酒酒球菌胁迫诱导抗冷冻干燥机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是葡萄酒消费和生产大国,但葡萄酒行业所使用的苹果酸-乳酸发酵剂主要依赖进口,目前没有我国自主知识产权的葡萄酒乳酸菌发酵剂。酒酒球菌SD-2a是一株分离自山东烟台地区自然MLF葡萄酒中的具有优良特性的菌株,已获得国家专利保护(专利号:ZL02123444.2)。深入研究酒酒球菌SD-2a的胁迫诱导抗冷冻干燥机制,开发拥有我国自主知识产权的葡萄酒乳酸菌发酵剂,具有重要的理论和实践意义。
     本文以酒酒球菌SD-2a为研究对象,通过对酒酒球菌不同胁迫处理进行研究,评价菌体胁迫适应性反应能否有效的应用于冷冻干燥发酵剂的制备。研究建立酒酒球菌膜脂肪酸甲酯化方法,分析膜脂肪酸与抗冷冻干燥特性的相关性,从膜脂肪酸水平探讨酒酒球菌胁迫诱导抗冷冻干燥机制。通过优化双向电泳条件,构建酒酒球菌高质量的双向电泳图谱,利用蛋白质组学方法与技术,比较酒酒球菌不同胁迫诱导条件下蛋白质差异表达图谱,利用质谱和生物信息学技术对其中差异表达蛋白质进行鉴定、功能分类和代谢途径分析等,从蛋白质组学水平探讨酒酒球菌胁迫诱导抗冷冻干燥机制。克隆和分析与酒酒球菌抗冷冻干燥特性相关蛋白或酶的基因,通过一系列生物信息学分析,系统探讨酒酒球菌胁迫诱导抗冷冻干燥机制。取得的主要研究结果如下:
     1.菌体不同生长期、冻干保护剂和复水剂是影响酒酒球菌冻干存活率的重要因素。与对数期菌体相比,稳定前期菌体具有较高的冻干存活率;分别以2.5%谷氨酸钠作为冻干保护剂和ATB液体培养基作为复水剂时,获得了最高的冻干存活率(69.5%)。
     2.菌体经适当的胁迫处理后均能不同程度的提高酒酒球菌冻干存活率,其冻干粉接种模拟酒培养基后也具有明显的降酸效果。特别是pH3.5和8%乙醇胁迫处理,其冻干存活率分别为80.5%和82%,与对照相比,分别提高了17.7%和19.2%;其冻干粉在模拟酒培养基中的降酸均在8天内完成,与对照相比,平均降酸效果分别提高了28%和29%。
     3.从GC/MS图谱、脂肪酸种类与相对含量、方法学考察对五种甲酯化方法进行比较分析,方法2(先提脂肪酸后用甲醇钠甲酯化法)和方法4(甲醇钠一步甲酯化法)均可以得到良好的脂肪酸检出效果。方法2检测准确、完整,但费时费力,而方法4检测快速,但完整性稍差。
     4.酒酒球菌经不同胁迫处理后,膜脂肪酸的变化主要体现在U/Scyc比例、环丙烷脂肪酸C19cyc11相对含量和不饱和脂肪酸C18:lcis11相对含量上。相关性分析表明,在所有胁迫处理下,C19cyc11与C18:lcis11相对含量具有显著负相关性;在菌体自我酸胁迫、冷胁迫和酸胁迫处理下,冻干存活率与C19cyc11相对含量均具有显著正相关性;在乙醇胁迫处理下,冻干存活率与C19cyc11相对含量、U/Scyc比例均具有较高的相关系数,但不存在显著相关性;各主要膜脂肪酸与降酸效果不存在显著相关性,只有在乙醇胁迫条件下,C14:0与降酸效果(MA)存在显著相关性。
     5.从不同细胞破碎方法、不同蛋白裂解液、不同IPG胶条、不同蛋白上样量等方面优化酒酒球菌全蛋白双向电泳条件。利用超声波法破碎菌体,尿素-硫脲裂解液提取蛋白,苯酚/氯仿/异戊醇法纯化蛋白,蛋白上样量为400μg,在pI5-8胶条上聚焦时,获得高质量酒酒球菌全蛋白参考双向电泳图谱。
     6.利用优化的双向电泳条件分别构建酒酒球菌不同生长期、不同酸胁迫和不同乙醇胁迫条件下全蛋白双向电泳图谱,经质谱鉴定技术和生物信息学分析,推断热休克蛋白Hsp20为酒酒球菌胁迫诱导抗冷冻干燥机制中关键性蛋白。
     7.成功克隆环丙烷脂肪酸合酶基因(cfa)和热休克蛋白基因(hsp),并对基因编码的氨基酸序列进行生物信息学分析,结合前期膜脂肪酸分析和蛋白质组学研究,推断环丙烷脂肪酸C19cyc11在酒酒球菌胁迫诱导抗冷冻干燥机制中起到积极作用,而热休克蛋白Hsp20可能是酒酒球菌胁迫诱导抗冷冻干燥机制中关键性蛋白,起重要作用。
China is the wine production and consumption country, but the malolactic starters usedin our wine industry are mainly dependent on imports. There is no malolactic starter with ourown property right in china. O. oeni SD-2a isolated by our lab from spontaneous MLF wine,is a highly stress adaptive strain. It is of theoritical and practical importance to study on O.oeni stress induced resisitance to freeze-drying mechanism and develop ready-to-usemalolactic starter with our own property right.
     Using O. oeni SD-2a as experimental strain, the effect of different stress treatments onthe freeze-drying viability were investigated, in order to evaluate the feasibility of applicationof stress induced cross protection into preparation of malolactic starter. Membrane fatty acidmethyl ester methods were established and the correlation of membrane fatty acid andfreeze-drying viability were analyzed, in order to discuss the mechanism of stress inducedresisitance to freeze-drying in the level of membrane fatty acid. A proteomic research wascarried out to characterize and identify proteins expressed by O. oeni SD-2a under differentstress treatments after optimizing the2D gel electrophoresis conditions, in order to discussthe mechanism of stress induced resisitance to freeze-drying in the level of cytosolic proteins.Protein or enzyme genes associated with resisitance to freeze-drying characteristics werecloned and analyzed, in order to discuss the mechanism of stress induced resisitance tofreeze-drying systemically. Main results were displayed as follows:
     1. Growth phase, protective agents and rehydration media were the main factors toaffect the survival of O. oeni SD-2a after freeze-drying. It was found that O. oeni SD-2a cellsin the early stationary phase survived better than those in the mid-log phase afterfreeze-drying. Sodium glutamate (2.5%) was the best protectant, giving the cell viability69.5%. When freeze-dried O. oeni SD-2a was rehydrated in ATB medium, the highestviability was obtained also.
     2. Optimal stress treatment before freeze-drying had obvious effect on the cell viability and MLF ability. During stress treatments, O. oeni SD-2a treated with8%ethanol resulted inthe highest freeze-drying survival rate (82%), the treatment with pH3.5also notablyincreased freeze-drying viability (80.5%), both completed the MLF within8days. Comparedto control, the cell viability after freeze-drying increased by19.2%and17.7%, the MLFability increased by29%and28%, respectively.
     3. Five different methods on analysis of membrane fatty acid composition ofOenococcus oeni SD-2a were compared by GC/MS chromatogram, relative content of fattyacid and relative standard deviation, respectively. Method2and4gave the best results.Method2was accurate and complete, but time-consuming. Method4was rapid, but lessintegrity.
     4. During stress treatments, the changes of membrane fatty acids of Oenococcus oeniSD-2a were mainly reflected by U/Scyc ratio, relative content of C19cyc11and C18:lcis11. Adecrease in UFA/SFA ratio and in the C18:1relative concentration, and an increase incyclopropane fatty acids (CFA) content mainly due to the increase in C19cyc11relativeconcentration were observed in all stress shocked cells. There was a significant negativecorrelations between C19cyc11and C18:lcis11in all stress shocks. The freeze-dryingviability exhibited a significant positive correlation with the levels of C19cyc11in cold andacid shocks. The only significant positive correlations between the ability of O. oeni SD-2a toconduct malic acid degradation and membrane composition existed with C14:0in ethanolshocks.
     5. Different cell disruption methods, protein lysate buffer, IPG strips, and proteinloading amount were used to optimize the2D gel electrophoresis conditions of Oenococcusoeni SD-2a. When ultrasonic method were used to break cell, urea-thiourea lysate bufferwere used to extract protein, phenol/chloroform/isoamyl alcohol were used to purify protein,and the protein loading capacity was400μg, the IPG strip was pI5-8, a reference map with afirst insight into the profile of protein expression of O. oeni were provided.
     6. Cytosolic proteins of the strain cultivated in different growth phases, acid shocks andethanol shocks were resolved by optimizing two-dimensional gel electrophoresis.Accompanied with the analysis of mass spectrometry and bioinformatic, heat shock proteinHsp20were concluded as key protein in the mechanism of stress induced resistance tofreeze-drying in O. oeni.
     7. Cyclopropane fatty acid synthase gene (cfa) and heat shock protein gene (hsp) weresuccessfully cloned, and the amino acid sequence of the gene were analyzed by bioinformatic.Combined with the analysis of membrane fatty acid composition and proteomic,cyclopropane fatty acid C19cyc11were concluded as positive role and heat shock protein Hsp20were concluded as key protein, suggesting the protein might play a potential importantrole in the mechanism of stress induced resistance to freeze-drying in O. oeni.
引文
纪贇.2009.酒类酒球菌培养特性研究[硕士学位论文].青岛:中国海洋大学.
    李华.2003.现代葡萄酒工艺学.西安:陕西人民出版社.
    李小刚,张春娅,王树生,张美玲,邢凯,俞冉,乔永增.2002.苹果酸-乳酸发酵与葡萄酒的风味改良.中外葡萄与葡萄酒,(1):12~14.
    刘小翠,石金波,赵思明.2011.食品用微生物发酵剂研究进展.山西农业科学,39(12):1332~1333.
    李家鹏,任琳,田寒友,乔晓玲.2009.基于cDNA微阵列数据对乳酸菌生长及应激代谢转录组特征的研究.食品科学,30(23):370~379.
    蒲丽丽,刘宁,张英华,霍贵成.2005.乳酸菌冻干保护剂及保护机理的研究进展.现代食品科技,21(1):147~153.
    刘延琳.2004.酒酒球菌mleA和mleP基因的克隆及其在酿酒酵母中的转化与表达[博士学位论文].杨凌:西北农林科技大学.
    罗华.2007.真空冷冻干燥酒酒球菌Oenococcus oeni SD-2a工艺研究[硕士学位论文].杨凌:西北农林科技大学.
    刘晓娇.2011.不同因素对酒酒球菌苹果酸-乳酸发酵的影响[硕士学位论文].杨凌:西北农林科技大学.
    吕茜.2012.酒酒球菌生长必需氨基酸及对MLF的影响[硕士学位论文].杨凌:西北农林科技大学.
    王娟娟,王顺喜,马微.2008.直投式发酵剂生产酸菜及其风味物质的研究.食品科学,29(4):82~86.
    王华,王芳.2001.不同乳酸菌接种量进行苹果酸-乳酸发酵对葡萄酒质量的影响.中国食品学报,2:41~43.
    乌日娜.2009.益生菌Lactobacillus casei Zhang蛋白质组学研究[博士学位论文].呼和浩特:内蒙古农业大学.
    吴祖建,高芳銮,沈建国.2010.生物信息学分析实践.北京:科学出版社.
    杨郁荭,白明.2011.乳酸菌抗氧化机理的初步探讨.中国乳业,7:68~73.
    张春晖.2001.中国优良酒酒球菌(Oenococcus oeni)的分离筛选及苹果酸-乳酸发酵研究[博士学位论文].杨凌:西北农林科技大学.
    张如金.2008.酒类酒球菌SD-2a活性干粉生产性能研究[硕士学位论文].杨凌:西北农林科技大学.
    张建友,赵培城.2005.真空冷冻干燥酸奶发酵剂的研究现状.河南工业大学学报(自然科学版),26(2):86~89.
    张和平.2011.益生乳酸菌Lactobacillus casei Zhang从基础研究到产业化开发.中国乳品工业,39(10):32~36.
    张英华,霍贵成,郭鸰.2005.乳酸菌冷冻干燥技术研究进展.东北农业大学学报,36(6):799~803.
    张英华,霍贵成,郭鸰.2007.冷冻干燥造成乳酸菌损伤的研究.食品与发酵工业,33(1):142~146.
    赵文英.2008.酒酒球菌SD-2a胁迫适应性反应及其机制初探[博士学位论文].杨凌:西北农林科技大学.
    赵文英,李华,王华.2008.酒酒球菌(Oenococcus oeni)胁迫适应性反应机制.微生物学报,48:556~561.
    张静,张方,肖健,杨新涛,陈计峦.2009.利用HPLC检测SCCO2处理前后哈密瓜汁中单糖及有机酸含量变化的研究.石河子大学学报,27(2):235~239
    张春晖,夏双梅,李华.2004.酒类酒球菌的分离和发酵适应性研究.中国食品学报,4:35~38.
    Annous B A, Kozempel M F, Kurantz M J.1999. Changes in membrane fatty acid composition ofPediococcus sp. strain NRRLB-2354in response to growth conditions and its effect on thermalresistance. Applied and Environmental Microbiology,65(7):2857~2862.
    Abee T, Wouters J A.1999. Microbial stress response in minimal processing. International Journal of FoodMicrobiology,50:65~91.
    Ananta E, Volkert M, Knorr D.2005. Cellular injuries and storage stability of spray-dried Lactobacillusrhamnosus GG. International Dairy Journal,15:399~409.
    Amanatidou A, Smid E J, Bennik M H, Gorris L G.2001. Antioxidative properties of Lactobacillus sakeupon exposure to elevated oxygen concentrations. FEMS Microbiology Letters,203:87~94.
    Arena S, D’Ambrosio C, Renzone G, Rosario R, Ledda L, Vitale F, Maglione G, Varcamonti M, Ferrara, L,Scaloni A.2006. A study of Streptococcus thermophilus proteome by integrated analytical proceduresand differential expression investigations. Proteomics,6(1):181~192.
    álvarez-Ordó ez A, Fernández A, López M, Arenas R, Bernardo A.2008. Modifications in membranefatty acid composition of Salmonella typhimurium in response to growth conditions and their effect onheat resistance. International Journal of Food Microbiology,123:212~219.
    álvarez-Ordóňez A, Fernández A, López M, Bernardo A.2009. Relationship between membrane fatty acidcomposition and heat resistance of acid and cold stressed Salmonella senftenberg CECT4384. FoodMicrobiology,26:347~353.
    Antonioli P, Bachi A, Fasoli E, Righetti P G.2009. Efficient removal of DNA from proteomic samplesprior to two-dimensional map analysis. Journal of Chromatography A,1216:3606~3612.
    Alice C L C, Derek W S, Harty N, Nicholas A J.2004. Stress-response proteins are upregulated inStreptococcus mutants during acid tolerance. Microbiology,150:1339~1351.
    Bumsoo H, John C B.2004. Direct cell injury associated with eutectic crystallization during freezing.Cryobiology,48:8~21.
    Béal C, Fonseca F, Corrieu G.2001. Resistance to freezing and frozen storage of Streptococcusthermophilus is related to membrane fatty acid composition. Journal of Dairy Science,84:2347~2356.
    Baati L, Fabre-Ga C, Auriol D, Blanc P J.2000. Study of the cryotolerance of Lactobacillus acidophilus:Effect of culture and freezing conditions on the viability and cellular protein levels. InternationalJournal of Food Microbiology,59:241~247.
    Beney L, Gervais P.2001. Influence of the fluidity of the membrane in response of microorganisms toenvironmental stresses. Applied Microbiology and Biotechnology,57:34~42.
    Broadbent J R, Lin C.1999. Effect of heat shock or cold shock treatment on the resistance of Lactococcuslactis to freezing and lyophilization. Cryobiology,39:88~102.
    Boza Y, Barbin D, Scamparini A R P.2004. Effect of spray-drying on the quality of encapsulated cells ofBeijerinckia sp. Process Biochemistry,39:1275~1284.
    Bukau B, Weissman J, Horwich A.2006. Molecular chaperones and protein quality control. Cell,125:443~451.
    Bourdineaud J P, Nehme B, Tesse S, Lonvaud-Funel A.2003. The ftsH gene of the wine bacteriumOenococcus oeni is involved in protection against environmental stress. Applied and EnvironmentalMicrobiology,69:2512~2520.
    Bourdineaud J P, Nehme B, Tesse S, Lonvaud-Funel A.2004. A bacterial gene homologous to ABCtransporters protect Oenococcus oeni from ethanol and other stress factors in wine. InternationalJournal of Food Microbiology,92:1~14.
    Beltramo C, Grandvalet C, Pierre F, Eszter K, Attila G, Gábor B, László V.2004. Evidence for multiplelevels of regulation of Oenococcus oeni clpPclpL locus expression in response to stress. Journal ofBacteriology,186:2200~2205.
    Beltramo C, Desroche N, Tourdot-Maréchal R, Grandvalet C, Guzzo J.2006. Real-time PCR forcharacterizing the stress response of Oenococcus oeni in a wine-like medium. Research inMicrobiology,157:267~274.
    Brown J L, Ross T, McMeekin T A, Nichols P D.1997. Acid habituation of Escherichia coli and thepotential role of cyclopropane fatty acids in low pH tolerance. International Journal of FoodMicrobiology,37:163~173.
    Castro C P, Teixeira P M, Kirby R.1997. Evidence of membrane damage in Lactobacillus bulgaricusfollowing freeze-drying. Journal of Applied Microbiology,82(1):87~94.
    Conrad P B, Miller D P, Cielenski P R, de Pablo J J.2000. Stabilization and preservation of Lactobacillusacidophilus in saccharide matrices. Cryobiology,41(1):17~24.
    Curic M, Stuer-Lauridsen B, Renault P, Nilsson D.1999. A general method for selection of a-acetolactatedecarboxylase deficient Lacticoccus lactis mutants to improve diacetyl ormation. Applied andEnvironmental Microbiology,65(3):1202~1206.
    Corcoran B M, Ross R P, Fitzgerald G F, Stanton C.2004. Comparative survival of probiotic lactobacillispray-dried in the presence of prebiotic substances. Journal of Applied Microbiology,96:1024~1039.
    Carvalho A S, Silva J, Ho P, Teixeira P, Malcata F X, Gibbs P.2004. Effect of different sugars added to thegrowth and drying medium upon thermotolerance and survival during storage of freeze-driedLactobacillus delbrueckii ssp. bulgaricus. Biotechnology Progress,20:248~254.
    Chávez B E, Ledeboer A M.2007. Drying of probiotics: optimization of formulation and process toenhance storage survival. Drying Technology,25:1193~1201.
    Crowe J H, Carpenter J F, Crowe L M.1998. The role of vitrification in anhydrobiosis. Annual Review ofPhysiology,60:73~103.
    Carvalho A S, Silva J, Ho P, Teixeira P, Malcata F X, Gibbs P.2002. Survival of freeze-dried Lactobacillusplantarum and Lactobacillus rhamnosus during storage in the presence of protectants. BiotechnologyLetters,24:1587~1591.
    Carvalho A S, Silva J, Ho P, Teixeira P, Malcata F X, Gibbs P.2003. Protective effect of sorbitol andmonosodium glutamate during storage of freeze-dried lactic acid bacteria. Lait,83:203~210.
    Castaldo C, Siciliano R A, Muscariello L, Marasco R, Sacco M.2006. CcpA affects expression of thegroESL and dnaK operons in Lactobacillus Plantamm. Microbiology Cell Factories,5:35.
    Cotter P D, Hill C.2003. Surviving the acid test: Responses of Gram-positive bacteria to low pH.Microbiology and Molecular Biology Reviews,67:429~453.
    Carreté R, Reguant C, Bordons A, Constantí M.2005. Relationship between a stress membrane protein ofOenococcus oeni and glyceraldehyde-3-phosphate dehydrogenases. Applied Biochemistry andBiotechnology,127:43~52.
    Coucheney F, Gal L, Beney L, Lherminier J, Gervais P, Guzzo J.2005a. A small HSP, Lo18, interacts withthe cell membrane and modulates lipid physical state under heat shock conditions in a lactic acidbacterium. Biochimica et Biophysica Acta,1720:92~98.
    Coucheney F, Desroche N, Bou M, Tourdot-Maréchal R, Dulau L, Guzzo J.2005b. A new approach forselection of Oenococcus oeni strains in order to produce malolactic starters. International Journal ofFood Microbiology,105:463~470.
    Casadei M A, Ma as P, Niven G, Needs E, Mackey B M.2002. Role of membrane fluidity in pressureresistance of Escherichia coli NCTC8164. Applied and Environmental Microbiology,68:5965~5972.
    Chang Y Y, Cronan J E.1999. Membrane cyclopropane fatty acid content is a major factor in acidresistance of Escherichia coli. Molecular Microbiology,33:249~259.
    Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri G M.2004. Blue silver: a very sensitive colloidalCoomassie G-250staining for proteome analysis. Electrophoresis,25(9):1327~1333.
    Dicks L M, Dellaglio F, Collins M D.1995. Proposal to reclassify Leuconostoc oenos as Oenococcus oeni.International Journal of System Bacteriology,45:395~397.
    du Plessis H W, Dicks L M, Pretorius I S, Lambrechts M G, du Toit M.2004. Identification of lactic acidbacteria isolated from South African brandy base wines. International Journal of Food Microbiology,91:19~29.
    du Toit M, Engelbrecht L, Lerm E, Krieger-Weber S.2011. Lactobacillus: the Next Generation ofMalolactic Fermentation Starter Cultures--an Overview. Food and Bioprocess Technology,4:876~906.
    de Revel G, Martin N, Pripis-Nicolau L, Lonvaud-Funel A, Bertrand A.1999. Contribution to theknowledge of malolactic fermentation influence on wine aroma. Journal of Agriculture and FoodChemistry,47(10):4003~4008.
    de Vuyst L, de Vin F, Vaningelgem F, Degeest B.2001. Recent developments in the biosynthesis andapplications of heteropoly-saccharides from lactic acid bacteria. International Dairy Journal,11:687~707.
    Desmond C, Stanton C, Fitzgerald G F, Collins K, Ross R P.2001. Environmental adaptations of probioticlactobacilli towards improvement of performance during spray drying. International Dairy Journal,11:801~808.
    de Angelis M, Gobbetti M.2004. Environmental stress responses in Lactobacillus: A review. Proteomics,4:106~122.
    de Angelis M, Bini L, Pallini V, CocconcelliP S, Gobbetti M.2001. The acid-stress response inLactobacillus sanfranciscensis CB1. Microbiology,147:1863~1873.
    da Silveira M G, Golovina E A, Hoekstra F A, Rombouts F M, Abee T.2003. Membrane fluidityadjustments in ethanol-stressed Oenococcus oeni cells. Applied and Environmental Microbiology,69:5826~5832.
    da Silveira M G, Baumg rtner M, Rombouts F M, Abee T.2004. Effect of adaptation to ethanol oncytoplasmic and membrane protein profiles of Oenococcus oeni. Applied and EnvironmentalMicrobiology,70:2748~2755.
    Delmas F, Pierre F, Coucheney F, Divies C, Guzzo J.2001. Biochemical and physiological studies of thesmall heat shock protein Lo18from the Lactic Acid Bacterium Oenococcus oeni. Journal of MolecularMicrobiology and Biotechnology,3(4):601~610.
    Eveline J B.2005. Oenococcus oeni and malolactic fermentation-moving into the molecular arena.Australian Journal of Grape and Wine Research,11:174~187.
    Fonseca F, Beal C, Corrieu G.2000. Method for quantifying the loss of acidification activity of lactic acidstarters during freezing and frozen storage. Journal of Dairy Research,67:83~90.
    Fatemeh S, Mustafa S, Ariff A, Manap Y A.2011. Optimization of a cryoprotective medium and survivalof freeze-dried Bifidobacterium infantis20088throughout storage, rehydration and gastrointestinaltract transit for infant formula probiotic applications. African journal of Microbiology Research,5(21):3373-3384.
    Fortier L C, Tourdot-Marechal R, Diviés C.2003. Induction of Oenococcus oeni H+-ATPase activity andmRNA transcription under acidic conditions. FEMS Microbiology Letters,222:165~169.
    Guzzo J, Jobin M P, Delmas F, Fortier L C, Garmyn D, Tourdot-Mareehal R, Lee B, Divies C.2000.Regulation of stress response in Oenococcus oeni as a function of environmental changes and growthphase. International Journal Food Microbiology,55:27~31.
    Grobben G J, Chin-Joe I, Kitzen V A, Boels I C, Boer F, Sikkema J, Smith M R, de Bont A M.1998.Enhancement of exopolysaccharide production by Lactobacillus delbrueckii subsp.bulgaricus NCFB2772with a simplified defined medium. Applied and Environmental Microbiology,64:1333~1337.
    Guzzo J, Delmas F, Pierre F, Jobin M P, Samyn B, van Beeumen J, Calvin J F, Divies C.1997. A small heatshock protein from Leuconostoc oenos induced by multiple stresses and during stationary growthphase. Letters in Applied Microbiology,24:393~396.
    Giard J F, Hartke A, Flahaut S, Benachour A, Boutibonnes P, Aufray Y.1996. Starvation-inducedmultiresistance in Enterococcus faecalis JH2-2. Current Microbiology,32:264~271.
    Guerzoni M E, Lanciotti R, Cocconcelli P S.2001. Alteration in cellular fatty acid composition as aresponse to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology,147:2255~2264.
    Ganesan B, Stuart M R, Weimer B C.2007. Carbohydrate starvation causes a metabolically active butnonculturable state in Lactococcus Lactis. Applied and Environmental Microbiology,73:2498~2512.
    Garbay S, Lonvaud-Funel A.1996. Response of Leuconostoc oenos to environmental changes. Journal ofApplied Bacteriology,81:619~625.
    Grandvalet C, Assad-García J S, Chu-Ky S, Tollot M, Guzzo J, Gresti J, Tourdot-Maréchal R.2008.Changes in membrane lipid composition in ethanol-and acid-adapted Oenococcus oeni cells:characterization of the cfa gene by heterologous complementation. Microbiology,154:2611~2619.
    Galland D, Tourdot-Marechal R, Abraham M, Chu K S, Guzzo J.2003. Absence of malolactic activity is acharacteristic of H+-ATPase-Deficient Mutants of the Lactic Acid Bacterium Oenococcus oeni.Applied and Environmental Microbiology,69:1973~1979.
    Grandvalet C, Coucheney F, Beltramo Guzzo J.2005. CtsR is the master regulator of stress response geneexpression in Oenococcus oeni. Journal of Bacteriology,187:5614~5623.
    Garbay S, Rozes N Lonvaud-Funel A.1995. Fatty acid composition of Leuconostoc oenos, incidence ofgrowth conditions and relationship with malolactic efficiency. Food Microbiology,12:387~395.
    Gómez Z A, Disalvo E A, de Antoni G L.2000. Fatty acid composition and freeze-thaw resistance inlactobacilli. Journal of Dairy Research,67:241~247.
    Huong-To T M, Grandvalet C, Tourdot-Maréchal R.2011. Cyclopropanation of membrane unsaturatedfatty acids is not essential in acid stress response of Lactococcus lactis subsp. cremoris. Applied andEnvironmental Microbiology,77(10):3327~3334.
    Hassan A N, Frank J F, Shalabi S I.2001. Factors affecting capsule size and production by lactic acidbacteria used as dairy starter cultures. International Journal of Food Microbiology,64:199~203.
    Hubálek Z.2003. Protectants used in the cryopreservation of microorganisms. Cryobiology,46:205~229.
    Huang C C, Smith C V, Glickman M S, Jacobs W J, Sacchettini J C.2002. Crystal structures of mycolicacid cyclopropane synthases from Mycobacterium tuberculosis. Journal of Biological Chemistry,277:11559~11569.
    Husale S, Grange W, Karle M, Bürgi S, Hegner M.2008. Interaction of cationic surfactants with DNA: asingle-molecule study. Nucleic Acids Research,36:1443~1449.
    Izutsu K, Yoshioka S, Terao T.1993. Decreased proteinstabilizing effects of cryoprotectants due tocrystallization. Pharmaceutical Research,10:1232~1237.
    Jobin M P, Garmyn D, Diviès C, Guzzo J.1999a. Expression of the Oenococcus oeni trxA gene is inducedby hydrogen peroxide and heat shock. Microbiology,145,1245~1251.
    Jobin M P, Garmyn D, Diviès C, Guzzo J.1999b. The Oenococcus oeni clpX homologue is a heat shockgene preferentially expressed in exponential growth phase. Journal of Bacteriology,181:6634~6641.
    Ko R, Smith LT, Smith GM.1994. Glycine betaine confers enhanced osmotolerance and cryotolerance onListeria monocytogenes. Journal of Bacteriology,176:426~431.
    Kets E P, Teunissen P J, Debont J A.1996. Effect of compatible solutes on survival of lactic acid bacteriasubjected to drying. Applied and Environmental Microbiology,62:259~261.
    Kimoto H, Ohmomo S, Okamoto T.2002. Enhancement of bile tolerance in lactococci by Tween80.Journal of Applied Microbiology,92:41~46.
    Kim L, Harwood A, Kimmel A R.2002. Receptor-dependent and tyrosine phosphatase mediated inhibitionof GSK3regulates cell fate choice. Developmental Cell,3:523~532.
    Kearney N, Meng X C, Stanton C, Kelly J, Fitzgerald G F, Ross R P.2009. Development of a spray driedprobiotic yoghurt containing Lactobacillus paracasei NFBC338. International Dairy Journal,19:684~689.
    Kilstrup M, Jacobsen S, Hammer K, Vogensen F K.1997. Induction of Heat Shock Proteins DnaK, GroEL,and GroES by Salt Stress in Lactococcs lactis. Applied Environmental Microbiology,63:1826~1837.
    Kim W S, Perl L, Park J H, Tandianus J E, Dunn N W.2001. Assessment of stress response of the probioticLactobacillus acidophilus. Current Microbiology,43:346~350.
    Koebmann B J, Nilsson D, Kuipers O P, Jensen P R.2000. The membrane-bound H+-ATPase complex isessential for growth of Lactococcus lactis. Journal of Bacteriology,182:4738~4743.
    Kim A L, Akers M J, Nail S L.1998. The physical state of mannitol after freeze-drying: effects of mannitolconcentration, freezing rate, and anoncrystallizing cosolute. Journal of Pharmaceutical Sciences,87:931~935.
    Kang J X, Wang J D.2005. A simplified method for analysis of polyunsaturated fatty acids. BMCBiochemistry,6(5):1~4.
    Kim E J, Sanderson R, Dhanoa M S, Dewhurst R J.2005. Fatty acid profiles associated with microbialcolonization of freshly ingested grass and rumen biohydrogenation. Journal of Dairy Science,88:3220~3230.
    Lonvaud-Funel A.1999. Lactic acid bacteria in the quality improvement and depreciation of wine. AntonieVan Leeuwenhoek,76:317~331.
    Lemay M J, Rodrigue N, Gariépy C, Saucier L.2000. Adaptation of Lactobacillus alimentarius toenvironmental stresses. International Journal of Food Microbiology,55:249~253.
    Lorca G L, Font de Váldez G.2001. A low-pH-inducible, stationary-phase acid tolerance response inLactobacillus acidophilus CRL639. Current Microbiology,42:21~25.
    Lorca G L, Font de Váldez G.1999. The effect of suboptimal growth temperature and growth phase onresistance of Lactobacillus acidophilus to environmental stress. Cryobiology,39:144~149.
    Leslie S B, Israeli E, Lighthart B, Crowe J H, Crowe L M.1995. Trehalose and sucrose protect bothmembranes and proteins in intact bacteria during drying. Applied and Environmental Microbiology,61(10):3592~3597.
    Li H, Zhao W Y, Wang H, Li Z C, Wang A L.2009a. Influence of culture pH on freeze-drying viability ofOenococcus oeni and its relationship with fatty acid composition. Food Bioprod ucts Processing,87:56~61.
    Li C, Zhao J L, Wang Y T, Han X, Liu N.2009b. Synthesis of cyclopropane fatty acid and its effect onfreeze-drying survival of Lactobacillus bulgaricus L2at different growth conditions. World Journal ofMicrobiology and Biotechnology,25:1659~1665.
    Lonvaud-Funel, A.1995. Microbiology of malolactic fermentation: Molecular aspects. FEMSMicrobiology Letters,126:209~214.
    Lee B, Lee K H G, Pi K B, Choi Y J.2008. The effect of low pH on protein expression by the probioticbacterium Lactobacillus reuteri. Proteomics,8:1624~1630.
    Len A C, Harty D W, Jacques N A.2004. Stress-responsive proteins are upregulated in Streptococcusmutants during acid tolerance. Microbiology,150:1339~1351.
    Mohammadi R, Sohrabvandi S, Mohammad A.2012. The starter culture characteristics of probioticmicroorganisms in fermented milks. Engineering in Life Science,12(4):399~409.
    Montanari C, Kamdema S L, Serrazanetti D I, Etbo F X, Guerzoni M E.2010. Synthesis of cyclopropanefatty acids in Lactobacillus helveticus and Lactobacillus sanfranciscensis and their cellular fatty acidschanges following short term acid and cold stresses. Food Microbiology,27:493~502.
    Morgan C A, Herman N, White P A, Vesey G.2006. Preservation of micro-organisms by drying: a review.Journal of Microbiological Methods,66:183~193.
    Meng X C, Stanton C, Fitzgerald G F, Daly C, Ross R P.2008. Anhydrobiotics: the challenges of dryingprobiotic cultures. Food Chemistry,106:1406~1416.
    Maicas S, Pardo I, Ferrerm S.2000. The effects of freezing and freeze-drying of Oenococcus oeni uponinduction of malolactic fermentation in red wine. International Journal of Food Science andTechnology,35:75~79.
    Martinez K A, Kitko R D, Mershon J P, Adcox H E, Malek K A, Berkmen M B, Slonczewski J L.2012.Cytoplasmic pH response to acid stress in individual cells of Escherichia coli and Bacillus subtilisobserved by fluorescence ratio imaging microscopy. Applied and Environmental Microbiology,78(10):3706~3714.
    Marceau A, Zagorec M, Chaillou S, Méra T, Champomier-Vergès M C.2004. Evidence for involvement ofat least six proteins in adaptation of Lactobacillus sakei to cold temperatures and addition of NaCl.Applied and Environmental Microbiology,70(12):7260~7268.
    Mills D A, Rawsthorne H, Parker C, Tamir D, Makarova K.2005. Genomic analysis of Oenococcus oeniPSU-1and its relevance to winemaking. FEMS Microbiology Reviews,29:465~475.
    Machado M C, Lopez C S, Heras H, Rivas E A.2004. Osmotic response in Lactobacillus casei ATCC393:biochemical and biophysical characteristics of membrane. Archives of Biochemistry Biophysics,422:61~70.
    Muňoz-Rojas J, Bernal P, Duque E, Godoy P, Segura A.2006. Involvement of cyclopropane fatty acids inthe response of Pseudomonas putida KT2440to freeze-drying. Applied and EnvironmentalMicrobiology,72:472~477.
    Molloy M P, Herbert B R, Walsh B J, Tyler M I.1998. Extraction of membrane proteins by differentialsolubilization for separation using two-dimensional gel electrophoresis. Electrophoresis,19:837~844.
    Nault I, Gerbaux V, Larpent J P,Vayssier Y.1995. Influence of pre-culture conditions on the ability ofLeuconostoc oenos to conduct malolactic fermentation in wine. American Journal of Enology andViticulture,46:357~362.
    Nielsen J C, Prahl C, Lonvand-Funel A.1996. Malolactic fermentation in wine by direct inoculation withfreeze-dried Leuconstoc oenos cultures. American Journal of Enology Viticulture,47:42~48.
    Nicolas T, Ronan N, Romain C.2009. A new chemically defined medium for wine lactic acid bacteria.Food Research International,42(3):363~367.
    Olguín N, Bordons A, Reguant C.2010. Multigenic expression analysis as an approach to understandingthe behaviour of Oenococcus oeni in wine-like conditions. International Journal of Food Microbiology,144:88~95.
    Pascale S.2002. Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek,(82):187~216.
    Peighambardoust S H, Golshan-Tafti A, Hesari J.2011. Application of spray drying for preservation oflactic acid starter cultures: a review. Trends in Food Science and Technology,22:215~224.
    Palmfeldt J.2003. Optimisation of initial cell concentration enhances freeze-drying tolerance ofPseudomonas chlororaphis. Cryobiology,47:21~29.
    Phadpare S, Alsina J, Inouye M.1999. Cold-shock response and cold-shock proteins. Current Opinion inMicrobiology,2(2):175~180.
    Palmfeldt J, Hahn-H gerdal B.2000. Influence of culture pH on survival of Lactobacillus reuteri subjectedto freeze-drying. International Journal of Food Microbiology,55:235~238.
    Polati R, Zapparoli G, Giudici P, Bossi A.2009. A CTAB based method for the preparation of total proteinextract of wine spoilage microrganisms for proteomic analysis. Journal of Chromatography B,877:887~891.
    Ruiz P, Izquierdo P M, Sese a S, Palop M L.2010. Analysis of lactic acid bacteria populations duringspontaneous malolactic fermentation of Tempranillo wines at five wineries during two consecutivevintages. Food Control,21,70~75.
    Rince A, Flahaut S, Auffray Y.2000. Identification of general stress genes in Enterococcus faecalis.International Journal of Food Microbiology,55:127~131.
    Rechinger K B, Siegumfeldt H.2002. Rapid assessment of cell viability of Lactobacillus delbrueckii subsp.bulgaricus by measurement of intracellular pH in individual cells using fluorescence ratio imagingmicroscopy. International Journal of Food Microbiology,75:53~60.
    Spano G, Massa S.2006. Environmental stress response in wine Lactic acid bacteria: Beyond Bacillussubtilis. Critical Reviews in Microbiology,32:77~86.
    Simpson P J, Stanton C, Fitzgerald G F, Ross R P.2005. Intrinsic tolerance of Bifidobacterium species toheat and oxygen and survival following spray drying and storage. Journal of Applied Microbiology,99:493~501.
    Santivarangkna C, Kulozik U, Foerst P.2007. Alternative drying processes for the industrial preservation oflactic acid starter cultures. Biotechnology Progress,23:302~315.
    Siaterlis A, Deepika G, Charalampopoulos D.2009. Effect of culture medium and cryoprotectants on thegrowth and survival of probiotic lactobacilli during freeze drying. Letters in applied microbiology,48:295~301.
    Silva J, Carvalho A S, Domingues P, Ferreira R, Vitorino R, Teixeira P, Gibbs P A.2005. Effect of the pHof growth on the resistance of Lactobacillus delbrueckii subsp. Bulgaricus to stress conditions duringspray-drying. Journal of Applied Microbiology,98(3):775~782.
    Santivarangkna C, Higl B, Foerst P.2008a. Protection mechanisms of sugars during different stages ofpreparation process of dried lactic acid starter cultures. Food Microbiology,25:429~441.
    Santivarangkna C, Kulozik U, Forest P.2008b. Inactivation mechanisms of lactic acid starter culturespreserved by drying processes. Journal of Applied Microbiology,105:1~13.
    Sunny R E, Knorr D.2009. The protective effect of monosodium glutamate on survival of Lactobacillusrhamnosus GG and Lactobacillus rhamnosus E-97800(E800) strains during spray drying and storagein trehalose-containing powders. International Dairy Journal,19:209~214.
    Sum A K, Faller R, de Pablo J J.2003. Molecular Simulation Study of phospholipid bilayers and insights ofthe interactions with disaccharides. Biophysical Journal,85:2830~2844.
    Sakahira H, Breuer P, Hayer-Hartl M K, Hartl F U.2002. Molecular chaperones as modulators ofpolyglutamine protein aggregation and toxicity. PNAS,99:16412~16418.
    Silva J, Carvalho A S, Teixeira P, Gibbs P A.2005. Effect of stress on cell of Lactobacillus delbrueckii sp.Bulgaricus. Journal of Food Technology,3(4):479~490.
    Serror P, Dervyn R, Ehrlich S D, Maguin E.2003. Csp-like genes of Lactobacillus delbrueckii ssp.bulgaricus and their response to cold shock. FEMS Microbiology Letters,226:323~330.
    Serrazanetti D I, Ndagijimana M, Sado-Kamdem S L, Corsetti A, Vogel R F, Ehrmann M, Guerzoni M E.2011. Acid Stress-Mediated Metabolic Shift in Lactobacillus sanfranciscensis LSCE1. Applied andEnvironmental Microbiology,77(8):2656~2666.
    Streit F, Delettre J, Corkieu G, Béal C.2008. Acid adaptation of Lactobacillus Delbrueckii Subsp.Bulgaricus induces physiological responses at membrane and cytosolic levels that improvescryotolerance. Journal of Applied Microbiology,105:1071~1080.
    Serrazanetti D I, Guerzoni M E, Corsetti A, Vogel R.2009. Metabolic impact and potential exploitation ofthe stress reactiom in Lactobadlli. Food Microbiology,26:700~711.
    Saarela M, Rantala M, Hallamaa K, Nohynek L, Virkajarvi I, Matto J.2004. Stationary-phase acid and heattreatments for improvement of the viability of probiotic lactobacilli and bifidobacteria. Journal ofApplied Microbiology,96:1205~1214.
    Schoug, Olsson J, Carlfors J, Schnürer J, H kansson S.2006. Freeze-drying of Lactobacilluscoryniformis Si3--effects of sucrose concentration, cell density, and freezing rate on cell survival andthermophysical properties. Cryobiology,53:119~127.
    Schoug, Fischer J, Heipieper H J, Schnürer J, H kansson S.2008. Impact of fermentation pH andtemperature on freeze-drying survival and membrane lipid composition of Lactobacillus coryniformisSi3. Journal of Industry Microbiology and Biotechnology,35:175~181.
    Shabala L, Ross T.2008. Cyclopropane fatty acids improve Escherichia coli survival in acidified minimalmedia by reducing membrane permeability to H+and enhanced ability to extrude H+. Research inMicrobiology,159(6):458~461.
    Teixeira P C, Castro M H.1994. Survival of Lactobacillus delbrueckii ssp. Bulgaricus followingspray-drying. Journal of Dairy Science,(78):1025~1031.
    Torino M I, Taranto M P, Sesma F, Font de Valdez G F.2001. Heterofermentative pattern andexopolysaccharide production by Lactobacillus helveticus ATCC15807in response to environmentalpH. Journal of Applied Microbiology,91:846~852.
    Teixeira P C, Castro M H, Kirby R.1995. Spray drying as a method for preparing concentrated cultures ofLactobacillus bulgaricus. Journal of Applied Bacteriology,78:456~462.
    Teixeira H, Goncalves M G, Rozes N, Ramos A, San Romao M V.2002. Lactobacillic acid accumulation inthe plasma membrane of Oenococcus oeni: a response to ethanol stress? Microbial Ecology,43:146~153.
    Tourdot-Marechal R, Cavin J F, Drici-Cachon Z, Divies C.1993. Transport of malic acid in Leuconostocoenos strains defective in malolactic fermentation: a model to evaluate the kinetic parameters. AppliedMicrobiology and Biotechnology,39:499~505.
    Tymczyszyn E E, Gomez-Zavaglia A, Disalvo E A.2005. Influence of the growth at high osmolality on thelipid composition, water permeability and osmotic response of Lactobacillus bulgaricus. ArchivesBiochemistry Biophysics,443:66~73.
    Versari A, Parpinello G P, Cattaneo M.1999. Leuconostoc oenos and malolactic fermentation in wine: areview. Journal of Industrial Microbiology and Biotechnology,23:447~455.
    Van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich S D, Maguin E.2002. Stress responses inlactic acid bacteria. International Journal of General and Molecular Microbiology,82:187~216.
    Vido K, Diemer H, Van Dorsselaer A, Leize E, Juillard V, Gruss A, Gaudu P.2005. Roles of thioredoxinreductase during the aerobic life of Lactococcus lactis. Journal of Bacteriology,187(2):601~610.
    Van Vuuren H J J, Dicks L M T.1993. Leuconostoc oenos: A Review. American Journal of Enology andViticulture,44:99~112.
    Wang Y C, Yu R C, Chou C C.2004. Viability of lactic acid bacteria and bifidobacteria in fermentedsoymilk after drying, subsequent rehydration and storage. International Journal of Food Microbiology,93:209~217.
    Wouters J A, Jeynov B, Rombouts F M, de Vos W M, Kuipers O P, Abee T.1999. Analysis of the role of7kDa cold-shock proteins of Lactococcus lactis MG1363in cryoprotection. Microbiology,145:3185~3194.
    Weidmann S, Rieu A, Rega M, Coucheney F, Guzzo J.2010. Distinct amino acids of the Oenococcus oenismall heat shock protein Lo18are essential for damaged protein protection and membranestabilization. FEMS Microbiology Letter,309:8~15.
    Wang Y, Corrieu G., Béal C.2005. Fermentation pH and temperature influence the cryotolerance ofLactobacillus acidophilus RD758. Journal of Dairy Science,88:21~29.
    Wang D Z, Lin L, Chan L L, Hong H S.2009. Comparative studies of four protein preparation methods forproteomic study of the dinoflagellate Alexandrium sp. using two-dimensional electrophoresis. HarmfulAlgae,8:685~691.
    Wall T, B th K, Britton R A, Jonsson H.2007. The early esponse to acid shock in Lactobacillus reuteriinvolves the ClpL chaperone and a putative cell wall-altering esterase. Applied and EnvironmentalMicrobiology,73:3924~3935.
    Yin P, Wang Y H, Zhang S L, Chu J, Zhuang Y P, Wang M L, Zhou J.2008. Isolation of soluble proteinsfrom an industrial strain Streptomyces avermitilis in complex culture medium for two-dimensional gelelectrophoresis. Journal of Microbiological Methods,73:105~110.
    Yuan J, Zhu L, Liu X, Li T.2006. A proteome reference map and proteomic analysis of Bifidobacteriumlongum NCC2705. Molecular and Cell Proteomics,5:1105~1118.
    Yamaguchi Y, Miyagi Y, Baba H.2008. Two-dimensional electrophoresis with cationic detergents, apowerful tool for the proteomic analysis of myelin proteins. Part2: Analytical aspects. Journal ofNeuroscience Research,86(4):766~775.
    Yoo B S, Regnier F E.2004. Proteomic analysis of carbonylated proteins in two-dimensional gelelectrophoresis using avidin-fluorescein affinity staining. Electrophoresis,25:1334~1341.
    Zhang D S, Robert W L.2006. Strategies for enhanced malolactic fermentation in wine and cidermaturation. Journal of Chemical Technology and Biotechnology,81:1130~1140.
    Zhao G, Zhang G.2005. Effect of protective agents, freezing temperature, rehydration media on viability ofmalolactic bacteria subjected to freeze-drying. Journal of Applied Microbiology,99,333~338.
    Zhao G, Zhang G.2009. Influence of freeze-drying conditions on survival of Oenococcus oeni formalolactic fermentation. Internal Journal of Food Microbiology,135:64~67.
    Zhang Y H, Zhang Y P, Zhu Y, Mao S M, Li Y.2010. Proteomic analyses to reveal the protective role ofglutathione in resistance of Lactococcus lactis to osmotic stress. Applied and EnvironmentalMicrobiology,76(10):3177~3186.
    Zhang D, Lovitt RW.2006. Strategies for enhanced malolactic fermentation in wine and cider maturation.Journal of Chemical Technology and Biotechnology,81:1130~1140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700