闽江河口短叶茳芏湿地甲烷产生、氧化、传输与排放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用原状土柱与泥浆两种培养方式对闽江河口短叶茳芏沼泽湿地土壤甲烷产生速率的季节变化及其受硫酸盐还原作用影响的程度进行研究,两种培养方式下甲烷产生速率、硫酸盐还原抑制甲烷产生速率均有明显的垂直变化与季节变化特征。原状土柱培养甲烷产生速率、硫酸盐还原抑制作用都大于泥浆培养方式。
     100m2与1m2尺度下,土壤甲烷产生速率变异系数都大于200%,具有很强的变异性。100m2尺度下春、秋两季土壤甲烷产生速率空间相关性都较弱,秋季1m2尺度下甲烷产生速率具有较强空间相关性。
     短叶茳芏湿地甲烷氧化能力在不同月份明显不同,其中以6月最大,6月份以后甲烷氧化能力逐渐降低。甲烷氧化能力与植物净生长速率相关,二者符合指数相关关系。甲烷氧化能力也与湿地甲烷产生显著相关。
     潮水水位高度对甲烷排放及其传输方式有明显影响,随着水位升高,甲烷传输效率下降,甲烷排放通量逐渐降低。当水位高于30cm时,短叶茳芏植物体几乎不传输排放甲烷。
     涨落潮过程中短叶茳芏湿地甲烷通量显著低于非涨潮阶段。涨潮前与落潮后甲烷通量之间差异不显著。潮水淹没样地短暂的几个小时内降低了湿地甲烷排放通量,但随着实验样地处于无淹水状态日数不断增长,湿地甲烷通量有不断下降的趋势。大潮月中一次涨潮过程能使落潮后表层土壤孔隙水中溶解性甲烷浓度高于涨潮前,但差异不显著。大潮月潮汐为湿地带来丰富的S042-和N03",但小潮月的小潮日中,潮水中5042-含量却比湿地表层土壤孔隙水低。
Soil methane production potentials of Cyperus malaccensis Lam. var. brevifolius Bocklr wetland demonstrated a distinct vertical and seasonal variaitons using two incubation methods of undisturbed soil core and soil slurry. Suppression on methane production by sulphate reduction were also showed a vertical and seasonal variations in two incubation methods. However, methane production potential and suppression of sulphate reduction measured by undisturbed soil core incubation method were higher significantly than that using slurry incubation method.
     The coefficient of variation of methane production potential were larger than200%both on scales of100m2and1m2, which indicating that methane production have distinct spatial variability. On the scale of100m2, spatial correlation of methane production potential were weak in spring and fall, but it was strong on the scale of1m2.
     Methane oxidation in the C.malaccensis wetland demonstrated a significantly monthly variation. Methane oxidation was strongest in June, and gradually declined from June to November. Methane oxidation in the C. malaccensis wetland showed a positive exponential correlation with plant net growth. Methane oxidation aiso showed a positive correlation with methane production.
     Methane transport and emission mediated by plant gradually declined with the flood water level increase. The plant can not transport methane when the flood water level were higher than30cm.
     Methane flux in the C. malaccensis wetland during flooding and ebbing stages were significantly lower than that before flood or after ebb. The differences of methane emission between before flood and after ebb were not significant. When the time the wetland soil was exposed completely increased, methane emission decreased. Methane concentration in porewater after ebb were higher than that before flood, but the differences were not significant.Tidal water brought rich SO42-and NO3-in september during tide days in spring, but SO42-concentrations in tidal water were lower than that in porewater during neap tide days in March.
引文
[1]Bartlett KB, Harriss RC. Review and assessment of methane emissions from wetlands[J]. Chemosphere,1993,26(1-4):261-320.
    [2]陈槐,周舜,吴宁,王艳芬,罗鹏,石福孙.湿地甲烷的产生、氧化及排放通量研究进展[J].应用与环境生物学报,2006,12(5):726-733.
    [3]王维奇,曾从盛,仝川.湿地甲烷产生的测定方法及主要控制因子研究综述[J].亚热带资源与环境学报,2007,2(2):48-56.
    [4]Van der Nat F, De Brouwer J, Middelburg JJ, Laanbroek HJ. Spatial distribution and inhibition by ammonium of methane oxidation in intertidal freshwater marshes[J]. Applied and Environmental Microbiology,1997,63 (12):4734-4740.
    [5]徐华,蔡祖聪.水稻土甲烷产生,氧化和排放过程的相互影响——以水分历史处理为例[J].土壤,2007,38(6):671-675.
    [6]Sansone FJ, Martens CS. Methane production from acetate and associated methane fluxes from anoxic coastal sediments[J]. Science,1981,211(4483):707-709.
    [7]Shoemaker JK, Schrag DP. Subsurface characterization of methane production and oxidation from a New Hampshire wetland[J]. Geobiology,2010,8(3):234-243.
    [8]Shoemaker JK, Varner RK, Schrag DP. Characterization of subsurface methane production and release over 3 years at a New Hampshire wetland[J]. Geochimica Et Cosmochimica Acta,2012,91:120-139.
    [9]叶勇,卢昌义.红树木湿地土壤CH4产生率及其土壤理化因素影响的研究[J].土壤学报,2000,37(1):77-84.
    [10]Williams RT, Crawford RL. Methane production in Minnesota peatlands[J]. Applied and Environmental Microbiology,1984,47(6):1266-1271.
    [11]Duval B, Goodwin S. Methane production and release from two New England peatlands[J]. International microbiology,,2000,3(2):89-95.
    [12]Kravchenko IK, Sirin AA. Activity and metabolic regulation of methane production in deep peat profiles of boreal bogs[J]. Mikrobiologiia,2007,76(6):888-895.
    [13]Conrad R, Claus P, Casper P. Characterization of stable isotope fractionation during methane production in the sediment of a eutrophic lake, Lake Dagow, Germany[J]. Limnology and Oceanography,2009,54(2):457-471.
    [14]Oremland RS, Polcin S. Methanogenesis and sulfate reduction:competitive and noncompetitive substrates in estuarine sediments[J]. Applied and Environmental Microbiology,1982,44(6):1270-1276.
    [15]Denier van der Gon H, van Bodegom P, Wassmann R, Lantin R, Metra-Corton T. Sulfate-containing amendments to reduce methane emissions from rice fields: mechanisms, effectiveness and costs[J]. Mitigation and Adaptation Strategies for Global Change,2001,6(1):71-89.
    [16]Kumaraswamy S, Ramakrishnan B, Sethunathan N. Methane production and oxidation in an anoxic rice soil as influenced by inorganic redox species[J]. Journal of environmental quality,2001,30(6):2195-2201.
    [17]Winfrey MR, Ward DM. Substrates for sulfate reduction and methane production in intertidal sediments[J]. Applied and Environmental Microbiology,1983, 45(1):193-199.
    [18]Watson A, Nedwell DB. Methane production and emission from peat:the influence of anions (sulphate, nitrate) from acid rain[J]. Atmospheric Environment,1998, 32(19):3239-3245.
    [19]Westermann P, Ahring BK. Dynamics of methane production, sulfate reduction, and denitrification in a permanently waterlogged alder swamp[J]. Applied and Environmental Microbiology,1987,53(10):2554-2559.
    [20]Nedwell DB, Watson A. CH4 production, oxidation and emission in a U.K. ombrotrophic peat bog:Influence of SO42- from acid rain[J]. Soil Biology and Biochemistry,1995,27(7):893-903.
    [21]Kaku N, Ueki A, Ueki K, Watanabe K. Methanogenesis as an important terminal electron accepting process in estuarine sediment at the mouth of Orikasa River[J]. Microbes and environments,2005,20(1):41-52.
    [22]王维奇,曾从盛,仝川.潮汐盐湿地甲烷产生及其对硫酸盐响应研究进展[J].地理科学,2010,30(1):157-160.
    [23]Abdollahi H, Nedwell DB. Seasonal temperature as a factor influencing bacterial sulfate reduction in a saltmarsh sediment[J]. Microbial Ecology,1979,5(1):73-79.
    [24]Segers R. Methane production and methane consumption:a review of processes underlying wetland methane fluxes[J], Biogeochemistry,1998,41(1):23-51.
    [25]Giani L, Bashan Y, Holguin G, Strangmann A. Characteristics and methanogenesis of the Balandra lagoon mangrove soils, Baja California Sur, Mexico[J]. Geoderma,1996, 72(1):149-160.
    [26]Koschorreck M. Microbial sulphate reduction at a low pH[J]. Fems Microbiology Ecology,2008,64(3):329-342.
    [27]King GM. Utilization of hydrogen, acetate, and "noncompetitive"; substrates by methanogenic bacteria in marine sediments[J]. Geomicrobiology Journal,1984, 3(4):275-306.
    [28]丁维新,蔡祖聪.温度对甲烷产生和氧化的影响[J].应用生态学报,2003,14(4):604-608.
    [29]Sutton-Grier AE, Megonigal JP. Plant species traits regulate methane production in freshwater wetland soils[J]. Soil Biology & Biochemistry,,2011,43(2):413-420.
    [30]Megonigal JP, Mines ME, Visscher PT. Anaerobic metabolism:linkages to trace gases and aerobic processes. [J]. Biogeochemistry,2004,8:317-424.
    [31]Whiting GJ, Chanton JP. Primary production control of methane emission from wetlands[J]. Nature,1993,364(6440):794-795.
    [32]Updegraff K, Bridgham SD, Pastor J, Weishampel P, Harth C. Response of CO2 and CH4 emissions from peatlands to warming and water table manipulation[J]. Ecological Applications,2001,11 (2):311-326.
    [33]Vann CD, Patrick Megonigal J. Elevated CO 2 and water depth regulation of methane emissions:comparison of woody and non-woody wetland plant species[J]. Biogeochemistry,2003,63(2):117-134.
    [34]Kankaala P, Kaki T, Makela S, Ojala A, Pajunen H, Arvola L. Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesoeutrophic lakes[J]. Global Change Biology,2004,11(1):145-153.
    [35]Neubauer SC, Givler K, Valentine SK, Megonigal JP. Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry[J]. Ecology,2005, 86(12):3334-3344.
    [36]Roden EE, Wetzel RG. Organic carbon oxidation and suppression of methane production by microbial Fe(Ⅲ) oxide reduction in vegetated and unvegetated freshwater wetland sediments[J]. Limnology and Oceanography,1996,41:1733-1748.
    [37]Fridovich I. Oxygen toxicity:a radical explanation[J]. Journal of Experimental Biology,1998,201(8):1203-1209.
    [38]丁维新,蔡祖聪.植物在CH4产生、氧化和排放中的作用[J].应用生态学报,2003,14(8):1379-1384.
    [39]Brooks Avery G, Shannon RD, White JR, Martens CS, Alperin MJ. Controls on methane production in a tidal freshwater estuary and a peatland:methane production via acetate fermentation and CO 2 reduction[J]. Biogeochemistry,2003,62(1):19-37.
    [40]Summons RE, Franzmann PD, Nichols PD. Carbon isotopic fractionation associated with methylotrophic methanogenesis[J]. Organic Geochemistry,1998,28(7):465-475.
    [41]Kotsyurbenko OR, Chin K-J, Glagolev MV, Stubner S, Simankova MV, Nozhevnikova AN, Conrad R. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog[J]. Environmental Microbiology,2004,6(11):1159-1173.
    [42]Liu DY, Ding WX, Jia ZJ, Cai ZC. Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China[J]. Biogeosciences,2011,8(2):329-338.
    [43]Furukawa Y, Shiratori Y, Inubushi K. Depression of methane production potential in paddy soils by subsurface drainage systems[J]. Soil Science and Plant Nutrition.,2008, 54(6):950-959.
    [44]Ma K, Lu Y. Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil[J]. Fems Microbiology Ecology,2011, 75(3):446-456.
    [45]Itoh M, Ohte N, Koba K, Sugimoto A, Tani M. Analysis of methane production pathways in a riparian wetland of a temperate forest catchment, using δ13C of pore water CH4 and CO2[J]. Journal of Geophysical Research-Biogeosciences,,2008, 113(G3).
    [46]曾从盛,王维奇,仝川.不同电子受体及盐分输入对河口湿地土壤甲烷产生潜力的影响[J].地理研究,2008,27(6):1321-1330.
    [47]Li H, Reynolds J. On definition and quantification of heterogeneity[J]. Oikos,1995, 73(2):280-284.
    [48]陈玉福,董鸣.生态学系统的空间异质性[J].生态学报,2003,23(2):346-352.
    [49]Schoning I, Totsche KU, Kogel-Knabner I. Small scale spatial variability of organic carbon stocks in litter and solum of a forested Luvisol[J]. Geoderma,2006, 136(3-4):631-642.
    [50]Strack M, Waddington JM. Spatiotemporal variability in peatland subsurface methane dynamics[J]. Journal of Geophysical Research-Biogeosciences,2008, 113(G2).
    [51]Wang Y, Shao Ma, Liu Z. Large-scale spatial variability of dried soil layers and related factors across the entire Loess Plateau of China[J]. Geoderma,2010, 159(1-2):99-108.
    [52]李哈滨,王政权.空间异质性定量研究理论与方法[J].应用生态学报,1998,9(6):651-657.
    [53]潘成忠,上官周平.土壤空间变异性研究评述[J].生态环境,2003,12(3):371-375.
    [54]Vieira SR, Nielsen D, Biggar J. Spatial variability of field-measured infiltration rate[J]. Soil Science Society of America Journal,1981,45(6):1040-1048.
    [55]Vauclin M, Vieira S, Vachaud G, Nielsen D. The use of cokriging with limited field soil observations[J]. Soil Science Society of America Journal,1983,47(2):175-184.
    [56]Ten Berge H, Stroosnijder L, Burrough P, Bregt A, de Heus M. Spatial variability of physical soil properties influencing the temperature of the soil surface[J]. Agricultural Water Management,1986,6(2-3):213-226.
    [57]李金荣,杨振放,李金玲.不同深度的土壤中硝态氮的空间变异性研究[J].郑州大学学报:工学版,2009,29(4)54-57.
    [58]王存国,韩士杰,张军辉,王树堂,徐媛.长白山阔叶红松林表层土壤水分空间异质性的地统计学分析[J]. Chinese Journal of Applied Ecology.,2010, 21(4):849-855.
    [59]Wang Y, Zhang X, Huang C. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China[J]. Geoderma,2009,150(1-2):141-149.
    [60]徐剑波,宋立生,彭磊,张桥.土壤养分空间估测方法研究综述[J].生态环境学报,2011,20(8):1379-1386.
    [61]张俊平,胡月明,刘素萍,刘序.土壤水分空间变异研究综述[J].土壤通报,2009,52(3):683-690.
    [62]Moore T, Heyes A, Roulet NT. Methane emissions from wetlands, southern Hudson Bay lowland[J]. Journal of Geophysical Research,1994,99(D1):1455-1467.
    [63]Hendriks D, Van Huissteden J, Dolman A. Multi-technique assessment of spatial and temporal variability of methane fluxes in a peat meadow[J]. Agricultural and Forest Meteorology,2010,150(6):757-774.
    [64]Wachinger G, Fiedler S, Zepp K, Gattinger A, Sommer M, Roth K. Variability of soil methane production on the micro-scale:spatial association with hot spots of organic material and Archaeal populations[J]. Soil Biology and Biochemistry,2000, 32(8):1121-1130.
    [65]Blodau C, Moore TR. Micro-scale CO2 and CH4 dynamics in a peat soil during a water fluctuation and sulfate pulse[J]. Soil Biology and Biochemistry,2003, 35(4):535-547.
    [66]Forbrich I, Kutzbach L, Wille C, Becker T, Wu J, Wilmking M. Cross-evaluation of measurements of peatland methane emissions on microform and ecosystem scales using high-resolution landcover classification and source weight modelling[J]. Agricultural and Forest Meteorology,2011,151(7):864-874.
    [67]Waddington J, Roulet N. Atmosphere-wetland carbon exchanges:Scale dependency of CO2, and CH4 exchange on the developmental topography of a peatland[J]. Global Biogeochemical Cycles,1996,10(2):233-245.
    [68]Hirota M, Tang Y, Hu Q, Hirata S, Kato T, Mo W, Cao G, Mariko S. Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland[J]. Soil Biology and Biochemistry,,2004,36(5):737-748.
    [69]Van Huissteden J, Maximov T, Dolman A. High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia)[J]. Journal of Geophysical Research,2005,110(G2):G02002.
    [70]Jungkunst HF, Fiedler S. Latitudinal differentiated water table control of carbon dioxide, methane and nitrous oxide fluxes from hydromorphic soils:feedbacks to climate change[J]. Global Change Biology,2007,13(12):2668-2683.
    [71]Whiting G, Chanton J. Primary production control of methane emission from wetlands[J].1993.
    [72]van Huissteden J, Maximov TC, Dolman AJ. High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia)[J]. Journal of Geophysical Research: Biogeosciences,2005,110(G2):G02002.
    [73]Beckmann M, Lloyd D. Mass spectrometric monitoring of gases (CO2, CH4, O2) in a mesotrophic peat core from Kopparas Mire, Sweden[J]. Global Change Biology,2001, 7(2):171-180.
    [74]Ding W, Cai Z, Tsuruta H. Plant species effects on methane emissions from freshwater marshes[J]. Atmospheric Environment,2005,39(18):3199-3207.
    [75]Moore TR, Dalva M. Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations[J]. Soil Biology and Biochemistry,1997,29(8):1157-1164.
    [76]Hornibrook ERC, Longstaffe FJ, Fyfe WS. Spatial distribution of microbial methane production pathways in temperate zone wetland soils:Stable carbon and hydrogen isotope evidence[J]. Geochimica Et Cosmochimica Acta,1997,61(4):745-753.
    [77]吴自军,周怀阳,彭晓彤.珠江口桂山岛沉积物甲烷厌氧氧化作用研究[J].自然科学进展,2007,17(07):905-912.
    [78]遆超普,颜晓元.基于氮排放数据的中国大陆大气氮素湿沉降量估算[J].农业环境科学学报,2010,29(8):1606-1611.
    [79]Whalen S, Reeburgh W. Moisture and temperature sensitivity of CH4 oxidation in boreal soils[J]. Soil Biology and Biochemistry,1996,28(10):1271-1281.
    [80]Hanson RS, Hanson TE. Methanotrophic bacteria[J]. Microbiological reviews,1996, 60(2):439-471.
    [81]De Bont J, Lee K, Bouldin D. Bacterial oxidation of methane in a rice paddy[J]. Ecological Bulletins,1978:91-96.
    [82]Frenzel P, Rudolph J. Methane emission from a wetland plant:the role of CH 4 oxidation in Eriophorum[J]. Plant and Soil,1998,202(1):27-32.
    [83]Hiitsch BW, Webster CP, Powlson DS. Methane oxidation in soil as affected by land use, soil pH and N fertilization[J]. Soil Biology and Biochemistry,1994, 26(12):1613-1622.
    [84]Lidstrom ME, Somers L. Seasonal study of methane oxidation in Lake Washington[J]. Applied and Environmental Microbiology,1984,47(6):1255-1260.
    [85]Mancinelli RL. The regulation of methane oxidation in soil[J]. Annual Reviews in Microbiology,1995,49(1):581-605.
    [86]Megraw S, Knowles R. Methane production and consumption in a cultivated humisol[J]. Biology and Fertility of Soils,1987,5(1):56-60.
    [87]Schnell S, King GM. Stability of methane oxidation capacity to variations in methane and nutrient concentrations[J]. Fems Microbiology Ecology,2006, 17(4):285-294.
    [88]Yavitt JB, Lang GE, Downey DM. Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian Mountains, United States[J]. Global Biogeochemical Cycles,1988,2(3):253-268.
    [89]闵航,陈中云,吴伟祥,陈美慈.碳,氮物质对水稻田土壤甲烷氧化活性影响的研究[J].环境科学学报,22(1):70-75.
    [90]van der Nat F-JW, Middelburg JJ. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris[J]. Aquatic Botany,1998, 61(2):95-110.
    [91]Popp TJ, Chanton JP, Whiting GJ, Grant N. Evaluation of methane oxidation in therhizosphere of a Carex dominated fen in northcentral Alberta, Canada[J]. Biogeochemistry,2000,51(3):259-281.
    [92]Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart G-J, Smolders AJP, Jetten MSM, Damste JSS, Op den Camp HJM. Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems[J]. Nature Geoscience,2010, 3(9):617-621.
    [93]Eriksson T, OQuist MG, Nilsson MB. Production and oxidation of methane in a boreal mire after a decade of increased temperature and nitrogen and sulfur deposition[J]. Global Change Biology,2010,16(7):2130-2144.
    [94]Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia[J]. Nature,2007,450(7171):879-882.
    [95]Freeman C, Nevison G, Kang H, Hughes S, Reynolds B, Hudson J. Contrasted effects of simulated drought on the production and oxidation of methane in a mid-Wales wetland[J]. Soil Biology and Biochemistry,2002,34(1):61-67.
    [96]Watanabe I, Takada G, Hashimoto T, Inubushi K. Evaluation of alternative substrates for determining methane-oxidizing activities and methanotrophic populations in soils[J]. Biology and Fertility of Soils,1995,20(2):101-106.
    [97]Ding W, Cai Z, Tsuruta H. Summertime variation of methane oxidation in the rhizosphere of a Carex dominated freshwater marsh[J]. Atmospheric Environment,2004,38(25):4165-4173.
    [98]Frenzel P, Bosse U. Methyl fluoride, an inhibitor of methane oxidation and methane production[J]. Fems Microbiology Ecology,2006,21(1):25-36.
    [99]Eller G, Kanel L, Kruger M. Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plusssee[J]. Applied and Environmental Microbiology,2005,71(12):8925-8928.
    [100]Henckel T, Jackel U, Conrad R. Vertical distribution of the methanotrophic community after drainage of rice field soil[J]. Fems Microbiology Ecology,,2001, 34(3):279-291.
    [101]陈中云,闵航,吴伟祥,陈美慈.土壤中甲烷氧化菌种群数量及其与甲烷氧化活性的关系[J].浙江大学学报(农业与生命科学版),2001,27(5):546-550.
    [102]Nesbit SP, Breitenbeck GA. A laboratory study of factors influencing methane uptake by soils[J]. Agriculture, Ecosystems & Environment,1992,41(1):39-54.
    [103]Lee S-Y, Lee SH, Jang JK, Cho K-S. Comparison of Methanotrophic Community and Methane Oxidation between Rhizospheric and Non-Rhizospheric Soils[J]. Geomicrobiology Journal,2011,28(8):676-685.
    [104]King GM, Roslev P, Skovgaard H. Distribution and rate of methane oxidation in sediments of the Florida everglades[J]. Applied and Environmental Microbiology,1990,56(9):2902-2911.
    [105]Smith KA, Dobbie KE, Ball BC, Bakken LR, Sitaula BK, Hansen S, Brumme R, Borken W, Christensen S, Prieme A et al. Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink[J]. Global Change Biology,2000,6(7):791-803.
    [106]李海防,夏汉平,熊燕梅.大气甲烷的源和汇与土壤氧化(吸收)甲烷研究进展[J].生态环境2007,16(6):1781-1788.
    [107]Yan X, Z C. Effects of nitrogen fertilizer,soil moisture and temperature methane oxidation in paddy soil[J]. Pedosphere,1996,6(2):175-781.
    [108]段晓男,王效科,欧阳志云.维管植物对自然湿地甲烷排放的影响[J].生态学报,2005,25(12):3375-3382.
    [109]Thomas KL, Benstead J, Davies KL, Lloyd D. Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat[J]. Soil Biology and Biochemistry,1996, 28(1):17-23.
    [110]Sebacher DI, Harriss RC, Bartlett KB. Methane Emissions to the Atmosphere Through Aquatic Plants[J]. Journal of environmental quality,1985,14(1):40-46.
    [111]Armstrong J, ARMSTRONG W, BECKETT PM. Phragmites australis:Venturi-and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation[J]. New Phytologist,1992,120(2):197-207.
    [112]Chanton JP, Whiting GJ, Happell JD, Gerard G. Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes[J]. Aquatic Botany,1993,46(2):111-128.
    [113]Armstrong J, Armstrong W, Beckett PM, Halder JE, Lythe S, Holt R, Sinclair A. Pathways of aeration and the mechanisms and beneficial effects of humidity-and Venturi-induced convections in Phragmites australis (Cav) Trin ex Steud[J]. Aquatic Botany,1996,54(2-3):177-197.
    [114]Armstrong W, Armstrong J, Beckett PM. Pressurised ventilation in emergent macrophytes:The mechanism and mathematical modelling of humidity-induced convection[J]. Aquatic Botany,1996,54(2-3):121-135.
    [115]Grosse W, Armstrong J, Armstrong W. A history of pressurised gas-flow studies in plants[J]. Aquatic Botany,1996,54(2-3):87-100.
    [116]Whiting GJ, Chanton JP. Control of the diurnal pattern of methane emission from emergent aquatic macrophytes by gas transport mechanisms[J]. Aquatic Botany,1996, 54(2-3):237-253.
    [117]Hosono T, Nouchi I. Effect of gas pressure in the root and stem base zone on methane transport through rice bodies[J]. Plant and Soil,1997,195(1):65-73.
    [118]Kelker D, Chanton J. The effect of clipping on methane emissions from Carex[J]. Biogeochemistry,1991,39(1):37-44.
    [119]Singh S, Kumar S, Jain MC. Methane emission from two Indian soils planted with different rice cultivars[J]. Biology and Fertility ofSoils,1991,25(3):285-289.
    [120]Wang B, Neue HU, Samonte HP. Role of rice in mediating methane emission[J]. Plant and Soil,1997,189(1):107-115.
    [121]Van der Nat F, Middelburg JJ, Van Meteren D, Wielemakers A. Diel methane emission patterns from Scirpus lacustris and Phragmites australis[J]. Biogeochemistry,1998,41 (1):1-22.
    [122]Joabsson A, Christensen TR, Wall en B. Vascular plant controls on methane emissions from northern peatforming wetlands[J]. Trends in Ecology & Evolution,1999,14(10):385-388.
    [123]Kim J, Verma SB, Billesbach DP. Seasonal variation in methane emission from a temperate Phragmites-dominated marsh:effect of growth stage and plant-mediated transport[J]. Global Change Biology,1999,5(4):433-440.
    [124]Greenup AL, Bradford MA, McNamara NP, Ineson P, Lee JA. The role of Eriophorum vaginatum in CH4 flux from an ombrotrophic peatland[J]. Plant and Soil,2000,227(1-2):265-272.
    [125]Sorrell BK, Tanner CC. Convective gas flow and internal aeration in Eleocharis sphacelata in relation to water depth[J]. Journal of Ecology,2000,88(5):778-789.
    [126]Aulakh MS, Wassmann R, Rennenberg H. Methane transport capacity of twenty-two rice cultivars from five major Asian rice-growing countries[J]. Agriculture Ecosystems & Environment,2002,91(1-3):59-71.
    [127]Purvaja R, Ramesh R, Frenzel P. Plant-mediated methane emission from an Indian mangrove[J]. Global Change Biology,2004,10(11):1825-1834.
    [128]Ding WX, Cai ZC, Tsuruta H. Plant species effects on methane emissions from freshwater marshes[J]. Atmospheric Environment,2005,39(18):3199-3207.
    [129]Duan XN, Wang XK, Mu YJ, Ouyang ZY. Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China[J]. Atmospheric Environment,2005,39(25):4479-4487.
    [130]Cheng X, Peng R, Chen J, Luo Y, Zhang Q, An S, Chen J, Li B. CH4 and N2O emissions from Spartina alterniflora and Phragmites australis in experimental mesocosms[J]. Chemosphere,2007,68(3):420-427.
    [131]Duan X, Wang X, Ouyang Z. Influence of Common Reed(Phragmites australis) on CH4 Production and Transport in Wetlands:Results from Single-Plant Laboratory Experiments[J]. Water Air Soil Pollut,2009,197:185-191.
    [132]Askaer L, Elberling B, Friborg T, Jorgensen C, Hansen B. Plant-mediated CH4 transport and C gas dynamics quantified in-situ in a Phalaris arundinacea-dominant wetland[J]. Plant and Soil,2011,343(1):287-301.
    [133]Bartlett KB, Harriss RC, Sebacher DI. Methane Flux from Coastal Salt Marshes[J]. Journal of Geophysical Research,1985,90(D3):5710-5720.
    [134]Frenzel P, Thebrath B, Conrad R. Oxidation of methane in the oxic surface layer of a deep lake sediment (Lake Constance)[J]. FEMS Microbiology Letters,1990, 73(2):149-158.
    [135]King GM. Regulation by light of methane emissions from a wetland[J]. Nature,\990,345(6275):513-515.
    [136]Verville J, Hobbie S, Chapin F, Hooper D. Response of tundra CH4 and CO2 flux tomanipulation of temperature and vegetation[J]. Biogeochemistry,1998, 41(3):215-235.
    [137]Clarholm M. Possible roles for roots, bacteria, protozoa and fungi in supplying nitrogen to plants[J]. Special publication of the British Ecological Society,1985, 4:355-365.
    [138]Chanton JP, Arkebauer TJ, Harden HS, Verma SB. Diel variation in lacunal CH4 and CO2 concentration and δC-13 in Phragmites australis[J]. Biogeochemistry,,2002, 59(3):287-301.
    [139]Yavitt JB, Knapp AK. Aspects of methane flow from sediment through emergent cattail (Typha latifolia) plants[J]. New Phytologist,1998,139(3):495-503.
    [140]Chanton JP. The effect of gas transport on the isotope signature of methane in wetlands[J]. Organic Geochemistry,2005,36(2005):753-768.
    [141]Bosse U, Frenzel P. Activity and Distribution of Methane-Oxidizing Bacteria in Flooded Rice Soil Microcosms and in Rice Plants (Oryza sativa)[J]. Applied and Environmental Microbiology,1997,63(4):1199-1207.
    [142]Garnet KN, Megonigal JP, Litchfield C, Taylor Jr GE. Physiological control of leaf methane emission from wetland plants[J]. Aquatic Botany,2005,81(2):141-155.
    [143]Sorrell BK, Boon PI. Convective gas flow in Eleocharis sphacelata R. Br.:methane transport and release from wetlands[J]. Aquatic Botany,1994,47(3-4):197-212.
    [144]Sorrell BK, Brix H, Orr PT. Eleocharis sphacelata:Internal gas transport pathways and modelling of aeration by pressurized flow and diffusion[J]. New Phytologist,1997, 136(3):433-442.
    [145]Arkebauer TJ, Chanton JP, Verma SB, Kim J. Field measurements of internal pressurization in Phragmites australis (Poaceae) and implications for regulation of methane emissions in a midlatitude prairie wetland[J]. American Journal of Botany,2001,88(4):653-658.
    [146]Nouchi I, Mariko S, Aoki K. Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants[J]. Plant Physiology,1990,94(1):59-66.
    [147]Schimel JP. Plant transport and methane production as controls on methane flux from arctic wet meadow tundra[J]. Biogeochemistry,1995,28(3):183-200.
    [148]Groot TT, van Bodegom PM, Meijer HAJ, Harren FJM. Gas transport through the root-shoot transition zone of rice tillers[J]. Plant and Soil,2005,277(1-2):107-116.
    [149]Lu Y, Wassmann R, Neue HU, Huang C. Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants[J]. Biogeochemistry,1999,47(2):203-218.
    [150]Aulakh MS, Wassmann R, Rennenberg H, Fink S. Pattern and amount of aerenchyma relate to variable methane transport capacity of different rice cultivars[J]. Plant Biology,2000,2(2):182-194.
    [151]黄佳芳,仝川,刘泽雄,肖海燕,张林海.沼泽湿地互花米草植物体传输与排放甲烷特征[J].植物学报,2011,46(5):534-543.
    [152]仝川,黄佳芳,王维奇,廖稷,刘泽雄,曾从盛.闽江口半咸水芦苇潮汐沼泽湿地甲烷动态[J].地理学报,2012,67(9):1165-1180.
    [153]Kim J, Verma SB, Billesbach DP, Clement RJ. Diel variation in methane emission from a midlatitude prairie wetland:Significance of convective through flow in Phragmites australis[J]. Journal of Geophysical Research-Atmospheres,1998, 103(D21):28029-28039.
    [154]Kaki T, Ojala A, Kankaala P. Diel variation in methane emissions from stands of Phragmites australis (Cav.) Trin. ex Steud. and Typha latifolia L. in a boreal lake[J]. Aquatic Botany,2001,71(4):259-271.
    [155]Ding WX, Cai ZC, Tsuruta H. Diel variation in methane emissions from the stands of Carex lasiocarpa and Deyeuxia angustifolia in a cool temperate freshwater marsh[J]. Atmospheric Environment,2004,38(2):181-188.
    [156]Afreen F, Zobayed SMA, Armstrong J, Armstrong W. Pressure gradients along whole culms and leaf sheaths, and other aspects of humidity-induced gas transport in Phragmites australis[J]. Journal of Experimental Botany,2001,58(7):1651-1662.
    [157]Hosono T, Nouchi I. The dependence of methane transport in rice plants on the root zone temperature[J]. Plant and Soil,1997,191(2):233-240.
    [158]Tong C, Wang W-Q, Huang J-F, Gauci V, Zhang L-H, Zeng C-S. Invasive alien plants increase CH4 emissions from a subtropical tidal estuarine wetland[J]. B iogeochemistry,2012:1-17.
    [159]Jia ZJ, Cai ZC, Xu H, Li XP. Effect of rice plants on CH4 production, transport, oxidation and emission in rice paddy soil [J]. Plant and Soil,2001,230(2):211-221.
    [160]Van Bodegom PM, Groot T, Van den Hout B, Leffelaar P A, J. G. Diffusive gas transport through flooded rice systems[J]. Journal of Geophysical Research,2001, 106(D18):20,861-820,873.
    [161]仝川,姚顺,王维奇,黄佳芳,张林海,章文龙,曾从盛.中国东南沿海短叶茳芏潮汐沼泽湿地甲烷动态[J].中国科学:地球科学,2012,42(5):723-735.
    [162]仝川,曾从盛,王维奇,闫宗平,杨红玉.闽江河口芦苇潮汐湿地甲烷通量及主要影响因子[J].环境科学学报,2009,29(1):207-216.
    [163]Deborde J, Anschutz P, Guerin F, Poirier D, Marty D, Boucher G, Thouzeau G, Canton M, Abril G Methane sources, sinks and fluxes in a temperate tidal Lagoon: The Arcachon lagoon (SW France)[J]. Estuarine, Coastal and Shelf Science,2010, 89(4):256-266.
    [164]Yamamoto A, Hirota M, Suzuki S, Oe Y, Zhang P, Mariko S. Effects of tidal fluctuations on CO2 and CH4 fluxes in the littoral zone of a brackish-water lake[J]. Limnology,,2009,10(3):229-237.
    [165]金玉凤,胡智强,仝川.大,小潮日闽江口短叶茳芏+芦苇沼泽甲烷排放通量日变化特征[J].湿地科学,2012,10(2):228-234.
    [166]曾从盛,雷波,王维奇,仝川,艾金泉,章文龙.闽江河口蔗草湿地CH4排放特征[J].湿地科学,2009,7(2):142-147.
    [167]曾从盛,王维奇,张林海,林璐莹,艾金泉,章文龙.闽江河口短叶茳芏潮汐湿地甲烷排放通量[J].应用生态学报,2010,21(2):500-504.
    [168]仝川,柳铮铮,曾从盛,钟春棋,黄佳芳.模拟SO42-沉降对河口潮汐湿地甲烷排放通量的影响[J].中国环境科学,2010,30(3):302-308.
    [169]Wassmann R, Neue H, Bueno C, Lantin R, Alberto M, Buendia L, Bronson K, Papen H, Rennenberg H. Methane production capacities of different rice soils derived from inherent and exogenous substrates[J]. Plant and Soil,1998,203(2):227-237.
    [170]King GM. In Situ Analyses of Methane Oxidation Associated with the Roots and Rhizomes of a Bur Reed, Sparganium eurycarpum, in a Maine Wetland[J]. Applied and Environmental Microbiology,1996,62(12):4548-4555.
    [171]王德宣,丁维新,王毅勇.若尔盖高原与三江平原沼泽湿地CH4排放差异的主要环境影响因素[J].湿地科学,2003,1(1):63-67.
    [172]Tong C, Huang JF, Hu ZQ, Jin YF. Diurnal Variations of Carbon Dioxide, Methane, and Nitrous Oxide Vertical Fluxes in a Subtropical Estuarine Marsh on Neap and Spring Tide Days[J]. Estuaries and Coaste,2013:1-10.
    [173]Ding W, Cai Z, Tsuruta H, Li X. Key factors affecting spatial variation of methane emissions from freshwater marshes[J]. Chemosphere,2003,51(3):167-173.
    [174]吴自军,周怀阳,彭晓彤,陈光谦.甲烷厌氧氧化作用:来自珠江口淇澳岛海岸带沉积物间隙水的地球化学证据[J].科学通报,2006,51(17):2052-2059.
    [175]尹希杰,陈坚,郭莹莹,孙治雷,邵长伟.九龙江河口沉积物中硫酸盐还原与甲烷厌氧氧化:同位素地球化学证据[J].海洋学报(中文版),2011,33(04):121-128.
    [176]Singh A, Dubey SK. Temporal variation in methanogenic community structure and methane production potential of tropical rice ecosystem[J]. Soil Biology & Biochemistry,2012,48:162-166.
    [177]Patel GB, Roth LA. Effect of sodium chloride on growth and methane production of methanogens[J]. Canadian Journal of Microbiology,1977,23(7):893-897.
    [178]Bartlett KB, Bartlett DS, Harriss RC, Sebacher DI. Methane emissions along a salt marsh salinity gradient[J]. Biogeochemistry,1987,4(3):183-202.
    [179]B. ND, M. ET, J. PK. Sulphate reduction, methanogenesis and phylogenetics of the sulphate reducing bacterial communities along an estuarine gradient[J]. Aquatic Microbial Ecology,2004,37(3):209-217.
    [180]Krzycki J, Kenealy W, DeNiro M, Zeikus J. Stable carbon isotope fractionation by Methanosarcina barkeri during methanogenesis from acetate, methanol, or carbon dioxide-hydrogen[J]. Applied and Environmental Microbiology,1987, 53(10):2597-2599.
    [181]Summons RE, Franzmann PD, Nichols PD. Carbon isotopic fractionation associated with methylotrophic methanogenesis[J], Organic Geochemistry,1998, 28(7-8):465-475.
    [182]杜晓明,刘厚田,柳若安,陆妙琴,王玉保.厦门近海海域海水二甲基硫排放通量的研究[J].环境科学研究,1998,11(2):36-38.
    [183]马奇菊,胡敏,刘玲莉,朱彤,戴民汉.九龙江河口湾区冬季海水二甲基硫浓度的分布特征[J].2004.
    [184]Lyimo TJ, Pol A, Op den Camp HJ. Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tanzania[J]. AMBIO:A Journal of the Human Environment,,2002,31(7):614-616.
    [185]张法升,刘作新,曲威,亢振军,沈业杰.长期耕作条件下小尺度农田土壤有机质空间变异性[J].干早地区农业研究,2010,28(02):167-171.
    [186]冯娜娜,李廷轩,张锡洲,王永东,廖贵堂.不同尺度下低山茶园土壤颗粒组成空间变异性特征[J].水土保持学报,2006,20(3):123-128.
    [187]曾艳,张杨珠.地统计学在土壤性状空间变异性研究中的应用[J].湖南农业科学,2009(6):51-53,74.
    [188]Lopez-Granados F, Jurado-Exposito M, Atenciano S, Garcia-Ferrer A, de la Orden MS, Garcia-Torres L. Spatial variability of agricultural soil parameters in southern Spain[J]. Plant and Soil,,2002,246(1):97-105.
    [189]Liu X, Zhao K, Xu J, Zhang M, Si B, Wang F. Spatial variability of soil organic matter and nutrients in paddy fields at various scales in southeast China[J]. Environmental Geology,2008,53(5):1139-1147.
    [190]黄敏参.咸草植物形态解剖及生理生态特性初步探讨[D].硕士.福建师范大学.硕士.2008.
    [191]Lombardi JE, Epp MA, Chanton JP. Investigation of the methyl fluoride technique for determining rhizospheric methane oxidation[J]. Biogeochemistry,1997, 36(2):153-172.
    [192]King GM, Roslev P, Skovgaard H. Distribution and rate of methane oxidation in sediments of the Florida Everglades[J]. Applied and environmental microbiology,1990,56(9):2902-2911.
    [193]Happell JD, Chanton JP, Showers WS. The influence of methane oxidation on the stable isotopic composition of methane emitted from Florida swamp forests[J]. Geochimica Et Cosmochimica Acta,1994,58(20):4377-4388.
    [194]Schutz H, Seiler W, Conrad R. Processes involved in formation and emission of methane in rice paddies[J]. Biogeochemistry,1989,7(1):33-53.
    [195]Holzapfel-Pschorn A, Conrad R, Seiler W. Effects of vegetation on the emission of methane from submerged paddy soil[J]. Plant and Soil,1986,92(2):223-233.
    [196]Sass R, Fisher F, Harcombe P, Turner F. Methane production and emission in a Texas rice field[J]. Global Biogeochemical Cycles,1990,4(1):47-68.
    [197]Crill PM, Martikainen PJ, Nykanen H, Silvola J. Temperature and N fertilization effects on methane oxidation in a drained peatland soil[J]. Soil Biology and Biochemistry,1994,26(10):1311-1339.
    [198]丁维新.沼泽湿地及其不同利用方式下甲烷排放机理研究[D].中国科学院研 究生院:南京土壤研究所.博士.2003.
    [199]黄佳芳.互花米草和短叶茳芏植物体甲烷传输研究[D].福建师范大学.硕士.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700