酰基叠氮单体的合成、聚合反应及其聚合物的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酰基叠氮基团除了具有叠氮基团一样的反应活性外,在加热或紫外光照下,还可以发生Curtius重排,生成异氰酸酯基团。而异氰酸酯基团是一种高反应性官能团,可以和羟基和氨基反应生成胺酯和脲的结构。因此,酰基叠氮化学一直受到人们的广泛关注,在有机合成和有机反应中是一种重要的反应中间体。随着高分子科学的发展,酰基叠氮聚合物的合成及应用研究也引起了高分子科学家的兴趣。然而,由于酰基叠氮基团对热和光的不稳定性,有关酰基叠氮烯类单体通过链式聚合得到主链是碳链、侧基含酰基叠氮聚合物的文献几乎未见报道。因此,发展酰基叠氮烯类单体通过自由基聚合合成酰基叠氮聚合物的方法是一个具有重要意义、又富有挑战性的研究课题。如果能实现酰基叠氮单体的活性自由基聚合,不仅可以获得分子量可控、分子量分布窄的酰基叠氮聚合物,而且可以制备不同结构聚合物,如嵌段、接枝及星形聚合物等。近几年来,本实验室一直致力于新的叠氮和酰基叠氮单体的合成与聚合方法的研究,首次实现了γ-射线辐射引发叠氮单体和酰基叠氮单体的活性自由基聚合,合成了多种不同结构的叠氮和酰基叠氮聚合物。本论文从分子结构与化学活性的关系出发,设计、合成了室温下可以稳定保存的酰基叠氮单体,考察了单体的稳定性,建立了酰基叠氮单体聚合反应的新方法。不仅用γ-射线辐射引发实现了酰基叠氮单体的活性自由基聚合,还进一步建立了室温氧化还原体系引发RAFT聚合体系,并成功用于功能性嵌段酰基叠氮聚合物的合成。同时进行了酰基叠氮聚合物的应用及γ-射线辐射活性自由基聚合反应机理的探索研究。主要内容分为如下五个部分:
     1.设计、合成了一种新的不饱和酯类酰基叠氮单体—甲基丙烯酸-4-酰基叠氮苯酯,通过变温红外光谱研究了其热稳定性。实验结果表明该酰基叠氮单体在室温下非常稳定。在硫化物存在的情况下,以γ-射线辐射引发实现了甲基丙烯酸-4-酰基叠氮苯酯与丙烯酸甲酯共聚合反应,聚合分子量随着单体转化率呈线性增加,而分子量分布在整个聚合过程非常窄,并且随着单体转化增加越来越窄。聚合动力学曲线表明聚合对单体浓度为一级反应过程。聚合研究结果表明该聚合属于可控/活性自由基聚合。通过对聚合反应产物的跟踪检测,发现该单体在室温聚合条件下,酰基叠氮基团没有发生Curtius重排,并且没有与不饱和双键发生环加成副反应。
     2. RAFT聚合因具有适用单体范围较广、无金属添加物污染等诸多优点,因而备受关注。无论从学术研究或工业生产的观点,在室温下进行RAFT聚合无疑具有十分重要的意义,尤其是对于热稳定性低的单体更加重要。我们将传统的氧化还原体系,过氧化苯甲酰与N,N-二甲基苯胺,用于引发丙烯酸甲酯。甲基丙烯酸甲酯和苯乙烯的室温RAFT聚合。实验结果表明,聚合反应具有活性自由基聚合的特征,分子量随着单体转化率呈线性增加,而分子量分布在整个聚合过程非常窄,并且随着单体转化增加越来越窄。聚合动力学曲线表明聚合对单体浓度为一级反应过程。利用活性自由基聚合方法可以合成嵌段共聚物。与文献报道的方法相比,氧化还原引发剂具有廉价易得,易于保存的优点。这对于在科学研究和工业生产中的应用都十分有意义。
     3.结构可控的功能性聚合物纳米粒子的制备成为近期的研究热点之一,特别是尺寸小于20纳米的聚合体纳米粒子在理论和应用上都具有重要的研究价值。我们利用氧化还原引发室温RAFT聚合方法,成功合成了一系列酰基叠氮基团含量不同的两亲性嵌段聚合物:聚环氧乙烷嵌段N-异丙基丙烯酰胺和甲基丙烯酸-4-叠氮羰基苯酯的无规共聚物PEG-b-P(NIPAM-co-AAPMA)。通过两亲性聚合物在水溶液中自组装,制备了一系列交联的聚合物纳米粒子。实验结果表明,酰基叠氮基团作为一种疏水基团和交联剂,在制备交联的聚合物纳米粒子过程中具有重要作用。聚合物纳米粒子的粒径可以通过调节酰基叠氮基团和PNIPAM的含量进行调控,成功地制备出粒径小于20纳米的聚合物粒子。与文献方法相比,整个制备过程在水相中进行,且不需要额外加入小分子交联剂,也不需要光照。只需要通过加热,使得酰基叠氮基团转变成异氰酸酯基团,然后在水溶液中,发生自交联反应。这种便利的合成方法,在制备多官能化的聚合物纳米粒子和聚合物中空纳米球方面将有独到的应用价值。
     4.利用氧化还原引发室温RAFT聚合手段,设计合成了一系列两亲性三嵌段酰基叠氮聚合物,并用于玻璃表面的修饰。通过加热,将两亲性嵌段共聚物中酰基叠氮基团转变成异氰酸酯,使其与玻璃表面的羟基反应,一步法在玻璃表面引入Y-形含氟含醚聚合物。考察了Y-形两亲性聚合物中不同氟含量对材料表面性能的影响。通过静态接触角测试,考察了经过嵌段共聚物修饰的玻璃表面性能。实验结果显示,玻璃表面经过聚合物修饰后,表现出优异的亲水疏油特性,因此具有良好的防雾和抗油性能。
     5.自从我们课题组报道了γ射线引发的活性自由基聚合以来,聚合机理是RAFT聚合还是可逆断裂仍然存在争论。在本论文中,我们利用Monte Carlo分别模拟两种机理。模拟结果表明,RT机理更加符合活性/可控自由基聚合特征,而RAFT机理则在高的吸收剂量率下发生很大偏离。此外,我们设计了γ射线照停实验对聚合反应机理进行了研究。实验的动力学曲线表明,当聚合体系停止辐照,聚合几乎停止。这归因于体系中链自由基立即消失,这可以用RT机理进行解释,因为硫化物C-S断裂需要γ射线提供能量。
In addition to the same activity of azide groups, acyl azide groups could be changed into isocyanate groups by Curtius rearrangement with the heating or under UV light. The isocyanate groups are highly reactive functional groups and can react with hydroxyl and amino groups to form urethane and urea structures, therefore, acyl azide chemistry has been paid much attention in organic synthesis and organic reactions. With the development of polymer science, polymers scientists have shown much interest in the synthesis and application of acyl azide polymer. However, due to the instability of acyl azide monomers to heat and light, we noticed that quite a few papers were published on preparation of polymer by chain polymerization of unsaturated acyl azides as monomers. Therefore, the development of acyl azide polymers synthesized by free radical polymerization of acyl azide monomers is an important and challenging topic. If the living free radical polymerization of acyl azide monomers could be achieved, not only can the molecular weight be controlled with narrow molecular weight distribution, but also a promising strategy can be developed for design and synthesis of the well-defined novel acyl azide polymers with different architectures, such as block, graft, and star shapes. In recent years, our laboratory has been committed to the study of new acyl azide polymers and for the first time we have reported the synthesis of azido polymers via controlled/living free-radical copolymerization of acryl azido monomers under 60Coγ-ray irradiation. According to the relationship between the property and the structures, we have been seeking to find the more stable vinyl acyl azide monomers at room temperature and new polymerization methods for acyl azide monomers. The living radical polymerizations of acyl azide monomers were realized not only byγ-ray irradiation but also established by redox systems at room temperature. With the redox initiator, we designed and synthesized functional acyl azide copolymers and further studied the application. In addition, as an important way to prepare acyl azide polymerizations, the mechanism ofγ-ray irradiated living free radical polymerization was studied. Mainly divided into the following five parts:
     1. A new vinyl acyl azide monomer, 4-(azidocarbonyl) phenyl methacrylate (ACPM), has been synthesized and characterized by NMR and FTIR spectrum. The thermal stability of the new monomer has been investigated by FTIR and TG/DTA (Thermal Gravimetry/Differential Thermal Analysis) and the monomer is demonstrated to be stable below 50°C in solid state. The copolymerizations of the new monomer with methyl acrylate have been carried out at room temperature under 60Coγ-ray irradiation in the presence of benzyl 1H-imidazole-1-carbodithioate (BICDT). The results show that the polymerizations bear all of characteristics of controlled/living free radical polymerizations, such as the molecular weight increases linearly with monomer conversion, molecular weight distribution is narrow (< 1.20), and a linear relationship between ln([M]0/[M]) and polymerization time exists. The data of 1H NMR and FTIR confirmed that no change of the acyl azide groups occurred in the polymerization process and the acyl azide copolymers were obtained. Thermal stability of the polymers has also been investigated by TG/DTA and FTIR.
     2. Reversible Addition-Fragmentation Radical Transfer (RAFT) radical polymerizations of methacrylate (MA), methyl methacrylate (MMA) and styrene (St) were carried out at room temperature in organic media. A traditional redox system, benzoyl peroxide (BPO) and N, N-dimethylaniline (DMA) along with two dithiocarbonate RAFT CTAs, benzyl 1H-imidazole-1-carbodithioate (BICDT) and 2-cyanoprop-2-yl dithiobenzoate (CPDB), were employed. Contrast to the other Controlled/Living Free Radical Polymerizations, this new technique could be conducted at ambient temperature. Moreover, even a very low concentration of the redox used in the polymerization, it has shown a rapid polymerization and a high conversion of the monomer at ambient temperature with narrow polydispersity index.
     3. A novel amphiphilic block copolymers, poly(N-isopropylacrylamide-co-4-(acyl azido) phenyl methacrylate)-block-poly(ethylene oxide), abbreviated as PEO-b-P(NIPAM-co-AAPMA), have been designed and synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization at room temperature. Then self-assembly of the block copolymers has been studied and small cross-linked polymer nanoparticles have been successfully prepared. The units of acyl azido methacrylate play as hydrophobic moieties and crosslinking sites, PEO chains act as stabilizer for the formed particles, and PNIPAM chains make the particles sensitive to temperature. It was found that the size of the polymer particles was related to the unit ratio of NIPAM and AAPAM and by tuning the unit ratio we could easily prepare small cross-linked polymer nanoparticles in aqueous media without using any additional crosslinking agents. The size of polymer nanoparticles was characterized to be about 17 nm by atomic force microscopy (AFM) and transmission electron microscopy (TEM). And the distribution of the particles is very narrow from the Laser light scattering (LLS) characterization.
     4. Different fluorine content of Y-shaped amphiphilic fluorinated copolymers containing acyl azide monomers have been designed and synthesized by using redox initiated RAFT polymerization at room temperature. And with heating it is easy to introduce the copolymers onto the glass surface by the reaction between isocyanate groups and hydroxyl groups. The surface properties of the copolymer thin films were examined by static contact measurements using water and oil (hexadecane). All the water contact angles of the copolymers show better hydro-philic and oleophobic properties. Based on this result, we examined the anti-fog and oil-repellent pro- perties of the copolymer thin films on the glass surfaces. The experiment results show that the block copolymers exhibit simultaneously good anti-fog and oil-repellent properties.
     5. There has been a debate going on about the polymerization mechanism between the reversible addition fragmentation chain transfer (RAFT) mechanism and the reversible termination (RT) mechanism, since theγ-ray irradiated living/controlled radical polymerization in the presence of thiocarbonylthio compounds was reported by our group in 2001. In this paper, Monte Carlo method is first used to simulate the RT and the RAFT mechanisms forγ-Ray initiated living radical polymerization in the presence of thiocarbonylthio compounds based on the difference in source of primary radicals. The simulated results show that the RT mechanism is consistent with the characteristics of living/controlled free radical polymerization while the RAFT mechanism could not fit well especially at high rate of the absorbed dose. Moreover, a facile method, on-off irradiation experiment, was used to make sure the regeneration of the propagating radicals which is also different between the two mechanisms. The polymerizations of MA and BA were conducted respectively by the on-off irradiation experiment, and the evolution of the monomer conversion was tracked by both gravimetry and 1H NMR spectroscopy. All the experimental results show that the rate of the polymerization decreases sharply when taken off the irradiation. This can be attributed to decrease of the propagating radicals and can be explained by the RT mechanism instead of the RAFT because the bond cleavage of the thiocarbonylthio moiety capped polymer chain needs energy from the irradiation.
引文
[1] Szwarc, M.; Levy, M.; Milkovich, R. Nature 1956, 178, 1168-1169.
    [2] Otsu, T.; Yoshida, M.; Macro mol. Rapid Comm. 1982, 3, 127-132.
    [3] Otsu, T.; Yoshida, M.; Tazaki, T. Macro mol. Rapid Comm. 1982, 3,133-140.
    [4] Georges, M. K.; Veregin, R. P. N.; Kazmaier, P.M.; Hamer, G. K. Macro molecules 1993, 26, 2987-2988.
    [5] Keoshkerian, B.; Georges, M. K.; Boils-Boissier, D. Macro molecules 1995, 28, 6381-6382.
    [6] Hawker, C. J.; Bosman, A. W.; Harth, E. Chem. Rev. 2001, 101, 3661-3688.
    [7] Wang, J. S.; Matyjaszewski, K. Macro molecules 1995, 28, 7901-7910.
    [8] Percec, V.; Kim, H. J.; Barboiu, B. Macro molecules 1997, 30, 6702-6705.
    [9] Sawamoto, M.; Kamigaito, M. Trends Polym. Sci. 1996, 4, 371-372.
    [10] Pan, C. Y.; Lou, X. D.; Wang, Y. L.; Wu, C. P. Acta Polymeria Sinica 1998, 3, 311-317.
    [11] Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921-2990.
    [12] WO 9801478 A1 980115 (1998), invs.: Le, T. P. T.; Moad, G.; Rizzardo E.; Thang, S. H. Chem. Abstr. 1998, 128, 115390.
    [13] Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang S. H. Macro molecules 1998, 31, 5559-5562.
    [14] T. Otsu, T. Matsunaga, A. kuriyama, M. Yoshida, Eur. Polym. J. 1989, 25, 643-650.
    [15] Turner, S. R.; Blevins, R. W. Macro molecules 1990, 23, 1856-1859.
    [16] M. Tardi, Lambrinos, P.; Polton, A.; Sigwalt, P. Eur. Polym. J. 1990, 26, 1125-1135.
    [17] Doit, T.; Matsumoto, A.; Otsu, T. J. Polym. Sc.i: Part A: Polym. Chem. 1994, 32, 2241-2249.
    [18] Wang J. S.; Matyjaszewski K.; J. Am. Chem. Soc. 1995, 117, 5614-5615.
    [19] Wang J. S.; Matyjaszewski K.; Macro molecules 1995, 28, 7901-7910.
    [20] Kato M.; Kamigaito M.; Sawamoto M.; Higashimura T.; Macro molecules 1995, 28, 1721-1723.
    [21] WO 9801478 A1 980115 (1998), invs.: Le, T. P. T.; Moad, G.; Rizzardo E.; Thang, S. H. Chem. Abstr. 1998, 128, 115390.
    [22] Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang S. H. Macro molecules 1998, 31, 5559-5562.
    [23] Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y. K.; Moad, G.; Thang, S. H. Macro molecules 1999, 32, 6977-6980.
    [24] Moad, G.; Chiefari, J.; Chong, B. Y. K.; Krstina, J.; Mayadunne, R. T. A.; Postma, A.; Rizzardo, E.; Thang, S. H. Polym. Int. 2000, 49, 993-1001.
    [25] Laus, M.; Papa, R.; Sparnacci, K.; Alberti, A.; Benaglia, M.; Macciantelli, D. Macro molecules 2001, 34, 7269-7275.
    [26] Bai, R. K.; You, Y. Z.; Pan, C. Y. Polym Int, 2000, 49, 898- 902 .
    [27] Chong, Y. K.; Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H. Macro molecules 1999, 32, 2071-2074.
    [28] Rizzardo, E.; Chiefari, J.; Mayadunne, R. T. A.; Moad, G.; Thang, S. H. ACS Sym. Ser. 2000, 768, 278-296.
    [29] Chiefari, J.; Mayadunne, R. T. A.; Moad, C. L.; Moad, G.; Rizzardo, E.; Postma, A.; Skidmore M. A.; Thang, S. H. Macro molecules 2003, 36, 2273-2283.
    [30] Chong, Y. K.; Krstina, J.; Le, T. P. T.; Moad, G.; Postma, A.; Rizzardo, E.; Thang, S. H. Macro molecules 2003, 36, 2256-2272.
    [31] Destarac, M.; Charmot, D.; Franck, X.; Zard, S. Z. Macro mol. Rapid Commun. 2000, 21, 1035-1039.
    [32] Perrier, S.; Barner-Kowollik, C.; Quinn, J. F.; Vana, P.; Davis, T. P. Macro molecules 2002, 35, 8300-8306.
    [33] Barner-Kowollik, C.; Vana, P.; Quinn, J. F.; Davis, T. P. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 1058-1063.
    [34] Barner-Kowollik, C.; Quinn, J. F.; Morsley, D. R.; Davis, T. P. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 1353-1365.
    [35] Barner-Kowollik, C.; Coote, M. L.; Davis, T. P.; Radom, L.; Vana, P. J Polym Sci Part A, Polym Chem 2003, 41, 2828-2832.
    [36] Coote, M. L.; Radom, L. J. Am. Chem. Soc. 2003, 125, 1490-1491.
    [37] Coote, M. L. Macro molecules 2004, 37, 5023-5031.
    [38] Feldermann, A.; Coote, M. L.; Stenzel, M. H.; Davis, T. P.; Barner-Kowollik, C. J. Am. Chem. Soc. 2004, 126, 15915-15916.
    [39] Calitz, F. M.; McLeary, J. B.; McKenzie, J. M.; Tonge, M. P.; Klumperman, B.; Sanderson, R. D. Macro molecules 2003, 36, 9687-9690.
    [40] Kwak, Y.; Goto, A.; Komatsu, K.; Sugiura, Y; Fukuda, T. Macro molecules 2004, 37, 4434-4440.
    [41] Venkatesh, R.; Staal, B. B. P.; Klumperman, B.; Monteiro, M. J. Macro molecules 2004,37, 7906-7917.
    [42] Plummer, R.; Goh, Y. K.; Whittaker, A. K; Monteiro, M. J. Macro molecules 2005, 38, 5352-5355.
    [43] Ladaviere, C.; Dorr, N.; Claverie, J. P. Macro molecules 2001, 34(16), 5370-5372.
    [44] Benicewicz, B. C.; Kanagasabapathy, S.; Sudalai, A. USP 6458968, 2002.
    [45] Oae, S.; Yagihare, T.; Okabe, T. Tetrahedron, 1972, 28, 3203-3205.
    [46] Sudalai, A.; Kanagasabapathy, S.; Benicewicz, B. C. Org. Lett. 2000, 2, 3213-3216.
    [47] Lai, J. T.; Filla, D.; Shea, R. Macro molecules, 2002, 35, 6754-6756.
    [48] Schilli, C.; Lanzendorfer, M. G.; Muller, A. H. E. Macro molecules 2002, 35, 6819-6827.
    [49] Katritzky, A. R.; Marson, C. M.; Faid-Allah, H. Heterocycles 1987, 26, 1657-1669.
    [50] Wang, Y. Q.; Ge, Z. M.; Hou, X. L.; Cheng, T. M.; Li, R. T. Synthesis 2004, 5, 675-678.
    [51] Tamami, B.; Kiasat, A. R. J. Chem. Research (S) 1998, 454-455.
    [52] Mitsukami, Y.; Donovan, M. S.; Lowe, A. B.; McCormick, C. L. Macro molecules 2001, 34, 2248-2256.
    [53] Thang, S. H.; Chong, B. Y. K.; Mayadunne, R. T. A.; Moad, G.; Rizzardo E. Tetrahedron Lett. 1999, 40, 2435-2438.
    [54] Bai, R. K.; You, Y. Z.; Pan, C. Y. Macro mol. Rapid Commun. 2001, 22, 315-319.
    [55] Hong, C. Y.; You, Y. Z.; Bai, R. K.; Pan, C. Y.; Borjihan, G. J. Polym. Sci. Part A, Polym. Chem. 2001, 39, 3934-3939.
    [56] Bai, R. K.; You Y. Z.; Zhong P.; Pan, C. Y. Macro mol. Chem. Phys. 2001, 202, 1970-1973.
    [57] You, Y. Z.; Bai, R. K.; Pan, C. Y. Macro mol. Chem. Phys. 2001, 202, 1980-1985.
    [58] Quinn, J. F.; Barner, L.; Davis, T. P.; Thang, S. H.; Rizzardo, E. Macro mol. Rapid Commun. 2002, 23, 717-721.
    [59] Griess, P. Philos. Trans. R. Soc. London 1864, 13, 377.
    [60] (a) Curtius, T. Ber. Dtsch. Chem. Ges. 1890, 23, 3023–3033; (b) Curtius, T. J. Prakt. Chem. 1894, 50, 275.
    [61] Tiemann, F. Ber. Dtsch. Chem. Ges. 1891, 24, 4162-4167
    [62] Smith, P. A. S. Org. React. 1946, 3, 337–349.
    [63] Boyer, J. H.; Canter, F. C. Chem. Rev. 1954, 54, 1–57.
    [64] L’Abbé, G. Chem. Rev. 1969, 69, 345–363.
    [65] Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004-2021.
    [66] Fournier, D.; Hoogenboom, R.; Schubert, U. S. Chem. Soc. Rev. 2007, 36, 1369-1380.
    [67] Binder, W. H.; Sachsenhofer, R. Macro mol. Rapid Commun. 2008, 29, 952-981.
    [68] Lundberg, P.; Hawker, C. J.; Hult, A.; Malkoch, M. Macro mol. Rapid Commun. 2008, 29, 998-1015.
    [69] Johnson, J. A.; Finn, M. G.; Koberstein, J. T.; Turro, N. J. Macro mol. Rapid Commun. 2008, 29, 1052-1072.
    [70] Iha, R. K.; Wooley, K. L.; Nystr?m, A. M.; Burke, D. J.; Kade, M. J.; Hawker, C. J. Chem. Rev. 2009, 109, 5620–5686.
    [71] Wiltshire, J. T.; Qiao, G. G. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 1485-1498.
    [72] Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297– 368.
    [73] (a) Pauling, L.; Brockway, L. O. J. Am. Chem. Soc. 1937, 59, 13–20; (b) Brockway, L. O.; Pauling, L. Proc. Natl. Acad. Sci. USA 1933, 19, 860– 867.
    [74] Lowe-Ma, C. K.; Nissan, R. A.; Wilson, W. S. J. Org. Chem. 55 3755-3761
    [75] He, L.; Byun, H. S.; Bittman, R. J. Org. Chem. 65 7627-7633
    [76] Liu, Q. and Tor, Y. Org. Lett 5 2571-2572
    [77] molina, P.; Fresneda, P. M.; Delgado, S. J. Org. Chem. 68 489-499
    [78] Martinez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen, E. N. J. Am. Chem. Soc. 117 5897-5898
    [79] Lee, S. H.; Yoon, J.; Chung, S. H.; Lee, Y. S. Tetrahedron 57 2139-2145
    [80] Tingoli, M.; Tiecco, M.; Chianelli, D.; Balducci, R.; Temperini, A. J. Org. Chem. 56 6809-6813
    [81] Reddy, P. S.; Yadagiri, P.; Lumin, S. et al. Synth. Commun. 18 545-551
    [82] Lee, J. G.; Kwak, K. H. Tetrahedron Lett. 34 3165-3166
    [83] Saad, S. E. Tetrahedron Lett. 37 1351--1352
    [84] Neurmhoffer, H.; Cuny, G.; Franke, W. K. Ann. Chem. 96 713
    [85] Honzl J.; Kudinger J.; zech C. Chem Comm 26 2343
    [86] Yong, K. K.; Kweon, K.; Sung, B. S. Tetrahedron Lett. 27 4749-4752
    [87] Vince, P.; Harold, J. J. Tetrahedron Lett. 28 5091-5092
    [88] Cre mLyn, R. J. W.; Aust. J. Chem. 26 2591
    [89] Lago, J. M.; Arrieta, A.; Palomo, C. Synth. Comm. 13 289-296
    [90] Bandgar, B. and Pandit, S. Tetrahedron Lett. 43 3413-3414
    [91] Luedtke, A. E.; Timberlake, J. W. J. Org. Chem. 50 268-270
    [92] Lemmens, J. M.; Blommerde, W. W. J. M.; Thijs, L.; Zwanenburg, B. J. Org. Chem. 49 2231-2235
    [93] Prakash, G. K. S.; Iyer, P. S.; Arvanaghi, M.; Olah, G. A. J. Org. Chem. 1983,48, 3358-3359
    [94] Viresh, H. R.; Hua, M. Z. Tetrahedron Lett. 36 4947-4950
    [95] Lang, S.; Kennedy, A. R.; Murphy, J. A. and Payne, A. H. Org. Lett. 5 3655-3658
    [96] Nilsson, B. L.; Kiessling, L. L.; Raines, R. T. Org. Lett. 2 1939-1941
    [97] Morimoto, Y.; Matsuda, F.; Shirahama, H. Tetrahedron 1996, 52, 10609 10630
    [98] Reddy, D. S.; Judd, W. R.; Aube, J. Org. Lett. 5 3899-3902
    [99] Rostovtsev, V. V.; Green, L. G.; Fokin V. V. and Sharpless K. B. Angew. Chem. Int. Ed. 41 2596-2599
    [100] Hua, D.; Cheng, K.; Bai, W.; Bai, R.; Lu, W.; Pan, C. Macro molecules 2005, 38, 3051-3053.
    [101] Bergmeier, S. C. and Stanchina, D. M. J. Org. Chem. 64 2852-2859
    [102] Holzinger, M.; Abraham, J.; Whelan, P.; Graupner, R.; Ley, L.; Hennrich, F.; Kappes M. and Hirsch, A. J. Am. Chem. Soc. 125 8566-8580
    [103] Gaur, B.; Lochab, B.; Choudhary, V.; Varma, I. K. J. Therm. Anal. Calorim. 2003, 71, 467-479.
    [104] Varma, I. K.; Choudhary, V.; Gaur, B.; Lochab, B.; Oberoi, S.; Chauhan, R. J. Appl. Polym. Sci. 2006, 101, 779-786.
    [105] Malagu, K.;, Guérin, P.; Guillemin, J. C. synlett 2002, 2, 316-318.
    [106] Sumerlin, B. S.; Tsarevsky, N. V.; Louche, G.; Lee, R. Y.; Matyjaszewski, K. Macro molecules 2005, 38, 7540-7545.
    [107] Broeckx, W.; Overberg, N.; Samyn, C.; Smets, G.; Labbe, G. Tetrahedron 1971, 27, 3527-3534.
    [108] Anderson, G. T.; Henry, J. R.; Weinreb, S. M. J. Org. Chem. 1991, 56, 6946-6948.
    [109] Yang, C. H.; Shen, H. J.; Wang, R.H.; Wang, J. C. J. Chin. Chem. Soc. 2002, 49, 95-102.
    [110] Hua, D. B.; Bai, W.; Xiao, J. P.; Bai, R. K. Chem. Mater. 2005, 17, 4574-4576.
    [111] Li, G., Zheng, H. and Bai, R. Macro mol. Rapid Commun. 30, 442-447.
    [112] Li, G., Wang, H., Zheng, H. and Bai, R. J. Polym. Sci. Part A: Polym. Chem. 48, 1348-1356.
    [113] Li, G., Wang, H., Zheng, H. and Bai, R. Langmuir 26, 7529-7534.
    [114] Li, G., Zheng, H., Wang, H., Wang Y., Dong Q. and Bai, R. Polymer 51,1940-1946.
    [115] Nishi, N.; Tsunemi, M.; Nakamura, K.; Tokura, S. Makro mol Chem 1991, 192, 1811–1820.
    [116] Nishi, N.; Tsunemi, M.; Hayasaka, H.; Nakamura, K.; Tokura, S. Makro mol Chem 1991, 192, 1789–1798.
    [117] Nishi, N.; Naruse, T.; Hajiwara, K.; Nakajima, B.; Tokura, S. Makro mol Chem 1991, 192, 1799–1809.
    [118] Ambade, A. V.; Kumar, A. J Polym Sci Part A: Polym Chem 2001, 39, 1295–1304.
    [119] Okaniwa, M.; Takeuchi, K.; Asai, M.; Ueda, M. Macro molecules 2002, 35, 6224–6231,
    [120] Okaniwa, M.; Takeuchi, K.; Asai, M.; Ueda, M. Macro molecules 2002, 35, 6232–6238
    [121] Singh, R. P.; Patwa, A. N.; Desai, S. M.; Pandey, J. K.; Solanky, S. S.; Vishwa Prasad, A. J. Appl. Polym. Sci. 2003, 90, 1126-1138.
    [122] Hua, D. B.; Cheng, K.; Bai, W.; Bai, R. K. Macro molecules 2005, 38, 3051-3053.
    [1] (a) Griess, P. Philos Trans R Soc London 1864, 13, 377; (b) Tiemann, F. Ber Dtsch Chem Ges 1891, 24, 4162.
    [2] Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew Chem Int Ed 2005, 44, 5188–5240.
    [3] (a) Scriven, E. F. V.; Turnbull, K. Chem Rev 1988, 88, 297–368; (b) Chemistry and Technology of Isocyanate; Ulrich, H., Ed.; Wiley-Interscience: New York, 1996.
    [4] Nishi, N.; Tsunemi, M.; Nakamura, K.; Tokura, S. Makro mol Chem 1991, 192, 1811–1820.
    [5] Nishi, N.; Tsunemi, M.; Hayasaka, H.; Nakamura, K.; Tokura, S. Makro mol Chem 1991, 192, 1789–1798.
    [6] Nishi, N.; Naruse, T.; Hajiwara, K.; Nakajima, B.; Tokura, S. Makro mol Chem 1991, 192, 1799–1809.
    [7] Ambade, A. V.; Kumar, A. J Polym Sci Part A: Polym Chem 2001, 39, 1295–1304.
    [8] Pan, Y.; Ford, W. T. J Polym Sci Part A: Polym Chem 2000, 38, 1533–1543.
    [9] Spindler, R.; Frechet, J. M. J. Macro molecules 1993, 26, 4809–4813.
    [10] Okaniwa, M.; Takeuchi, K.; Asai, M.; Ueda, M. Macro molecules 2002, 35, 6224–6231, 6232–6238.
    [11] Brochu, S.; Ampleman, G. Macro molecules 1996, 29, 5539–5545.
    [12] Sacristan, J.; Reinecke, H.; Mijangos, C. Polymer 2000, 41, 5577–5582.
    [13] Ruud, C. J.; Jia, J. P.; Baker, G. L. Macro molecules 2000, 33, 8184–8191.
    [14] Nair, J. K.; Satpute, R. S.; Polke, B. G.; Mukundan, T.; Asthana, S. N.; Singh, H. Def Sci J 2002, 52, 147–156.
    [15] Singh, R. P.; Patwa, A. N.; Desai, S. M.; Pandey, J. K.; Solanky, S. S.; Vishwa Prasad, A. J Appl Polym Sci 2003, 90, 1126–1138.
    [16] Hua, D. B.; Bai, W.; Xiao, J. P.; Bai, R. K. Chem Mater 2005, 17, 4574–4576.
    [17] Hua, D. B.; Cheng, K.; Bai, W.; Bai, R. K. Macro molecules 2005, 38, 3051–3053.
    [18] L’Abbe′, G. Belg Chem Ind 1967, 32, 541; Chem Abstr 1967, 67, 116272c.
    [19] Abu-Eittah, R. H.; Mohamed, A. A.; Al-Omar, A. M. Int J Quantum Chem 2006, 106, 863–875.
    [20] Govindan, C. K. Org Process Res Dev 2002, 6, 74–77.
    [21] Hua, D. B.; Bai, R. K.; Lu, W. Q.; Pan, C. Y. J Polym Sci Part A: Polym Chem 2004, 42, 5670–5677.
    [22] Guido, H. J Am Chem Soc 1950, 72, 2299.
    [23] Quinn, J. F.; Rizzardo, E.; Davis, T. P. Chem Commun 2001, 1004–1045.
    [24] Sahu, S. K.; Panda, S. P.; Sadafule, D. S. Polym Degrad Stab 1998, 62, 459.
    [25] Eroglu, M. S.; Guven, O. J Appl Polym Sci 1996, 61, 201. 2616 ZHENG ET AL. Journal
    [1] Hawker, C. J.; Bosman, A. W.; Harth, E. Chem Rev 2001, 101, 3661.
    [2] Matyjaszewski, K.; Xia, J Chem Rev 2001, 101, 2921.
    [3] Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macro molecules 1998, 31, 5559.
    [4] Lowe, A. B. and McCormick, C. L. Prog Polym Sci 2007, 32, 283-351
    [5] Moad, G.; Rizzardo, E.; Thang, S. H. Aust. J Chem 2005, 58, 379.
    [6] Perrier, S.; Takolpuckdee, P. J Polym Sci Part A: Polym Chem 2005, 43, 5347.
    [7] Bai, R. K.; You, Y. Z.; Pan, C. Y. Macro mol Rapid Commun 2001, 22, 315-319.
    [8] You, Y. Z.; Bai, R. K.; Pan, C. Y. Macro mol Chem Phys 2001, 202, 1980-1985.
    [9] Hong, C. Y.; You, Y. Z.; Bai, R. K.; Pan, C. Y.; Borjihan, G. J Polym Sci Part A: Polym. Chem 2001, 39, 3934-3939.
    [10] Bai, R. K.; You, Y. Z.; Zhong, P.; Pan, C. Y. Macro mol Chem Phys 2001, 202, 1970-1973.
    [11] Quinn, J. F.; Barner, L.; Rizzardo, E. Davis, T. P. J. Polym. Sci., Part A: Polym. Chem., 2002, 40: 19- 25.,
    [12] Quinn, J. F.; Barner, L.; Davis, T. P.; Thang, S. H. Rizzardo, E. Macro mol. Rapid Commun., 2002, 23: 717- 721.
    [13] Perrier, S.; Davis, T. P.; Carmichael, A. J.; Haddleton, D. M. Chem Commun 2002, 2226–2227
    [14] Quinn, J. F.; Rizzardo, E.; Davis, T. P. Chem Commun 2001, 1044-1045.
    [15] Convertine, A. J.; Lokitz, B. S; Lowe, A. B.; Scales, C. W.; Myrick, L. J.; McCormick, C. L. Macro mol. Rapid Commun 2005, 26, 791–795
    [16] Convertine, A. J.; Ayres, N.; Scales, C. W.; Lowe, A. B.; McCormick, C. L. Biomacro molecules 2004, 5, 1177-1180
    [17] Senel, S.; Yuruksoy, B. I.; Guven, O. Tr J Chem 1996, 20, 62.
    [18] Hua, D. B.; Bai, R. K.; Lu, W. Q.; Pan, C. Y. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42, 5670–5677.
    [19] Thang, S. H.; Chong, Y. K.; Mayadunne, R. T. A.; Moad, G.; Rizzardo, E. Tetrahedron Lett 1999, 40, 2435-2438.
    [20] Donovan, M. S.; Lowe, A. B.; Sumerlin, B. S.; McCormick, C. L. Macromolecules 2002, 35, 4123.
    [21] Perrier, S.; Barner-Kowollik, C.; Quinn, J. F.; Vana, P.; Davis, T. P. Macro molecules 2002, 35, 8300–8306.
    [22] Chiefari, J.; Mayadunne, R. T. A.; Moad, C. L.; Moad, G.; Rizzardo, E.; Postma, A.; Skidmore, M. A.; Thang, S. H. Macro molecules 2003, 36, 2273–2283.
    [23] Chong, Y. K.; Krstina, J.; Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H. Macro molecules 2003, 36, 2256–2272.
    [24] McLeary, J. B.; Calitz, F. M.; McKenzie, J. M.; Tonge, M. P.; Sanderson, R. D. and Klumperman, B. Macro molecules, 2004, 37, 2383.
    [25] McLeary, J. B.; McKenzie, J. M.; Tonge, M. P.; Sanderson, R. D. and Klumperman, B. Chem. Commun., 2004, 1950-1951.
    [26] Moad, G.; Chiefari, J.; Chong, B. Y. K.; Krstina, J.; Mayadunne, R. T. A.; Postma, A.; Rizzardo, E.; Thang, S. H. Polym Int 2000, 49, 993-1001.
    [1] K. Kataoka, A. Harada and Y. Nagasaki, Adv. Drug Delivery Rev., 2001, 47, 113–131.
    [2] G. Riess, Prog. Polym. Sci., 2003, 28, 1107–1170.
    [3] T. Ishida and M. Haruta, Angew. Chem., Int. Ed., 2007, 46, 7154–7156.
    [4] L. Bromberg, J. Controlled Release, 2008, 128, 99–112.
    [5] J. B. Beck, K. L. Killops, T. Kang, K. Sivanandan, A. Bayles, M. E. Mackay, K. L. Wooley and C. J. Hawker, Macro molecules, 2009, 42, 5629–5635.
    [6] T. A. Croce, S. K. Hamilton, M. L. Chen, H. Muchalski and E. Harth, Macro molecules, 2007, 40, 6028–6031.
    [7] E. Harth, B. Van Horn, V. Y. Lee, D. S. Germack, C. P. Gonzales, R. D. Miller and C. J. Hawker, J. Am. Chem. Soc., 2002, 124, 8653–8660.
    [8] K. Y. van Berkel and C. J. Hawker, J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 1594–1606.
    [9] G. Z. Zhang, A. Z. Niu, S. F. Peng, M. Jiang, Y. F. Tu, M. Li and C. Wu, Acc. Chem. Res., 2001, 34, 249–256.
    [10] K. Landfester, Adv. Mater., 2001, 13, 765–768.
    [11] K. Y. van Berkel, A. M. Piekarski, P. H. Kierstead, E. D. Pressly, P. C. Ray and C. J. Hawker, Macro molecules, 2009, 42, 1425–1427.
    [12] F. L. Chi, Y. N. Guo, J. Liu, Y. L. Liu and Q. S. Huo, J. Phys. Chem. C, 2010,114, 2519–2523.
    [13] F. Cheng, K. K. Zhang, D. Y. Chen, L. Zhu and M. Jiang, Macro molecules, 2009, 42, 7108–7113.
    [14] A. Khanal, Y. Inoue, M. Yada and K. Nakashima, J. Am. Chem. Soc., 2007, 129, 1534–1535.
    [15] M. Antonietti and T. Nestl, Macro mol. Rapid Commun., 1994, 15, 111–116.
    [16] J. Li, L. T. Piehler, D. Qin, J. R. Baker, D. A. Tomalia and D. J. Meier, Langmuir, 2000, 16, 5613–5616.
    [17] A. W. Bosman, H. M. Janssen and E. W. Meijer, Chem. Rev., 1999, 99, 1665–1688.
    [18] D. A. Tomalia, Adv. Mater., 1994, 6, 529–539.
    [19] D. A. Tomalia, Soft Matter, 2010, 6, 456–474.
    [20] J. S. Moore, Acc. Chem. Res., 1997, 30, 402–413.
    [21] J. E. Martin and B. E. Eichinger, Macro molecules, 1983, 16, 1345–1350.
    [22] V. A. Davankov, M. M. Ilyin, M. P. Tsyurupa, G. I. Timofeeva and L. V. Dubrovina, Macro molecules, 1996, 29, 8398–8403.
    [23] J. E. Martin and B. E. Eichinger, Macro molecules, 1983, 16, 1350–1358.
    [24] E. B. Berda, E. J. Foster and E. W. Meijer, Macro molecules, 2010, 43, 1430–1437.
    [25] D. Mecerreyes, V. Lee, C. J. Hawker, J. L. Hedrick, A. Wursch, W. Volksen, T. Magbitang, E. Huang and R. D. Miller, Adv. Mater., 2001, 13, 204–208.
    [26] J. Jiang and S. Thayumanavan, Macro molecules, 2005, 38, 5886–5891.
    [27] A. E. Cherian, F. C. Sun, S. S. Sheiko and G. W. Coates, J. Am. Chem. Soc., 2007, 129, 11350–11351.
    [28] A. R. de Luzuriaga, N. Ormategui, H. J. Grande, I. Odriozola, J. A. Pomposo and I. Loinaz, Macro mol. Rapid Commun., 2008, 29, 1156–1160.
    [29] E. J. Foster, E. B. Berda and E. W. Meijer, J. Am. Chem. Soc., 2009, 131, 6964.
    [30] M. Seo, B. J. Beck, J. M. J. Paulusse, C. J. Hawker and S. Y. Kim, Macro molecules, 2008, 41, 6413–6418.
    [31] E. J. Foster, E. B. Berda and E. W. Meijer, J. Am. Chem. Soc., 2009, 131,6964–6966.
    [32] G. Njikang, G. J. Liu and S. A. Curda, Macro molecules, 2008, 41, 5697–5702.
    [33] J. Pyun, C. B. Tang, T. Kowalewski, J. M. J. Frechet and C. J. Hawker, Macro molecules, 2005, 38, 2674–2685.
    [34] Y. Kim, J. Pyun, J. M. J. Frechet, C. J. Hawker and C. W. Frank, Langmuir, 2005, 21, 10444–10458.
    [35] J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo and S. H. Thang, Macro molecules, 1998, 31, 5559–5562.
    [36] C. J. Hawker, A. W. Bosman and E. Harth, Chem. Rev., 2001, 101, 3661–3688.
    [37] K. Matyjaszewski and J. H. Xia, Chem. Rev., 2001, 101, 2921–2990.
    [38] Y. Z. You and D. Oupicky, Biomacro molecules, 2007, 8, 98–105.
    [39] P. W. Zhu and D. H. Napper, Langmuir, 2000, 16, 8543–8545.
    [40] R. Motokawa, S. Koizumi, T. Hashimoto, M. Annaka and T. Nakahira, Macro molecules, 2010, 43, 752–764.
    [41] M. D. C. Topp, P. J. Dijkstra, H. Talsma and J. Feijen, Macro molecules, 1997, 30, 8518–8520.
    [42] K. Kubota, S. Fujishige and I. Ando, J. Phys. Chem., 1990, 94, 5154–5158.
    [43] Y. Okada and F. Tanaka, Macro molecules, 2005, 38, 4465–4471.
    [44] Y. Ono and T. Shikata, J. Am. Chem. Soc., 2006, 128, 10030–10031.
    [45] W. F. Lee and Y. H. Lin, J. Mater. Sci., 2006, 41, 7333–7340.
    [46] Y. Y. Li, X. Z. Zhang, H. Cheng, G. C. Kim, S. X. Cheng and R. X. Zhuo, Biomacro molecules, 2006, 7, 2956–2960.
    [47] Y. Y. Li, X. Z. Zhang, H. Cheng, J. L. Zhu, S. X. Cheng and R. X. Zhuo, Macro mol. Rapid Commun., 2006, 27, 1913–1919.
    [48] K. B. Thurmond, T. Kowalewski and K. L. Wooley, J. Am. Chem. Soc., 1996, 118, 7239–7240.
    [49] E. S. Read and S. P. Armes, Chem. Commun., 2007, 3021–3035.
    [50] H. T. Zheng, D. B. Hua, R. K. Bai, K. L. Hu, L. J. An and C. Y. Pan, J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 2609–2616.
    [51] E. F. V. Scriven and K. Turnbull, Chem. Rev., 1988, 88, 297–368.
    [52] V. G. Manecke and S. Singer, Makro mol. Chem., 1959, 37, 119–142.
    [53] H. Brandenberger, Helv. Chim. Acta, 1957, 40, 61–68.
    [54] J. T. Lai, D. Filla and R. Shea, Macro molecules, 2002, 35, 6754–6756.
    [55] I. Teraoka, Polymer Solution, Wiley, New York, 2002.
    [56] B. Chu, Laser Light Scattering: Basic Principles and Practice, 2nd edn, Academic, New York, 1991.
    [57] C. Wu and K. Q. Xia, Rev. Sci. Instrum., 1994, 65, 587–590.
    [58] H. T. Zheng, W. Bai, K. L. Hu, R. K. Bai and C. Y. Pan, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 2575–2580.
    [59] K. Kalyanasundaram and J. K. Thomas, J. Am. Chem. Soc., 1977, 99, 2039–2044.
    [60] A. K. Mishra, D. K. Chattopadhyay, B. Sreedhar and K. V. S. N. Raju, Prog. Org. Coat., 2006, 55, 231–243.
    [61] L. Xue-lian, L. Jing-hong and C. Da-jun, Chem. World, 2006, 3. 3
    [62] D. Neradovic, O. Soga, C. F. Van Nostrum and W. E. Hennink, Biomaterials, 2004, 25, 2409–2418.
    [63] W. Xue and I. W. Ha mLey, Polymer, 2002, 43, 3069–3077.
    [64] S. Y. Kim, J. H. Kim, D. Kim, J. H. An, D. S. Lee and S. C. Kim, J. Appl. Polym. Sci., 2001, 82, 2599–2605.
    [1] Dain S. J.; Hoskin A. K.; Winder C.; Dingsdag D. P.; Ophthalmic Physiol. Opt. 1999, 19, 357-361.
    [2] Crebolder J. M.; Sloan R. B.; Appl. Ergonomics 2004, 35, 371-381.
    [3] Margrain T. H.; Owen C.; Ophthalmic Physiol. Opt. 1996, 16, 108-114.
    [4] Oguri K.; Iwataka N.; Tonegawa A.; Hirose Y.; Takayama K.; Nishi Y.; J. Mater. Res. 2001, 16, 553-557.
    [5] Briscoe B. J.; Galvin K. P.; Sol. Energy 1991, 46, 191-197.
    [6] Zhang X. T.; Sato O.; Taguchi M.; Einaga Y.; Murakami T.; Fujishima A.; Chem. Mater. 2005, 17, 696-700.
    [7] Glaeser H. J.;―Glass Science and Technology: Glastechnische Berichte‖, Verlagder Deutschen Glastechnischen Gesellschaft, Frankfurt am Main, Frankfurt, Germany 1997, Vol. 70, p. 146.
    [8] Tsukruk V.; Luzinov I.; Julthongpiput D.; Langmuir 1999. 15, 3029-3032.
    [9] Loy D. Effects, Baugher B.; Baugher C.; Schneider D.; Rahimian K.; Chem. Mater 2000. 12, 3624-3632.
    [10] Petiaud R.; Macro molecules 1999. 32, 4757-4763.
    [11] Douglas A. L.; Baugher B. M.; Baugher C. R.; Schneider D. A.; Rahimian K., Chem. Mater. 2000, 12, 3624-3632.
    [12] Howarter J. A.; Youngblood J. P.; Adv. Mater. 2007, 19, 3838-3843.
    [13] Julthongpiput D.; Lin Y.-H.; Teng J.; Zubarev E. R. and Tsukruk V. V. Langmuir 19 7832-7836
    [1] Hawker, C. J.; Bosman, A. W.; Harth, E. Chem Rev 2001, 101, (12), 3661-3688.
    [2] Matyjaszewski, K.; Xia, J. H. Chem Rev 2001, 101, (9), 2921-2990.
    [3] Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macro molecules 1998, 31, (16), 5559-5562.
    [4] Moad, G.; Rizzardo, E.; Thang, S. H. Aust J Chem 2005, 58, (6), 379-410.
    [5] Perrier, S.; Takolpuckdee, P. J Polym Sci Pol Chem 2005, 43, (22), 5347-5393.
    [6] Moad, G.; Rizzardo, E.; Thang, S. H. Aust J Chem 2009, 62, (11), 1402-1472.
    [7] Liu, J.; Bulmus, V.; Herlambang, D. L.; Barner-Kowollik, C.; Stenzel, M. H.; Davis, T. P. Angew. Chem. Int. Ed. 2007, 46, 3099-3103.
    [8] Bai, R. K.; You, Y. Z.; Pan, C. Y. Macro mol Rapid Comm 2001, 22, (5),315-319.
    [9] Quinn, J. F.; Barner, L.; Rizzardo, E.; Davis, T. P. J Polym Sci Pol Chem 2002, 40, (1), 19-25.
    [10] Quinn, J. F.; Barner, L.; Davis, T. P.; Thang, S. H.; Rizzardo, E. Macro mol Rapid Comm 2002, 23, (12), 717-721.
    [11] Hong, C. Y.; You, Y. Z.; Bai, R. K.; Pan, C. Y.; Borjihan, G. J Polym Sci Pol Chem 2001, 39, (22), 3934-3939.
    [12] He, T.; Zheng, G. H.; Pan, C. Y. Macro molecules 2003, 36, (16), 5960-5966.
    [13] Lovestead, T. M.; Hart-Smith, G.; Davis, T. P.; Stenzel, M. H.; Barner-Kowollik, C. Macro molecules 2007, 40, (12), 4142-4153.
    [14] Tobita, H. Macro mol Theor Simul 2003, 12, (1), 32-41.
    [15] Lu, J. M.; Zhang, H. D.; Yang, Y. L. Makro mol Chem-Theor 1993, 2, (5), 747-760.
    [16] He, J. P.; Li, L.; Yang, Y. L. Macro mol Theor Simul 2000, 9, (8), 463-468.
    [17] Al-Harthi, M.; Soares, J. B. P.; Simon, L. C. Macro mol Theor Simul 2006, 15, (3), 198-214.
    [18] Drache, M.; Schmidt-Naake, G.; Buback, M.; Vana, P. Polymer 2005, 46, (19), 8483-8493.
    [19] Gillespie, D. T. J. Phys. Chem. 1977, 81, (25), 2340-2361.
    [20] Li, L.; Jun-Po, H.; Yu-Liang, Y. Chem J Chinese U 2000 21, (7).
    [21] Hua, D. B.; Bai, R. K.; Lu, W. Q.; Pan, C. Y. J Polym Sci Pol Chem 2004, 42, (22), 5670-5677.
    [22] Rosiak, J. M. Advances in radiation chemistry of polymers; Notre Dame, Indiana, USA, 2003; pp 41-60.
    [23] Zetterlund, P. B.; Perrier, S. dx.doi.org/10.1021/ma102689d 2011.
    [24] Zheng, H. T.; Hua, D. B.; Bai, R. K.; Hu, K. L.; An, L. J.; Pan, C. Y. J Polym Sci Pol Chem 2007, 45, (13), 2609-2616.
    [25] Hua, D. B.; Zhang, J. X.; Bai, R.; Lu, W. Q.; Pan, C. Y. Macro mol Chem Physic 2004, 205, (8), 1125-1130.
    [26] Hua, D. B.; Xiao, J. P.; Bai, R.; Lu, W. Q.; Pan, C. Y. Macro mol Chem Physic2004, 205, (13), 1793-1799.
    [27] Hua, D. B.; Cheng, K.; Bai, W.; Bai, R.; Lu, W. Q.; Pan, C. Y. Macro molecules 2005, 38, (8), 3051-3053.
    [28] Hua, D. B.; Cheng, K.; Bai, R.; Lu, W. Q.; Pan, C. Y. Polym Int 2004, 53, (7), 821-823.
    [29] Bai, W.; Zhang, L.; Bai, R.; Zhang, G. Z. Macro mol Rapid Comm 2008, 29, (7), 562-566.
    [30] Zheng, H. T.; Bai, W.; Hu, K. L.; Bai, R. K.; Pan, C. Y. J Polym Sci Pol Chem 2008, 46, (7), 2575-2580.
    [31] Perrier, S.; Davis, T. P.; Carmichael, A. J.; Haddleton, D. M. Chem Commun 2002, (19), 2226-2227.
    [32] Convertine, A. J.; Ayres, N.; Scales, C. W.; Lowe, A. B.; McCormick, C. L. Biomacro molecules 2004, 5, (4), 1177-1180.
    [33] Bengough, W. I.; Smith, A. C. K. Trans. Faraday Soc. 1958, 54, 1553– 1559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700