中国青少年成人起病型糖尿病(MODY)患者筛查及GCK基因突变功能学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分中国青少年的成人起病型糖尿病(MODY)患者筛查
     [目的]
     探讨中国青少年的成人起病型糖尿病患者(MODY)的临床特点和分子遗传学特征。
     [方法]
     设定血糖异常患者进行MODY致病基因检测的入组标准。按照该标准收集2010年至2014年在北京协和医院疑诊为MODY的糖尿病家系患者,系统性分析其临床特点及实验室检查资料。根据患者的临床特点判断其可能的MODY类型,抽提相关家系成员的基因组DNA,聚合酶链式反应(PCR)扩增后进行MODY致病基因的直接测序。
     [结果]
     1.共入组33例家系,基因检测发现11例MODY2家系和1例MODY3家系,共发现和诊断MODY2患者32例,MODY3患者2例,由GCK基因复合杂和突变引起的新生儿糖尿病患者1例。
     2.发现不同的GCK基因突变位点11个(R43C、T168A、K169N、R191W、Y215X、 E221K、R25OH, G261R、M235T、W257X、A379E),其中K169N (c.507G>C)、 Y215X(c.645C>A)、R250H(c.749G>A)、W257X(c.771G>A)、G261R(c.781G>C)为新报道突变。发现HNF1A基因突变位点1个(P519L)。
     3.对11例MODY2家系的研究显示,起病时年龄跨度大、缺乏糖尿病典型症状以及较低的血甘油三酯水平是MODY2患者的临床特征。大多数MODY2患者OGTT试验有正常的胰岛素分泌曲线。
     4.中国MODY2患者和致病基因检测阴性的早发糖尿病患者均具有较低的hsCRP水平,可能和其较高的rs1169288和/或rs2464196携带率有关。
     [结论]
     MODY2和MODY3分别占中国MODY家系的33%和3%,大部分MODY患者其致病基因未明。
     第二部分中国妊娠期糖代谢异常人群GCK基因突变初步筛查
     [目的]
     初步明确中国妊娠期血糖异常人群中葡萄糖激酶(GCK)基因突变情况。
     [方法]
     回顾性研究,选择2005年7月至2008年5月在北京协和医院进行妊娠期血糖筛查并进行了口服葡萄糖耐量(OGTT)试验和糖化血红蛋白(HbAlc)检测的妊娠妇女。以空腹血糖在5.5~10.0mmol/L、OGTT试验2h与Oh血糖差值小于4.6mmol/L且HbAlc值小于8.0%作为筛选条件,对满足所有条件者进行GCK基因外显子区和启动子区-71G>C的突变筛查。
     [结果]
     共纳入577例受试者,符合GCK基因检测条件者30例,可获得标本数17例,发现1例GCK基因突变致青少年的成人起病型糖尿病2型(MODY2)患者和1处非编码区新变异。该MODY2患者6号外显子区c.626C>T(NM_000162.3)突变导致第209位编码氨基酸从苏氨酸变为甲硫氨酸(p. T209M, NP_000153.1).推测中国妊娠期血糖异常人群GCK最小突变率为0.27%,估测中国总人群中MODY2的最小患病率为21/10万。
     [结论]
     中国妊娠期血糖异常的人群中GCK基因突变并不常见。
     第三部分GCK基因突变功能学研究
     [目的]
     探讨不同葡萄糖激酶(GCK)基因突变R43C、K169N、R191W、E221K、R250H、R275H和A379E引起青少年的成人起病型糖尿病2型(MODY2)的分子机制,以及K90R、M197V突变引起先天性高胰岛素血症(CHI)的分子机制。[方法]
     构建携带有谷胱甘肽S转移酶(GST)标签的野生型和各突变型GCK质粒。体外表达和纯化野生型和各突变型GST-GCK重组蛋白。酶偶联分析法进行动力学和热稳定性分析。
     [结果]
     1.与野生型相比,R43C、R191W、E221K、R250H、A379E、K90R突变导致蛋白产量下降,M197V突变导致蛋白产量增加。
     2.与野生型相比,K169N、R191W、A379E突变导致葡萄糖S0.5值显著升高,催化常数(Kcat)显著下降,R191W, A379E突变还导致ATP-Km值升高。总体相对活性指数(Ia)分别为<0.001,0.037和0.233。
     3.与野生型相比,E221K突变导致葡萄糖S0.5、ATP-Km值升高,Kcat下降,工。为0.477;R43C突变未导致葡萄糖S0.5、ATP-Km值的显著改变,Kcat的显著降低使其Ia为0.429。
     4.R250H突变仅导致Kcat轻度下降,Ia与野生型无明显差异;R275H突变导致葡萄糖S0.5和Kcat的轻度下降,Ia与野生型也无明显差异。
     5.K9OR和M197V突变导致葡萄糖S0.5和希尔系数(h)下降、ATP-Km升高,K90R突变同时导致Kcat轻度下降,总体Ia分别为1.620和4.690。
     6.热稳定性分析显示,K169N、R191W(?)A379E突变随着孵育温度升高或时间延长酶活性有明显下降。
     [结论]
     1.酶动力学异常、催化活性下降和热稳定性下降是K169N、R191W和A379E突变导致高血糖的原因。
     2.酶动力学异常、催化活性下降参与E221K突变导致的高血糖发病;催化活性下降参与R43C突变导致的高血糖发病。
     3.酶动力学异常是M197V和K9OR突变导致先天性高胰岛素血症的原因。
     4.酶动力学和热稳定性研究未能揭示R25OH和R275H突变导致高血糖的原因。
PART1
     Screening of maturity-onset diabetes of the young in Chinese diabetic population
     Objective To explore the clinical characteristics and molecular genetics of Chinese maturity-onset diabetes of the young.
     Methods Inclusion criteria for genetic testing in Chinese patients suspected with maturity-onset diabetes of the young(MODY) were developed. According to the criteria, we collected and retrospectively analyzed the clinical characteristcs and features of laboratory data of Chinese MODY pedigrees diagnosed in Peking Union Medical College Hospital (PUMCH) from2010to2014. Genomic DNA of related members in the pedigrees were extracted, followed by PCR amplification. Then direct sequencing were performed to identify mutations in the potential causative gene of MODY.
     Results
     1. A total of33pedigrees were collected and analyzed, in which11MODY2pedigrees and1MODY3pedigree were confirmed by genetic testing. In the12pedigrees,32cases of MODY2,2cases of MODY3and one case of permanent neonatal diabetes mellitus (PNDM) caused by compound heterozygous mutation in GCK gene were found.
     2. Totally11mutations (R43C、T168A、K169N、R191W, Y215X、E221K、R250H、 G261R、M235T、W257X、A379E) were discovered in GCKgene, in which5[K169N (c.507G>C、Y215X (c.645C>A、R250H (c.749G>A)、W257X (c.771G>A)、 G261R (c.781G>C)]were previously unreported. One previously reported mutation (P519L) in HNF1A gene was also detected.
     3. The study of the11MODY2pedigrees showed that a large span of the age at diagnosis of hyperglycemia, lack of typical clinical manifestations of diabetes at the time of onset and lower levels of plasma triglyceride were clinical characteristics of MODY2patients. The majority of MODY2patients had normal insulin secretion curve in oral glucose tolerance test(OGTT).
     4. Chinese patients with early-onset diabetes, including MODY2and others caused by unknown pathogenic gene, showed low level of hsCRP. This may be associated with the high percentage of carriers of rs1169288and/or rs2464196in both groups.
     Conclusion MODY2and MODY3account for33%and3%, respectively in Chinese MODY pedigrees. The causative gene are still unknown in majority of MODY cases.
     PART2
     Preliminary screening of mutations in the glucokinase gene in Chinese gestational subjects with abnormal glucose metabolism
     Objective To preliminarily assess the rate of glucokinase(GCK) gene mutation in Chinese gestational subjects with abnormal glucose metabolism.
     Methods We retrospectively analyzed Chinese gestational subjects who received oral glucose tolerance test and glycosylated hemoglobin (HbA1c) detection in Peking Union Medical College Hospital (PUMCH) from July2005to May2008. Subjects were selected for direct sequencing of GCK gene if they met the following three criteria:(1) fasting plasma glucose was between5.5and10.Ommol/L,(2) a small increase (<4.6mmol/L) in plasma glucose2hours after an oral glucose load,(3) HbAlc below8.0%.
     Results A total of577subjects were collected in our study, in which30subjects met the criteria for GCK gene mutation testing. Of the17subjects whose DNA samples were obtainable, one case of maturity-onset diabetes of the young type2(MODY2) with GCK gene mutation c.626C>T(NM_000162.3) in exon6and one case with previously unreported variation in noncoding region had been found. The mutation c.626C>T(NM_000162.3) resulted in the substitution of methionine for threonine in amino acid209(p. T209M, NP_000153.1). According to our finding, we estimated the minimum GCK gene mutation rate was0.27%in Chinese gestational subjects with abnormal glucose metabolism, and the minimum prevalence of MODY2was21/100,000in Chinese population. Conclusion The GCK gene mutations are not common in Chinese gestational subjects with abnormal glucose metabolism.
     PART3
     Functional studies of GCK gene mutations
     Objective To explore the molecular mechanisms of missense mutations in the GCK gene resulted in hyperglycemia in patients of maturity-onset diabetes of the young type2(MODY2)(R43C, K169N, R191W, E221K, R250H, R275H and A379E) and hypoglycaemia in patients of congenital hyperinsulinism(CHI)(K90R and M197V).
     Methods We constructed plasmids of wild type of human islet glucokinase (GCK) recombined with glutathione S-transferase(GST) and mutants carrying the respective mutations by site-directed mutagenesis. Wild type and mutants were bacterially expressed as fusion proteins and affinity-purified. Enzymatic kinetics and thermostability were evaluated for wild type and every mutants by enzyme-coupled analysis.
     Results
     1. Compared with wild type, mutants R43C, R191W, E221K, R250H, A379E and K90R resulted in lower protein yield, while mutants M197V had higer protein yield.
     2. Compared with wild type, mutants K169N, R191W and A379E had significant increased S0.5for glucose and decreased catalytic constant (Kcat). Mutants R191W and A379E also had increased Km for ATP(ATP-Km. The relative activity index (Ia) for these mutants were<0.001,0.037和0.233, respectively.
     3. Compared with wild type, mutant E221K resulted in increased So.5and ATP-Km and dereased Kcat. Mutant R43C resulted in significant decreased in Kcat without changes in S0.5and ATP-Km. The Ia for both mutants were0.477and0.429, respectively.
     4. Though mutation of R250H caused mild decrease in Kcat, R275H caused mild decrease in both S0.5and Kcat, there were no siginificant differences in Ia when they compared with wild type.
     5. Both mutants K90R and M197V resulted in decreased S0.5, Hill coefficient and increased ATP-Km. Mutant K90R also resulted in mild decrease in Kcat. The Ia for both were1.620and4.690, respectively.
     6. Thermostability analysis revealed that mutants K169, R191W and A379E were thermal instability.
     Conclusion
     1. Abnormal enzymatic kinetics, decreased catalytic activity and thermal stability are the causes of K169N, R191W and A379E mutation to develop hyperglycemia in patients of MODY2.
     2. Abnormal enzymatic kinetics and decreased catalytic activity involve in the pathogenesis of mutant E221K. R43C mutation promotes the development of MODY2by reduced catalytic activity.
     3. Abnormal enzymatic kinetics are the causes of M197V and K90R mutation to develop hypoglycaemia in patients of CHI.
     4. Results of enzymatic kinetics and thermostability analysis do not reveale the pathogenesis of R250H and R275H mutation to develop hyperglycemia.
引文
[1]Fajans S S, Bell G I. MODY:history, genetics, pathophysiology, and clinical decision making[J]. Diabetes Care,2011,34(8):1878-1884.
    [2]Owen K R. RD Lawrence Lecture 2012:Assessing aetiology in diabetes: how C-peptide, CRP and fucosylation came to the party! [J]. Diabet Med, 2012.
    [3]Ledermann H M. Is maturity onset diabetes at young age (MODY) more common in Europe than previously assumed?[J]. Lancet, 1995,345 (8950):648.
    [4]Frayling T M, Evans J C, Bulman M P, et al. beta-cell genes and diabetes:molecular and clinical characterization of mutations in transcription factors[J]. Diabetes,2001,50 Suppl 1:S94-S100.
    [5]Shields B M, Hicks S, Shepherd M H, et al. Maturity-onset diabetes of the young (MODY):how many cases are we missing?[J]. Diabetologia, 2010,53(12):2504-2508.
    [6]Xu J Y, Dan Q H, Chan V, et al. Genetic and clinical characteristics of maturity-onset diabetes of the young in Chinese patients[J]. Eur J Hum Genet,2005,13(4):422-427.
    [7]Pearson E R, Starkey B J, Powell R J, et al. Genetic cause of hyperglycaemia and response to treatment in diabetes[J]. Lancet, 2003,362(9392):1275-1281.
    [8]Steele A, Shields B, Shepherd M, et al. Microvascular complication risk in patients with 50 years of moderate hyperglycaemia:are target ranges for glycaemic control appropriate? [Z]. Diabet Med,2011:28,28.
    [9]Ellard S, Bellanne-Chantelot C, Hattersley A T. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young[J]. Diabetologia,2008,51(4):546-553.
    [10]Bellanne-Chantelot C, Levy D J, Carette C, et al. Clinical characteristics and diagnostic criteria of maturity-onset diabetes of the young (MODY) due to molecular anomalies of the HNF1A gene[J]. J Clin Endocrinol Metab,2011,96(8):E1346-E1351.
    [11]Thanabalasingham G, Pal A, Selwood M P, et al. Systematic assessment of etiology in adults with a clinical diagnosis of young-onset type 2 diabetes is a successful strategy for identifying maturity-onset diabetes of the young[J]. Diabetes Care,2012,35(6):1206-1212.
    [12]Shields B M, McDonald T J, Ellard S, et al. The development and validation of a clinical prediction model to determine the probability of MODY in patients with young-onset diabetes[J]. Diabetologia, 2012,55 (5):1265-1272.
    [13]Greeley S A, Naylor R N, Cook L S, et al. Creation of the Web-based University of Chicago Monogenic Diabetes Registry:using technology to facilitate longitudinal study of rare subtypes of diabetes [J]. J Diabetes Sci Technol,2011,5(4):879-886.
    [14]项坤三,吴松华,郑泰山,等.常见型非胰岛素依赖型糖尿病患者的葡萄糖激酶基因分子扫查[J].中国糖尿病杂志,1995(01).
    [15]Yang Z, Wu S H, Zheng T S, et al. Identification of four novel mutations in the HNF-1A gene in Chinese early-onset and/or multiplex diabetes pedigrees[J]. Chin Med J (Engl),2006,119(13):1072-1078.
    [16]贾贺堂,张素华,纪立农,等.中国人早发糖尿病家系的临床特征及MODY1基因突变的筛查[J].重庆医学,2005,34(1):4-6.
    [17]郑泰山,吴松华,杨震,等.中国人早发性糖尿病GCK基因突变的筛查[J].中华医学遗传学杂志,2005,22(6):671-674.
    [18]方启晨,张蓉,王从容,等.中国人早发及多发糖尿病家系HNF-1 a基因突变的筛查[J].中华医学遗传学杂志,2004,21(4):329-334.
    [19]贾贺堂,张素华,纪立农,等.北京地区早发糖尿病家系MODY5基因突变的筛查[J].第三军医大学学报,2006,28(19):1952-1954.
    [20]胡承,王从容,张蓉,等.中国人早发及多发糖尿病家系中筛查葡萄糖激酶基因突变[J].上海医学,2006,29(10):683-686.
    [21]郑泰山,杨震,吴松华,等.中国人早发及多发糖尿病人群中葡萄糖激酶基因筛查及1个新的错义突变V5L的发现[J]. 中国糖尿病杂志,2010,18(9):660-664.
    [22]Ng M C, Lee S C, Ko G T, et al. Familial early-onset type 2 diabetes in Chinese patients:obesity and genetics have more significant roles than autoimmunity[J]. Diabetes Care,2001,24(4):663-671.
    [23]Xu J Y, Chan V, Zhang W Y, et al. Mutations in the hepatocyte nuclear factor-lalpha gene in Chinese MODY families:prevalence and functional analysis[J]. Diabetologia,2002,45(5):744-746.
    [24]中国2型糖尿病防治指南(2010年版)[J].中国糖尿病杂志.
    [25]Gardner D S, Tai E S. Clinical features and treatment of maturity onset diabetes of the young (MODY)[J]. Diabetes Metab Syndr Obes, 2012,5:101-108.
    [26]王志新,肖新华.成年起病型青少年糖尿病的识别及其不同亚型的临床特征[J].中华糖尿病杂志,2013,5(4):196-198.
    [27]刁呈明,萨仁图雅,肖新华,等.两个MODY2中国家系葡萄糖激酶基因杂合突变的研究[J].中国糖尿病杂志,2010,18(6):405-408.
    [28]Borowiec M, Antosik K, Fendler W, et al. Novel glucokinase mutations in patients with monogenic diabetes-clinical outline of GCK-MD and potential for founder effect in Slavic population[J]. Clin Genet, 2012,81(3):278-283.
    [29]Turkkahraman D, Bircan I, Tribble N D, et al. Permanent neonatal diabetes mellitus caused by a novel homozygous (T168A) glucokinase (GCK) mutation:initial response to oral sulphonylurea therapy [J]. J Pediatr, 2008,153(1):122-126.
    [30]Durmaz E, Flanagan S, Berdeli A, et al. Variability in the age at diagnosis of diabetes in two unrelated patients with a homozygous glucokinase gene mutation[J]. J Pediatr Endocrinol Metab, 2012,25 (7-8):805-808.
    [31]Zhang J, Li C, Shi T, et al. Lysl69 of human glucokinase is a determinant for glucose phosphorylation:implication for the atomic mechanism of glucokinase catalysis[J]. PLoS One,2009,4(7):e6304.
    [32]Hwang J S, Shin C H, Yang S W, et al. Genetic and clinical characteristics of Korean maturity-onset diabetes of the young (MODY) patients[J]. Diabetes Res Clin Pract,2006,74(1):75-81.
    [33]Sagen J V, Bjorkhaug L, Molnes J, et al. Diagnostic screening of MODY2/GCK mutations in the Norwegian MODY Registry [J]. Pediatr Diabetes, 2008,9(5):442-449.
    [34]Ellard S, Beards F, Allen L I, et al. A high prevalence of glucokinase mutations in gestational diabetic subjects selected by clinical criteria[J]. Diabetologia,2000,43(2):250-253.
    [35]Guazzini B, Gaff i D, Mainieri D, et al. Three novel missense mutations in the glucokinase gene (G80S; E221K; G227C) in Italian subjects with maturity-onset diabetes of the young (MODY). Mutations in brief no.162. Online[J]. Hum Mutat,1998,12(2):136.
    [36]Osbak K K, Colclough K, Saint-Martin C, et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia[J]. Hum Mutat,2009,30(11):1512-1526.
    [37]Gidh-Jain M, Takeda J, Xu L Z, et al. Glucokinase mutations associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity:implications for structure/function relationships[J]. Proc Natl Acad Sci U S A,1993,90(5):1932-1936.
    [38]Davis E A, Cuesta-Munoz A, Raoul M, et al. Mutants of glucokinase cause hypoglycaemia-and hyperglycaemia syndromes and their analysis illuminates fundamental quantitative concepts of glucose homeostasis[J]. Diabetologia,1999,42(10):1175-1186.
    [39]Kamata K, Mitsuya M, Nishimura T, et al. Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase[J]. Structure,2004,12(3):429-438.
    [40]Sagen J V, Odili S, Bjorkhaug L, et al. From clinicogenetic studies of maturity-onset diabetes of the young to unraveling complex mechanisms of glucokinase regulation[J]. Diabetes,2006,55(6):1713-1722.
    [41]Frayling T M, Bulamn M P, El lard S, et al. Mutations in the hepatocyte nuclear factor-lalpha gene are a common cause of maturity-onset diabetes of the young in the U.K[J]. Diabetes,1997,46(4):720-725.
    [42]Soutoglou E, Viollet B, Vaxillaire M, et al. Transcription factor-dependent regulation of CBP and P/CAF histone acetyltransferase activity[J]. EMBO J,2001,20(8):1984-1992.
    [43]Stride A, Vaxillaire M, Tuomi T, et al. The genetic abnormality in the beta cell determines the response to an oral glucose load[J]. Diabetologia,2002,45(3):427-435.
    [44]Stride A, Ellard S, Clark P, et al. Beta-cell dysfunction, insulin sensitivity, and glycosuria precede diabetes in hepatocyte nuclear factor-lalpha mutation carriers[J]. Diabetes Care, 2005,28 (7):1751-1756.
    [45]Thanabalasingham G, Shah N, Vaxillaire M, et al. A large multi-centre European study validates high-sensitivity C-reactive protein (hsCRP) as a clinical biomarker for the diagnosis of diabetes subtypes[J]. Diabetologia,2011,54(11):2801-2810.
    [46]Hsu L A, Ko Y L, Teng M S, et al. Effect of obesity on the association between common variations in the HNF1A gene region and C-reactive protein level in Taiwanese [J]. Clin Chim Acta,2011,412(9-10):725-729.
    [47]Reiner A P, Gross M D, Carlson C S, et al. Common coding variants of the HNF1A gene are associated with multiple cardiovascular risk phenotypes in community-based samples of younger and older European-American adults:the Coronary Artery Risk Development in Young Adults Study and The Cardiovascular Health Study[J]. Circ Cardiovasc Genet,2009,2(3):244-254.
    [48]McDonald T J, Shields B M, Lawry J, et al. High-sensitivity CRP discriminates HNF1A-MODY from other subtypes of diabetes[J]. Diabetes Care,2011,34(8):1860-1862.
    [49]Oron T, Gat-Yablonski G, Lazar L, et al. Stress hyperglycemia:a sign of familial diabetes in children[J]. Pediatrics, 2011,128(6):el614-e1617.
    [50]Thanabalasingham G, Owen K R. Diagnosis and management of maturity onset diabetes of the young (MODY)[J]. BMJ,2011,343:d6044.
    [51]Spyer G, Hattersley A T, Sykes J E, et al. Influence of maternal and fetal glucokinase mutations in gestational diabetes[J]. Am J Obstet Gynecol,2001,185(1):240-241.
    [52]Steele A M, Shields B M, Wensley K J, et al. Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia[J]. JAMA,2014,311(3):279-286.
    [53]Spegel P, Ekholm E, Tuomi T, et al. Metabolite Profiling Reveals Normal Metabolic Control in Carriers of Mutations in the Glucokinase Gene (MODY2)[J]. Diabetes,2013,62(2):653-661.
    [54]Kavvoura F, Raimondo A, Thanabalasingham G, et al. Reclassification of diabetes etiology in a family with multiple diabetes phenotypes[J]. J Clin Endocrinol Metab,2014:c20133641.
    [55]Stoffel M, Patel P, Lo Y M, et al. Missense glucokinase mutation in maturity-onset diabetes of the young and mutation screening in late-onset diabetes[J]. Nat Genet,1992,2(2):153-156.
    [56]Stoffel M, Bell K L, Blackburn C L, et al. Identification of glucokinase mutations in subjects with gestational diabetes mellitus[J]. Diabetes,1993,42(6):937-940.
    [57]Saker P J, Hattersley A T, Barrow B, et al. High prevalence of a missense mutation of the glucokinase gene in gestational diabetic patients due to a founder-effect in a local population [J]. Diabetologia, 1996,39 (11):1325-1328.
    [58]Okruszko A, Kinalski M, Kuzmicki M, et al. [Glucokinase gene mutations in gestational diabetes in Polish population. Prediction of diabetes mellitus development after delivery][J]. Przegl Lek, 2007,64(6):401-405.
    [59]Zouali H, Vaxillaire M, Lesage S, et al. Linkage analysis and molecular scanning of glucokinase gene in NIDDM families [J]. Diabetes, 1993,42(9):1238-1245.
    [60]韩红敬,王山米,纪立农.葡萄糖激酶基因与妊娠糖尿病的关系[J].中华妇产科杂志,1999(1):23.
    [61]孙颖,王建华,任大林.妊娠糖尿病与基因突变关系的1:3病例对照研究[J].天津医科大学学报,2003,9(1):1-3,6.
    [62]强兆艳,王建华,齐秀英.妇女妊娠糖尿病与易感基因关系[J].中国公共卫生,2006,22(1):3-4.
    [63]李伟.HNF1A、GCK和GCKR基因单核苷酸多态性与妊娠糖尿病的相关性研究[D].北京协和医学院(中国医学科学院)北京协和医学院清华大学医学部中国医学科学院内分泌代谢学,2011.
    [64]Ellard S, Beards F, Allen L I, et al. A high prevalence of glucokinase mutations in gestational diabetic subjects selected by clinical criteria[J]. Diabetologia,2000,43(2):250-253.
    [65]Kousta E, Ellard S, Allen L I, et al. Glucokinase mutations in a phenotypically selected multiethnic group of women with a history of gestational diabetes[J]. Diabet Med,2001,18(8):683-684.
    [66]Zurawek M, Wender-Ozegowska E, Januszkiewicz-Lewandowska D, et al. GCK and HNFlalpha mutations and polymorphisms in Polish women with gestational diabetes[J]. Diabetes Res Clin Pract,2007,76(1):157-158.
    [67]Frigeri H R, Santos I C, Rea R R, et al. Low prevalence of glucokinase gene mutations in gestational diabetic patients with good glycemic control [J]. Genet Mol Res,2012,11(2):1433-1441.
    [68]Chakera A J, Spyer G, Vincent N, et al. The 0.1% of the Population With Glucokinase Monogenic Diabetes Can be Recognized by Clinical Characteristics in Pregnancy:The Atlantic Diabetes in Pregnancy Cohort[J]. Diabetes Care,2014.
    [69]Gestational diabetes mellitus[J]. Diabetes Care,2000,23 Suppl 1:S77-S79.
    [70]Gasperikova D, Tribble N D, Stanik J, et al. Identification of a novel beta-cell glucokinase (GCK) promoter mutation (-71G>C) that modulates GCK gene expression through loss of allele-specific Spl binding causing mild fasting hyperglycemia in humans [J]. Diabetes, 2009,58(8):1929-1935.
    [71]Hager J, Blanche H, Sun F, et al. Six mutations in the glucokinase gene identified in MODY by using a nonradioactive sensitive screening technique[J]. Diabetes,1994,43(5):730-733.
    [72]Miller S P, Anand G R, Karschnia E J, et al. Characterization of glucokinase mutations associated with maturity-onset diabetes of the young type 2 (MODY-2):different glucokinase defects lead to a common phenotype[J]. Diabetes,1999,48(8):1645-1651.
    [73]Chiu K C, Go R C, Aoki M, et al. Glucokinase gene in gestational diabetes mellitus:population association study and molecular scanning[J]. Diabetologia,1994,37(1):104-110.
    [74]杨慧霞,赵怿,段晓华,等.妊娠期糖代谢异常对母儿结局影响的前瞻性对照研究[J].中国全科医学,2004,7(14):1044-1045,1067.
    [75]Froguel P, Vaxillaire M, Sun F, et al. Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus[J]. Nature,1992,356(6365):162-164.
    [76]Hattersley A T, Turner R C, Permutt M A, et al. Linkage of type 2 diabetes to the glucokinase gene[J]. Lancet,1992,339(8805):1307-1310.
    [77]Glaser B, Kesavan P, Heyman M, et al. Familial hyperinsulinism caused by an activating glucokinase mutation[J]. N Engl J Med, 1998,338 (4):226-230.
    [78]Matschinsky F M. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm[J]. Diabetes,1996,45(2):223-241.
    [79]Gal an M, Vincent 0, Roncero I, et al. Effects of novel maturity-onset diabetes of the young (MODY)-associated mutations on glucokinase activity and protein stability[J]. Biochem J,2006,393(Pt 1):389-396.
    [80]Estalella I, Garcia-Gimeno M A, Marina A, et al. Biochemical characterization of novel glucokinase mutations isolated from Spanish maturity-onset diabetes of the young (MODY2) patients[J]. J Hum Genet, 2008,53 (5):460-466.
    [81]Davis E A, Cuesta-Munoz A, Raoul M, et al. Mutants of glucokinase cause hypoglycaemia-and hyperglycaemia syndromes and their analysis illuminates fundamental quantitative concepts of glucose homeostasis[J]. Diabetologia,1999,42(10):1175-1186.
    [82]Gloyn A L. Glucokinase (GCK) mutations in hyper-and hypoglycemia: maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemia of infancy[J]. Hum Mutat,2003,22(5):353-362.
    [83]Payne V A, Arden C, Wu C, et al. Dual role of phosphofructokinase-2/fructose bisphosphatase-2 in regulating the compartmentation and expression of glucokinase in hepatocytes[J]. Diabetes,2005,54(7):1949-1957.
    [84]Okar D A, Lange A J, Wu C. Interaction with PFK-/FBP-2 is essential to glucokinase molecular physiology[J]. Cell Mol Life Sci, 2009,66(4):731-732.
    [85]Kesavan P, Wang L, Davis E, et al. Structural instability of mutant beta-cell glucokinase:implications for the molecular pathogenesis of maturity-onset diabetes of the young (type-2)[J]. Biochem J,1997,322 (Pt 1):57-63.
    [86]Arden C, Trainer A, de la Iglesia N, et al. Cell biology assessment of glucokinase mutations V62M and G72R in pancreatic beta-cells: evidence for cellular instability of catalytic activity [J]. Diabetes, 2007,56(7):1773-1782.
    [87]Negahdar M, Aukrust I, Molnes J, et al. GCK-MODY diabetes as a protein misfolding disease:The mutation R275C promotes protein misfolding, self-association and cellular degradation[J]. Mol Cell Endocrinol, 2013,2013(2013-9-21).
    [88]Shammas C, Neocleous V, Phelan M M, et al. A report of 2 new cases of MODY2 and review of the literature:implications in the search for type 2 diabetes drugs[J]. Metabolism,2013,62(11):1535-1542.
    [89]George D C, Chakraborty C, Haneef S A, et al. Evolution-and structure-based computational strategy reveals the impact of deleterious missense mutations on MODY 2 (maturity-onset diabetes of the young, type 2) [J]. Theranostics,2014,4(4):366-385.
    [90]Liang Y, Kesavan P, Wang L Q, et al. Variable effects of maturity-onset-diabetes-of-youth (MODY)-associated glucokinase mutations on substrate interactions and stability of the enzyme[J]. Biochem J,1995,309 (Pt 1):167-173.
    [91]Molnes J, Bjorkhaug L, Sovik 0, et al. Catalytic activation of human glucokinase by substrate binding:residue contacts involved in the binding of D-glucose to the super-open form and conformational transitions[J]. FEBS J,2008,275(10):2467-2481.
    [92]Zelent B, Odili S, Buettger C, et al. Mutational analysis of allosteric activation and inhibition of glucokinase[J]. Biochem J, 2011,440(2):203-215.
    [93]Sayed S, Langdon D R, Odili S, et al. Extremes of clinical and enzymatic phenotypes in children with hyperinsulinism caused by glucokinase activating mutations[J]. Diabetes,2009,58(6):1419-1427.
    [94]姚雪霞,徐素明.葡萄糖激酶M197V突变的活化机理研究[J].化学学报,2011,69(4):405-410.
    [95]Heredia V V, Carlson T J, Garcia E, et al. Biochemical basis of glucokinase activation and the regulation by glucokinase regulatory protein in naturally occurring mutations[J]. J Biol Chem, 2006,281 (52):40201-40207.
    [96]Garcia-Herrero C M, Galan M, Vincent 0, et al. Functional analysis of human glucokinase gene mutations causing MODY2:exploring the regulatory mechanisms of glucokinase activity[J]. Diabetologia, 2007,50(2):325-333.
    [97]Cullen K S, Al-Oanzi Z H,0'Harte F P, et al. Glucagon induces translocation of glucokinase from the cytoplasm to the nucleus of hepatocytes by transfer between 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase-2 and the glucokinase regulatory protein [J]. Biochim Biophys Acta,2014,1843(6):1123-1134.
    [1]Froguel P, Vaxillaire M, Sun F, et al. Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus[J]. Nature,1992,356(6365):162-164.
    [2]Hattersley A T, Turner R C, Permutt M A, et al. Linkage of type 2 diabetes to the glucokinase gene[J]. Lancet,1992,339(8805):1307-1310.
    [3]Glaser B, Kesavan P, Heyman M, et al. Familial hyperinsulinism caused by an activating glucokinase mutation[J]. N Engl J Med, 1998,338(4):226-230.
    [4]Matschinsky F M. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm[J]. Diabetes,1996,45 (2):223-241.
    [5]Kamata K, Mitsuya M, Nishimura T, et al. Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase[J]. Structure,2004,12(3):429-438.
    [6]Arden C, Petrie J L, Tudhope S J, et al. Elevated glucose represses liver glucokinase and induces its regulatory protein to safeguard hepatic phosphate homeostasis[J]. Diabetes,2011,60(12):3110-3120.
    [7]Iynedjian P B. Molecular physiology of mammalian glucokinase[J]. Cell Mol Life Sci,2009,66(1):27-42.
    [8]Agius L. Glucokinase and molecular aspects of liver glycogen metabolism[J]. Biochem J,2008,414(1):1-18.
    [9]Okar D A, Lange A J, Wu C. Interaction with PFK-/FBP-2 is essential to glucokinase molecular physiology[J]. Cell Mol Life Sci, 2009,66 (4):731-732.
    [10]Payne V A, Arden C, Wu C, et al. Dual role of phosphofructokinase-2/fructose bisphosphatase-2 in regulating the compartmentation and expression of glucokinase in hepatocytes[J]. Diabetes,2005,54 (7):1949-1957.
    [11]Cullen K S, Al-Oanzi Z H, O'Harte F P, et al. Glucagon induces translocation of glucokinase from the cytoplasm to the nucleus of hepatocytes by transfer between 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase-2 and the glucokinase regulatory protein[J]. Biochim Biophys Acta,2014,1843(6):1123-1134.
    [12]Danial N N, Gramm C F, Scorrano L, et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis[J]. Nature,2003,424(6951):952-956.
    [13]Hofmeister-Brix A, Kollmann K, Langer S, et al. Identification of the ubiquitin-like domain of midnolin as a new glucokinase interaction partner[J]. J Biol Chem,2013,288(50):35824-35839.
    [14]Molnes J, Bjorkhaug L, Sovik 0, et al. Catalytic activation of human glucokinase by substrate binding:residue contacts involved in the binding of D-glucose to the super-open form and conformational transitions[J]. FEBS J,2008,275(10):2467-2481.
    [15]Pedelini L, Garcia-Gimeno M A, Marina A, et al. Structure-function analysis of the alpha5 and the alphal3 helices of human glucokinase: description of two novel activating mutations[J]. Protein Sci, 2005,14 (8):2080-2086.
    [16]Galan M, Vincent 0, Roncero I, et al. Effects of novel maturity-onset diabetes of the young (MODY)-associated mutations on glucokinase activity and protein stability[J]. Biochem J,2006,393(Pt 1):389-396.
    [17]Estalella I, Garcia-Gimeno M A, Marina A, et al. Biochemical characterization of novel glucokinase mutations isolated from Spanish maturity-onset diabetes of the young (MODY2) patients [J]. J Hum Genet, 2008,53 (5):460-466.
    [18]Davis E A, Cuesta-Munoz A, Raoul M, et al. Mutants of glucokinase cause hypoglycaemia-and hyperglycaemia syndromes and their analysis illuminates fundamental quantitative concepts of glucose homeostasis[J]. Diabetologia,1999,42(10):1175-1186.
    [19]Osbak K K, Colclough K, Saint-Martin C, et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia[J]. Hum Mutat,2009,30(11):1512-1526.
    [20]Steele A M, Shields B M, Wensley K J, et al. Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia[J]. JAMA,2014,311(3):279-286.
    [21]Russo L, Iafusco D, Brescianini S, et al. Permanent diabetes during the first year of life:multiple gene screening in 54 patients[J]. Diabetologia,2011,54(7):1693-1701.
    [22]Bennett K, James C, Mutair A, et al. Four novel cases of permanent neonatal diabetes mellitus caused by homozygous mutations in the glucokinase gene[J]. Pediatr Diabetes,2011,12(3 Pt 1):192-196.
    [23]Kavvoura F, Raimondo A, Thanabalasingham G, et al. Reclassification of diabetes etiology in a family with multiple diabetes phenotypes [J]. J Clin Endocrinol Metab,2014:c20133641.
    [24]Habeb A M, Flanagan S E, Deeb A, et al. Permanent neonatal diabetes: different aetiology in Arabs compared to Europeans[J]. Arch Dis Child, 2012,97 (8):721-723.
    [25]Marquard J, Palladino A A, Stanley C A, et al. Rare forms of congenital hyperinsulinism[J]. Semin Pediatr Surg,2011,20(1):38-44.
    [26]Kesavan P, Wang L, Davis E, et al. Structural instability of mutant beta-cell glucokinase:implications for the molecular pathogenesis of maturity-onset diabetes of the young (type-2)[J]. Biochem J,1997,322 (Pt 1):57-63.
    [27]Heredia V V, Carlson T J, Garcia E, et al. Biochemical basis of glucokinase activation and the regulation by glucokinase regulatory protein in naturally occurring mutations[J]. J Biol Chem, 2006,281 (52):40201-40207.
    [28]Garcia-Herrero C M, Galan M, Vincent 0, et al. Functional analysis of human glucokinase gene mutations causing MODY2:exploring the regulatory mechanisms of glucokinase activity[J]. Diabetologia, 2007,50 (2):325-333.
    [29]Arden C, Trainer A, de la Iglesia N, et al. Cell biology assessment of glucokinase mutations V62M and G72R in pancreatic beta-cells: evidence for cellular instability of catalytic activity[J]. Diabetes, 2007,56(7):1773-1782.
    [30]Negahdar M, Aukrust I, Molnes J, et al. GCK-MODY diabetes as a protein misfolding disease:The mutation R275C promotes protein misfolding, self-association and cellular degradation[J]. Mol Cell Endocrinol, 2013,2013(2013-9-21).
    [31]Gasperikova D, Tribble N D, Stanik J, et al. Identification of a novel beta-cell glucokinase (GCK) promoter mutation (-71G>C) that modulates GCK gene expression through loss of allele-specific Spl binding causing mild fasting hyperglycemia in humans[J]. Diabetes, 2009,58 (8):1929-1935.
    [32]Shammas C, Neocleous V, Phelan M M, et al. A report of 2 new cases of MODY2 and review of the literature:implications in the search for type 2 diabetes drugs[J]. Metabolism,2013,62(11):1535-1542.
    [33]姚雪霞,徐素明.葡萄糖激酶M197V突变的活化机理研究[J].化学学报,2011,69(4):405-410.
    [34]George D C, Chakraborty C, Haneef S A, et al. Evolution-and structure-based computational strategy reveals the impact of deleterious missense mutations on MODY 2 (maturity-onset diabetes of the young, type 2) [J]. Theranostics,2014,4(4):366-385.
    [35]Matschinsky F M. GKAs for diabetes therapy:why no clinically useful drug after two decades of trying?[J]. Trends Pharmacol Sci, 2013,34 (2):90-99.
    [36]Meininger G E, Scott R, Alba M, et al. Effects of MK-0941, a novel glucokinase activator, on glycemic control in insulin-treated patients with type 2 diabetes[J]. Diabetes Care,2011,34(12):2560-2566.
    [37]Kiyosue A, Hayashi N, Komori H, et al. Dose-ranging study with the glucokinase activator AZD1656 as monotherapy in Japanese patients with type 2 diabetes mellitus[J]. Diabetes Obes Metab,2013,15(10):923-930.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700