Peter G, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281: 2013-2015.
    [73] Sukhanova A, Venteo L, Devy J, et al. Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections [J]. Lab. Invest, 2002, 82: 1259-1261.
    [74] Hines M A, Guyot-Sionnest P. Synthesis and characterization of strongly lu- minescing ZnS-capped CdSe nanocrystals [J]. J. Phys. Chem, 1996, 100: 468-471.
    [75] Zhang H, Cui Z, Wang Y, et al. From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizablesurfactants [J]. Adv. Mater, 2003, 15: 777-780.
    [76] Ballou B, Lagerholm B C, Ernst L A, et al. Noninvasive imaging of quantum dots in mice [J]. Bioconjugate Chem, 2004, 15: 79-86.
    [77] Patrakka J, Lahdenkari A-T, Koskimies O, et al. The number of podocyte slit diaphragms is decreased in minimal change nephrotic syndrome [J].Pediat. Res, 2002, 52: 349-355.
    [78] Lin Z, Su X, Y. Mu, et al. Methods for labeling quantum dots to biomolecules [J]. J. Nanosci Nanotechnol, 2004, 4: 641-645.
    [79] Mitchell G P, Mirkin C A, Letsinger R L. Programmed assembly of DNA functionalized quantum dots [J]. J. Am. Chem. Soc, 1999, 121: 8122-8123.
    [80] ?kerman M E, Chan W C W, Laakkonen P, et al. Nanocrystal targeting in vivo [J]. Proc. Natl. Acad. Sci. USA, 2002, 99: 12617-12621.
    [81] Willard D M, Carillo L L, Jung J, et al. CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay [J]. Nano Lett, 2001, 1: 469-474.
    [82] Lao U L, Mulchandani A, Chen W. Simple Conjugation and Purification of Quantum Dot-Antibody Complexes Using a Thermally Responsive Elastin- Protein L Scaffold As Immunofluorescent Agents [J]. J. Am. Chem. Soc, 2006, 128, 14756-14757.
    [83] Ding S, Chen J, Jiang H, et al. The application of quantum dot-antibody conjugates for detection of sulfamethazine residue in chicken muscle tissue [J]. J. Agr. Food. Chem, 2006, 54: 6139-6142.
    [84] Goldman E R, Shaughnessy T J, Soto C M, et al. Detection of proteins cross-linked within galactoside polyacrylate-based hydrogels by means of a quantum dot fluororeagent [J]. Anal. Bioanal. Chem, 2004, 380: 880-886.
    [85] Clapp A R, Medintz I L, Mauro J M, et al. Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors [J]. J. Am. Chem. Soc, 2004, 126: 301-310.
    [84] Zheng J, Li H-W, Yeung E S. Manipulation of Single DNA Molecules via Lateral Focusing in a PDMS/Glass Microchannel [J]. J. Phys. Chem. B, 2004, 108:10357-10362.
    [85] Zhou D, Ying L, Hong X, et al. A compact functional quantum dot-DNA conjugate: Preparation, hybridization, and specific label-free DNA detection [J]. Langmuir, 2008, 24: 1659-1664.
    [86] Bruchez M.Jr, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281: 2013-2016.
    [87] Gao X H, Cui Y Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat. Biotechnol, 2004, 22: 969-976.
    [88] Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles [J]. Science, 2002, 298: 1759-1762.
    [89]李荫远,李国栋.铁氧体物理学[M].北京:科学出版社. 1978.
    [90]刘飚,官建国,张清杰.多元醇法制备纳米Fe3O4及其静磁性能的研究,功能材料[J].功能材料, 2006, 12: 2001-2002.
    [91] Van Beers B E, Pringot J, Gallez B. Iron oxides as contrast agents for MRI of the liver [J]. J. Radiol, 1995, 76: 991-995.
    [92]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社. 2001.
    [93] Frenkel J, Dorfnan J. Spontaneous and Induced magnetization In.ferromagnetic bodies [J]. Nature, 1930, 126: 274-275.
    [94] Kittel C. Theory of the Structure of Ferromagnetic Domains in Films and Small Particles [J]. Phys. Rev, 1946, 70: 965-971.
    [95] Bean C P. Superparamagnetism [J]. J. APPI. Phys, 1959, 30: 5120-5129.
    [96] Bostanjogl O, R?hkel K. Superferromagnetism in thin Gd and Gd-Au films [J]. Phys. Stat. Sol(a), 1971, 7: 387-392.
    [97] Néel L. Proprietes magnetiques des grains fins antiferro -magnetiques- Superparamagnetisme et superantiferromag.-Netisme [J]. J. phys. Sac. Japan, 1962, 17, suppl. B-1: 676-677.
    [98] Leslie-Pelecky D L, Rieke R D. Magnetic Properties of Nanostruetured Materials [J]. Chem. Mater, 1996, 8: 1770-1783.
    [99] Stoner E C, Wohlfarth E P. A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys [J]. Proc. Phys. Soc, 1948, 240: 599-642.
    [100] Staduik Z M, Goriesbaoh P, Debe G, et al. Ni M?ssbauer Study of the hyperfine magnetic field near the Ni surface [J]. Phys. Rev. B, 1987, 35: 6588-6592.
    [101] Apai G, Hamilton J F, Stohr J, et al. Extended X-Ray--Absorption Fine Structure of Small Cu and Ni Clusters:Binding-Energy and Bond-Length Changes with Cluster Size [J]. Phys. Rev. Lett, 1979, 43: 165-169.
    [102]都有为,徐明祥,吴坚,等.镍超细微颗粒的磁性[J].物理学报, 1992, 41: 149-154.
    [103] Verwey E J W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures [J]. Nature, 1939, 144: 327-328.
    [104] Brabers V A M. Progress in spinel ferrite research. In: Buschow K H J, Editor, Handbook of Magnetic Materials vol. 8 [M], ElsevierSeience: Amsterdam, 1995: 199-199.
    [105] Motrish A H, Haneda K. Surface magnetic properties of fine Particles [J]. J. Magn. Magn. Mater, 1983, 35: 105-113.
    [106] Shinjo T, Kiyama M, Sugita N, et al. Surface magnetism ofα-Fe2O3 by M?ssbauer spectroscopy [J]. J. Magn. Magn. Mater, 1983, 35: 133-135.
    [107] Subrt J, Bohacek J, Stengl V, et al. Uiform particles with a large surface area formed by hydrolysis of Fe2(SO4)3 with urea [J]. Mater. Res. Bull, 1999, 34: 905- 914.
    [108] Patil A S, Pepoy L J. Transparent iron oxide pigments: US, 4618375[P]. 1986-10-21.
    [109] Yu S H, Fujino T, Yoshimura M. Hydrothermal synthesis of ZnFe2O4 ultrafine particles with high magnetization [J]. J. Magn. Magn. Mater, 2003, 1: 420-424.
    [110] Verma S, Joy P A, Khollam Y B, et al. Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method [J]. Mater. Lett, 2004, 6: 1092-1095.
    [111] Wang H W, Kunk S C. Crystallization of nanosized Ni–Zn ferrite powder- sprepared by hydrothermal method [J]. J. Magn. Magn. Mater, 2004, 1: 230-236.
    [112] Deng H, Li X X, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angew. Chem. Int. Ed, 2005, 44: 2782-2785.
    [113] Zhu L P, Xiao H M, Zhang W D, et al. One-Pot Template-Free Synthesis of Monodisperse and Single-Crystal Magnetite Hollow Spheres by a SimpleSolvothermal Route [J]. Cryst.Growth Des, 2008, 8: 957-963.
    [114] Zhu L P, Xiao H M, Fu S Y. Template-Free Synthesis of Monodispersed and Single-Crystalline Cantaloup-like Fe2O3 Superstructures [J]. Cryst.Growth Des, 2007, 7: 177-184.
    [115] Hou Y, Kondoh H, Ohta T. Self-assembly of Co nanoplatelets into spheres: Synthesis and characterization [J]. Chem. Mater, 2005, 17: 3994-3996.
    [116] Pillai V, Shah D O. Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsion [J]. J. Magn. Magn. Mater, 1996, 163: 243-248.
    [117] Lee Y, Lee J, Bae C J, et al. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions [J]. Adv. Funct. Mater, 2005, 15: 503-509.
    [118] Sun S, Zeng H, Robinson D B, et al. Monodisperse MFe2O4(M=Fe,Co,Mn) nanoparticles [J]. J. Am. Chem. Soc, 2004, 1: 273-279.
    [119] Liu X M, Fu S Y, Xiao H M, et al. Preparation and characterization of shuttle-likeα-Fe2O3 nanoparticles by supermolecular template [J]. J. Solid. State. Chem, 2005, 10: 2798-2803.
    [120] Vestal C R, Zhang Z J. Synthesis of CoCrFeO4 nanoparticles using microemulsion methods and size-dependent studies of their magnetic properties [J]. Chem.Mater, 2002, 9: 3817-3822.
    [121] Xiao H M, Liu X M, Fu S Y. Synthesis,magnetic and microwave absorbing properties of core-shell structured MnFe2O4/TiO2 nano-composites [J]. Compos. Sci. Technol, 2006, 66: 2003-2008.
    [122] Vestal C R, Zhang Z J. Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core [J]. Nano. Lett, 2003, 12: 1739-1743.
    [123] Vestal C R, Zhang Z J. Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles [J]. J. Am. Chem. Soc, 2002, 48: 14312-14313.
    [124] Dong W T, Wu S X, Chen D P, et al. Preparation ofα-Fe2O3 nanoparticles by sol-gel process with inorganic iron salt [J]. Chem. Lett, 2000, 5: 496-497.
    [125] Bae S Y, Jung H J, Kim C S, et al. Magnetic properties of sol-gel derived Ni-Zn ferrite thin films [J]. J. De Phtsique IV, 1998, 2: 261-264.
    [126] Massart R. Preparation of magnetite nanoparticaes [J]. IEEE. Trans. Magn, 1981, 17: 1247-1250.
    [127] Molday R S. Magnetic iron dextran microspheres. US: 4452773[P]. 1984-06-05.
    [128] Sun S H. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles [J]. Adv. Mater, 2006, 18: 393-403.
    [129] Park J, Joo J, Kwon S G, et al. Synthesis of monodisperse spherical nanocrystals [J]. Angew. Chem. Int. Ed, 2007, 46: 4630-4660.
    [130] Weissleder R. Liver MR Imaging with Iron Oxides:Toward Consensus and Clinical Practice [J]. Radiology, 1994, 193: 593-595.
    [131] Gu H W, Xu K M, Xu C J, et al. Biofunctional magnetic nanoparticles for protein separation and pathogen detection [J]. Chem. Commun, 2006, 9: 941-949.
    [132] Love J C, Estroff L A, Kriebel J K, et al. Selfassembled monolayers of thiolates on metals as a form of nanotechnology [J]. Chem. Rev, 2005, 105: 1103-1169.
    [133] Gu H W, Ho P L, Tsang K W T, et al. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration [J]. J. Am. Chem. Soc, 2003, 125: 15702-15703.
    [134] Gu H W, Ho P L, Tsang K W T, et al. Using biofunctional magnetic nanoparticles to capture Gram-negative bacteria at an ultra-low concentration [J]. Chem. Commun, 2003, 24: 1966-1967.
    [135] Kell A J, Stewart G, Ryan S, et al. Vancomycin-modified nanoparticles for efficient targeting and preconcentration of Gram-positive and Gram-negative bacteria [J]. ACS Nano, 2008, 2: 1777-1788.
    [136] Saiyed Z, Telang S, Ramchand C. Application of magnetic techniques in the field of drug discovery and biomedicine [J]. Biomagn. Res. Technol, 2003, 1: 2.
    [137] Safarik I, Safarikova M. Magnetic techniques for the isolation and purification of proteins and peptides [J]. Biomagn. Res. Technol, 2004, 2: 7.
    [138] Leroux J C. Injectable nanocarriers for biodetoxification [J]. Nat. Nanotechnol,2007, 2: 679-684.
    [139] Wang L, Yang Z M, Gao J H, et al. A biocompatible method of decorporation: Bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood [J]. J. Am. Chem. Soc, 2006, 128: 13358-13359.
    [140] Cheon J, Lee J H. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology [J]. Acc. Chem. Res, 2008, 41: 1630-1640.
    [141]潘吉铮.聚乳酸微球载体的结构与控释性能关系及模型[D].广东:华南理工大学学位论文. 2004.
    [142]陆彬.药物新剂型与新技术[M].北京:人民卫生出版社. 1998.
    [143] Conway B R, Alpar H O. Double emulsion micruencapsulation of proteins as model antigens using polylactide polymers. Effect of emulsifier on the microsphe- re characteristics and release kinetics [J]. J. Pharm. Biopharm, 1996, 42: 42-48.
    [144] Sturesson C, Artursson P, Svensson L, et al. Preparation and characterization of hydrophobic PLG microspheres suitable for oral vaccination with rotavirus [J]. Proc. Int. Symp. Controlled Release Bioact. Mater, 1996, 23: 515-516.
    [145] Niwa T, Takeuchi H, Hino T, et al. Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D,L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method and the drug release behavior [J]. J. Control. Rel, 1993, 25: 89-98.
    [146] Murakami H, Kobayashi M, Takeuchi H, et al. Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles [J]. Powder. Tech, 2000, 107: 137-143.
    [147] Calvo P, Remunan-Lopez C, Vila-Jato J L, et al. Novel hydrophilic chitosan and chitosan/polyethylene oxide nanoparticles as protein carriers [J]. J. Appl. Polym. Sci, 1997, 63: 125-132.
    [148] Fernandez-urrusuno R, Calvo P, Remunan-Lopez C, et al. Enhancement of nasal absorption of insulin using chitosan nanoparticles [J]. Pharm. Res, 1999, 16: 1576-1591.
    [149] Lim S T, Martin G P, Berry D J, et al. Preparation and evaluation of the in vitrodrug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan [J]. J. Control. Rel, 2000, 66: 281-292.
    [150] Lherm C, Muller R H, Puiseux F, et al. Alkylcynoacrylate drug carriers:II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length [J]. Int. J. Pharm, 1992, 84: 13-22.
    [151] Couvreur P, Kante B, Roland M, et al. Les perspectives d’utilisation des formes microdisperses comme vecteurs intracellulaires [J]. Pharm. Acta .Helv, 1978, 53: 341-347.
    [152] Couvreur P, Kante B, Roland M. Polycyanoacrylate nanocapsules as potential lysosomotropic carriers:preparation,morphology and sorptive properties [J]. J. Pharm. Pharmacol, 1979, 31: 331-332.
    [153] Kawaguchi H, Fujimoto K, Mizuhara Y. Hydrogel microspheres III. Temperature-dependent adsorption of proteins on poly-N-isopropylacrylamide hydrogel microspheres [J]. Colloid. Polym. Sci, 1992, 270: 53-57.
    [154] Chung J E, Yokoyama M, Okano T. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles [J]. J. control. Rel, 2000, 65: 93-103.
    [155]邓联东.亲性嵌段共聚物及其自组装载药胶束的研究[D].天津:天津大学学位论文. 2002.
    [1] DonegáC d M, Liljeroth P, Vanmaekelbergh D. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals [J]. Small, 2005, 1: 1152-1162.
    [2] Peng Z, Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor [J]. J. Am. Chem. Soc, 2001, 123: 183-184.
    [3] Kho R, Torres-Martinez C L, Mehra R K. A Simple Colloidal Synthesis for Gram-Quantity Production of Water-Soluble ZnS Nanocrystal Powders [J]. J. Colloid Interface Sci, 2000, 227: 561-566.
    [4] Reiss P, Bleuse J, Pron A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion [J]. Nano Lett, 2002, 2: 781-784.
    [5] Reiss P, Carayon S, Bleuse J, et al. Low polydispersity core/shell nanocrystals of CdSe/ZnSe and CdSe/ZnSe/ZnS type : preparation and optical studies [J]. Synth. Met, 2003, 139, 649-652.
    [6] Rumbles G, Selmarten D C, Ellingson R J, et al. Anomalies in the linear absorption, transient absorption, phtoluminescence and photoluminescence excitation spectroscopies of colloidal InP quantum dots [J]. J. Photochem. Photobiol. A, 2001, 142: 187-195.
    [7] Gao X H, Cui Y Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat. Biotechnol, 2004, 22: 969-976.
    [8] Alivisatos A P. The use of nanocrystals in biological detection [J]. Nat. Biotechnol, 2004, 22: 47-52.
    [9] Wang X H, Du Y M, Ding S, et al. Preparation and third-order optical nonlinearity of self-assembled chitosan/Cdso-ZnS Core-Shell quantum dota muhilayer films [J]. J. Phys. Chem. B, 2006, 110: 1566-1570.
    [10] Chang E, Miller J S, Sun J T, et al. Protease-activated quantum dot probes [J]. Res. Commun, 2005, 334: 1317-1321.
    [11] Aldana J, Wang Y A, Peng X G. Photochemical instability of CdSe nanocrystalscoated by hydrophilic thiols [J]. J. Am. Chem. Soc, 2001, 123: 8844-8850.
    [12] Gatts-Asfura K M, Zheng Y, Micic M, et al. Immobilization of Quantum dots in Photo-Crosslinked Poly(ethylene glycol)-based Hydrogel [J]. J. Phys. Chem. B, 2003, 107: 10464-10469.
    [13] Jin T, Fujii F, Yamada E, et al. Control of the optical properties of quantum dots by surface coating with calix[n]arene carboxylic acids [J]. J. Am. Chem. Soc, 2006, 128: 9288-9289.
    [14] Liang X F, Wang H J, Luo H, et al. Characterization of novel multifunctional cationic polymeric liposomes formed from octadecyl quaternized carboxymethyl chitosan/cholesterol and drug encapsulation [J]. Langmuir, 2008, 24: 7147-7153.
    [15] Peng H, Zhang L, Soeller C, et al. Preparation of water-soluble CdTe/CdS core/shell quantum dots with enhanced photostability [J]. J. Lumin, 2007, 127: 721-726.
    [16] Uyeda H T, Igor L M, Jyoti K J, et al. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores [J]. J. Am. Chem. Soc, 2005, 127: 3870-3878.
    [17] Mulder W J M., Koole R, Brandwijk R J, et al. Quantum dots with a bimodal molecular imaging probe [J]. Nano Lett, 2006, 6: 1-6.
    [18] Koole R, van Schooneveld M M, Hilhorst J, et al. Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging [J]. Bioconjugate Chem, 2008, 19: 2471-2479.
    [19] Rogach A L, Katsikas L, Kornowski A, et al. Synthesis and Characterization of Thiol-Stablized CdTe Nanocrystals [J]. Phys. Chem, 1996, 100: 1772-1778.
    [20] Gao M, Kirstein S, Mohwald H, et al. Strongly fluorescent CdTe nanocrystals by proper surface modification [J]. J. Phys. Chem. B, 1998, 102: 8360-8363.
    [21] Gaponik N, Talapin D V, Rogach A L, et al. Thio-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes [J]. J. Phys. Chem. B, 2002, 106: 7177-7185.
    [22] Mamedov A A, Belov A, Giersig M, et al. Nanorainbows: Graded Semiconduc-tor Films From Quantum Dots [J]. J. Am. Chem. Soc, 2001, 123: 7738-7739.
    [23] Li C, Murase N. Synthesis of highly luminescent glasses incorporating cdte nanocrystals through sol-gel processing [J]. Langmuir, 2004, 20: 1-4.
    [24] Rogach A L, Franzl T, Klar T A, et al. Aqueous Synthesis of Thiol-Capped CdTe. QDs: State-of-the-Art [J]. J. Phys. Chem. C, 2007, 111: 14628-14637.
    [25] Mattoussi H, Mauro J M, Goldman E R, et al. Self-assembly of CdSe-ZnS Quantum Dot Bioconjugates using an Engineered Recombinant Protein [J]. J. Am. Chem. Soc, 2000, 122: 12142-12150.
    [26] Wu X, Liu H, Liu J, et al. Immunofluorescent Labeling of Cancer Marker Her2 and Other Cellular Targets with Semiconductor Quantum Dots [J].Nat. Biotechnol, 2003, 21: 41-46.
    [27] Pinaud F, King D, Moore H, et al. Immunofluorescent Labeling of Cancer Marker Her2 and Other Cellular Targets with Semiconductor Quantum Dots [J]. J. Am. Chem. Soc, 2004, 126: 6115-6123.
    [28] Gerion D, Pinaud F, Williams S C, et al. Synthesis and Properties of Biocompatible Water-soluble Silica-coated CdSe/ZnS Semiconductor Quantum Dots [J]. J. Phys. Chem. B, 2001, 105, 8861-8871.
    [29] Gerion D, Parak W J, Williams S C, et al. Sorting Florescent Nanocrystals with DNA [J]. J. Am. Chem. Soc, 2002, 124: 7070-7074.
    [30] Koole R, van Schooneveld M M, Hilhorst J, et al. On the Incorporation Mechanism of Hydrophobic Quantum Dots in Silica Spheres by a Reverse Microemulsion Method [J]. Chem. Mater, 2008, 20: 2503-2512.
    [31] Yu W W, Chang E, Drezek R, et al. Biochem. Water-soluble quantum dots for biomedical applications [J]. Biophys. Res. Commun, 2006, 348: 781-786.
    [32] Chan W C, Nie S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection[J]. Science, 1998, 281: 2016-2018.
    [33] Wuister S F, Swart I, Van Driel F, et al. Highly luminescent water-soluble CdTe quantum dots [J]. Nano Lett, 2003, 3: 503-507.
    [34] Kim S, Bawendi M G. Oligomeric Ligands for luminescent and stable nanocrystal quantum dots [J]. J. Am. Chem. Soc, 2003, 125: 14652-14653.
    [35] Guo W, Li J J, Wang Y A, et al. Conjugation Chemistry and Bioapplications of Semiconductor Box Nanocrystals Prepared via Dendrimer Bridging [J]. Chem. Mater, 2003, 15: 3125-3133.
    [36] Wuister S F, DonegáC d M, Meijerink A. Luminescence temperature antiquenching of water-Soluble CdTe quan- tum dots: role of the solvent [J]. J. Am. Chem. Soc, 2004, 126: 10397-10402.
    [37] Kim S-W, Kim S, Tracy J B, et al. Phosphine oxide polymer for water-soluble nanoparticles [J]. J. Am.Chem. Soc, 2005, 127: 4556-4557.
    [38] Tomi? S L, Filipovi? J M. Synthesis and characterization of poly(itaconic acid) and poly(ethylene glycol) complexes [J]. Polymer Bulletin, 2004, 52: 355-364.
    [39] Qu L, Peng X. Control of photoluminescence properties of CdSe nanocrystals in growth [J]. J. Am. Chem. Soc, 2002, 124: 2049-2055.
    [40] DonegáC d M, Hickey S G, Wuister S F, et al. Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals [J]. J. Phys. Chem. B, 2003, 107: 489-496.
    [41] Bol A A, Meijerink A. Luminescence quantum efficiency of nanocrystalline ZnS: Mn2+ (II): enhancement by UV irradiation [J]. J. Phys. Chem. B, 2001, 105: 10203-10209.
    [42] Sark W G J H M, Frederix P L T M, Heuvel D J V, et al. Photooxidation and Photobleaching of Single CdSe/ZnS QDs probed by Room-Temperature Time-Resolved Spectroscopy [J]. J. Phys. Chem. B, 2001, 105: 8281-8284.
    [43] Liu Y, Kim M, Wang Y, et al. Highly Luminescent, Stable, and Water-Soluble CdSe/CdS Core-Shell Dendron Nanocrystals with Carboxylate Anchoring Groups [J]. Langmuir, 2006, 22: 6341-6345.
    [1] Gao X H, Cui Y Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat. Biotechnol, 2004, 22: 969-976.
    [2] Alivisatos A P. The use of nanocrystals in biological detection [J]. Nat. Biotechnol, 2004, 22: 47-52.
    [3] Wang X H, Du Y M, Ding S, et al. Preparation and third-order optical nonlinearity of self-assembled chitosan/Cdso-ZnS Core-Shell quantum dota muhilayer films [J]. J. Phys. Chem. B, 2006, 110: 1566-1570.
    [4] Chang E, Miller J S, Sun J T, et al. Protease-activated quantum dot probes [J]. Biochem. Biophys. Res. Commun, 2005, 334: 1317-1321.
    [5] Hines M A, Guyot-Sionnest P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals [J]. J. Phys. Chem, 1996, 100: 468-471.
    [6] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=S,Se,Te) semiconductor nanocrystallites [J]. J. Am. Chem. Soc, 1993, 115, 8706-8715.
    [7] Qu L, Peng X. Control of photoluminescence properties of CdSe nanocrystals in growth [J]. J. Am. Chem. Soc, 2002, 124: 2049-2055.
    [8] Lee J, Sundar V C, Heine J R, et al. Full color emission fromⅡ-Ⅵsemiconductor quantum dot-polymer composites [J].Adv. Mater, 2000, 12: 1102-1105.
    [9] Peng Z A, Peng X. Formation of high-quality CdTe CdSe and CdS nanocrystal using CdO as precursor [J]. J. Am. Chem. Soc, 2001, 123:183-184.
    [10] Yu W W, Wang Y A, Peng X. Formation and Stability of Size-, Shape-, and Structure-Controlled CdTe Nanocrystals: Ligand Effects on Monomers and Nanocrystals [J]. Chem. Mater, 2003, 15: 4300-4308.
    [11] Yu W W, Peng X. Formation of High-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers [J]. Angew. Chem. Int. Ed, 2002, 41: 2368-2371.
    [12] Battaglia D, Peng X. Formation of high quality InP and InAs nanocrystals in anoncoordinating solvent [J]. Nano Lett, 2002, 2: 1027-1030.
    [13] Yu W W, Falkner J C, Shih B S, et al. Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent [J]. Chem. Mater, 2004, 16: 3318-3322.
    [14] Bailey R E, Nie S. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size [J]. J. Am. Chem. Soc, 2003, 125: 7100-7106.
    [15] Kim S, Lim Y T, Soltesz E G, et al. Near-infrared Fluorescent Type II Quantum Dots for Sentinel Lymph Node Mapping [J]. Nat. Biotechnol, 2004, 22: 93-97.
    [16] Bruchez Jr M B, Moronne M, Gin P, et al. Semiconductor Nanocrystals as Fluorescent Biological Labels [J]. Science, 1998, 281: 2013-2015.
    [17] Chan W C, Nie S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection [J]. Science, 1998, 281: 2016-2018.
    [18] Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles [J].Science, 2002, 298: 1759-1762.
    [19] Mattoussi H, Mauro J M, Goldman E R, et al. Self-assembly of CdSe-ZnS Quantum Dot Bioconjugates using an Engineered Recombinant Protein [J]. J. Am. Chem. Soc, 2000, 122, 12142-12150.
    [20] Uyeda H T, Igor L M, Jyoti K J, et al. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores [J]. J. Am. Chem. Soc, 2005, 127: 3870-3876.
    [21] Yu W W, Chang E, Drezek R, et al. Water-soluble quantum dots for biomedical applications [J]. Biochem. Biophys. Res. Commun, 2006, 348: 781-786.
    [22] Wang Y, Tang Z, Correa-Duarte M A, et al. Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water Soluble Nanoparticles with CdSe Cores [J]. J. Phys. Chem. B, 2004, 108: 15461-15469.
    [23] Zhuang J, Zhang X, Wang G, et al. Synthesis of water soluble ZnS:Mn nanoparticle by using MPA as capping agent [J]. J. Mater. Chem, 2003, 13: 1853-1857.
    [24] Winter J O, Liu T Y, Korgel B A, et al. Recognition molecule directedinterfacing between semiconductor quantum dots and nerve cells [J]. Adv. Mater, 2001, 13: 1673-1677.
    [25] Yu W W, Chang E, Falkner J C, et al. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers [J]. J. Am. Chem. Soc, 2007, 129: 2871-2879.
    [26] Gerion D, Pinaud F, Williams S C, et al. Synthesis and Properties of Biocompatible Water-soluble Silica-coated CdSe/ZnS Semiconductor Quantum Dots [J].Phys. Chem. B, 2001, 105: 8861-8871.
    [27] Selvan S T, Tan T T, Ying J Y. Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence [J]. AdV. Mater, 2005, 17: 1620-1625.
    [28] Gomez D E, Pastoriza-Santos I, Mulvaney P. Tunable Whispering Gallery Mode Emission from Quantum-Dot-Doped Microspheres [J]. Small, 2005, 1: 238-241.
    [29] Mulvaney P, Liz-Marzan L M, Giersig M, et al. Silica encapsulation of quantum dots and metal clusters [J]. J. Mater. Chem, 2000, 10: 1259-1269.
    [30] Nann T, Mulvaney P. Single quantum dots in spherical silica particles [J]. Angew. Chem. Int. Ed, 2004, 43: 5393-5396.
    [31] Wuister S F, Swart I, Van Driel F, et al. Highly Luminescent Water-Soluble. CdTe Quantum Dots [J]. Nano Lett, 2003, 3: 503-507.
    [32] Kim S, Bawendi M G. Oligomeric Ligands for luminescent and stable nanocrystal quantum dots [J]. J. Am. Chem. Soc, 2003, 125: 14652-14653.
    [33] Pinaud F, King D, Moore H, et al. Immunofluorescent Labeling of Cancer Marker Her2 and Other Cellular Targets with Semiconductor Quantum Dots [J]. J. Am. Chem. Soc, 2004, 126: 6115-6123.
    [34] Guo W, Li J J, Wang Y A, et al. Conjugation Chemistry and Bioapplications of Semiconductor Box Nanocrystals Prepared via Dendrimer Bridging [J]. Chem. Mater, 2003, 15: 3125-3133.
    [35] Rogach A L, Nagesha D, Ostrander J W, et al. Synthesis of“Raisin-Bun”-Type Composite Nanoparticle Spheres [J]. Chem. Mater, 2000, 12: 2676-2685.
    [36] Aldana J, Wang Y A, Peng X. Photochemical instability of CdSe nanocrystalscoated by hydrophilic thiols [J]. J. Am. Chem. Soc, 2001, 123: 8844-8850.
    [37] Smith A M, Duan H, Rhyner M N, et al. A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots [J]. Phys. Chem. Chem. Phys, 2006, 8: 3895-3903.
    [38] Bentzen E L, Tomlinson I D, Mason J, et al. Surface Modification To Reduce Nonspecific Binding of Quantum Dots in Live Cell Assays [J]. J Bioconjugate Chem, 2005, 16: 1488-1494.
    [39] Fan H, Leve E W, Scullin C, et al. Surfactant-Assisted Synthesis of Water-Soluble and Biocompatible Semiconductor Quantum Dot Micelles [J]. Nano Lett, 2005, 5: 645-648.
    [40] Wang Y, Wong J F, Teng X, et al. "Pulling" nanoparticles into water: Phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions ofα–cyclodextrin [J]. Nano Lett, 2003, 3: 1555-1559.
    [41] Wu X, Liu H, Liu J, et al. Immunofluorescent Labeling of Cancer Marker Her2 and Other Cellular Targets with Semiconductor Quantum Dots [J].Nat. Biotechnol, 2003, 21: 41-46.
    [42] Pellegrino T, Manna L, Kudera S, et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals [J]. Nano Lett, 2004, 4: 703-707.
    [43] Ballou B, Lagerholm B C, Ernst L A, et al. Noninvasive imaging of quantum dots in mice [J]. Bioconjugate Chem, 2004, 15: 79-86.
    [44] Patrakka J, Lahdenkari A-T, O. Koskimies, et al. The number of podocyte slit diaphragms is decreased in minimal change nephrotic syndrome [J]. Pediat. Res, 2002, 52: 349-355.
    [45] Qu L, Peng X. Control of photoluminescence properties of CdSe nanocrystals in growth [J]. J. Am. Chem. Soc, 2002, 124: 2049-2055.
    [46] DonegáC d M, Hickey S G, Wuister S F, et al. Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals [J]. J. Phys. Chem. B, 2003, 107: 489-496.
    [47] Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells,in vivo imaging,and diagnostics [J]. Science, 2005, 307: 538-544.
    [48] Ruan G, Agrawal A, et al. Imaging and Tracking Tat-Peptide Conjugated Quantum Dots in Living Cells: New Insights into Nanoparticle Uptake, Intracellular Transport, and Vesicle Shedding [J]. J. Am. Chem. Soc, 2007, 129: 14759-14766.
    [1] Brumeanu T D, Zaghouani H, Bona C. Purification of antigenized immunoglobulins derivatized with monomethoxypolyethylene glycol [J]. J. Chromatogr. A, 1995, 696: 219-225.
    [2] Seely J E, Richey C W. Use of ion-exchange chromatography and hydrophobic interaction chromatography in the preparation and recovery of polyethylene glycol-linked proteins [J]. J. Chromatogr. A, 2001, 908: 235-241.
    [3] Li H, Song J H, Park J S, et al. Polyethylene glycol-coated liposomes for oral delivery of recombinant human epidermal growth factor [J].Int. J. Pharm, 2003, 258: 11-19.
    [4] Levchenko T S, Rammohan R, Luckyanov A N, et al. Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating [J].Int. J. Pharm, 2002, 240: 95-102.
    [5] David C, Millot M C, Sébille B. High-performance liquid chromatographic study of the interactions between immobilizedβ-cyclodextrin polymers and hydrophobically end-capped polyethylene glycols [J]. J. Chromatogr. A, 2001, 753: 93-99.
    [6] Liu M, Xie C, Xu W, et al. Separation of polyethylene glycols and their amino-substituted derivatives by high-performance gel filtration chromatography at low ionic strength with refractive index detection [J]. J. Chromatogr. A, 2004, 1046: 121-126.
    [7] Jenekhe S A, Chen X L. Self-Assembly of Ordered Microporous Materials from Rod-Coil Block Copolymers [J]. Science, 1999, 283: 372-375.
    [8] Zhao D, Yang P, Melosh N, et al. Continuous mesoporous silica films with highly ordered large pore structures [J]. Adv. Mater, 1998, 10: 1380-1385.
    [9] Hurter P N, Hatton T A. Solubilization of polycyclic aromatic hydrocarbons by poly (ethylene oxide-propylene oxide) block copolymer micelles:effects of polymer structure[J]. Langmuir, 1992, 8: 1291-1299.
    [10] Nasongkla N, Bey E, Ren J, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems [J]. Nano Lett, 2006, 6: 2427-2430.
    [11] Kohler N, Sun C, Fichtenholtz A, et al. Methotrexate-immobilized poly(ethylene glycol)magnetic nanoparticles for MR imaging and drug delivery [J]. Small, 2006, 2: 785-792.
    [12] Medarova Z, Pham W, Farrar C, et al. In vivo imaging of siRNA delivery and silencing in tumors [J]. Nat. Med, 2007, 13: 372-377.
    [13] Chen W, Zhang J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment [J].J. Nanosci. Nanotechnol, 2006, 6: 1159-1166.
    [14] Reddy G R, Bhojani M S, McConville P, et al. Vascular Targeted Nanoparticles for Imaging and Treatment of Brain Tumors [J]. Clin. Cancer Res, 2006, 12: 6677-6686.
    [15] Chen W. Nanoparticle Fluorescence Based Technology for Biological Applications [J]. J. Nanosci. Nanotechnol, 2008, 8: 1019-1051.
    [16] Gao X, Cui Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat. Biotechnol, 2004, 22: 969-976.
    [17] Sun C, Sze R, Zhang M. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI [J]. J. Biomed. Mater. Res. A, 2006, 78: 550-557.
    [18] Murphy E A, Majeti B K, Barnes L A, et al. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis [J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 9343-9348.
    [19] Yeh G C, Lopaczynska J, Poore C M, et al. A new functional role for P-glycoprotein: efflux pump for benzo(a)pyrene in human breast cancer MCF-7 cells [J]. Cancer Res, 1992, 52: 6692-6695.
    [20] Wong H L, Rauth A M, Bendayan R, et al. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug- resistant human breast cancer cells [J]. Pharm. Res, 2006, 23: 1574-1585.
    [21] Schneider R, Schmitt F, Frochot C, et al. Design,synthesis,and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photcsensitizers for selective photodynamic therapy [J]. Bioorg. Med. Chem, 2005, 13: 2799-2808.
    [22] Pillai V N R, Mutter M. New, easily removable poly(ethylene glycol) supports for the liquid- phase method of peptide synthesis [J]. J. Org. Chem, 1980, 45: 5364-5370.
    [23] Murter M. Soluble Polymers in Organic Synthesis: 1. Preparation of Polymer Reagents Using Polyethylene Glycol with Terminal Amino Groups As Polymeric Component [J]. Tetra. Lett, 1978, 31: 2839-2842.
    [24] Kugo K, Ohji A, Uno T, et al. Synthesis and conformations of A–B–A tri-block copolymers with hydrophobic poly(β-benzyl l-glutamate) and hydrophilic poly(ethylene oxide) [J]. Polym. J, 1987, 19: 375-381.
    [25]中国科学院成都有机化学有限公司.聚醚对甲苯磺酸酯的合成新方法:中国, 98124012.7 [P]. 1998-12-18.
    [26] Harris J M, Hundley N H, Shannon T G., et al. Poly(ethylene glycols) as Soluble, Recoverable, Phase-Transfer Catalysts [J]. J. Org. Chem, 1982, 47: 4789-4791.
    [27] Tamura T, Picciano M F. Folate and human reproduction [J]. Am. J. Clin. Nutr, 2006, 83: 993-1016.
    [28] Choi S W, Mason J B. Folate status effects on pathways of colorectal carcinogenesis [J]. J. Nutr, 2002, 132: 2413-2418.
    [29] Fang J, Xiao S, Zhu S, et al. Relationship of plasma folic acid andstatus of DNA methylation inhuman gastric cancer [J]. J. Gastroenterol, 1997, 32: 171-175.
    [30] Nensey Y M, Arlow F L, Majumdar A P N. Aging: increased responsiveness of colorectal mucosa to carcinogen stimulation and protective role of folic acid [J]. Dig. Dis. Sci, 1995, 40: 396-401.
    [31] Zhu S, Mason J, et al. The effect of folic acid on the development of stomach and other gastrointestinal cancers [J]. Chin. Med. J. (Engl), 2003, 116: 15-19.
    [32] Weiss A J, Manthel R W. Experience with the use of adriamycin in combination with other anticancer agents using a weekly schedule, with particular reference to lack of cardiac toxicity [J]. Cancer, 1977, 40: 2046-2052.
    [1] Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008 [J].CA Cancer J. Clin, 2008, 58: 71-96.
    [2] Nasongkla N, Bey E, Ren J, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems [J]. Nano Lett, 2006, 6: 2427-2430.
    [3] Kohler N, Sun C, Fichtenholtz A, et al. Methotrexate-immobilized poly(ethylene glycol)magnetic nanoparticles for MR imaging and drug delivery [J]. Small, 2006, 2: 785-792.
    [4] Medarova Z, Pham W, Farrar C, et al. In vivo imaging of siRNA delivery and silencing in tumors. Nat. Med, 2007, 13: 372-377.
    [5] Chen W, Zhang J. J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment [J]. Nanosci. Nanotechnol, 2006, 6: 1159-1166.
    [6] Reddy G R, Bhojani M S, McConville P, et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors [J]. Clin. Cancer Res, 2006, 12: 6677-6686.
    [7] Chen W. Nanoparticle Fluorescence Based Technology for Biological Applications [J]. J. Nanosci. Nanotechnol, 2008, 8: 1019-1051.
    [8] Gao X, Cui Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat. Biotechnol, 2004, 22: 969-976.
    [9] Gaucher G, Dufresne M H, Sant V P, et al. Block copolymer micelles: preparation, characterization and application in drug delivery [J]. J. Control Release, 2005, 109: 169-188.
    [10] Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials, 2005, 26: 3995-4021.
    [11] Jain T K, Morales M A, Sahoo S K, et al. Iron oxide nanoparticles for sustained delivery of anticancer agents [J]. Mol. Pharm, 2005, 2: 194-205.
    [12] Sun C, Sze R, Zhang M. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI [J]. J. Biomed. Mater. Res. A, 2006, 78: 550-557.
    [13] Murphy E A, Majeti B K, Barnes L A, et al. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis [J]. Proc. Natl. Acad. Sci. USA ,2008, 105: 9343-9348.
    [14] Yeh G C, Lopaczynska J, Poore C M, et al. A new functional role for P-glycoprotein: efflux pump for benzo(a)pyrene in human breast cancer MCF-7 cells [J]. Cancer Res, 1992, 52: 6692-6695.
    [15] Wong H L, Rauth A M, Bendayan R, et al. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug- resistant human breast cancer cells [J]. Pharm. Res, 2006, 23: 1574-1585.
    [16] Bulte J W, Kraitchman D L. Iron oxide MR contrast agents for molecular and cellular imaging [J]. NMR Biomed, 2004, 17: 484-499.
    [17] Simberg D, Duza T, Park J H, et al. Biomimetic amplification of nanoparticle homing to tumors [J]. Proc. Natl. Acad. Sci. USA, 2007, 104: 932-936.
    [18] Lee J H, Huh Y M, Jun Y W, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging [J]. Nat. Med, 2007, 13: 95-99.
    [19] Schultz J F, Bell J D, Goldstein R M, et al. Hepatic tumor imaging using iron oxide MRI: comparison with computed tomography, clinical impact, and cost analysis [J]. Ann. Surg. Oncol, 1999, 6: 691-698.
    [20] Harisinghani M G, Barentsz J, Hahn P F, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer [J]. N. Engl. J. Med, 2003, 348: 2491-2499.
    [21] Choi H, Choi S R, Zhou R, et al. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery [J]. Acad. Radiol, 2004, 11: 996-1004.
    [22] Artemov D, Mori N, Ravi R, et al. Magnetic resonance molecular imaging of the Her-2/neu receptor [J]. Cancer Res, 2003, 63: 2723-2727.
    [23] Medarova Z, Pham W, Kim Y, et al. In vivo imaging of tumor response to therapy using a dual-modality imaging strategy [J]. Int. J. Cancer, 2006, 118: 2796-2802.
    [24] Chan W C W, Nie S M. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection [J]. Science, 1998, 281: 2016-2018.
    [25] Nie S M, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science, 1997, 275: 1102-1106.
    [26] Agrawal A, Tripp R A, Anderson L J, et al. Real-time detection of virus particles and viral protein expression with two-color nanoparticle probes [J]. J. Virol, 2005, 79: 8625-8628.
    [27] Duan H W, Nie S M. Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings [J]. J. Am. Chem. Soc, 2007, 129: 3333-3338.
    [28] Qian X, Li J, Nie S M. Stimuli-responsive SERS nanoparticles: conformational control of plasmonic coupling and surface Raman enhancement [J]. J. Am. Chem. Soc, 2009, 131: 7540-7541.
    [29] Choi Y K, Yoon B I, Kook Y H, et al. Overexpression of Urokinase-type Plasminogen Activator in Human Gastric Cancer Cell Line(AGS)Indeces Tumorgenicity in Severe Combined Immunodeficient Mice [J]. Jpn J Cancer Res, 2002, 93: 151-156.
    [30]冯亮,易继林,杨志芳,等. EGFR与uPAR在肝癌组织中的表达及其意义[J].华中医学杂志, 2007, 31(1): 28-30.
    [31] Schneider R, Schmitt F, Frochot C, et al. Design,synthesis,and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photcsensitizers for selective photodynamic therapy [J]. Bioorg. Med. Chem, 2005, 13: 2799-2808.
    [32]安乙敏.生化检验学[M].成都:四川科学技术出版社, 1994.
    [33] Park J, An K, Hwang Y, et al. Ultra-large-scale syntheses of monodisperse nanocrystals [J]. Nat. Mater, 2004, 3: 891-895.
    [34] Jana N R, Chen Y, Peng X. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach [J]. Chem. Mater, 2004, 16: 3931-3935.
    [35] Yu W W, Falkner J C, Yavuz C T, et al. Synthesis of monodisperse iron oxidenanocrystals by thermal decomposition of iron carboxylate salts [J]. Chem. Commun, 2004, 14: 2306-2307.
    [36] Kovalenko M V, Bodnarchuk M I, Lechner R T, et al. Fatty Acid Salts as Stabilizers in Size- and Shape-Controlled NanocrystalSynthesis: The Case of Inverse Spinel Iron Oxide [J]. J. Am. Chem. Soc, 2007,129: 6352-6353.
    [37] Moskovits M. Surface-enhanced spectroscopy [J]. Rev. Mod. Phys, 1985, 57: 783–826.
    [38] Speckman D M, Jennings T L, LaLumondiere S D, et al. Quenching Phenomena in Water-Soluble CdSe/ZnS Quantum Dots [J]. Mater. Res. Soc. Symp. Proc, 2002, 704: 269-274.
    [39] Callan J F, Mulrooney R C, Karnila S. Luminescent Detection of ATP in Aqueous Solution Using Positively Charged CdSe-ZnS Quantum Dots [J]. J. Fluoresc, 2008, 18: 1157-1161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700