酒酒球菌SD-2a质膜H~+-ATPase特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果酸-乳酸发酵(Malolactic Fermentation, MLF)是葡萄酒生产中非常重要的二次发酵过程,是葡萄酒生产中主要的生物降酸方法,也是酿造优质干红葡萄酒必须进行的工艺环节。
     自然启动MLF时,启动和发酵时间难以预测,并且增加了葡萄酒发生病害的几率。所以现在人们大都用商业化活性乳酸菌进行MLF。由于葡萄酒环境恶劣,而实验室培养的菌体由于环境良好,导致其天然抗性降低;同时因为冷冻干燥时的超极端环境对菌体的损害,冻干后活菌数减少,所以造成人工接种诱导MLF时,不能成功启动。因此研究用胁迫培养条件恢复和提高菌体的抗性,以提高菌体的接种存活率和冻干存活率以及研究其中的胁迫适应机制对直投式酒酒球菌的开发和生产有重要的理论和实践意义。
     本试验选用西北农林科技大学葡萄酒学院优选酒酒球菌SD-2a,研究并优化了酒酒球菌质膜H+-ATPase的制备和活性测定方法,并在此基础上研究了不同胁迫处理下质膜H+-ATPase活性的大小,同时研究了培养基组分和温度胁迫处理对酒酒球菌SD-2a菌体的生长、接种存活率、冻干存活率和质膜H+-ATPase活性的影响,以观察胁迫处理对菌体存活率提高的有效性,并探讨酒酒球菌SD-2a质膜H+-ATPase在菌体胁迫适应性方面的作用机制。主要研究结果如下:
     1.试验采用0.05%TritonX-100,-20℃,24h低温通透细胞膜获得酒酒球菌SD-2a的质膜H+-ATPase,用分光光度法研究了酶活的测定条件。通过单因素试验和正交试验结果分析得知,酒酒球菌细胞膜H+-ATPase的最佳酶活测定条件为:Tris-HCl反应缓冲体系,pH7.0,37℃水浴中反应30min。
     2.酒酒球菌SD-2a质膜H+-ATPase在酸胁迫抗性中起关键的作用。无DL-苹果酸的ATB培养基,在培养菌体过程中,pH缓冲能力弱,细菌生长量大,所获菌体接种模拟酒后的接种和冻干存活率以及质膜H+-ATPase的活性也最高;酸胁迫处理明显抑制了酒酒球菌SD-2a的生长速率,但酸胁迫处理pH3.6和pH3.2处理与对照相比,质膜H+-ATPase的活性显著增加,分别是对照的1.19和1.41倍,同时最大菌体密度也达到了对照的94.4%和90.6%。所以酸胁迫处理是酒酒球菌SD-2a直投式发酵剂生产的有效胁迫处理方式,胁迫处理平衡点在pH3.5左右。
     3.酒精胁迫降低了酒酒球菌SD-2a质膜H+-ATPase的活性,5%和10%酒精胁迫处理的菌体的质膜H+-ATPase活性分别是对照处理的80.1%和76.3%。并且酒精胁迫处理所得菌体产量低,10%酒精处理最大菌密度只有对照的38%。质膜H+-ATPase不在抗酒精胁迫的直接主要的作用机制,但其活性大小可以作为菌体生理状态的指示物。
     4.温度胁迫显著影响酒酒球菌SD-2a生长,在35℃胁迫处理下,菌体生长很快到达稳定期,但最大OD600值只有对照的70%;在10℃胁迫处理下,细菌的生长时间明显延长,延滞期变长,但最终菌体最大OD600值达到了对照的83.3%。高低温胁迫处理都增加了质膜H+-ATPase的活性,说明质膜H+-ATPase在抗温度胁迫中起一定作用。通过冷冻干燥试验表明,低温处理可以显著增强菌体的抗冻干能力,但其接种发酵活性很低,所以温度胁迫也不是制备直投式乳酸菌发酵剂的有效的处理方式。
Malolactic Fermentation (MLF), an essential part for making wine with good quality, performed by Malolactic bacteria (MLB), can improve the quality of wine by acid degradation. And the resulted wine obtains a favorable balance of acidity, organoleptic properties and microbiological stability.
     Due to the harsh conditions of wine for bacterial survival and growth, but strains lose its natural resistance in the lab; at the same time, lyophilization offers stress conditions such as freezing and other extremeness environment diminish the cell viability. So it creates the artificial infection induced MLF can’t succeed. Therefore research on the stress culture conditions to restore and enhance the resistance of strains witch can enhance the inoculation and freeze-dry livability as well as study the stress adaptation mechanism have important theory and practice significance to freeze-dried ready-to-use MLF starter exploitation and production.
     In this paper, activity determination conditions of plasma membrane H+-ATPase were studied and optimized using O. oeni SD-2a. Based on this, the effect of stress treatment on plasma membrane H+-ATPase activity were studied, simultaneously effect of medium composition and temperature stress treatment on bacterium growth, MLF activity after directly inoculated into wine-like medium and freeze-drying viability were studied in order to evaluate the validity of strains livability elevated after stress treatment and discuss the stress adaptive mechanism of plasma membrane H+-ATPase of O.oeni SD-2a.The main results were as follows:
     1. Plasma membrane H+-ATPase of O.oeni SD-2a was obtained using frozen permeate plasma membrane, and its activity was determined with spectrophotometry. The experiment results showed that the optimal activity determination conditions of plasma membrane H+-ATPase of O.oeni SD-2a is Tris-HCl buffer system, pH7.0 and 30 minutes’water bath reaction at 37℃.
     2. Plasma membrane H+-ATPase of O.oeni SD-2a plays an important role in acid stress fastness. ATB medium without DL-malic acid has weak pH buffer capability, so it can induce self acid stress response, ATB medium is in favor of the growth of O.oeni SD-2a. Strains cultured in this medium have the highest inoculation and freeze-dry livability and H+-ATPase activity. Acid stress treatment obviously restrains the growth speed of O.oeni SD-2a, but the activity of H+-ATPase under pH3.6 and pH3.2 treatments were 1.19 and 1.41 times compared with the control treatment. At the same time the tiptop OD600 can achieved 94.4% and 90.6% of control treatment. So we believe that acid stress is an efficiency treatment to prepare the freeze-dried ready-to-use starter, balance point of acid stress is about pH3.5.
     3. The alcohol stress condition reduced the Plasma membrane H+-ATPase activity of O.oeni SD-2a, under 5% and 10% alcohol stress treatment is only 80.1% and 76.3% compared with control treatment, respectively. Although alcohol stress can decrease the yield of O.oeni SD-2a, we don’t believe H+-ATPase is the directness function mechanism in resist alcohol stress.
     4. Under 35℃stress treatment condition, the bacteria grow into the stabilization period very quickly, but the biggest OD600 value is very low, only 70% of the control treatment; Under 10℃condition, the bacterium growth time is prolonged obviously, the lag phase prolonged too, but the final biggest OD600 value has achieved 83.3% of control treatment. High and low temperature treatment all increased the activity of plasma membrane H+-ATPase, which show H+-ATPase may plays a role in resist temperature stress.
     Low temperature can enhance the freeze-drying viability notability but has a low MLF activity,so we also don’t believe temperature stress is an efficiency treatment to prepare the freeze-dried ready-to-use starter.
引文
[1].曹永梅.海藻酸钙固定化细胞及其在食品工业中的应用[J].中国乳业,2001, 29(6):34-36.
    [2].陈霞等.酸胁迫对干酪乳杆菌H+-ATP酶基因表达的影响[J].微生物学通报,2007, 03.
    [3].池振明,高峻.酵母菌耐酒酵机制的研究进展[J].微生物学通报, 1999, 26(5): 373-376.
    [4].丁春燕.变形链球菌与血链球菌的质子移位膜ATP酶的研究概况[J].牙体牙髓牙周病学杂志,2005,15 (4).
    [5].杜青平,贾晓珊,李适宇等.二氧化硫对大鼠血红细胞膜流动性及其酶活性的影响[J].环境科学学报,2007, 27(9):1504-1508.
    [6].韩玉洁,陈晔,孔琪等.固定化乳酸菌发酵制备L-乳酸的初步研究[J].哈尔滨商业大学学报(自然科学版),2009,25(1):43-46.
    [7].郭永亮,Trioli G, Pemeja C.苹-乳发酵管理是优质葡萄酒酿造工艺中极其重要的一环[J].中外葡萄与葡萄酒,2002,3:49-51.
    [8].黄有国等.Mg2+加强嵌有H+-ATP酶脂酶体脂质分子的堆积(packing)[J].生物物理学报,1990,6(3).
    [9].李华.葡萄酒工艺学[M].北京:科学出版社,2007.
    [10].李华.葡萄酒酿造与质量控制[M].杨凌:天则出版社,1990.
    [11].李季伦主编.微生物生理学[M.]北京:北京农业大学出版社,1993.
    [12].李小刚,张春娅,王树生等.苹果酸-乳酸发酵与葡萄酒的风味改良[J].中外葡萄与葡萄,2002,(1):12-14.
    [13].刘均玲.南极红酵母Rhodotorula sp. NJ298质膜流动性及其低温适应性研究[D].中国海洋大学2006届博士论文,2006.
    [14].刘树文,李华.固定化31DH进行苹果酸-乳酸发酵的研究[J].中国农学通报,2005,21(4):86-88.
    [15].刘树文,胡廷,常亚维.酒类酒球菌SD-2a营养需求的研究[J].酿酒科技,2007,12:30-32.
    [16].罗贵民,曹淑桂,张今.酶工程[M].北京:化学工业出版社,2002.
    [17].权英,王颉,张伟.葡萄酒中的乳酸菌[J].酿酒科技,2002,(110):59-61.
    [18].司合芸,李记明,赵光鳌等.乳酸菌接种在干红葡萄酒中的应用[J].酿酒科技,2006,8:82-82.
    [19].王华,刘芳,李华.不同酒类酒球菌苹果酸-乳酸发酵对葡萄酒种氨基酸的影响[J].中国食品学报,2003,3(4):51-55.
    [20].王华,张春晖,李华.苹果酸-乳酸发酵接种时间选择的研究[J].微生物学通报,2000,1:12-15.
    [21].王庆利,何丹.有机溶剂对细胞的毒害及细胞的耐受性机制[J].微生物学通报,2002,29(4):81-8.
    [22].王永乐,王敏,申雁冰等.有机溶剂对大肠杆菌细胞膜的影响[J].天津科技大学学报,2008,23 (4):40-43.
    [23].吴培,张毅,许喜林.有机溶剂对酵母细胞膜完整性的作用机制研究[J].食品工业科技,2008,29 (1):301-303.
    [24].谢振宇,杨光穗.牧草耐盐性研究进展[J].草业科学,2003,20(8):11-17.
    [25].徐国恒.细胞膜的双层磷脂结构与功能[J].生物学通报,2006,41(9):11-14.
    [26].王玉祥,张博,王涛.盐胁迫对苜蓿叶绿素、甜菜碱含量和细胞膜透性的影响[J].草业科学,2009,26(3):53-56.
    [27].杨翠兰,罗深秋.温度对细胞膜流动性影响的研究进展[J].第一军医大学学报,2000,20 (3):287-289.
    [28].杨福愉,黄芬.膜脂-膜蛋白相互作用及其在医学和农业上的应用[M].济南:山东科学技术出版社,1996.
    [29].杨福愉等.磷脂组分对猪心线粒体H+-ATP酶复合体活性表现的影响[J].生物化学与生物物理学报,1985,7(1).
    [30].张浩,莫海珍,李华.酒精、SO2和pH值对酒类酒球菌生长特性影响[J] .中国酿造,2006(5):38-40.
    [31].张春晖等.葡萄酒苹果酸-乳酸发酵代谢机理[J].食品与发酵工业,1999,25 (5):64-67.
    [32].张春晖,李华.苹果酸-乳酸发酵能量产生机理[J].生物工程进展,2001,5:72-74.
    [33].张春晖,李华,夏双梅.酒明串珠菌31DH酿酒特性研究[J].微生物学通报, 1997,32:491-496.
    [34].张春晖,王华,李华.苹果酸-乳酸发酵对干红葡萄酒品质的影响[J].西北农业大学学报,1999,27(6):74-78
    [35].张春晖,夏双梅,李华.酒类酒球菌的分离和发酵适应性研究[J].中国食品学报,2004,4:35-38.
    [36].张春晖.中国优良酒酒球菌(Oenococcus oeni)的分离筛选及苹果酸-乳酸发酵研究[J].西北农林科技大学博士论文,2001.
    [37].张浩,莫海珍.葡萄酒苹果酸-乳酸发酵细菌生理特性研究进展[J].安徽农业科学,2006,34(17):4213- 4215, 4218.
    [38].张军翔,张春晖.苹果酸-乳酸发酵接种研究[J].中外葡萄与葡萄酒,2003,06:9-11.
    [39].张如金,李华.酒类酒球菌活性干粉与国外干粉生产性能比较[J].酿酒,2008,7.
    [40].张颖娱.ATP合成酶及其功能机制综述[J].分子生物物理学,2004,24(3):36-40.
    [41].赵国群,张桂,张秋生等.发酵过程果酒成分对苹果酸-乳酸发酵的影响[J].酿酒科技,2006,(143):39-42.
    [42].赵文英,李华,王华.酒酒球菌(Oenococcus oeni)胁迫适应性反应机制[J].微生物学报,2008,48:556-561.
    [43].赵文英.酒酒球菌SD-2a胁迫适应性反应及其机制初探[D].西北农林科技大学博士论文,2001.
    [44].周爱儒,查锡良.生物化学[M].北京:人民卫生出版社,2004,106-122.
    [45].朱宝镛.葡萄酒工业手册[M].北京:中国轻工业出版社,1995:170-172.
    [46].朱力,王恒樑,黄培堂.蛋白质组学在细菌应激反应研究中的应用[J].生物技术通讯(Letters in Biotechnology),2007,118:511-514.
    [47]. Abrams A, Jensen C.Biochem Biophys Res Commun [J].1984,122(1):151-157.
    [48]. Albenzio M.African fortified wines by numerical analysis of total soluble cell protein patterns and DNA-DNA hybridization [J].Appl Bacterial, 1995, 79(1):43-48.
    [49]. Amati.A, Castellari.M, Galli.M, et al.Influence of malolactic fermentation on phenolic compounds and colour of Valpolicella wines [J].Rivista di Viticoltura e di Enoligia,1998,51(3):43-51.
    [50]. Ana Segur, Patrica G, Pieter D, et al.Proteomic analysis reveals the participation of energy and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene[J].Journal of Bacteriology,2005, 9:5937-5945.
    [51]. Arena, M E, et al. Arginine citrulline and ornithine metabolism by lactic acid bacteria from wine [J]. International Journal of Food microbiology, 1999, 52 (3): 155-161.
    [52]. Bambalov G, Stanchev.P, Bambaeva. M.Spontaneous and controlled malolactic fermentation in red wines [J].Nauchni Trudovem, 1987, 34(2):215-223.
    [53]. Beelman R B and Gallander J F.Wine deacidification advances [J].Food Research, 1979, 25: 1-53.
    [54]. Beelman R B, McArdel F J and Duke G R. Comparison of Leuconostoc oenos strains ML-34 and PSU-1 to induce malolactic fermentation in Pennsylvanis red table wine [J]. Enol.Vitic,1980, 31: 269-276.
    [55]. Beelman RB, Keen RM, Banner MJ, et al. Interactions between wine yeast and malolactic bacteria under wine conditions [J].Developments in Industrial Microbiology, 1982, 23:107-121.
    [56]. BelliWA, Marquis RE. Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture [J].Appl Environ Microbiol, 1991, 57 (4) : 1134-1138.
    [57]. Beltramo C, Grandvalet C, Pierre F, et al. Evidence for multiple levels of regulation of Oenococcus oeni clpPclpL locus expression in response to stress [J]. Journal of Bacteriology, 2004, 186:2200-2205.
    [58]. Beney L, Gervais P. Influence of the membrane on the response of microorganisms to environmental stresses [J].Appl Microbiol Biotechnol, 2001, 57:34-42.
    [59]. Bettina B ttcher, Ingo Bertsche, Rolf Reuter, et al. Direct visualization of conformational changes in EF0F1byelectron microscopy [J]. J Mol Biol, 2000, 296: 449-457.
    [60]. Boulton R B, Ssingleton V L, Bison.L.F, el al. Principles and practices of wine making [J].New York:Chapman & Hall,1995.
    [61]. Bourdineaud JP, Nehme B, Tesse S, et al. A bacterial gene homologous to ABC transporters protect Oenococcus oeni from ethanol and other stress factors in wine[J].International Journal of Food Microbiology, 2004, 92: 1-14.
    [62]. Bourdineaud JP, Nehme B, Tesse S, et al. The ftsH gene of the wine bacterium Oenococcus oeni is involved in protection against environmental stress [J]. Applied and Environmental Microbiology, 2003, 69: 2511-2520.
    [63]. BOYER P D. ATP synthase-past and future Biochim [J].Bio-phys Acta, 1998, 1365:3.
    [64]. Britz TJ and Traccy RP. The combination effect of pH, SO2 and temperature on the growth of Leuconostoc oenos [J].J Appl Bacteriol, 1990, 68:23-31.
    [65]. Capalidi R A, Aggeler R, Wilkens S, et al. Structural changes in theγandεsubunits of the Escherichia coli.F1F0-type ATPase during energy coupling[J].J Bioenerg Biomembr, 1996, 28: 397-401.
    [66]. Carrete R, Vidal MT, Bordons A. Inhibitory effect of sulfur dioxide and other stress compounds in wine on the ATPase activity of Oenococcus oeni [J]. FEMS Microbiology Letters, 2002, 211:155-159.
    [67]. Castro C P, Teixeira P M, Kirby.R. Evidence of membrane damage in Lactobacillus bulgaricus following freeze-drying [J]. Appl.Microbiol, 1997, 82(1):87-94.
    [68]. Cavin J F, Andioc.V, Etievant.P.X, el al. Ability of Wine lactic acid bacteria to metabolize phenol carboxylic acids [J].Am,J Enol.Vitic,1993,44(1):76-80.
    [69]. Coucheney F, Desroche N, Bou M, et al. A new approach for selection of Oenococcus oeni strains in order to produce malolactic starters [J]. International Journal of Food Microbiology, 2005, 105:463-470.
    [70]. Coucheney F, Gal L, Beney L, et al. A small HSP, Lo18, interacts with the cell membrane and modulates lipid physical state under heat shock conditions in a lactic acid bacterium [J].Biochimica et Biophysica Acta, 2005, 1720: 92-98.
    [71]. Cox D J and Henick-KlingT..Am.J Enol.Vitic.1995, 46:319-323.
    [72]. Cox DJ, Henick-Kling T. Chemiosmotic energy from MLF [J].Journal of Bacteriology, 1989, 171: 5750-5752.
    [73]. Davis C R, et al. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH [J]. Applied and Environmental Microbiology, 1986,3:539-545.
    [74]. Delmas F, Pierre F, Coucheney F, et al. Biochemical and physiological studies of the small heat shock protein Lo18 from the lactic acid bacterium Oenococcus oeni[J]. Journal of Molocular Microbiology and Biotechnology, 2001, 3: 601-610.
    [75]. Delong E F,Yayanos A A. Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure[J].Science,1985,228:1101-1102.
    [76]. Dicks L M T, Dellaglio F, Collins M D. Proposal to reclassify Leuconostoc oenos as Oenococcus oeni[J].Int J Syst Bacteriol, 1995,45:395-397.
    [77]. Dicks L M.T, Loubser P A, Augustyn O.P.H. Identification of Leuconostoc oenos from South African fortified wines by numerical analysis of total soluble cell protein patters and DNA-DNA hybrizations [J].Appl.Bacterial, 1995, 79:43-48.
    [78]. Fang T.J, Dalmasso.J P, Chin [[J].MicrobiolIm, munnol, 1993, 26:116-131.
    [79]. Feuillat M, Guilloux.Benatier.M, Gerbaux.V. Activation of malolactic fermentation in wine [J]. Sciences des Aliments, 1985, 5(1):103-122.
    [80]. Fillingame R H. Coupling H+transport and ATP synthesis in F1F0-ATP synthases: Glimpses of interacting parts in a dynamic molecular machine [J]. Journal of Experimental Biology, 1997, 220: 217-224.
    [81]. Fortier LC, Tourdot-Marechal R, Divies C. Induction of Oenococcus oeni H+-ATPase activity and mRNA transcription under acidic conditions[J]. FEMS Microbiology Letters, 2003, 222:165-169.
    [82]. Futai M, Kanazawa H.Microbiol Rev, 1983, 47(3):285-312.
    [83]. G L Lorca1, G Font de Valdez. Acid to lerance mediated by membrane ATPases in Lactobacillus acidophilus [J].Biotechnology Letters 23: 777-780, 2001.
    [84]. GAINER JL. Use ofadsorbed and covalently bound Biotechnology and Bioengineering [J]. Microbes in reactors, 1981, 10: 35.
    [85]. Galland D, Tourdot-Marechal R, Abraham M, et al. Absence of malolactic activity is a characteristic of H+-ATPase-Deficient Mutants of the Lactic Acid Bacterium Oenococcus oeni [J].Applied and Environmental Microbiology, 2003, 69: 1973-1979.
    [86]. Graca Silveira M, Golovina EA, Hoekstra FA, et al. Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells [J].Applied and Environmental Microbiology, 2003, 69: 5826-5832.
    [87]. Guilloux, Benatier M. Strains of lactic acid bacteria and different inoculation methods for malolactic fermentation in France. Bulletin de I’O.I.V., 1987, 60(677/678):623-642.
    [88]. Guzzo J, Cavin JF, Divies C. Induction of stress proteins in Leu-conostoc oenos to perform direct inoculation of wine [J].Biotechnology Letters, 1994, 16: 1189-1194.
    [89]. Guzzo J, Jobin MP, Delmas F, et al. Regulation of stress response in Oenococcus oeni as a function of environmental changes and growth phase [J]. International Journal of Food Microbiology, 2000, 55: 27-31.
    [90]. Guzzo J, Jobin MP, Diviés C. Increase of sulfite tolerance in Oenococcus oeni by means of acidic adaptation[J].FEMS Microbiology Letters, 1998, 160: 43-47.
    [91]. Henick-kling T, Lee TH, Nicholas D J D. Inhibition of bacterial growth and malolactic fermentation in wine by bacteriophage [J].J Appl Bacteriol,1986,(61):287-293.
    [92]. Jobin MP, Garmyn D, Divies C, et al. Expression of the Oenococcus oeni trxA gene is induced by hydrogen peroxide and heat shock [J].Microbiology. 1999, 145: 1245-1251.
    [93]. Jobin MP, Garmyn D, Divies C, et al. The Oenococcus oeni clpX Homologue Is a Heat Shock Gene Preferentially Expressed in Exponential Growth Phas e[J]. Journal of Bacteriology, 1999, 181:6634-6641.
    [94]. King S W. Improved malolactic fermentation method. European Patent, 1987.
    [95]. Kobayashi H,Suzuki T,Kinoshita N,et al.J Bacteriol,1984,158(3):1157-1160.
    [96]. Kobayashi H. The Journal of Biological Chemistry, 1985, 260(1):72-76.
    [97]. Koebmann BJ, Nilsson D, Kuipers OP, et al. The membrane-bound H+-ATPase complex is essential for growth of Lactococcus lactis [J]. Journal of Bacteriology, 2000, 182: 4738-4743.
    [98]. Konings AW, Ruifrok AC. Role of membrane lipids and membrane fluidity in thermosensitivity and thermotolerance of mammalian cells [J]. Rad. Res, 1985.102:86-98.
    [99]. Kunkee R E.FEMS Microbiology Reviews, 1991,88:55-72.
    [100]. L anvand-Funel, Strasser de Saad A M. App l. Environ. M icrobiol , 1982, 42: 357-361。
    [101]. Lafon Lafourcade S.Factors of the malolactic fermentation of wines[J].Inst.d’Oenologie de Bordeaux,1975,pp,43-45.
    [102]. Li Hua, Zhang Chunhui, Liu Yanlin. Species attribution and distinguishing strains of Oenococcus oeni isolated from Chinese wines [J].World Miorobiol & Biotechnol, 2006,22:515-518.
    [103]. LI Xiao-yan, Song Zhan-wu, Dong Zhi-xian.Plantphysiological response to salt stress[J].Journal of Northwest Normal University (Natural Science),2004,40(3):106-111.
    [104]. Liu Yanlin, Li Hua. Rapid specificity identification of Oenococcus oeni with PCR [J]. Microbiol, 2006,26:26.
    [105]. Liu S Q, et al. Citrulline production and ethyl carbamate(urethane) precursor formation fromarginine degradation by wine lactic acid bacteria Leuconostoc oenos and Lactobacillus bucheri[J].American Journal of Enology and Viticulture, 1994,45,(2): 235-242.
    [106]. Liu S Q, et al. Occurrence of arginine deiminase pathway enzymes in arginine catabolismbywine lactic acid bacteria[J]. Applied and Enviro-nmental Microbiology, 1995,61,(1): 310-316.
    [107]. Lonvaud-Funel A. Lactic acid bacteria in the quality improvement and depreciation of wine[J]. Antonie Van Leeuwenhoek, 1999, 76:317-331.
    [108]. Lonvaud-Funel A. Inhibition of malolactic fermentation by cryotolerantyeasts [J]. Biotechnlolgy Letters, 1997, 19, (8): 723-726.
    [109]. Loubiere P, Salou P and Leroy MT , et al.J Bacteriol.1992,174:5302-5308.
    [110]. Louis-Charles Fortier a, Raphae le Tourdot-Mare chal b. Induction of Oenococcus oeni H+-ATPase activity and mRNA transcription under acidic conditions[J].FEMS Microbiology Letters 222 (2003) 165-169.
    [111]. M G Da Silveira, E A Golovina, F A Hoekstra, et al, Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells[J].Appl. Environ. Microbiol. 69 (2003) 5826– 5832.
    [112]. M G Da Silveira, M Vitoria San Romao, M C Loureiro-Dias. Flow cytometric assessment of membrane integrity of ethanol-stressed Oenococcus oeni cells [J].Appl. Environ. Microbiol. 68 (2002) 6087–6093.
    [113]. Marjo J, Jeroen H Citrate. Fermentation by Lactococcus and Leuconostoc spp[J]. Appl.Environ, Microbial, 1991, 57(12):3535-3540.
    [114]. Mazza G, Fukumoto L, Delaquis P, et al. Anthocyanins phenolics and color of Cabernet Franc, Merlot, and Pinot Noir wines from British Columbia [J]. Agric.Food Chem., 1999, 47(10): 4009-4017.
    [115]. Mccord.J.D, Ryu.D.D.Y. Development of malolactic fermentation process using immobilized whole cells and enzymes [J].Am.J Enol.Vitic , 1995(8):241-247.
    [116]. Meunier J M, Bott E W. Behaviour of various aromatic substances in Burgundy wines during malolactic fermentation [J].Lab of Applied Chemistry & Oenology,1979,6(3):92-95.
    [117]. Mills DA, Rawsthorne H, Parker C, et al. Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking[J].FEMS Microbiology Reviews, 2005, 29: 465-475.
    [118]. Mirjana.C, Birgitte.S, Pierre.R, et al.A general method for selection of aacetolactate decarboxylase deficient Lacticoccus lactis mutants to improve diacetyl ormation [J].ppl.Environ. Microbiol, 1999, 65(3):1202-1206.
    [119]. Mitchell P, Mitchell P. Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge [J].Bioenerg 1972, 3:5-24.
    [120]. Moreno-Arribal V. Isolation, properties and behaviorof tyramine-producinglactic acid bacteria fromwine [J]. Journal of applied Microbiology, 2000,88,(4): 584-593.
    [121]. Naicas S, Gonzalez.Cabo P, Ferrer S, et al. Production of Oenococcus oeni biomass to induce malolactic fermentation in wine by control of pH and substrate addition [J].Biotechnol. Lett.1999, 21(4):349-353.
    [122]. Peynaud.E.Knowing and Making Wine[J].John Wiley&Sons Inc.NewYork.1984.
    [123]. Poolman B, Molenaur D and Smid E J, et al. J Bacteriol.1991,173:6030-6037.
    [124]. Poolman B.FEMS Microbiology Review.1993,12:125-148.
    [125]. RAFAELA P, JUAN JM, JOSEM V, et al. Yeastbiocapsules: A new immobilizationmethod and their applications [J]. Enzyme and MicrobialTechnology, 2006, 40: 79-8.
    [126]. Rankine B C. Detection of malolactic fermentation in wine by paper chromatography.Australian Wine [J].Brewing and Spirit Review,1989,88(3):46-52.
    [127]. Revel G de, Martin.N, Pripis Nicolau.L, et al. Contribution to the knowledge of malolactic fermentation influence on wine aroma [J].Agric.Food Chem., 1999,47(10):4003-4008.
    [128]. Roger B B, V ernon L S, L inda F B, et al. Principles and Practices of Winemaking. New York: Chap man & Hall, 1995. 244-273.
    [129]. Roger B Boulton, Vernon L Singleton, Linda F.Bisson, Ralph E. kunkee.《PRINCIPLES AND PRACTICE OF WINEMAKING》[M].中国轻工业出版社2001,430-447.
    [130]. S Garbay A. Lonvaud-Funel. Characterization of membrane-bound ATPase activity of Leuconostoc oenos: growth conditions [J].Appl Microbiol Biotechnol, 1994, 41:597-602.
    [131]. Salema M, Lolkema JS, San Romo MV, et al. The proton motive force generated in Leuconostoc oenos by L-malate fermentation [J].Journal of Bacteriology, 1996, 178: 3127-3132.
    [132]. Salema M, Lolkema J S and San Rormao M V, et al.J Bacteriol.1996,178:3127-3132.
    [133]. Salou P, Leroy M J, Goma G, et al.Imfluence of pH and malate-glucose ratio on the growth kinetics of Leuconostoc oenos [J].Appl.Microbiol.Biotech,1991,36(1):87-91.
    [134]. San Romao M V. Effect of ethanol and fatty acids on malolactc acivity of Oenococcus oeni [J]. Applied Microbiolog Biotechnol, 1994, 42 (2/3): 391-395.
    [135]. Sergi Maicas, et al. Production of Oenococcus oeni biomass to induce malolactic fermentation in wine by control of pH and substrate addition [J].Biotechnology Letter, 1999, 21:349-353.
    [136]. Sikkema J, De Bont Jam, Poolman. Interactions of cyclic hydrocarbons with biological membranes[J].Journalof Biology and Chemistry,1994, 269:8022-8028.
    [137]. Sikkema J, De Bont JAM, Poolman. Mechanisms of membrane toxicity of hydrocarbons [J]. Microbio-logical Reviews, 1995, 59; 201-205.
    [138]. SILVEIRAM G,BAUMGARTNERM, ROMBOUTS FM, et al. Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni[J].Applied and Environmental Microbiology ,2004 ,70 :2748 -2755.
    [139]. Spano G, Massa S. Environment Stress Response in Wine Lactic Acid Bacteria: Beyond Bacillus subtilis [J].Critical Reviews in Microbiology, 2006, 32, 77-86.
    [140]. Suzuki T, Suzuki J, Mitome N, et al. Second stalk of ATP synthase: Cross-linking ofγsubunit in F1to truncated F0b subunit prevents ATP hydrolysis [J]. Biol Chem, 2000, 275: 37 902-37 906.
    [141]. Totsuka A, Hara S. Decomposition of malic acid in red wine by immobilized microbilized microbial cells[J].Hakkokogaku Kaishi,1981,59(3):231-237.
    [142]. Vaillant H, Formisyn P, Gerbaux V. Malolactic fermentation of wine: study of the influence of some physico-chemical factors by experimental desing assays [J]. Applied Bacteriology, 1995, 79: 640-650.
    [143]. Wibowo D, Fleet G H, Lee T H, et al. Factors affecting the induction of malolactic fermentation in red wines with Oenoonostoc oeni [J]. Applied Bacteriology, 1988, 64: 421-428.
    [144]. Wibowo D, Eschenbruch R and Davis C R. et al. Occurrence and growth of lactic acid bacteria in wine: a review [J].Am. J Enol. Vitic, 1985, 4: 302-313.
    [145]. Zapparoli G, Torriani S, Pesente P, Dellaglio F. Design and evaluation of malolactic enzyme gene targeted primers for rapid identification and detection of Oenococcus oeni in wine[J].Lett Appl Microbiol, 1998,27:243-246.
    [146]. Zhang DS, Lovitt RW. Strategies for enhanced malolactic fermentation in wine and cider maturation [J]. Chem Technol Biotechnol, 2006, 81:1130-1140.
    [147]. ZhuorongY and Kunkee R E. FEMS Microbiology Review.1993, 12:50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700