含醛基聚合物的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成具有明确结构的反应性功能聚合物并研究其性能与应用,是高分子科学领域的研究热点之一。近年来随着“活性”/可控自由基聚合以及“点击”化学反应的发展,使得合成具有明确、复杂的结构,确定分子量以及化学组成的功能性聚合物成为可能,同时拓展了聚合物在生物医药、纳米科学等领域的应用。可逆加成-断裂链转移(RAFT)聚合由于具有适用单体范围广泛、聚合反应条件温和等优点,较其它“活性”/可控自由基聚合体系具有更强的分子设计能力。本论文利用RAFT聚合技术,设计、合成并表征了有机/无机杂化功能材料以及嵌段、星形-接枝功能聚合物。研究内容分为四部分:
     第一部分描述表面引发RAFT聚合制备反应性、温度响应性Fe3O4超顺磁性纳米粒子。通过RAFT试剂S-十二烷基-S′-(α,α′-二甲基-α〞-乙酸)-三硫代碳酸酯(DDMAT)与油酸稳定化的Fe3O4纳米粒子之间简单的配体交换反应,合成表面锚定有RAFT试剂DDMAT的Fe3O4纳米粒子。以此为RAFT控制剂,在Fe3O4纳米粒子表面上引发异丙基丙烯酰胺(NIPAM)与丙烯醛(Ac)的RAFT共聚合,获得结构明确的以异丙基丙烯酰胺-丙烯醛共聚物为壳、Fe3O4为核具有“核-壳”结构的Poly(NIPAM-co-Ac)-g-Fe3O4杂化纳米粒子。纳米粒子表面聚合物层的分子量随单体转化率线性增加,且分子量分布较窄,具有可控聚合的特征。该纳米粒子能够均匀的分散在水介质中,对外界磁场和温度具有双重响应性,且壳层含有反应性醛基,能够高效的负载和分离模型蛋白-牛血清白蛋白(BSA)。
     第二部分讨论反应性、电化学活性两亲嵌段共聚物的合成及其氧化-还原响应性胶束化行为。用PEO大分子RAFT试剂(PEO-DDMAT,由单甲氧基聚环氧乙烷与S-十二烷基-S′-(α,α′-二甲基-α〞-乙酸)-三硫代碳酸酯的酯化反应合成)调控二茂铁甲酸(2-醛基-4-乙烯基)苯酚酯(FVFC)自由基聚合,制备PEO-b-PFVFC两亲性嵌段共聚物。该嵌段共聚物在水溶液中能够自组装形成纳米胶束,所得胶束的粒径随着FVFC段的聚合度增加而增大。以苄氧基胺盐酸盐(BHA)为模型药物分子,通过醛基与氨氧基之间的“点击”反应制备了BHA缀合量不同的PEO-b-PFVFC-BHA缀合物;循环伏安法(CV法)检测缀合物的电化学性能表明其氧化电位随着BHA缀合量的增加而变大,因而能够通过自身氧化电位的变化而检测BHA缀合量。PEO-b-PFVFC-BHA缀合物同样能够在水溶液中自组装形成纳米胶束,通过紫外可见光谱(UV-vis)、动态光散射(DLS)、扫描电镜(SEM)、考察了缀合物胶束对外界化学氧化-还原刺激的响应性。PEO-b-PFVFC能够作为潜在的集药物缀合、检测和氧化还原控制释放物于一体的多功能材料。
     第三部分为接枝-星形两亲聚合物合成与表征。以AIBN为引发剂,三硫代碳酸酯DDMAT为链转移剂,在60oC THF中首次实现了苯乙烯(St)与丙烯醛(Ac)的RAFT可控自由基共聚合,得到结构明确、分子量可调的St/Ac共聚物Poly(St-co-Ac)。通过“arm-first”法,用Poly(St-co-Ac)作为大分子RAFT试剂调控二乙烯基苯(DVB)交联反应,获得“臂”带有醛基的星形聚合物Poly(St-co-Ac)m-PolyDVB。该星形聚合物与氨氧基修饰的聚环氧乙烷(PEO-ONH2)通过醛基与氨氧基之间的“点击”化学反应,生成Poly(St-co-Ac)m-g-PEO-PolyDVB星形-接枝共聚物。1H NMR与SEC结果证明Poly(St-co-Ac)m-PolyDVB与PEG-ONH2的反应具有定量性特点。通过偏光显微镜(POM)以及动态光散射(DLS)、透射电镜(TEM)考察了不同的PEO接枝量的Poly(St-co-Ac)m-g-PEO- PolyDVB的结晶性能及其在水中的自组装行为。
     第四部分涉及含醛基、可降解两亲嵌段共聚物及其聚合物-缀合物的合成。80oC下丁酮中,在PEO大分子RAFT试剂(PEO-DDMAT)存在下,以过氧化二苯甲酰(BPO)为引发剂,进行4-乙烯基苯甲醛(VBA)与5,6-苯基-2-亚甲基-1,3-二氧七环(BMDO)的RAFT共聚合,获得一系列不同组成、分子量分布相对较窄的两亲性嵌段共聚物PEO-b-(VBA-co-BMDO)。由于BMDO的引入,赋予该两亲性嵌段共聚物具有降解性能。PEO-b-(VBA-co-BMDO)通过主链上的醛基与氨氧基乙酸胆固醇酯发生“点击”反应,生成聚合物-固醇酯缀合物。该缀合物能够在水溶液中自组装形成分散比较均匀的纳米胶束。
Synthesis of well-defined reactive functional polymers is an emerging research area in polymer science. Recent advances in“living”/controlled polymerization and“click”chemistry reaction techniques have facilitated access to synthesize well-defined complex architectures, controlled molecular weights, and precisely composition functional polymers; also expanding their application in biomedical and nanotechnology. Taking advantage of the tolerance to a wide range of monomers and mild reaction conditions, reversible addition-fragmentation chain transfer (RAFT) polymerization appeared to be the most versatile process in term of the architecture design among the“living”/controlled radical polymerization techniques. Herein, a series of novel complex architectures multi-functional materials involving organic/inorganic hybrid nanoparticles, star-graft and block copolymers were prepared by RAFT polymerization. The properties and potential application were also studied. The present dissertation consists of four chapters:
     Chapter 1 discribes the synthesis of magnetic, Reactive and thermoresponsive Fe3O4 nanoparticles via surface initiated RAFT copolymerization of N-isopropylacrylamide and acrolein. A RAFT agent was directly anchored onto Fe3O4 nanoparticles in a simple procedure employing a ligand exchange reaction of S-1-dodecyl-S?-(α,α′-dimethyl-α′′-acetic acid)trithiocarbonate (DDMAT) with oleic acid initially present on the surface of pristine Fe3O4 nanoparticles. The RAFT agent-functionalized Fe3O4 nanoparticles were then used for the surface initiated RAFT copolymerization of N-isopropylacrylamide (NIPAM) and acrolein to fabricate structurally well-defined hybrid nanoparticles with reactive and thermoresponsive poly(N-isopropylacrylamide-co-acrolein) shell and magnetic Fe3O4 core. Evidence of a well-controlled surface initiated RAFT copolymerization was gained from a linear increase of number-average molecular weight with overall monomer conversions and relatively narrow molecular weight distributions of the copolymers grown from the nanoparticles. The resulting novel magnetic, reactive and thermoresponsive core-shell nanoparticles exhibited temperature-trigged magnetic separation behavior and high ability to immobilize model protein BSA.
     Chapter 2 presents the synthesis of reactive and electrochemical active amphiphilic diblock copolymers and their redox-responsive micelles. Amphiphilic block copolymer with a hydrophilic poly(ethylene oxide) (PEO) block and a hydrophobic block containing the combination of reactive aldehyde and redox-active ferrocene groups was synthesized by RAFT polymerization of our previously designed monomer 2-formal-4-vinylphenyl ferrocenecarboxylate (FVFC) using a monomethoxy-terminated PEO-based macro-chain transfer agent. The structure and self-assembly behaviors of the copolymer were characterized. Aminooxy model drug, O-benzylhydroxylamine (BHA) was then conjugated to PEO-b-PFVFC via oxime linkages, generating PEO-b-PFVFC-BHA conjugate. The electrochemical behaviors of the conjugate were evaluated by cyclic voltammetry. The peak (oxidation or reduction) positions depended on the amount of the conjugated BHA, allowing one to detect quantificationally the conjugated molecules by simply measuring the change in potential response of cyclic voltammogram. Also the redox-responsive micellar properties of the conjugates were investigated by combination of UV-vis spectroscopy and scanning electron microscopy (SEM) and dynamic light scattering (DLS). The resulting PEO-b-PFVFC may combine potential applications such as bioconjugation, electrochemical detection and redox-controlled release of encapsulants.
     Chapter 3 focuses on the synthesis and characterization of amphiphilic star-graft copolymer. RAFT copolymerization of styrene (St) and acrolein (Ac) was achieved using AIBN as the initiator and S-1-dodecyl-S?-(α,α′-dimethyl-α′′-acetic acid)trithiocarbonate (DDMAT) as the RAFT agent at 60?C in THF. The polymerization exhibited first-order kinetics and the molecular weight increased linearly with increase of monomer conversion. Well defined aldehyde-functionalized copolymer poly(St-co-Ac) was prepared as characterized with SEC and NMR analysis. Star polymers with aldehyde-functionalized arms were then obtained by RAFT polymerization of divinyl benzene (DVB) using poly(St-co-Ac) as a macro-chain transfer agent (CTA) via arm-first approach. The aldhyde functionalized poly (St-co-Ac)m-polyDVB star polymers were subsequently used to couple the aminooxy-functionalized poly (ethylene oxide) (PEO-ONH2) via aldehyde-aminooxy click reaction, leading to the formation of amphiphilic poly (St-co-Ac)m-g-PEO-polyDVB star-graft copolymer. The crystalline and self-assembly behavior were investigated with polarized optical micrographs (POM) and transmission electron microscopy (TEM), and dynamic light scattering (DLS) respectively.
     Chapter 4 is directed to the synthesis of aldehyde-functionalized biodegradable amphiphilic copolymer for bioconjugation. RAFT copolymerization of 4-vinylbenzaldehyde (VBA) and 5,6-benzo-2-methylene-1,3- dioxepane (BMDO) was carried out in 2-butanone at 80oC using AIBN as the initiator and a monomethoxy-terminated PEO-based macro-chain transfer agent . Owing to the incorporation of BMDO units, the obtained PEO-b-(VBA-co-BMDO) block copolymers were degradable. The aldehyde bearing block copolymers could conjugate with aminooxy functionalized cholesterol via oxime linkages to form PEO-b-(VBA-co-BMDO)-cholesterol bioconjugate, which self-assemble into monodispersed nanometers scale micelles in aqueous solution.
引文
1 Szwarc, M.; Levey, M.; Milkovich, R., Polymerization initiated by electron transfer to monomer: A new method of formation of block polymers. J Am Chem Soc, 1956, 78: 2656-2657.
    2 Reetz, M. T., New method for the anionic polymerization ofα-activated olefins, Ange Chem Int Ed, 1988, 100: 1026-1030.
    3 Otsu, T.; Yoshida, M., Role of initiator-transfer agent-terminator (Iniferter) in radical polymerizations-polymer design by organic disulfides as Iniferters,Makromol Chem Rapid Commun, 1982, 3: 127-132.
    4 Otsu, T., Iniferter concept and living radical polymerization, J Polym Sci Part A: Polym Chem, 2000, 38: 2121-2136.
    5 Georges, M. K.; Veregin, R. P. N.; Kazmaier, G. K. et al., Narrow molecular weight resins by a free-radical polymerization process, Macromolecules, 1993, 26: 2987-2988.
    6 Veregin, R. P. N.; Odell, P. G.; Georges, M. K. et al., Mechanism of rate enhancement using organic acids in Nitroxide-Mediated Living Free-Radical polymerizations, Macromolecules, 1996, 29: 4161-4163.
    7 Odell, P. G.; Veregin, R. P. N.; Georges, M. K. et al., Characteristics of the stable free radical polymerization of styrene in the presence of 2-fluoro-1- methylpyridinium p-toluenesulfonate, Macromolecules, 1997, 30: 2232-2237.
    8 Greszta, D.; Matyjaszewski, K., TEMPO-mediated polymerization of styrene: Rate enhancement with dicumyl peroxide, J Polym Sci Part A: Polym Chem, 1997, 35: 1857-1861
    9 Goto, A.; Fukuda, T., Effects of radical initiator on polymerization rate and polydispersity in nitroxide-controlled free radical polymerization, Macromolecules 1997, 30: 4272-4277.
    10 Chong, Y. K.; Ercole, F.; Moad, G. et al., Imidazolidinone nitroxide-mediated polymerization, Macromolecules, 1999, 32: 6895-6903.
    11 Hawker, C. J.; Bosman, A. W.; Harth, E., New polymer synthesis by nitroxide mediated living radical polymerizations, Chem Rev, 2001, 101: 3661-3688.
    12 Sciannamea, V.; Jerome, R.; Detrembleur, C., In-situ nitroxide-mediated radical polymerization (NMP) processes: Their understanding and optimization, Chem Rev, 2008, 108: 1104-1126.
    13 Kato, M.; Kamigaito, M.; Sawamoto, M. et al., Polymerization of methylmeth- acrylate with the carbontetrachloride/dichlorotris(triphenyl phosphine) ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: Possibility of living radical polymerization, Macromolecules, 1995, 28: 1721-1723.
    14 Wang, J. S.; Matyjaszewski, K., Controlled/"living" radical polymerization. halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process, Macromolecules, 1995, 28: 7901-7910.
    15 Percec, V.; Barboiu, B., "Living" radical polymerization of styrene initiated by arenesulfonyl chlorides and CuI(bpy)nCl., Macromolecules, 1995, 28: 7970-7972.
    16 Kamigaito, M.; Anto, T.; Sawamoto, M., Metal-catalyzed living radical polymerization, Chem Rev, 2001, 101: 3689-3746.
    17 Matyjaszewski, K.; Xia, J., Atom transfer radical polymerization, Chem Rev, 2001, 101: 2921-2990.
    18 Tang, W.; Matyjaszewski, K., Effect of ligand structure on activation rate constants in ATRP, Macromolecules, 2006, 39: 4953-4959.
    19 Yuan, J.Y.; Pan, C. Y.; Tang, B. Z.,“Living”free radical ring-opening polymerization of 5,6-benzo-2-methylene-1,3-dioxepane using the atom transfer radical polymerization method, Macromolecules, 2001, 34: 211-214.
    20 Wickel, H.; Agarwal, S., Synthesis and characterization of copolymers of 5,6-benzo-2-methylene-1,3-dioxepane and styrene, Macromolecules, 2003, 36: 6152-6159
    21 Huang, J.; Gil, R.; Matyjaszewski, K., Synthesis and characterization of copolymers of 5,6-benzo-2-methylene-1,3-dioxepane and n-butyl acrylate, Polymer, 2005, 46: 11698–11706.
    22 Tsarevsky, N. V.; Matyjaszewski, K.,“Green”Atom Transfer Radical Polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials, Chem Rev 2007, 107: 2270-2299.
    23 Matyjaszewski, K., Macromolecular engineering: From rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties, Prog Polym Sci, 2005, 30: 858–875.
    24 Gao, H.; Matyjaszewski, K., Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: From stars to gels, Prog Polym Sci, 2009, 34: 317-350.
    25 Barbey, R.; Lavanant, L.; Klok, H. A. et al., Polymer brushes via surface-initiated controlled radical polymerization: Synthesis, characterization, properties, and applications, Chem Rev, 2009, 109: 5437–5527.
    26 Wang, J. S.; Matyjaszewski, K., "Living"/controlled radical polymerization. transition-metal-catalyzed atom transfer radical polymerization in the presence of a conventional radical initiator, Macromolecules, 1995, 28: 7572-7573.
    27 Chen, X. P.; Qiu, K. Y., Controlled/‘living’radical polymerization of MMA via in situ ATRP process, Chem Commun , 2000 , 3: 233-234.
    28 Gromada, J.; Matyjaszewski, K., Simultaneous reverse and normal initiation in atom transfer radical polymerization, Macromolecules, 2001, 34: 7664-7671.
    29 Jakubowski, W.; Matyjaszewski, K., Activator generated by electron transfer for atom transfer radical polymerization, Macromolecules, 2005, 38: 4139-4146.
    30 Min, K.; Gao, H.; Matyjaszewski, K., Preparation of homopolymers and block copolymers in miniemulsion by ATRP ssing activators generated by electron transfer (AGET), J Am Chem Soc, 2005, 127: 3825-3830.
    31 Chiefari, J.; Chong, Y. K.; Ercole, F. et al., Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process. Macromolecules, 1998, 31: 5559-5562.
    32 Corpart, P.; Biadatti, T.; Zard, S.et al., Block polymer synthesis - by controlled radical polymerization, PCT Int. Pat. Appl. WO 9858974 A1 19981230, 1998.
    33 Charmot, D.; Zard, S.; Biadatti, T.et al., Controlled radical polymerization in dispersed media, Macromol Symp, 2000, 150: 23-32.
    34 Delduc, P.; Tailhan, C.; Zard, S. Z., A convenient source of alkyl and acyl radicals, J Chem Soc Chem Commun, 1988, 308-310.
    35 Chong, Y. K.; Moad, G.; Thang, S. H.et al. Thiocarbonylthio compounds [SdC(Ph)S-R] in free radical polymerization with reversibleaddition-fragmentation chain transfer (RAFT polymerization). Role of the free-radical leaving group (R), Macromolecules, 2003, 36: 2256-2272.
    36 Chiefari, J.; Moad, G.; Thang, S. H. et al., Thiocarbonylthio compounds (SdC(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Effect of the activating group Z, Macromolecules, 2003, 36: 2273-2283.
    37 Stenzel, M. H.; Vana, P.; Barner-Kowollik, C. et al., Xanthate mediated living polymerization of vinyl acetate: A systematic variation in MADIX/RAFT agent structure, Macromol Chem Phys, 2003, 204: 1160-1168.
    38 Destarac, M.; Franck, X.; Zard, S. Z. et al., Dithiocarbamates as universal reversible addition-fragmentation chain transfer agents, Macromol Rapid Commun, 2000, 21: 1035-1039.
    39 Moad, G.; Rizzardo, E.; Thang, S. H., Living radical polymerization by the RAFT process -A second update, Aust J Chem, 2009, 62: 1402-1472.
    40 Lai, J. T.; Filla, D.; Shea, R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules, 2002, 35: 6754-6756.
    41 Jackson, A. W.; Fulton, D. A., Dynamic covalent diblock copolymers prepared from RAFT generated aldehyde and alkoxyamine end-functionalized polymers, Macromolecules, 2010, 43: 1069–1075
    42 Zhou, N.; Lu, L.; Zhu, X.; et al., Synthesis of polystyrene end-capped with pyrene via reversible additione fragmentation chain transfer polymerization, Polymer, 2007, 48: 1255
    43 Zhou, G. C.; Harruna, I. I., Interpretation of reversible addition-fragmentation chain-transfer polymerization mechanism by MALDI-TOF-MS, Anal. Chem, 2007, 79: 2722-2727.
    44 Zhou, N.; Zhang, Z.; Zhu, X. et al., RAFT polymerization of styrene mediated by ferrocenyl-containing RAFT agent and properties of the polymer derived from ferrocene, Macromolecules, 2009, 42: 3898-3905.
    45 Zhang, Z. B.; Zhu, X. L.; Zhu, S. P. et al., Thermal-initiated reversible addition- Fragmentation chain transfer polymerization of methyl methacrylate in the presence of oxygen, J Polym Sci Part A: Polym Chem, 2006, 44: 3343-3354.
    46 Zhang, Z. B.; Zhu, J.; Zhu, X. L. et al., Reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene in the presence of oxygen, Polymer, 2007, 48: 4393-4400.
    47 Roth, P. J.; Wiss, K. T.; Theato, P. et al., Synthesis of reactive telechelic polymers based on pentafluorophenyl esters, Macromolecules, 2008, 41: 8513-8519.
    48 Briquel, R.; Mazzolini, J.; Spitz, R. et al., Polyethylene building blocks by catalyzed chain growth and efficient end functionalization strategies, including click chemistry, Angew Chem Int Ed, 2008, 47: 9311-9313.
    49 Lima, V.; Jiang, X.; Brokken-Zijp, J.et al., Synthesis and characterization of telechelic polymethacrylates via RAFT polymerization J Polym Sci, Part A: Polym Chem, 2005, 43, 959-973.
    50 Vora, A.; Nasrullah, M. J.; Webster, D. C., Synthesis and characterization of novelepoxy- and oxetane-functional reversible addition-fragmentation chain transfer agents, Macromolecules, 2007, 40: 8586-8592.
    51 Patton, D. L.; Advincula, R. C., A versatile synthetic route to macromonomers via RAFT polymerization, Macromolecules, 2006, 39: 8674-8683.
    52 Zhang, L.; Chen, Y., Allyl functionalized telechelic linear polymer and star polymer via RAFT polymerization, Polymer, 2006, 47: 5259–5266.
    53 De, P.; Li, M.; Sumerlin, B. S. et al., Temperature-regulated activity of responsive polymer-protein conjugates prepared by grafting-from via RAFT polymerization, J Am Chem Soc, 2008, 130: 11288-11289..
    54 Ladmiral, V.; Legge, T. M.; Perrier, S. et al.,“Click”chemistry and radical polymerization: Potential loss of orthogonality, Macromolecules, 2008, 41: 6728-6732.
    55 Akeroyd, N.; Pfukwa, R.; Klumperman, B., Triazole-based leaving group for RAFT-mediated polymerization synthesized via the Cu-mediated huisgen 1,3-dipolar cycloaddition reaction, Macromolecules, 2009, 42:3014-3018.
    56 Wan, X.; Zhu, X.; Cheng, Z. et al., Synthesis of dithiocarbamate bearing azobenzene group and use for RAFT polymerization of vinyl monomers, J Polym Sci, Part A: Polym Chem, 2007, 45: 2886-2896.
    57 Zhou, N.; Lu, L.; Zhu, X. et al., Synthesis of polystyrene end-capped with pyrene via reversible addition–fragmentation chain transfer polymerization, Polymer, 2007, 48: 1255.
    58 Zhou, Y.; Zhu, X. L.; Cheng, Z. P. et al.,“Living /controlled polymerization of methyl acrylate mediated by dithiocarbamates underγ-ray irradiation, J Appl Polym Sci 2007, 103, 1769-1775
    59 Zhou, D.; Zhu, X. L.; Zhu, J.t al., Synthesis and characterization of fluorescence end-labeled polystyrene via reversible addition-fragmentation chain transfer (RAFT) polymerizationJ. Polym. Sci., Part A: Polym. Chem. 2008, 46, 6198-6205
    60 Wong, L. J; Davis, T. P.; Bulmus, V. et al., Synthesis of versatile thiol-reactive polymer scaffolds viaRAFT polymerization, Biomacromolecules, 2008, 9: 1934-1944.
    61 Jia, Z. F.; Davis, T. P.; Bulmus, V. et al, One-pot conversion of RAFT-generated multifunctional block copolymers of HPMA to Doxorubicin conjugated acid- and reductant-sensitive crosslinked micelles, Biomacromolecules, 2008, 9: 3106-3113.
    62 Bulmus, V., Biomembrane-active molecular switches as tools for intracellular drug delivery, Aust J Chem, 2005, 58: 411-422.
    63 Valade, D.; Boyer, C.; Davis, T. P.; Bulmus, V. Synthesis of siRNA polyplexes adopting a combination of RAFT polymerization and Thiol-ene chemistry, Aust J Chem, 2009, 62: 1344-1350.
    64 Gujraty, K. V.; Yanjarappa, M. J.; Kane, R. S. et al., Synthesis of homopolymers and copolymers containing an active ester of acrylic acid by RAFT: Scaffolds for controlling polyvalent ligand display, J Polym Sci, Part A: Polym Chem, 2008, 46: 7249-7257.
    65 Li, Y.; Harrisson, S.; Wooley, K. L. et al., Facile formation of uniform shell- crosslinked nanoparticles with built-in functionalities fromN-hydroxysuccinimide-activated amphiphilic block copolymers, Adv Funct Mater, 2008, 18:551-559.
    66 Eberhardt, M.; Theato, P., RAFT polymerization of pentafluorophenyl methacrylate: Preparation of reactive linear diblock copolymers, Macromol Rapid Commun 2005, 26: 1488-1493.
    67 Metz, N.; Theato, P., Synthesis and characterization of base labile poly (N-isopropylacrylamide) networks utilizing a reactive cross-linker, Macromolecules, 2009, 42: 37-39.
    68 Hwang, J.; Li, R. C.; Maynard, H. D. Well-defined polymers with activated ester and protected aldehyde side chains for bio-functionalization, J Control Release, 2007, 122: 279-286.
    69 York, A. W.; Scales, C. W.; McCormick, C. L. et al., Facile synthetic procedure forω, primary amine functionalization directly in water for subsequentfluorescent labeling and potential bioconjugation of RAFT-synthesized (co)polymers, Biomacromolecules, 2007, 8: 2337-2341.
    70 Scales, C. W.; Huang, F.; McCormick, C. L. et al., Corona-stabilized interpolyelectrolyte complexes of SiRNA with nonimmunogenic, hydrophilic/ cationic block copolymers prepared by aqueous RAFT polymerization, Macromolecules, 2006, 39: 6871-6881.
    71 York, A. W.; Huang, F.; McCormick, C. L. et al., Facile synthesis of multivalent folate-block copolymer conjugates via aqueous RAFT polymerization: Targeted delivery of siRNA and subsequent gene suppression, Biomacromolecules, 2009, 10: 936–943.
    72 Maki, Y.; Mori, H.; Endo, T., Controlled RAFT polymerization of N-vinylphthalimide and its hydrazinolysis to poly(vinyl amine), Macromol Chem Phys 2007, 208: 2589–2599.
    73 Zhang, X.; Lian, X.; Zhao, H. et al., Synthesis of comb copolymers with pendant chromophore groups based on RAFT polymerization and click chemistry and formation of electron donor-acceptor supramolecules, Macromolecules, 2008, 41 7863-7869.
    74 Jiang, X.; Zhang, J.; Liu, S. et al., Facile preparation of core-crosslinked micelles from azide-containing thermoresponsive double hydrophilic diblock copolymer via click chemistry, J Polym Sci, Part A: Polym Chem, 2008, 46: 860-871.
    75 Hwang, J.; Li, R. C.; Maynard, H. D., Well-defined polymers with activated ester and protected aldehyde side chains for bio-functionalization, J Control Release, 2007, 122, 279-286.
    76 Rossi, N. A. A.; Zou, Y.; Kizhakkedathu, J. N.; et al. RAFT Synthesis of acrylic copolymers containing poly (ethylene glycol) and dioxolane functional groups: toward well-defined aldehyde containing copolymers for bioconjugation. Macromolecules 2008, 41: 5272-5282.
    77 Shi, M.; Liang, H.; Lu, J. et al, Reversible addition-fragmentation transfer polymerization of a novel monomer containing both aldehyde and ferrocene functional groups, Macromolecules, 2007, 40, 1891-1896.
    78 Xiao, N. Y.; Liang, H.; Lu, J.; et al. A well-defined novel aldehyde-functionalizedglycopolymer: synthesis, micelle formation, and its protein immobilization. Macromolecules 2008, 41: 2374-2380.
    79 Sun, G.; Cheng, C.; Wooley, K. L. Reversible addition fragmentation chain transfer polymerization of 4-vinylbenzaldehyde. Macromolecules 2007, 40, 793-795
    80 Sun, G.; Fang, H.; Wooley, K. L. et al., Benzaldehyde-functionalized polymer vesicles, Acs Nano, 2009, 3, 673-681.
    81 Rizzardo, E.; Moad, G.; Thang, S. et al., Tailored polymer architectures by reversible addition-fragmentation chain transfer, Macromol Symp, 2001, 174: 209-212.
    82 Moad, G.; Rizzardo, E.; Thang, S. H. Living radical polymerization by the RAFT process. Aust J Chem 2005, 58: 379-410.
    83 Hu, Z.; Zhang, Z.,“Gradient”polymer prepared by complex-radical terpolymerization of styrene, maleic Anhydride, and N-vinyl pyrrolidone viaγ-ray irradiation by use of a RAFT process: Synthesis, mechanism, and characterization, Macromolecules, 2006, 39: 1384-1390.
    84 Gody, G.; Boullanger, P.; Charreyre, M. T. et al., Biotin a-end-functionalized gradient glycopolymers synthesized by RAFT copolymerization, Macromol Rapid Commun 2008, 29:511–519.
    85 Ribaut, T.; Lacroix-Desmazes, P.; Fournel, B. et al., Synthesis of gradient copolymers with complexing groups by RAFT polymerization and their solubility in supercritical CO2, J Polym Sci, Part A: Polym Chem, 2009, 47: 5448-5460.
    86 Sun, X.; Li, B. G.; Zhu, S. P. et al., Semibatch RAFT polymerization for producing ST/BA copolymers with controlled gradient composition profiles, AIChE Journal, 2008, 54: 1073-1087.
    87 Kuboa, K.; Goto, A.; Fukuda, T. et al., Kinetic study on reversible addition–fragmentation chain transfer (RAFT) process for block and random copolymerizations of styrene and methyl methacrylate,Polymer, 2005, 46: 9762–9768.
    88 Such ,G. K.; Evans, R. A.; Davis, T. P., The use of block copolymers to systematically modify photochromic behavior, Macromolecules, 2006, 39: 9562–9570.
    89 Save, M.; Manguian, M.; Chassenieux, C. et al., Synthesis by RAFT of amphiphilic block and comblike cationic copolymers and their use in emulsion polymerization for the electrosteric stabilization of latexes, Macromolecules, 2005, 38: 280–289.
    90 Barner-Kowollik, C., Handbook of RAFT Polymerization, 2008, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    91 Chong, Y. K.; Moad, G.; Rizzardo, E, et al.,A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: The RAFT process, Macromolecules, 1999, 32: 2071-2074.
    92 Achilleos, M.; Legge, T. M.; Perrier, S. et al., Poly (ethylene glycol)-based amphiphilic model conetworks: Synthesis by RAFT polymerization and characterization, J Polym Sci, Part A: Polym Chem, 2008, 46: 7556-7565.
    93 Shi, L.; Chapman, T. M.; Beckman, E. J., Poly(ethylene glycol)-block-poly(N- vinylformamide) copolymers synthesized by the RAFT methodology, Macromolecules, 2003, 36: 2563-2567.
    94 Zhang, Q.; Wu, C.; Xie, Z. et al, Synthesis, folding, and association of long multiblock (PEO23-b-PNIPAM124)750 chains in aqueous solutions, Macromolecules, 2008, 41: 2228-2234.
    95 Li,Y. Armes, S. P.; McCormick, C. L. et al., Synthesis of reversible shell cross-linked micelles for controlled release of bioactive agents, Macromolecules, 2006, 39: 2726-2728.
    96 Xu, X.; Smith, A. E.; McCormick, C. L. et al., Aqueous RAFT synthesis of pH-responsive triblock copolymer mPEO-PAPMA-PDPAEMA and formation of shell cross-linked micelles, Macromolecules, 2008, 41: 8429-8435.
    97 Zhang, J.; Jiang, X.; Liu, S. et al., Facile fabrication of reversible core cross-linked micelles possessing thermosensitive swellability, Macromolecules, 2007, 40: 9125-9132.
    98 Quemener, D.; Barner-Kowollik, C.; Stenzel, M. H. et al., RAFT and click chemistry: A versatile approach to well-defined block copolymers, Chem Commun, 2006, 5051–5053.
    99 Moad, G.; Mayadunne, R. T. A.; Rizzardo, E. et al., Synthesis of novel architectures by radical polymerization with reversible addition fragmentation chain transfer (RAFT polymerization), Macromol Symp, 2003, 192: 1-12.
    100 Mayadunne, R. T. A.; Moad, G.; Rizzardo, E. et al., Living free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization): Approaches to star polymers, Macromolecules, 2003, 36: 1505-1513.
    101 Nguyen, T. L. U.; Barner-Kowollik, C. Stenzel, M. H. et al., Investigation of the influence of the architectures of poly(vinyl pyrrolidone) polymers made via the reversible addition–fragmentation chain transfer/macromolecular design via the interchange of xanthates mechanism on the stabilization of suspension polymerizations, J Polym Sci, Part A: Polym Chem, 2006, 44: 4372–4383.
    102 Stenzel, M. H.; Davis, T. P.; Barner-Kowollik, C., Poly(vinyl alcohol) star polymers prepared via MADIX/RAFT polymerisation, Chem Commun, 2004, 1546-1547.
    103 Chen, M.; Ghiggino, K. P.; Launikonis, A. et al., RAFT synthesis of linear and star-shaped light harvesting polymers using di- and hexafunctional ruthenium polypyridine reagents, J Mater Chem, 2003, 13:2696–2700.
    104 Whittaker, M. R.; Monteiro, M. J., Synthesis and aggregation behavior of four-arm star amphiphilic block copolymers in water, Langmuir, 2006, 22: 9746-9752.
    105 Bernard, J.; Hao, X.; Stenzel, M. H. et al., Synthesis of various glycopolymer architectures via RAFT polymerization: From block copolymers to stars, Biomacromolecules, 2006, 7: 232-238.
    106 Stenzel, M. H.; Davis, T. P., Star polymer synthesis using trithiocarbonate functional-cyclodextrin cores (reversible addition–fragmentation chain-transferpolymerization), J Polym Sci, Part A: Polym Chem, 2002, 40: 4498-4512.
    107 Mori, H.; Ookuma, H.; Endo, T., Poly(N-vinylcarbazole) star polymers and amphiphilic star block copolymers by xanthate-mediated controlled radical polymerization, Macromolecules, 2008, 41: 6925-6934.
    108 Hong, C. Y.; You, Y. Z.; Pan, C. Y. et al., Dendrimer-star polymer and block copolymer prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization with dendritic chain transfer agent, J Polym Sci, Part A: Polym Chem, 2005, 43: 6379-6393.
    109 Zheng, Q.; Pan, C. Y., Preparation and characterization of dendrimer-star PNIPAAM using dithiobenzoate-terminated PPI dendrimer via RAFT polymerization, Eur Poly J, 2006, 42: 807–814.
    110 Liu, C.; Zhang, Y.; Huang, J., Well-defined star polymers with mixed-arms by sequential polymerization of atom transfer radical polymerization and reverse addition-fragmentation chain transfer on a hyperbranched polyglycerol core, Macromolecules, 2008, 41: 325-331.
    111 Boschmann, D.; Vana, P., Z-RAFT star polymerizations of acrylates: Star coupling via intermolecular chain transfer to polymer, Macromolecules, 2007, 40: 2683-2693.
    112 Lord, H. T.; Stenzel, M. H.; Davis, T. P. et al., Microgel stars via reversible addition fragmentation chain transfer (RAFT) polymerization - a facile route to macroporous membranes, honeycomb patterned thin films and inverse opal substrates, J Mater Chem, 2003, 13: 2819-2824.
    113 Zheng, G.; Pan, C. Preparation of star polymers based on polystyrene or poly(styrene-b-N-isopropyl acrylamide) and divinylbenzene via reversible addition-fragmentation chain transfer polymerization. Polymer, 2005, 46: 2802–2810.
    114 Zhang, L.; Chen, Y., Allyl functionalized telechelic linear polymer and star polymer via RAFT polymerization, Polymer, 2006, 47: 5259-5266.
    115 Zheng, Q.; Zheng, G.; Pan, C., Preparation of nano-sized poly(ethylene oxide) star microgels via reversible addition-fragmentation transfer polymerization in selective solvents, Polym Int, 2006, 55:1114-1123.
    116 Zheng, G.; Pan, C., Reversible addition-fragmentation transfer polymerization in nanosized micelles formed in situ, Macromolecules, 2006, 39: 95-102.
    117 Ranganathan, K.; Brooks, D. E.; Kizhakkedathu, J. N. et al., Synthesis of thermoresponsive mixed arm star polymers by combination of RAFT and ATRP from a multifunctional core and its self-assembly in water, Macromolecules, 2008, 41: 4226–4234.
    118 Yang, L.; Zhou, H.; Pan, C. et al., Synthesis of ABCD 4-miktoarm star polymers by combination of RAFT, ROP, and‘‘click chemistry, J Polym Sci, Part A: Polym Chem, 2008, 46: 6641-6653.
    119 Chan, J. W.; Hoyle, C. E.; and Lowe, A. B. et al., Convergent synthesis of 3-arm star polymers from RAFT-prepared poly(N,N-diethylacrylamide) via a thiol-ene click reaction, Chem Commun, 2008, 4959-4961.
    120 You,Y.; Hong, C.; Pan, C. et al., A novel strategy to synthesize graft copolymerswith controlled branch spacing length and defined grafting sites, Macromolecules, 2004, 37: 7140-7145.
    121 Qumener, D. Hellaye, M.; Stenzel, M. H. et al., Graft block copolymers of propargyl methacrylate and vinyl acetate via a combination of RAFT/MADIX and Click chemistry: Reaction analysis, J Polym Sci, Part A: Polym, 2008, 46: 155-173.
    122 Li,G.; Wang, H,; Bai, R. et al., Room-temperature RAFT copolymerization of
    2-chloroallyl azide with methyl acrylate and versatile applications of the azide copolymers, J Polym Sci, Part A: Polym, 2010, 48: 1348-1356.
    123 Hernandez-Guerrero, M.; Davis, T. P.; Stenzel, M. H. et al., Polystyrene comb polymers built on cellulose or poly(styrene-co-2-hydroxyethylmethacrylate) backbones as substrates for the preparation of structured honeycomb films, Eur Poly J, 2005, 41: 2264–2277.
    124 Vosloo, J. J.; Tonge, M. P.; Gilbert, R. G. et al., Synthesis of comblike poly(butyl methacrylate) using reversible addition-fragmentation chain transfer and an activated ester, Macromolecules, 2004, 37: 2371-2382.
    125 Chen,Y.; Kang, E. T.; Neoh, K. G. et al., Poly(vinylidene fluoride) with grafted poly(ethylene glycol) side chains via the RAFT-mediated process and pore size control of the copolymer membranes, Macromolecules, 2003, 36: 9451-9457.
    126 Li, Y. G.; Shi, P. J.; Pan, C.Y. et al., Synthesis and characterization of block comb-like copolymers P(A-MPEO)-block-PSt, Polym Int, 2004, 53:349–354.
    127 Xu, X.; Huang, J., Synthesis and characterization of well-defined poly(2-hydroxyethyl methacrylate-co-styrene)-graft-poly(ε-caprolactone) by sequential controlled polymerization, J Polym Sci, Part A: Polym, 2004, 42:5523-5529.
    128 Wan, L. S.; Lei, H.; Xu, Z. K. et al., Linear and comb-like acrylonitrile/N-isopropylacrylamide copolymers synthesized by the combination of RAFT Polymerization and ATRP, J Polym Sci, Part A: Polym, 2009, 47: 92-102.
    129 Barbey, R.; Lavanant, L.; Klok, H. A. et al., Polymer brushes via surface-initiated controlled radical polymerization: Synthesis, characterization, properties, and applications, Chem Rev, 2009, 109: 5437–5527.
    130 Baum, M.; Brittain, W. J., Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique, Macromolecules, 2002, 35: 610-615.
    131 Yu, W. H. Kang, E. T.; Neoh, K. G., Functionalization of hydrogen-terminated Si(100) substrate by surface-initiated RAFT polymerization of 4-vinylbenzyl chloride and subsequent derivatization for photoinduced metallization, Ind Eng Chem Res, 2004, 43: 5194-5202.
    132 Zhai, G. Kang, E. T.; Neoh, K. G., Functionalization of hydrogen-terminated silicon with polybetaine brushes via surface-initiated reversible addition-fragmentation chain-transfer (RAFT) polymerization, Ind Eng Chem Res, 2004, 43: 1673-1680.
    133 Yoshikawa, C.; Goto, A.; Fukuda, T. et al., Fabrication of high-density polymerbrush on polymer substrate by surface-initiated living radical polymerization, Macromolecules, 2005, 38: 4604-4610.
    134 Wang, W. C.; Neoh, K. G.; Kang, E. T. Surface functionalization of Fe3O4 magnetic nanoparticles via RAFT-mediated graft polymerization. Macromol Rapid Commun 2006, 27: 1665-1669.
    135 Tsujii, Y.; Ejaz, M.; Fukuda, T.; et al. Mechanism and kinetics of RAFT-mediated graft polymerization of styrene on a solid surface. 1. Experimental evidence of surface radical migration. Macromolecules 2001, 34: 8872-8878.
    136 Li, C.; Benicewicz, B. C. Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization. Macromolecules 2005, 38: 5929-5936.
    137 Hojjati, B.; Charpentier, P. A. Synthesis and kinetics of graft polymerization of methyl methacrylate from the RAFT coordinated surface of nano-TiO2. J Polym Sci Part A: Polym Chem 2008, 46: 3926-3937.
    138 Raula, J.; Shan, J.; Nuopponen, M.; Tenhu, H.; et al. Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible addition-fragmentation chain-transfer polymerization. Langmuir 2003, 19: 3499-3504.
    139 Skaff, H.; Emrick, T. Reversible addition fragmentation chain transfer (RAFT) polymerization from unprotected Cadmium Selenide nanoparticles. Angew Chem Int Ed 2004, 43: 5383-5386.
    140 Hong, C. Y.; You, Y. Z.; Pan, C. Y., Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization, Chem Mater, 2005, 17: 2247-2254.
    141 Stenzel, M. H.; Zhang, L.; Huck, W. T. S., Temperature-responsive glycopolymer brushes synthesized via RAFT polymerization using the Z-group approach, Macromol Rapid Commun, 2006, 27: 1121–1126.
    142 Zhao, Y.; Perrier, S., Reversible addition-fragmentation chain transfer graft polymerization mediated by fumed silica supported chain transfer agents, Macromolecules, 2007, 40: 9116–9124.
    143 Percec, V.; Popov, A. V.; Ramirez-Castillo, E., Aqueous room temperature metal-catalyzed living radical polymerization of vinyl chloride, J Am Chem Soc, 2002, 124: 4940-4941.
    144 Rosen, B. M.; Percec, V., Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization, Chem Rev, 2009, 109: 5069–5119.
    145 Ding, S.; Floyd, A.; Walters, K. B., Comparison of surface confined ATRP and SET-LRP syntheses for a series of amino (meth)acrylate polymer brushes on silicon substrates, J Polym Sci Part A: Polym Chem, 2009, 47: 6552-6560
    146 Zhang, Z.; Wang, W.; Zhu, X. et al., Single-electron transfer living radical polymerization (SET-LRP) of methyl methacrylate (MMA) with a typical RAFT agent as an initiaor, Macromolecules, 2009, 42: 7360–7366.
    147 Rosen, B. M.; Lligada, G.; Percec, V. et al., Synthesis of dendritic macromolecules through divergent iterative thio-bromo‘‘click’’chemistry and SET-LRP, J Polym Sci Part A: Polym Chem, 2009, 47: 3940-3948.
    148 Slomkowski, S. Polyacrolein containing microspheres: synthesis, properties and possible medical application. Prog Polym Sci 1998, 23: 815-874.
    149 Lemieux, G. A.; Bertozzi, C. R. Chemoselective ligation reactions with proteins, oligosaccharides and cells. Trends Biotechnol, 1998, 16: 506-513.
    150 Nagasaki, Y.; Okada, T.; Kataoka, K. et al., The reactive polymeric micelle based on an aldehyde-ended poly(ethylene glycol)/poly(lactide) block copolymer, Macromolecules, 1998, 31: 1473-1479.
    151 Park, J. S.; Akiyama, Y.; Kataoka, K. et al., Versatile synthesis of end- functionalized thermosensitive poly(2-isopropyl-2-oxazolines), Macromolecules, 2004, 37: 6786-6792.
    152 Ishii, T.; Kataoka, K.; Nagasaki, Y., Preparation of functionally PEGylated gold nanoparticles with narrow distribution through autoreduction of auric cation byα-biotinyl-PEG-block-[poly(2-(N,N-dimethylamino) ethyl methacrylate)], Langmuir, 2004, 20: 561-564.
    153 Feng, X.; Taton, D.; Gnanou, Y. et al., Bouquet-type dendrimerlike poly(ethylene Oxide)s with a focal aldehyde and peripheral hydroxyls, Biomacromolecules, 2007, 8: 2374-2378.
    154 Tao, L.; Mantovani, G.; Haddleton, D. M. et al.,α-Aldehyde terminally functional methacrylic polymers from living radical polymerization: Application in protein conjugation“Pegylation”, J Am Chem Soc, 2004, 126: 13220-13221.
    155 Liu, H.; Jiang, X.; Liu, S. et al., Aldehyde surface-functionalized shell cross-linked micelles with pH-tunable core swellability and their bioconjugation with Lysozyme, Macromolecules, 2007, 40: 9074-9083.
    156 Pound, G.; McKenzie, J. M.; Lange, R. F. M. et al., Polymer–protein conjugates fromω-aldehyde endfunctional poly(N-vinylpyrrolidone) synthesised via xanthate-mediated living radical polymerisationw, Chem Commun, 2008, 3193–3195.
    157 Taubmann, C.; Luxenhofer, R.; Jordan, R. et al., First aldehyde-functionalized poly(2-oxazoline)s for chemoselective ligation, Macromol Biosci 2005, 5: 603-612.
    158 Li, R. C.; Broyer, R. M.; Maynard, H. D., Well-defined polymers with acetal side chains as reactive scaffolds synthesized by atom transfer radical polymerization, J Polym Sci Part A: Polym Chem, 2006, 44: 5004-5013.
    159 Korzhikov, V. A.; Diederichs, S.; Tennikova, T. B., Water-soluble aldehyde-bearing polymers of 2-deoxy-2-methacrylamido-D-glucose for bone tissue engineering, J Appl Polym Sci, 2008, 108, 2386-2397.
    160 Sokolsky-Papkov, M.; Domb, A. J.; Golenser, J., Impact of aldehyde content on Amphotericin B-Dextran imine conjugate toxicity, Biomacromolecules, 2006, 7: 1529-1535.
    161 Yang, S. K.; Weck, M., Modular covalent multifunctionalization of copolymers, Macromolecules, 2008, 41: 346-351.
    162 Sun, Z. C.; Wei, Z.; Wei, K. M., Preparation of aldehyde-, amino-, and hydrazide-functionalized polymer particles for direct immobilization of the sugars, J Appl Polym Sci, 2009, 114: 2937-2945.
    163 Zou, Y.; Brooks, D. E.; Kizhakkedathu, J. N. et al., Nonbiofouling polymer brush with latent aldehyde functionality as a template for protein micropatterning, Biomacromolecules, 2010, 11: 284-293.
    164 Wiss, K. T.; Kessler, D.; Theato, P. et al., Versatile responsive surfaces via hybrid polymers containing acetal side groups, Macromol Chem Phys, 2009, 210: 1201-1209.
    165 Chamow, S. M.; Kogant, T. P.; Venuti, M. et al., Modification of CD4 immunoadhesin with monomethoxypoly(ethy1ene glycol) aldehyde via reductive alkylation, Bioconjugate Chem, 1994, 5: 133-140.
    166 Shao, H.; Crnogorac, M. M.; Kochendoerfer, G. G. et al. Site-specific polymer attachment to a CCL-5 (RANTES) analogue by oxime exchange, J Am Chem Soc, 2005, 127: 1350-1351.
    167 Kayastha, A. M.; Srivastava, P. K.; Slomkowski, S. et al., Unique activity of Ureases immobilized on poly(styrene-co-acrolein) microspheres, J Bioact Compat Polym, 2003, 18: 113-124.
    168 Varlan, A. R.; Sansen, W.; Loey, A. V. et al., Covalent enzyme immobilization on paramagnetic polyacrolein beads, Biosens Bioelectron, 1996, 11: 443-448.
    169 Timofeev, E. N.; Kochetkova, S. V.; Florentiev, V. L. et al., Regioselective immobilization of short oligonucleotides to acrylic copolymer gels, Nucleic Acids Res, 1996, 24: 3142-3148.
    170 Hsu, M. H.; Josephrajan, T.; Hwu, J. R. et al., Novel arylhydrazone-conjugated gold nanoparticles with DNA-cleaving ability: The first DNA-nicking nanomaterial, Bioconjugate Chem, 2007, 18: 1709-1712.
    171 Christman, K. L.; Maynard, H. D., Protein micropatterns using a pH-responsive polymer and light, Langmuir, 2005, 21: 8389-8393.
    172 Christman, K. L.; Requa, M. V.; Maynard, H. D. et al., Submicron Streptavidin patterns for protein assembly, Langmuir, 2006, 22: 7444-7450.
    1 Gupta, A. K.; Gupta, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications Biomaterials, 2005, 26: 3995-4021.
    2 Huber, D. L., Synthesis, properties, and applications of iron nanoparticles. Small, 2005, 1: 482-501.
    3 Lu, A. H.; Salabas, E. L.; Schüth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed, 2007, 46: 1222-1244.
    4 Horak, D.; Babic, M.; Mackova, H. et al., Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. J Sep Sci, 2007, 30: 1751-1772.
    5 Laurent, S.; Forge, D.; Port, M. et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev, 2008, 108: 2064-2110.
    6 Zajac, R.; Chakrabarti, A., Irreversible polymer adsorption from semidilute and moderately dense solutions. Phys Rev E, 1995, 52: 6536-6549.
    7 Lyatskaya, Y.; Balazs, A. C., Modeling the phase behavior of polymer?clay composites. Macromolecules, 1998, 31: 6676-6680.
    8 Edmondson, S.; Osborne, V. L.; Huck, W. T. S., Polymer brushes via surface-initiated polymerizations. Chem Soc Rev, 2004, 33: 14-22.
    9 Radhakrishnan, B.; Ranjan, R.; Brittain, W. J., Surface initiated polymerizations from silica nanoparticles. Soft Matter, 2006, 2: 386-396.
    10 Hawker, C. J.; Bosman, A. W.; Harth, E., New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev, 2001, 101: 3661-3688.
    11 Matyjaszewski, K.; Xia, J., Atom transfer radical polymerization. Chem Rev, 2001, 101: 2921-2990.
    12 Kamigaito, M.; Ando, T.; Sawamoto, M., Metal-catalyzed living radical polymerization. Chem Rev, 2001, 101: 3689-3745.
    13 Moad, G.; Rizzardo, E.; Thang, S. H., Living radical polymerization by the RAFT process. Aust J Chem, 2005, 58: 379-410.
    14 Vestal, C. R.; Zhang, Z. J., Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/Polystyrene core/shell nanoparticles. J Am Chem Soc, 2002, 124: 14312-14313.
    15 Matsuno, R.; Yamamoto, K.; Otsuka, H. et al., Polystyrene-grafted magnetite nanoparticles prepared through surface-initiated nitroxyl-mediated radical polymerization. Chem Mater, 2003, 15: 3-5.
    16 Binder, W. H.; Gloger,D.; Weinstabl, H. et al., Telechelic poly(N-isopropylacrylamides) via nitroxide-mediated controlled polymerization and“Click”chemistry: livingness and“Grafting-from”methodology. Macromolecules, 2007, 40: 3097-3107.
    17 Wang, Y.; Teng, X.; Wang, J. S. et al., Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene core-shell nanoparticles. Nano Lett, 2003, 3: 789-793.
    18 Lattuada, M.; Hatton, T. A., Functionalization of monodisperse magnetic nanoparticles. Langmuir, 2007, 23: 2158-2168.
    19 Fan, Q. L.; Neoh, K. G.; Kang, E. T. et al., Solvent-free atom transfer radicalpolymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: Synthesis, characterization and cellular uptake. Biomaterials, 2007, 28: 5426-5436.
    20 Frimpong, R. A.; Hilt, J. Z.,Poly (N-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization. Nanotechnology, 2008, 19: 175101-175107.
    21 Skaff, H.; Emrick, T., Reversible addition fragmentation chain transfer (RAFT) polymerization from unprotected Cadmium Selenide nanoparticles. Angew Chem Int Ed, 2004, 43: 5383-5386.
    22 Feng, M.; Chen, Y.; He, N. et al., Ultrasound-assisted bulk Synthesis of CdS-PVK nanocomposites via RAFT polymerization. J Polym Sci Part A: Polym Chem, 2008, 46: 5702-5707.
    23 Raula, J.; Shan, J.; Nuopponen, M.; Tenhu, H. et al., Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible addition-fragmentation chain-transfer polymerization. Langmuir, 2003, 19: 3499-3504.
    24 Tsujii, Y.; Ejaz, M.; Fukuda, T. et al., Mechanism and kinetics of RAFT-mediated graft polymerization of styrene on a solid surface. 1. Experimental evidence of surface radical migration. Macromolecules, 2001, 34: 8872-8878.
    25 Li, C.; Benicewicz, B. C., Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization. Macromolecules, 2005, 38: 5929-5936.
    26 Liu, C. H.; Pan, C. Y., Grafting polystyrene onto silica nanoparticles via RAFT polymerization. Polymer, 2007, 48: 3679-3685.
    27 Yang, Y.; Yang, Z.; Xie, X., Immobilization of RAFT agents on silica nanoparticles utilizing an alternative functional group and subsequent surface-initiated RAFT polymerization. J Polym Sci Part A: Polym Chem, 2009, 47: 467-484.
    28 Hojjati, B.; Sui, R.; Charpentier, P. A., Synthesis of TiO2/PAA nanocomposite by RAFT polymerization. Polymer 2007, 48: 5850-5858.
    29 Hojjati, B.; Charpentier, P. A., Synthesis and kinetics of graft polymerization of methyl methacrylate from the RAFT coordinated surface of nano-TiO2. J Polym Sci Part A: Polym Chem, 2008, 46: 3926-3937.
    30 Wang, W. C.; Neoh, K. G.; Kang, E. T., Surface functionalization of Fe3O4 magnetic nanoparticles via RAFT-mediated graft polymerization. MacromolRapid Commun, 2006, 27: 1665-1669.
    31 Yu, S.; Chow, G. M., Carboxyl group (–CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J Mater Chem, 2004, 14: 2781-2786.
    32 Xu, C.; Xu, K.; Xu, B. et al., Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc, 2004, 126: 9938-9939.
    33 Huang, J.; Han, B.; Yan, H. et al., Magnetic polymer microspheres with polymer brushes and the immobilization of protein on the brushes. J Mater Chem, 2007, 17: 3812-3818.
    34 Slomkowski, S.; Basinska, T.; Miksa, B., New types of microspheres and microsphere-related materials for medical diagnostics. Polym Adv Technol, 2002, 13: 906-918.
    35 Xiao, N. Y.; Liang, H.; Lu, J. et al., A well-defined novel aldehyde-functionalized glycopolymer: synthesis, micelle formation, and its protein immobilization. Macromolecules, 2008, 41: 2374-2380.
    36 Rossi, N. A. A.; Zou, Y.; Kizhakkedathu, J. N. et al., RAFT Synthesis of acrylic copolymers containing poly (ethylene glycol) and dioxolane functional groups: toward well-defined aldehyde containing copolymers for bioconjugation. Macromolecules, 2008, 41: 5272-5282.
    37 Bhattacharya, S.; Eckert, F.; Pich, A. et al., Temperature-, pH-, and magnetic-field-sensitive hybrid microgels. Small, 2007, 3: 650-657.
    38 Cai, J.; Guo, J.; Fu, S. et al., Preparation and characterization of multi-responsive polymer composite microspheres with core–shell structure. Colloid Polym Sci, 2007, 285: 1607-1615.
    39 Isojima, T.; Lattuada, M.; Hatton, T. A. et al., Reversibleclustering of pH- and temperature-responsive Janus magnetic nanoparticles. Acs Nano, 2008, 2: 1799-1806.
    40 Sun, Y.; Ding, X.; Peng, Y. et al., Magnetic separation of polymer hybrid iron oxide nanoparticles triggered by temperature. Chem Commun, 2006, 2765-2767.
    41 Zhang, J. L.; Srivastava, R. S.; Misra, R. D. K., Core-shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug-targeting delivery system. Langmuir, 2007, 23: 6342-6351.
    42 Palma, R. D.; Peeters, S.; Maes, G. et al., Silane ligand exchange to makehydrophobic superparamagnetic nanoparticles water-dispersible. Chem Mater, 2007, 19: 1821-1831.
    43 Lai, J. T.; Filla, D.; Shea, R., Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules, 2002, 35: 6754-6756.
    44 Sun, S.; Zeng, H.; Li, G. et al., Monodisperse MFe2O4 (M= Fe, Co, Mn) nanoparticles. J Am Chem Soc, 2004, 126: 273-279.
    45 Bradford, M. M. A, Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254.
    46 Convertine, A. J.; Ayres, N.; McCormick, C. L. et al., Facile, controlled, room-temperature RAFT polymerization of N-Isopropylacrylamide. Biomacromolecules, 2004, 5: 1177-1180.
    47 Lu, L.; Yang, N.; Cai, Y., Well-controlled reversible addition–fragmentation chain transfer radical polymerisation under ultraviolet radiation at ambient temperature. Chem Commun, 2005, 5287-5288.
    48 Cheng, C.; Sun, G.; Wooley, K. L. et al., Well-defined vinyl ketone-based polymers by reversible addition?fragmentation chain rransfer polymerization. J Am Chem Soc, 2007, 129: 10086-10087.
    49 Schild, H. G., Poly (N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci, 1992, 17: 163-249.
    50 Plummer, R.; Hill, D. J. T.; Whittaker, A. K., Solution Properties of Star and Linear Poly (N-isopropylacrylamide). Macromolecules, 2006, 39: 8379-8388.
    51 Schilli, C. M.; Müller, A. H. E.; Rizzardo, E. et al., RAFT polymers: novel precursors for polymer-protein conjugates. ACS Symp Ser, 2003, 854: 603-618.
    52 Nedelcheva, A. N.; Vladimirov, N. G.; Berlinova, I. V. et al., Associative block copolymers comprising poly(N-isopropylacrylamide) and poly(ethylene oxide) end-functionalized with a fluorophilic or dydrophilic group. Synthesis and aqueous solution properties. J Polym Sci Part A: Polym Chem, 2004, 42: 5736-5744.
    53 Xia, Y.; Burke, N. A. D.; Stver, H. D. H., End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules, 2006, 39: 2275-2283.
    54 Slomkowski, S., Polyacrolein containing microspheres: synthesis, properties and possible medical application. Prog Polym Sci, 1998, 23: 815-874.
    1. Discher, D. E.; Eisenberg, A., Polymer vesicles, Science, 2002, 297: 967-973.
    2. Antonietti, M.; Forster, S., Vesicles and liposomers: A self-assembly principle beyond lipids, Adv Mater, 2003, 15: 1323-1333.
    3. Riess, G., Micellization of block copolymers, Prog Polym Sci, 2003, 28:1107-1170.
    4. Pochan, D. J.; Z Chen, Z.; Wooley, K. L., et al., Toroidal triblock copolymer assemblies, Science, 2004, 306: 94-97.
    5. Yerushalmi, R.; Van der Boom, M. E.; Kraatz, H. B. et al., Stimuli responsive materials: new avenues and toward smart organic devices, J Mater Chem, 2005, 15: 4480-4487.
    6. Gil, E. S.; Hudson, S. M., Stimuli-reponsive polymers and their bioconjugates, Prog Polym Sci, 2004, 29: 1173–1222.
    7. Rapoport, N., Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery, Prog Polym Sci, 2007, 32: 962–990.
    8. Meng, F.; Zhong, Z.; Feijen, J., Stimuli-responsive polymersomes for programmed drug, Biomacromolecules, 2009, 10: 197-209.
    9. Bae, Y.; Harada, A.; Kataoka, K. et al., Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change, Angew Chem Int Ed, 2003, 42: 4640 -4643.
    10. Zhang, J.; Jiang, X.; Liu, S. et al., Facile fabrication of reversible core cross-linked micelles possessing thermosensitive swellability, Macromolecules, 2007, 40: 9125-9132
    11. Zhao, Y., Photocontrollable block copolymer micelles: what can we control, J Mater Chem, 2009, 19: 4887–4895.
    12. Ma, Y. J.; Dong, W. F.; Vancso, G. J. et al., Redox-controlled molecular permeability of composite-wall microcapsules, Nat Mater, 2006, 5: 724-729.
    13. Power-Billard, K. N.; Spontak, R. J.; Manners, I., Redox-Active organometallic vesicles: Aqueous self-assembly of a diblock copolymer with a hydrophilic polyferrocenylsilane polyelectrolyte block, Angew Chem Int Ed, 2004, 43: 1260 -1264.
    14. Wang, X. S.; Winnik, M. A.; Manners, I., Swellable, redox-active shell-crosslinked organometallic nanotubes, Angew Chem Int Ed, 2004, 43: 3703 -3707.
    15. Rider, D. A.; Winnik, M.; Manners, I., Redox-controlled micellization of organometallic block copolymers, Chem Commun, 2007, 4483-4485.
    16. Hempenius, M. A.; Cirmi, C.; Vancso, G. J. et al., Synthesis of poly(ferrocenylsilane) polyelectrolyte hydrogels with redox controlled swelling, Macromolecules, 2009, 42: 2324-2326.
    17. Slomkowski, S. Polyacrolein containing microspheres: synthesis, properties and possible medical application, Prog Polym Sci, 1998, 23: 815-874.
    18. Salo, H.; Virta, P.; Lonnberg, H. et al., Aminooxy functionalized oligonucleotides: Preparation, on-support derivatization, and postsynthetic attachment to polymer support, Bioconjugate Chem, 1999, 10: 815-823.
    19. Sokolsky-Papkov, M.; Domb, A. J.; Golenser, J., Impact of aldehyde content on Amphotericin B-Dextran imine conjugate toxicity, Biomacromolecules, 2006, 7: 1529-1535.
    20. Lemieux, G. A.; Bertozzi, C. R., Chemoselective ligation reactions with proteins, oligosaccharides and cells, Trends Biotechnol, 1998, 16: 506-513.
    21. Xiao, N. Y.; Liang, H.; Lu, J.; et al. A well-defined novel aldehyde-functionalized glycopolymer: synthesis, micelle formation, and its protein immobilization, Macromolecules, 2008, 41: 2374-2380.
    22. Heredia, K. L.; Tolstyka, Z. P.; Maynard, H. D., Aminooxy end-functionalized polymers synthesized by ATRP for chemoselective conjugation to proteins, Macromolecules, 2007, 40: 4772-4779.
    23. Kopping, J. T.; Tolstyka, Z. P.; Maynard, H. D., Telechelic aminooxy polystyrene Synthesized by ATRP and ATR coupling, Macromolecules, 2007, 40: 8593-8599.
    24. Heredia, K. L.; Maynard, H. D., Synthesis of protein-polymer conjugates, Org Biomol Chem, 2007, 5: 45-53.
    25. Harris, J. M.; Chess, R. B., Effect of PEGylation on pharmaceuticals, Nat Rev Drug Discovery, 2003, 2: 214-221.
    26. Pack, D. W.; Hoffman, A. S.; Pun, S. et al., Design and development of polymers for gene delivery, Nat Rev Drug Discovery, 2005, 4: 581-593.
    27. Boyer, C.; Bulmus, V.; Davis, T. P. et al., Bioapplications of RAFT polymerization, Chem Rev, 2009, 109: 5402-5436.
    28. Sun, G.; Fang, H.; Wooley, K. L. et al., Benzaldehyde-functionalized polymer vesicles, Acs Nano, 2009, 3: 673-681.
    29. Xu, X.; Smith, A. E.; McCormick, C. L. et al., Aqueous RAFT synthesis of pH-responsive triblock copolymer mPEO-PAPMA-PDPAEMA and formation of shell cross-linked micelles, Macromolecules, 2008, 41: 8429-8435.
    30. Zhu, J. L.; Zhang, X. Z.; Zhuo, R. X. et al., Novel polycationic micelles for drug delivery and gene transfer, J Mater Chem, 2008, 18: 4433-4441.
    31. Shi, M.; Liang, H.; Lu, J. et al, Reversible addition-fragmentation transfer polymerization of a novel monomer containing both aldehyde and ferrocenefunctional groups, Macromolecules, 2007, 40, 1891-1896.
    32. Gibbs, J. M.; Park, S. J.; Nguyen, S. T. et al., Polymer-DNA hybrids as electrochemical probes for the detection of DNA, J Am Chem Soc, 2005, 127: 1170-1178.
    33. Baldoli, C.; Oldani, C.; Licandro, E. et al., Ferrocene derivatives supported on poly(N-vinylpyrrolidin-2-one) (PVP): Synthesis of new water-soluble electrochemically active probes for biomolecules, J Organomet Chem, 2007, 692: 1363-1371.
    34. Tranchant, I.; Herve, A. C.; Hailes, H. C. et al., Design and synthesis of ferrocene probe molecules for detection by electrochemical methods, Bioconjugate Chem, 2006, 17: 1256-1264.
    35. Casas-Solvas J. M.; Santoyo-Gonzalez, F.; Vargas-Berenguel, A. et al., Ferrocene-carbohydrate conjugates as electrochemical probes for molecular recognition studies, Chem Eur J, 2009, 15: 710-725.
    36. Floch F. L.; Ho, H. A.; Leclerc M. et al., Ferrocene-functionalized cationic polythiophene for the label-free electrochemical detection of DNA, Adv Mater, 2005, 17: 1251-1254.
    37. Hwang, J.; Li, R. C.; Maynard, H. D., Well-defined polymers with activated ester and protected aldehyde side chains for bio-functionalization, J Control Release, 2007, 122: 279-286.
    38. Li, R. C.; Broyer, R. M.; Maynard, H. D., Well-defined polymers with acetal side chains as reactive scaffolds synthesized by atom transfer radical polymerization, J Polym Sci Part A: Polym Chem, 2006, 44: 5004-5013.
    39. Taubmann, C.; Luxenhofer, R.; Jordan, R. et al., First aldehyde-functionalized poly(2-oxazoline)s for chemoselective ligation, Macromol Biosci, 2005, 5: 603-612.
    1 Hadjichristidisa, N.; Iatroua, H.; Pitsikalisa, M. et al., Macromolecular architectures by living and controlled/living polymerizations, Prog Polym Sci, 2006, 31: 1068–1132.
    2 Blencowe, A.; Tan, J. F.; Qiao, G. G. et al., Core cross-linked star polymers via controlled radical polymerization, Polymer, 2009, 50: 5–32.
    3 Tselikas, Y.; Hadjichristidis, N.; Lescanec, R. L.; et al., Architecturally-Induced tricontinuous cubic morphology in compositionally symmetric miktoarm starblock copolymers, Macromolecules, 1996, 29: 3390-3396.
    4 Kanaoka, S.; Sawamoto, M.; Higashimura, T., Star-shaped polymers by living cationic polymerization. 1. Synthesis of star-shaped polymers of alkyl vinyl ethers, Macromolecules, 1991, 24: 2309-2313.
    5 Bazan, G. C.; Schrock, R. R., Synthesis of star block copolymers by controlled ring-opening metathesis polymerization, Macromolecules, 1991, 24: 817-823.
    6 Webster, O. W., The discovery and commercialization of group transfer Polymerization, J Polym Sci Part A: Polym Chem, 2000, 38: 2855-2860.
    7 Baek, K. Y.; Kamigaito, M.; Sawamoto, M., Core-functionalized star polymers by transition metal-catalyzed living radical polymerization. 1. Synthesis and characterization of star polymers with PMMA arms and amide cores, Macromolecules, 2001, 34: 7629-7635.
    8 Hawker, C. J.; Bosman, A. W.; Harth, E., New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 2001, 101: 3661-3688.
    9 Gao, H.; Matyjaszewski, K., Arm-first method as a simple and general method for synthesis of miktoarm star copolymers, J Am Chem Soc, 2007, 129: 11828-11834.
    10 Zheng, G.; Pan, C. Preparation of star polymers based on polystyrene or poly(styrene-b-N-isopropyl acrylamide) and divinylbenzene via reversible addition-fragmentation chain transfer polymerization, Polymer, 2005, 46: 2802–2810.
    11 Wiltshire, J. T.; Qiao, G. G., Degradable star polymers with high‘‘click’’functionality, J Polym Sci Part A: Polym Chem, 2009, 47: 1485-1498.
    12 Kanaoka, S.; Sawamoto, M.; Higashimura, T., Star-shaped polymers by living cationic polymerization. 5. Core-functionalized amphiphilic star-shaped polymers of vinyl ethers with hydroxyl groups: synthesis and host-guest interaction, Macromolecules, 1993, 26: 254–259.
    13 Bake, K.; Kamigaito, M.; Sawamoto, M., Core-Functionalized star polymers by transition metal-catalyzed living radical polymerization. 2. Selective interaction with protic guests via core functionalities, Macromolecules, 2002, 35: 1493-1498.
    14 Bosman, A. W.; Frechet, J. M. J.; Hawker, C. J. et al., A modular approach toward functionalized three-dimensional macromolecules: From synthetic concepts to practical applications, J Am Chem Soc, 2003, 125: 715-728.
    15 Zhang, L.; Chen, Y., Allyl functionalized telechelic linear polymer and star polymer via RAFT polymerization, Polymer, 2006, 47: 5259–5266.
    16 Durmaz, H.; Tunca, U.; Hizal, G. et al., Preparation of ABC miktoarm star terpolymer containing poly (ethylene glycol), polystyrene, and poly(tert-butylacrylate) arms by combining Diels–Alder reaction, atom transfer radical, and stable free radical polymerization routes, J Polym Sci Part A: Polym Chem, 2006, 44: 499-509.
    17 Durmaz, H.; Demirel, A. L.; Hizal, G. et al., Multiarm star triblock terpolymers via sequential double click reactions, J Polym Sci Part A: Polym Chem, 2010, 48:1557-1564.
    18 Dag, A.; Tunca, U.; Hizal, G. et al., Multiarm star block copolymers via Diels-Alder click reaction, J Polym Sci Part A: Polym Chem, 2009, 47: 178-187.
    19 Durmaz, H.; Hizal, G.; Tunca, U. et al., Multiarm star block and multiarm star mixed-block copolymers via azide-alkyne click reaction, J Polym Sci Part A: Polym Chem, 2010, 48: 99-108.
    20 Gungor, E.; Hizal, G.; Tunca, U. et al., Heteroarm H-shaped terpolymers through click reaction, J Polym Sci Part A: Polym Chem, 2007, 45: 1055-1065
    21 Xu, J.; Lowe, A. B.; Davis, T. P. et al., Combining thio-bromo“click”chemistry and RAFT polymerization: A powerful tool for preparing functionalized multiblock and hyperbranched polymers, Macromolecules, 2010, 43: 20–24.
    22 Matyjaszewski,K.; Qin, S.; Sheiko, S. S. et al., Effect of initiation conditions on the uniformity of three-arm star molecular brushes, Mcromolecules, 2003, 36: 1843-1849.
    23 Peng, D.; Feng, C.; Huang, X. et al., A starlike amphiphilic graft copolymer with hydrophilic poly(acrylic acid) backbones and hydrophobic polystyrene side chains, J Polym Sci Part A: Polym Chem, 2007, 45: 3687-3697.
    24 Schappacher, M.; Deffieux, A., AFM image analysis applied to the investigation of elementary reactions in the synthesis of comb star copolymers, Macromolecules, 2005, 38: 4942-4946.
    25 Li, P.; Li, Z.; Huang, J., Water-soluble star brush copolymer with four arms composed of poly(ethylene oxide) as backbone and poly(acrylic Acid) as side chains, Macromolecules, 2007, 40: 491-498.
    26 Li, P.; Li, Z.; Huang, J., Preparation of star copolymers with three arms of poly (ethylene oxide-coglycidol)-graft-polystyrene and investigation of their aggregation in water, Polymer, 2007, 48: 1557-1566.
    27 Kaneko, H.; Kojoh, S. I.; Kashiwa, N. et al., Syntheses of graft and star copolymers possessing polyolefin branches by using polyolefin macromonomer, J Polym Sci Part A: Polym Chem, 2005, 43: 5103-5118.
    28 Wiltshire, J. T.; Qiao, G. G., Degradable star polymers with high‘‘click’’functionality, J Polym Sci Part A: Polym Chem, 2009, 47: 1485-1498.
    29 Lemieux, G. A.; Bertozzi, C. R., Chemoselective ligation reactions with proteins, oligosaccharides and cells, Trends Biotechnol, 1998, 16: 506-513.
    30 Kovacs, E. W.; Hooker, J. M.; Francis, M. B. et al., Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug deliverysystem, Bioconjugate Chem, 2007, 18: 1140-1147.
    31 Chang, M.; Colvin, M.; Rembaum, A., Acrolein and 2-hydroxyethyl methacrylate copolymer microspheres, J Polym Sci Part A: Polym Chem, 1986, 24: 603-606.
    32 Kitano, H.; Yan, C. H.; Ise, N. et al., Direct examination of chemical kinetic laws by visual imagery. IV. Association processes between antigen- and fragmented antibody carrying fluorescent latex particles, Biopolymers, 1989, 28: 693-702.
    33 Slomkowski,S., Polyacrolein containing microspheres: synthesis, properties and possible medical applications, Prog Polym Sci, 1998, 23: 815-874.
    34 Lin, C.; Zhang, Z.; Zhu, X. X. et al., Crosslinked polyacrolein microspheres with high loading of aldehyde groups for use as scavenger resins in organic synthesis, Macromol Rapid Commun, 2004, 25: 1719-1723.
    35 Iha, R. K.;Wooley, K. L.; Hawker, C. J. et al., Applications of orthogonal“click”chemistries in the synthesis of functional soft materials, Chem Rev, 2009, 109: 5620-5686.
    36 Sumerlin, B. S.; Vogt, A. P., Macromolecular engineering through click chemistry and other efficient transformations, Macromolecules, 2010, 43: 1-13.
    37 Jackson, A. W.; Fulton, D. A., Dynamic covalent diblock copolymers prepared from RAFT generated aldehyde and alkoxyamine end-functionalized polymers, Macromolecules, 2010, 43: 1069-1075.
    38 Du, J. Z.; Chen, Y. M., Preparation of poly (ethylene oxide) star polymers and poly (ethylene oxide)-polystyrene heteroarm star polymers by atom transfer radical polymerization, J Polym Sci Part A: Polym Chem, 2004, 42: 2263-2271.
    39 Mai, Y.; Zhou, Y.; Yan, D., Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether, Macromolecules, 2005, 38: 8679-8686.
    1 Pack, D. W.; Hoffman, A. S.; Pun, S. et al., Design and development of polymers for gene delivery, Nat Rev Drug Discovery, 2005, 4: 581-593.
    2 Duncan, R., The dawning era of polymer thrapeutics, Nat Rev Drug Discovery, 2003, 2: 347-360.
    3 Boyer, C.; Bulmus, V.; Davis, T. P. et al., Bioapplications of RAFT polymerization, Chem Rev, 2009, 109: 5402-5436.
    4 Harris, J. M.; Chess, R. B., Effect of PEGylation on pharmaceuticals, Nat Rev Drug Discovery 2003, 2: 214-221.
    5 Bae, Y.; Fukushima, S.; Kataoka, K.; et al., Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change, Angew Chem Int Ed, 2003, 42: 4640-4643.
    6 Xiao, N. Y.; Liang, H.; Lu, J.; et al., A well-defined novel aldehyde-functionalized glycopolymer: synthesis, micelle formation, and its protein immobilization, Macromolecules, 2008, 41: 2374-2380.
    7 Rossi, N. A. A.; Zou, Y.; Kizhakkedathu, J. N.; et al., RAFT Synthesis of acrylic copolymers containing poly (ethylene glycol) and dioxolane functional groups: toward well-defined aldehyde containing copolymers for bioconjugation, Macromolecules, 2008, 41: 5272-5282.
    8 Godwin, A.; Hartenstein, M.; Müller, A. H. E.; et al., Narrow molecular weight distribution precursors for polymer-dug conjugates, Angew Chem Int Ed, 2001,40: 594-4597
    9 Liu, S.; Maheshwari, R.; Kiick, K. L., Polymer-based therapeutics, Macromolecules, 2009, 42: 3-13.
    10 Liu, J.Q.; Bulmus, V.; Davis, T. P.; et al., In situ formation of protein–polymer conjugates through reversible addition fragmentation chain transfer polymerization, Angew Chem Int Ed, 2007, 46: 3099-3103.
    11 Heredia, K. L.; Bontempo, D.; Maynard, H. D.; et al., In Situ preparation of protein-“smart”polymer conjugates with retention of bioactivity, J Am Chem Soc 2005, 127:16955-16960.
    12 Lele, B. S.; Matyjaszewski, K.; Russell, A. J. et al., Synthesis of uniform protein-polymer conjugates, Biomacromolecules, 2005, 6, 3380-3387.
    13 Hawker, C. J.; Bosman, A. W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations, Chem Rev, 2001, 101: 3661-3688.
    14 Matyjaszewski, K.; Xia, J., Atom transfer radical polymerization, Chem Rev, 2001, 101: 2921-2990.
    15 Kamigaito, M.; Ando, T.; Sawamoto, M., Metal-catalyzed living radical polymerization. Chem Rev, 2001, 101: 3689-3745.
    16 Iha, R. K.;Wooley, K. L.; Hawker, C. J. et al., Applications of orthogonal“click”chemistries in the synthesis of functional soft materials, Chem Rev, 2009, 109: 5620–5686.
    17 Slomkowski, S., Polyacrolein containing microspheres: synthesis, properties and possible medical application, Prog Polym Sci, 1998, 23: 815-874.
    18 ao, L.; Mantovani, G.; Haddleton, D. M.; et al.,α-Aldehyde terminally functional methacrylic polymers from living radical polymerization: Application in protein conjugation“Pegylation”, J Am Chem Soc, 2004, 126:13220-13221.
    19 Liu, H.; Jiang,, X.; Liu, S.; et al., Aldehyde surface-functionalized shell cross- linked micelles with pH-tunable core wwellability and their bioconjugation with Lysozyme, Macromolecules, 2007, 40: 9074-9083.
    20 Lemieux, G. A.; Bertozzi, C. R., Chemoselective ligation reactions with proteins, oligosaccharides and cells, Trends Biotechnol, 1998, 16: 506-513.
    21 Li, R. C.; Broyer, R. M.; Maynard, H. D., Well-defined polymers with acetal side chains as reactive scaffolds synthesized by atom transfer radical polymerization, J Polym Sci Part A: Polym Chem, 2006, 44: 5004-5013.
    22 Hwang, J.; Li, R. C.; Maynard, H. D., Well-defined polymers with activated ester and protected aldehyde side chains for bio-functionalization, J Control Release,2007, 122: 279-286.
    23 Shi, M.; Liang, H.; Lu, J.; et al., Reversible addition-fragmentation transfer polymerization of a novel monomer containing both aldehyde and ferrocene functional groups, Macromolecules, 2007, 40: 1891-1896.
    24 Sun, G.; Cheng, C.; Wooley, K. L., Reversible addition fragmentation chain transfer polymerization of 4-vinylbenzaldehyde, Macromolecules, 2007, 40: 793-795.
    25 Sun G.; Fang, H.; Wooley. W. L.; et al., Benzaldehyde-functionalized polymer Vesicles, Acs Nano, 2009, 3: 673-681.
    26 Bailey, W. J.; Ni, Z. Wu, S. R., Free radical ring-opening polymerization of 4, 7- dimethyl-2-methylene-1,3-dioxepe and 5,6-Benzo-2-methylen1e,-3-dioxepanel, Macromolecules, 1982, 15: 711-714.
    27 Wei, Y.; Connors, E. J.; Jia, X.; et al., First example of free radical ring-opening polymerization with some characteristics of a living polymerization, Chem Mater, 1996, 8: 604-606.
    28 Wei, Y.; Connors, E. J.; Jia, X.; et al., Controlled free radical ring-opening polymerization and chain extension of the‘‘living’’polymer, J Polym Sci Part A: Polym Chem, 1998, 36: 761-771.
    29 Yuan, J. Y.; Pan, C. Y.; Tang, B. Z.,“Living”free radical ring-opening polymerization of 5,6-benzo-2-methylene-1,3-dioxepane using the atom transfer radical polymerization method, Macromolecules, 2001, 34: 211-214.
    30 Yuan, J. Y.; Pan, C. Y., Block copolymerization of 5,6-benzo-2-methylene-1,3- dioxepane with conventional vinyl monomers by ATRP method, Eur Polymer J, 2002, 38: 1565-1571.
    31 Wickel, H.; Agarwal S.; Greiner, A., Homopolymers and random copolymers of 5,6-benzo-2-methylene-1,3-dioxepane and methyl methacrylate: structural characterization using 1D and 2D NMR, Macromolecules, 2003, 36: 2397-2403.
    32 Wickel, H.; Agarwal S., Synthesis and characterization of copolymers of 5,6- benzo-2-methylene-1,3-dioxepane and styrene, Macromolecules, 2003, 36: 6152-6159.
    33 Ren, L.; Agarwal, S., Synthesis, characterization, and properties evaluation of Poly [(N-isopropylacrylamide)-co-ester]s, Macromol Chem Phys, 2007, 208: 245-253.
    34 Lutz, J. F.; Andrieu, J.; Agarwal, S. et al., Biocompatible, thermoresponsive, and biodegradable: Simple preparation of“All-in-One”biorelevant polymers, Macromolecules, 2007, 40: 8540-8543.
    35 He, T.; Zou, Y. F.; Pan, C. Y., Controlled/‘‘living’’radical ring-opening polymerization of 5,6-benzo-2-methylene-1,3-dioxepane based on reversible addition-fragmentation chain transfer mechanism, Polymer J, 2002, 34: 138-143.
    36 Bigot, Y. L.; Delmas, M.; Gaset, A., A Simplified wittig synthesis using solid/liquid transfer processes IV - Synthesis of symmetrical and asymmetrical mono-and di-olefins from terephtalic aldehyde, Synth Commun, 1983, 13: 177-182.
    37 Offord, R. E.; Gaertner, H. F.; Proudfoot, A. E. I.; et al., Synthesis and evaluation of fluorescent chemokines labeled at the amino terminal, Methods in Enzym, 1997, 287: 348-369.
    38 Smith, D. D.; Clark, S. H.; Nguyen, S. B. T. et al., Synthesis and in vitro activity of ROMP-based polymer nanoparticles, J Mater Chem, 2009, 19: 2159-2165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700