肠炎后肠系膜传入神经敏感性变化及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肠炎后肠系膜传入神经敏感性变化及其机制的研究
     第一部分:正常小鼠空肠肠系膜传入神经对化学以及机械刺激的敏感性
     目的:
     内脏传入神经高敏感与功能性肠病和炎性肠病引起的的临床症状有关。迷走神经和脊神经传入纤维末梢对肠道局部的机械和化学刺激敏感,可以把肠道局部的感觉信息传入中枢。在本部分实验中我们建立离体记录小鼠肠系膜传入神经放电的实验装置,观察小鼠肠系膜传入神经对5-羟色胺、缓激肽以及机械刺激的放电反应,制备肠系膜传入神经对5-羟色胺和缓激肽反应的剂量效应曲线。
     方法:
     C57BL/6小鼠,异氟烷吸入麻醉,腹部正中切口,取一段2厘米长带有完整肠系膜的空肠。用特制的由灌流槽和记录槽两部分组成的器官浴槽记录肠系膜传入神经放电。将空肠段放入灌流槽,以克氏液持续灌流空肠(灌流液温度32摄氏度,10毫升/分钟,95%02/5%CO2混合气体持续通气)。空肠两端分别插管固定,插管的头端通过三通分别与微量灌流泵和压力传感器相连,插管的尾端与大气相通,由空肠头端向尾端以10ml/h的速度以克氏液灌流肠腔。经过灌流槽和记录槽之间的孔隙将肠系膜袢拉入记录槽固定,在显微镜下从肠系膜血管束中仔细分离肠系膜神经,将分离好的神经与双极铂金电极的其中一个电极相连,另一个电极连接直径与神经接近的结缔组织。由电极引导出的神经放电信号和压力传感器引导的压力信号分别输入1902单通道放大器,放大后的电信号以及肠内压信号均被输入1401 A/D转换器,1401 A/D转换器直接与记录电脑相连,将信号输入电脑中的Spike2软件显示电信号和肠蠕动信号,整个实验过程中在电脑中持续记录,存盘后对原始数据进行下线分析(off-line anaylsis)。
     得到稳定的基础放电信号后,分别观察器官浴槽中加入5-羟色胺(125μM、250μM,、500μM)、缓激肽(0.25μM、0.5μM、1μM)和机械压力刺激(肠内压升高60cmH_2O)后肠系膜传入神经放电的改变。对于同一个标本,只加入一个浓度剂量的5-羟色胺和缓激肽,每次实验时随机选择二者的浓度直接加入器管浴槽中。,5-羟色胺和缓激肽的在器官浴槽内的作用时间为两分钟。升高肠内压时,将肠腔内灌流管的尾端夹闭,而头端按照原速度持续灌流,经过大约90秒后肠内压升高60cmH_2O。施加刺激的顺序为5-羟色胺、升高肠内压和缓激肽。两次刺激之间至少有15分钟的平衡时间,待神经基础放电稳定后再施行下一个刺激。
     根据动作电位的波形和波幅在Spike2软件的帮助下可以将神经放电的信号与干扰信号分开,分别计算每秒钟的最大放电频率(峰放电频率)以及刺激作用持续时间内的平均放电频率。以施加刺激前两分钟的放电频率为基础放电频率,加入5-羟色胺和缓激肽后神经放电的改变分别以最大峰放电频率的增加以及加药后30秒、1分钟以及两分钟内平均放电频率的增加表示。肠内压升高时,放电频率的改变以肠内压每升高10cmH_2O时峰放电频率和平均放电频率的增加表示。所有数据以mean±SEM表示,各组之间行单因素方差分析。
     结果:
     传入神经表现为自发性的连续放电,电信号包括不同波幅和波形的动作电位,施加刺激前2分钟各组之间基础放电频率无差异。
     1.5-羟色胺加入器官浴槽后,传入神经放电频率迅速上升,未看到明显潜伏期。传入神经峰放电频率和正常相比分别增加42±4.4 imp/second(125μM),64±4.0 imp/second(250μM),76±2.6 imp/second(500μM)。器官浴槽内5-羟色胺终浓度为125μM时,平均放电频率在加药30秒后增加24.6±2.7 imp/second,1分钟后增加20.4±2.2 imp/second,2分钟后增加12.5±2.3 imp/second。终浓度为250μM时,平均放电频率加药30秒后增加29.1±3.2 imp/second,1分钟后增加25.9±2.7 imp/second,2分钟后增加18.3±3.6 imp/second。终浓度为500μM时,平均放电频率30秒后增加35.3±3.2 imp/second,1分钟后增加29.5±1.9 imp/second,2分钟后增加21.2±2.1 imp/second。不同浓度的5-HT以及相同浓度不同作用时间5-HT诱导的传入神经放电频率的增加均有显著性差异。
     2.肠内压升高时传入神经有压力依赖性的放电频率增加,肠内压升高60cmH_2O时,峰放电频率比基础放电增加80±3.3 imp/second,肠内压升高从50cmH_2O到60cmH_2O的持续时间内平均放电频率增加70.8±5.4 imp/second。
     3.器官浴槽中加入缓激肽后,传入神经放电频率显著增加。缓激肽作用后传入神经峰放电频率和正常相比增加65±2.7 imp/second(0.25μM),89±7.3 imp/second(0.5μM),112±8.9 imp/second(1μM)。缓激肽浓度为0.25μM时,平均放电频率在加药30秒后增加44.8±5.imp/second,1分钟后增加32.5±3.2 imp/second,2分钟后增加20.3±3.3 imp/second。终浓度时0.5μM时,平均放电频率30秒后增加53.8±6.1 imp/second,1分钟后增加40.7±3.1 imp/second,2分钟后增加24.6±2.2 imp/second。终浓度是1μM时,平均放电频率30秒后增加62.9±4.9 imp/second,1分钟后增加45.2±2.2 imp/second,2分钟后增加28.6±2.4 imp/second。
     结论:
     建立了离体记录小鼠肠系膜传入神经放电的模型。传入神经放电表现压力依赖性的增加。5-羟色胺和缓激肽可以直接作用于传入神经末梢的受体刺激浆膜侧传入神经,放电频率的增加呈现剂量依赖性模式。
     第二部分:吲哚美辛诱导肠炎后小鼠空肠肠系膜传入神经敏感性的改变及其机制
     目的:
     有些慢性肠炎病人虽然形态学检查显示肠粘膜有广泛的炎性表现,但却没有明显的腹痛症状。在本部分实验中我们选择吲哚美辛诱导的炎性肠病模型,观察肠炎后空肠肠系膜传入神经敏感性的改变,并进一步探讨其机制。
     方法:
     C57BL/6小鼠,分别在实验的第一天和第二天早上8点皮下注射吲哚美辛两次(60 mg kg~(-1))诱导肠炎,对照组接受相同容积的酒精注射。实验的第三天早上9点,动物在异氟烷麻醉状态下做腹正中切口,肉眼观察肠系膜粘附、肠道长度、肠充血以及溃疡形成情况,对炎症程度行大体评分。制备空肠石蜡切片,常规HE染色后镜下进行炎症评分。取2厘米长带有完整肠系膜的空肠置于器官浴槽中,分离肠系膜神经记录传入神经放电。引导方法与第一部分相同,在记录肠系膜神经放电的同时观察肠蠕动性的改变。实验标本至少平衡15分钟待信号稳定后才正式开始实验,施加刺激顺序为5-羟色胺(250μM)、升高肠内压(60cmH_2O)和缓激肽(0.5μM)。实验分为四组,分别记录施加化学和机械刺激后肠系膜传入神经放电的改变(n=6)。1)吲哚美辛注射诱导肠炎组;2)注射酒精的对照组;3)皮下注射吲哚美辛诱导肠炎,同时慢性腹腔注射诱导性一氧化氮合酶抑制剂L-N6-(1-iminoethyl)-lysine(L-NIL)(3 mgkg~(-1),1次/12小时,注射5次);4)吲哚美辛诱导肠炎,施加化学和机械刺激前10分钟在浴槽中灌流含有L-NIL(30μM)的克氏液。记录浆膜侧施加5-羟色胺、缓激肽以及肠内压升高时传入神经峰放电频率的增加。施加刺激前两分钟的峰放电频率作为基础放电频率。所有数据以mean±SEM表示,各组数据之间用单因素的方差分析进行统计学分析(肠蠕动和化学刺激诱导神经放电数据),不同实验组肠内压变化引起传入神经放电频率的增加用双因素方差分析,P<0.05认为有显著性差异。
     结果:
     1.吲哚美辛注射后,小肠呈急性肠炎改变:肠腔扩张,小肠明显缩短,肠袢粘连明显。各组的大体评分分别为对照组0.2±0.20,对照组加L-NIL腹腔注射组0.3±0.33,单纯炎症组4.8±0.74(P<0.05,vs vehiclegroup),炎症加腹腔注射L-NIL组4.0±0.71(P<0.05,versus vehiclegroup)。组织学评分的结果与大体评分类似,对照组1.6±0.60,对照加L-NIL腹腔注射组2.0±0.58,炎症组4.6±0.51(P<0.05,versus vehiclegroup),炎症加腹腔注射L-NIL组4.0±1.08(P<0.05,versus vehiclegroup)。
     2.肠炎时肠道自发性收缩幅度和对照相比明显下降(炎症组:2.51±0.3cmH_2O,对照组:0.66±0.1 cmH_2O;P<0.01),炎症后肠道失去正常的位相性收缩模式。
     3.各实验组间基础峰放电频率无显著性差异。
     5-羟色胺诱导对照组空肠肠系膜传入神经最大放电频率增加65±7.5imp/second,而炎症组传入神经峰放电频率的增加下降至32±3.3imp/second(P<0.05)。经L-NIL预处理后,吲哚美辛诱导肠炎后导致的传入神经对5-羟色胺反应性的下调被完全扭转,炎症加慢性L-NIL腹腔注射后峰放电频率的增加为55±7.5 imp/second,炎症加急性L-NIL器官浴槽内灌流峰放电频率的增加为73±7.2 imp/second。
     与对照组相比,炎症组空肠肠系膜传入神经的机械敏感性在肠内压高于20 cmH_2O时明显下调(P<0.05)。肠内压增加到最高值(60 cmH_2O)时炎症组传入神经放电频率的增加为38±3.0 imp/ssecond,而对照组为95±5.9imp/second(P<0.05)。腹腔内慢性注射L-NIL或者器官浴槽内L-NIL灌流均可以扭转炎症后传入神经机械敏感性的下降。
     浆膜侧施加缓激肽后,炎症标本的最大峰放电频率增加55±7.9imp/second,和对照组相比明显下降(97±7 imp/second,P<0.05)。炎症后传入神经对缓激肽反应的低敏感性可以被腹腔注射L-NIL(112±16imp/second)或者器官浴槽内急性应用L-NIL(108±13.7 imp/second)扭转。
     结论:
     肠炎时肠系膜传入神经表现出诱导性一氧化氮合酶依赖性的敏感性下调,而这种敏感性的下调看起来不依赖于炎症反应本身。提示肠炎时诱导性一氧化氮合酶依赖性的一氧化氮生成可以通过直接影响传入神经的信号转导来调节神经敏感性。
     第三部分:DSS诱导结肠炎后结肠肠系膜传入神经敏感性的改变及其机制
     目的:
     肠炎可以诱导支配肠道的肠外在传入神经的敏感化。本部分的研究中我们利用炎症性肠病中的大肠炎模型研究肠炎时结肠传入神经敏感性的改变及其机制。我们推测结肠炎时结肠传入神经的敏感性增加,肥大细胞和环加氧酶可能参与了这一过程。
     方法:
     C57BL/6小鼠以3%右旋糖酐硫酸酯钠(dextran-sulfate sodium,DSS)代水饮用,连续饮用7天诱导大肠炎,对照组正常饮水。第八天将动物麻醉,根据疾病活性指数对炎症进行大体评分(体重、结肠长度、结肠重量/长度比值、脾脏重量、粪便连续性、是否有血便)。切除一段带有完整肠系膜的近端结肠用于传入神经放电记录,与其相毗邻的一段结肠制备石蜡切片,常规HE染色,在显微镜下行组织学评分。将行电生理学记录的近端结肠置于器官浴槽中,以克氏液持续灌流(含有1μM尼莫地平,抑制肠收缩)。肠系膜传入神经的引导方法与第一部分类似。待放电信号稳定后,先后施加机械刺激(肠腔扩张)和化学刺激(0.5μM),观察各实验组动物传入神经放电敏感性的改变。对照组肠段仅用克氏液灌流,来自大肠炎组的结肠标本分别用克氏液、含有肥大细胞稳定剂Doxantranzole(10~(-4)M)或者含有环加氧酶抑制剂萘普生(10~(-5)M)的克氏液灌流(每组样本数均为6)。在Spike2软件的帮助下,根据神经放电动作电位的不同波形和波幅,可以进一步对全神经放电信号进行离线分析,分解出单根神经纤维,并记录分离出的所有神经纤维的刺激前后总的放电频率,计算施加机械和化学刺激后各实验组传入神经最大放电频率的改变。所有数据以mean±SEM表示,各组数据之间以单因素方差分析进行统计学处理,P<0.05为有显著性差异。
     结果:
     1.饮用7天DSS后,小鼠有明显的急性肠炎改变,体重下降、粪便变松软或者腹泻、有肉眼可见的血便。结肠明显缩短、结肠长度/重量比值以及脾脏重量(占体重的百分比)明显增加。炎症组和对照组的炎症镜下评分分别为6.0±0.3和1.0±0.4(P<0.05)。
     2.结肠炎组的结肠肠系膜传入神经的基础自发性放电频率比对照组明显升高(炎症组:最大放电频率11.00±2.44 imp/second,正常组:最大放电频率5.00±0.78 imp/second,P<0.05)。用Doxantranzole或者萘普生预处理炎症后标本,对基础放电无影响。
     3.结肠炎标本,共分离出28条单根神经纤维,应用缓激肽后28条神经纤维的最大放电频率增加47.17±6.7limp/second,而正常组分离出26条神经纤维,最大峰放电频率增加22.67±5.8 imp/second,明显低于炎症组(P<0.05)。炎症组标本用Doxantrazole或者萘普生预处理后,最大峰放电频率的增加和正常组相比不再有显著性差异(Doxantrazole预处理后:23.17±2.34imp/second,分离出32条神经纤维;萘普生预处理后,31.17±4.96 imp/secind,分离出28条神经纤维)。
     肠炎时肠系膜传入神经的机械敏感性明显升高,肠内压升高80 cmH_2O时,炎症组和正常组最大峰放电频率的增加分别为23.5±4.77 imp/second和13.5±1.59imp/second(P<0.05)。用Doxantrazole或者萘普生预处理结肠炎标本后,肠内压升高到80 cmH_2O时,最大峰放电频率的增加下降至13.17±0.87imp/second和13.83±3.07imp/second(P<0.05,versus单纯炎症组标本)。
     结论:
     炎症性肠病的大肠炎模型中,肠系膜传入神经对缓激肽和机械刺激的敏感性上调,敏感性的增加揭示了炎性肠病和肠易激综合征患者腹痛的外周机制。肥大细胞介质和环加氧酶途径产生的前列腺素类物质具有上调传入神经敏感性的作用。
PartⅠ:Jejunal afferent nerve sensitivity to chemical and mechanical stimuli in C57BL/6 mice in vitro
     Objective:
     Visceral afferent hypersensitivity is now a widely accepted mechanism which could explain many of these clinical symptoms associated with functional bowel disease and inflammatory diseases of the gut.Vagal and spinal afferents represent the information superhighways that convey sensory information from the gut to the central nervous system.These afferents are sensitive to both mechanical and chemical stimuli.We aimed to investigate the mesenteric afferents firing response to 5-HT,Bradykinin(BK) and ramp distension in vitro in mice and produced the dose- response curve of afferent nerve to chemical and mechanical stimuli.
     Method:
     C57BL/6 mice were anesthetized with isoflurane and a 2 cm segment of jejunum was excised with the mesentery attached and placed in an organ bath. Multi-unit afferent nerve recordings were measured in a custom-made organ bath consisting of two chambers i.e.a perfusion and a recording chamber.The jejunum was cannulated at both ends,placed in an organ bath and superfused with Krebs solution(32℃,10 ml/min;gassed with O_2/CO_2 mixture).Under the microscope the mesenteric nerve was separated out of the neurovascular bundle and then connected with bipolar platinum recording electrodes.The electrodes were connected to a CED single channel 1902 preamplifier/filter then the output from 1902 were sent to a power Micro 1401 interface system(CED),saved on the hard drive of a laptop computer to get the original afferent firing signal using Spike 2 software.The afferent nerve response to 5-HT(125μM,250μM,500μM),BK (0.25μM,0.5μM,1μM) and distension was investigated.5-HT and BK was applied in the organ bath acutely for a period of 2 minutes and then washed out.5-HT,distension and BK was performed on one jejunal segment in tum.Only one concentration of 5-Ht and BK was administrated on the jejunal segment, which was chosen randomly.For continuous ramp distension,the outlet cannula in the intestinal lumen was clamped,while perfusion with Kreb's buffer was continued at 10 ml h~(-1).With this method the gut segment was distended to 60 cmH_2O in approximately 90 seconds.After each stimulus an interval of at least 15 minutes was allowed to reach baseline discharge before the next stimulus was administered.In preliminary cross-over experiments,we determined that responses to stimuli are independent of the order in which they are applied.The baseline discharge frequency(imp/second) was determined by averaging the afferent nerve discharge during the 2 minutes recording period prior to administration of test stimuli.The afferent nerve response to chemical stimulation with 5-HT and BK was evaluated as the mean increase in peak impulse frequency per second above baseline discharge frequency during a 3 second period of maximum afferent firing and the mean firing rate 30 seconds,1 minute,2 minutes following drugs administrated in organ bath above mean baseline discharge as well.The response to ramp distension was evaluated by quantifying the peak impulse frequency per second over a 3 sec period and the mean frequency increase at 10 cm H_2O increments of intraluminal pressure until 60 cmH_2O were reached.Data were presented as mean±SEM and were compared by one-way ANOVA.
     Results:
     Continuous afferent firing was present at baseline which consisted of spikes with different amplitudes and waveforms.Baseline discharge was calculated 2 minutes before stimuli,which was not different before the stimuli.
     1.Afferent nerve discharge increased promptly following 5-HT into the organ bath without obvious latency.The peak afferent firing rate to 5-HT was 42±4.4 imp/second above baseline at 125μM,64±4.0 imp/second above baseline at 250μM,76±2.6 imp/second above baseline at 500μM.At concentration 125μM the mean afferent discharge rate increased 24.6±2.7 imp/second 30s following 5-HT administration,20.4±2.2 imp/second 1 minute following 5-HT administration and 12.5±2.3 imp/second 2 minute following 5-HT administration. At concentration 250μM the mean afferent discharge rate increased 29.1±3.2 imp/second 30s following 5-HT administration,25.9±2.7 imp/second 1 minute following 5-HT administration and 18.3±3.6 imp/second 2 minute following 5-HT administration.At concentration 500μM the mean afferent discharge rate increased 35.3±3.2 imp/second 30s following 5-HT administration,29.5±1.9 imp/second 1 minute following 5-HT administration and 21.2±2.1 imp/second 2 minute following 5-HT administration.
     2.During mechanical stimulation by ramp distension a pressure dependent increase in afferent nerve discharge was observed.At the maximum pressure of 60 cmH_2O,peak afferent firing was 80±3.3 imp/second above baseline,the mean frequency increase was 70.8±5.4 imp/second.
     3.BK superfusion in the organ bath was followed by an obvious and robust increase in afferent nerve discharge.The increase of peak firing to BK was 65±2.7 imp/second at concentration of 0.25μM,89±7.3 imp/second at concentration of 0.5μM,112±8.9 imp/second at concentration of 1μM.At concentration 0.25μM the mean afferent discharge rate increased 44.8±5.imp/second 30s following BK administration,32.5±3.2 imp/second 1 minute following BK administration and 20.3±3.3 imp/second 2 minute following BK administration.At concentration 0.5μM,the mean afferent discharge rate increased 53.8±6.1 imp/second 30s following BK administration,40.7±3.1 imp/second 1 minute following BK administration and 24.6±2.2 imp/second 2 minute following BK administration. At concentration 1μM,the mean afferent discharge rate increased 62.9±4.9 imp/second 30s following BK administration,45.2±2.2 imp/second 1 minute following BK administration and 28.6±2.4 imp/second 2 minute following BK administration.
     Conclusions:
     The afferent firing displayed a pressure dependent increase during ramp distension.5-HT and bradykinin can stimulate serosal afferents by a direct action on the receptor in the gut in vitro with a dose -dependent model.
     PartⅡ:Jejunal afferent nerve sensitivity change and mechanism during indomethaicn induced inflammtion
     Objective:
     Patients with chronic inflammatory bowel disease often have little symptoms,although extensive morphological alterations of the intestinal mucosa are present.We aimed to characterize visceral sensitivity of the inflammed small intestine with an indomethaicn induced inflammatory bowel disease model in mice and to identify possible regulatory mechanisms.
     Methods:
     C57BL/6 mice received 2 injections of 60 mg kg~(-1) indomethacin or vehicle subcutaneously within 48 h in order to trigger intestinal inflammation Inflammation was quantified by a macroscopic inflammation score which included evaluation of adhesions,intestinal length,hyperemia and ulcers. Microscopic assessment of intestinal inflammation was performed on slides stained with haematoxylin and eosin.One day after the second injection the animal was anesthetized with isoflurane and a 2 cm segment of jejunum was excised with the mesentery attached and placed in an organ bath.Afferent sensitivity was recorded in vitro by extracellular multi-unit afferent nerve recordings from the mesenteric nerve bundle.The recording method and the stimuli were same as the first part.Intestinal motility was assessed by intraluminal pressure recordings. Afferent nerve recordings were obtained on day 3 after the beginning of different forms of pre-treatment leading to 4 subgroups of animals(each n=6).1) Mice injected with indomethacin to induce intestinal inflammation;2) Mice injected with vehicle(100%ethanol) on day 1 and 2 at 8 a.m.as controls for indomethacin induced inflammation;3) Mice injected with indomethacin to induce intestinal inflammation plus chronic pre-treatment with the selective iNOS inhibitor L-N6-(1-iminoethyl)-lysine(L-NIL)(3 mgkg~(-1),five times i.p.);4) Mice injected with indomethacin to induce intestinal inflammation plus L-NIL (30μM) administered acutely in the organ bath 10 minutes prior to application of the test stimuli.The maximum impulse rate per second following serosal administration of 5-HT(250μM),Bradykinin(0,5μM) or mechanical ramp distension of the intestinal loop was recorded.The method to collect the data is same as the first part.Statistical analysis was performed by One-Way-ANOVA and Two-Way-ANOVA.All data were expressed as mean±SEM.
     Results:
     Following indomethacin pretreatment,animals developed acute intestinal inflammation in the entire small intestine characterized by obvious intestinal dilation,marked reduction in small intestinal length and adhesions between small intestinal loops.The macroscopic score was 0.24±0.20 at vehicle group,0.34±0.33 at vehicle plus L-NIL,4.84-0.74 at inflammation group(P<0.05,versus vehicle group ) and 4.0±0.71 at inflammation plus L-NIL treatment group(P<0.05, versus vehicle group).Histology score got the similar result,1.64±0.60 at vehicle group,2.0±0.58 at vehicle plus L-NIL,4.6±0.51 at inflammation group(P<0.05, versus vehicle group ) and 4.0±1.08 at inflammation plus L-NIL treatment group (P<0.05,versus vehicle group)
     Intraluminal pressure recordings revealed a decrease of the amplitudes of spontaneous contractions during inflammation(2.514±0.3 versus 0.664±0.1 cmH_2O in controls;P<0.01).
     Baseline discharge was not different among the various subgroups.In vehicle controls maximum firing response to 5-HT was 65±7.5 imp/second above baseline,which was reduced to 32±3.3 imp/second in animals with indomethacin induced inflammation(p<0.05).This reduction in the response to 5-HT was preserved when animals were either chronically pretreated with L-NIL(55±7.5 imp/second) or when L-NIL(73±7.2 imp/second) was administered into the organ bath acutely.
     When compared to controls,mechanical sensitivity was reduced during intestinal inflammation for luminal distension pressures exceeding 20 cmH_2O (P<0.05).At the maximum pressure of 60 cmH_2O,afferent firing increase was 38±3.0 imp/second in inflamed intestinal segments and 95±5.9 imp/second in controls(P<0.05).This hypo-mechanic sensitivity was absent following the iNOS inhibitor L-NIL given either i.p.or in the organ bath.
     The maximum impulse rate following bradykinin was 55±7.9 imp/second in the inflamed intestine compared to 97±7 imp/second in control animals(P<0.05). This reduction in the inflamed intestine was not present during chronic treatment with the iNOS inhibitor L-NIL(112±16 imp/second) or acute administration of L-NIL in the organ bath(108±13.7 imp/second).
     Conclusions:
     Afferent sensitivity is decreased by an iNOS dependent mechanism during intestinal inflammation which appears to be independent of the inflammatory response.This suggests that iNOS dependent nitrogen monoxidum production alters afferent sensitivity during inflammation by interfering with signal transduction to afferent nerves rather than by attenuating the inflammatory response.
     PartⅢ:Colonic afferent nerve sensitivity change and mechanism during DSS induced colitis
     Objective:
     Intestinal inflammation sensitizes extrinsic afferents innervating the gut.We aimed to study the underlying mechanisms in a colitis model of inflammatory bowel disease and specifically hypothesized that mast cells and the cyclooxygenase pathway are involved.
     Methods:
     C57BL/6 mice received drinking water with 3%dextran-sulfate sodium (DSS) for 7 days to induce colitis.Control animals drank untreated water.On day 8 animals were anesthetized and inflammation was assessed by disease active index(weight loss,colon length,colon weight/length ratio,spleen weight,stool consistency,presence or absence of fecal blood).The colon next to the proximal colon was stained with haematoxylin and eosin to perform microscopic assessment of intestinal inflammation.The proximal colon was harvested with the mesenteric arc attached,while the ileum,coecum and distal colon were removed. A 2 cm segment of the proximal colon was cannulated at both ends,placed in an organ bath and superfused with Krebs solution(containing 1μM nifedipine to eliminate contractions).Extracellular afferent nerve recordings were secured from the mesenteric nerve(same as the first part) and the discharge of single nerves within the whole nerve recording was monitored using waveform discriminator software.Uninflamed segments served for control recordings,while subgroups of colitis segments were treated with either the mast cell stabilizer Doxantrazole (10~(-4) M) or the cyclooxygenase inhibitor Naproxen(10~(-5)M) in the organ bath (each group n=6).The maximum impulse rate per second following serosal administration of bradykinin(0,5μM) or mechanical ramp distension of the intestinal loop was recorded.The discharge of the mesenteric afferent nerve was evaluated as the total discharge of all the nerve fibres separating by single-unit analysis.Data are given as mean±SEM and were analyzed by one -way ANOVA and two-way ANOVA.
     Results:
     Mice exposed to 7 days of DSS developed acute inflammation characterized by decreased body weight,loose feces/diarrhea and visible fecal blood.The length of colon was significantly shortened.The ratio between colon length and colon weight and the spleen weight(%of body weight) increased compared with the control mice.The microscopic score is 6.0±0.3 and 1.0±0.4 at DSS-induced colitis mice and control mice(p<0.05).
     The baseline peak frequency of all the single units in colitis segment was significantly higher in colitis segment(11.00±3:2.44 imp/second) than in control tissue(5.00±0.78 imp /second,P<0.05).Pre-treatment with doxtranzole or naproxen did not change the hyper-spontaneous firing.
     In colitis segments,single unit afferent nerve discharge to bradykinin(0.5μM) was increased by 47.17±6.71(28 single units) compared to 22.67±5.83 imp/second(26 single units) in recordings from uninflamed control tissue (P<0.05).Afferent discharge was similar to control levels following administration of either doxantrazole or naproxen(23.17±2.34 in 32 single units and 31.17±4.96 imp/second in 28 single units,P<0.05 compared to untreated colitis segments).Mechanosensitivity during luminal ramp distension(0 to 80 cmH_2O) was enhanced reaching 23.50±3:4.77 imp/second at 80 cmH_2O during colitis compared to 13.5±1.59 in uninflamed controls(P<0.05).Adding doxantrazole or naproxen to the organ bath during recordings from colitis segments,reduced afferent discharge to 13.17±0.87 and 13.83±3.07 imp/second at 80 cmH2O which was reduced compared to untreated colitis segment(P<0.05).
     Conclusions:
     In this colitis model of inflammatory bowel disease,mesenteric afferents were sensitized to bradykinin and mechanical stimuli.The underlying mechanism responsible for this sensitisation seems to involve mast cell mediators and prostanoids.
引文
1. Castro GA, Powell DW. The physiology of the mucosal immune system and immune-mediated responses in the gastrointestinal tract. In: Physiology of the GI tract, Johnston LR (Ed.), Raven Press, 3rd ed; 1994, pp. 709-750.
    
    2. McKay DM, Perdue MH. Intestinal epithelial function: the case for immunophysiological regulation. Cells and mediators (1). Dig Dis Sci 1993; 38:1377-1387.
    
    3. Brandtzaeg P. Overview of the mucosal immune system. Curr Top Microbiol Immunol 1989; 146: 13-25.
    
    4.Orovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nat Med 2000; 405: 458-461.
    
    5.Ottwald TP, Hewlett BR, Lhotak S, Stead RH. Electrical stimulation of the vagus nerve modulates the histamine content of mast cells in the rat jejunal mucosa. NeuroReport 1995; 7: 313-317.
    
    6.Santos J, Saperas E, Mourelle M, Antolin M, Malagelada MR. Regulation of intestinal mast cells and luminal protein release by cerebral thyrotropin-releasing hormone in rats. Gastroenterology 1996; 111: 1465-73.
    
    7.Bernstein CN, Niazi N, Robert M, Mertz H, Kodner A, Munakata J, Naliboff B,Mayer EA. Rectal afferent function in patients with inflammatory and functional intestinal disorders. Pain 1996; 66: 151-161.
    
    8.Piller RC. Postinfectious irritable bowel syndrome. Gastroenterology 2003; 124:1662-1667
    
    9. Hillsley K, Grundy D. Sensitivity to 5-hydroxytryptamine in different afferent subpopulations within mesenteric nerves supplying the rat jejunum. J Physiol Lond 1998; 509: 717-727.
    
    10. Heller, P, Taiwo, Y. , Ahlgren, S., Gold, M. & Levine, J.The irritated nociceptor. In Basic and Clinical Aspects of Chronic Abdominal Pain, chap. 15,ed. Mayer, E. A. & Raybould, H. E.,1993, pp. 189—199.
    11. Mayer EA, Berman S, Chang L, Naliboff BD. Sex-based differences in gastrointestinal pain. Eur J Pain. 2004 ;8(5):451-63.
    
    12.Szurszewski JH, Ermilov LG, Miller SM. Prevertebral ganglia and intestinofugal afferent neurones. Gut. 2002 ;51 Suppl 1:16-10.
    
    13 M. E. Kreis, W. Jiang, A. J. Kipkup, D. Grundy. Cosensitivity of vagal mucosal afferents to histamine and 5-HT in the rat jejunum. Am J Physiol Gastrointest Liver Physiol 2002,283: G612-G617
    
    14. K. Hillsley, A. J. Kirkup, D. Grundy. Direct and indirect actions of 5-hydroxytryptamine on the discharge of mesenteric afferent fibres innervating the rat jejunum. Journal of Physiology (1998), 506.2, pp. 551—561
    
    15. Joshi, S.K., Gebhart, G.F., Visceral pain. Curr. Rev. Pain ,2000(4), 499-506.
    
    16. Mayer EM, Gebhart GF. Functional bowel disorders and the visceral hyperalgesia hypothesis. In: Mayer EM, Raybould H, eds. Basic and Clinical Aspects of Chronic Abdominal Pain. Amsterdam, The Netherlands:Elsevier;1993:3-28.
    
    17. Mayer EA, Gebhart GF. Basic and clinical aspects of visceral hyperalgesia.Gastroenterology 1994;107:271- 293.
    
    18.Mayer, E. A. & Raybould, H. E. Role of visceral afferent mechanisms in functional bowel disorders. Gastroenterology 1990:99,1688—1704.
    
    19.Bueno, L. , Fioramonti, J. , Delvaux, M. & Frexinos, J. Mediators and pharmacology of visceral sensitivity: from basic to clinical investigations.Gastroenterology 1997: 112,1714—1743.
    
    20.Berthoud, B., Neuhuber, W.L., Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 2000:85, 1-17.
    
    21. Phillips, R.J., Powley, T.L., Tension and stretch receptors in gastrointestinal smooth muscle: re-evaluating vagal mechanoreceptor electrophysiology. Brain Res. Rev. 2000(34), 1 - 26.
    
    22.Zagorodnyuk, V.P., Brookes, S.J.,Transduction sites of vagal mechanoreceptors in the guinea pig esophagus. J. Neurosci.2000(20), 6249- 6255.
    23.Gebhart, G.F., Pathobiology of visceral pain: molecular mechanisms and therapeutic implications IV. Visceral afferent contributions the pathobiology of visceral pain. Am. J. Physiol.: Gastrointest. Liver Physiol,2000(278), G834-G838.
    24. Holzer, P., Neural emergency system in the stomach. Gastroenterology,1998( 114), 823-839.
    
    25. Keates, A.C., Castagliuolo, I., Qiu, B., et al., CGRP upregulation in dorsal root ganglia and ileal mucosa during Clostridium difficile toxin A-induced enteritis. Am. J. Physiol. 1998(274), G196- G202.
    
    26.Sengupta, J.N., Saha, J.K., Goyal, R.K., Stimulus-response function studies of esophageal mechanosensitive nociceptors in sympathetic afferents of opossum. J.Neurophysiol. 1990(64), 796-812.
    
    27. Lynn, P.A., Olsson, C, Zagorodnyuk, V., Costa, M, Brookes, S.J.,Rectal intraganglionic laminar endings are transduction sites of extrinsic mechanoreceptors in the guinea pig rectum. Gastroenterology,2003(125), 786-794.
    
    28. Kirkup, A.J., Brunsden, A.M., Grundy, D.I., Receptors on visceral afferents. Am. J. Physiol.: Gastrointest. Liver Physiol.2001(280), G7878-G7894.
    
    29. Wood, J.N., Pathobiology of visceral pain: molecular mechanisms and therapeutic implications II. Genetic approaches to pain therapy. Am. J. Physiol.:Gastrointest. Liver Physiol. 2001(278), G507-G512.
    
    30. Barbara, G., De Giorgio, R., Stanghellini, V., Cremon, C, Corinaldesi, R., Arole for inflammation in irritable bowel syndrome? Gut 51 (Suppl 1), 2002,i41-i44.
    
    31. G F Gebhart. Visceral pain—peripheral sensitization. Gut 2000; (Suppl IV)47:iv54-iv55
    
    32.Sengupta JN, Gebhart GF. Gastrointestinal afferent fibers and sensation. In:Johnson, LR, ed. Physiology of the gastrointestinal tract. New York: Raven Press,1994:483-519.
    33. Watkins, L.R., Maier, S.F., The pain of being sick: implications of immune-to-brain communication for understanding pain. Annu. Rev. Psychol.2000(51), 29-57.
    
    34.Posserud I, Agerforz P, Ekman R, Bjornsson ES, Abrahamsson H, Simren M.Altered visceral perceptual and neuroendocrine response in patients with irritable bowel syndrome during mental stress.Gut 2004; 53:1102-1108
    
    35.Basilisco G. Pathogenesis of irritable bowel syndrome: current understanding.Recenti Prog Med 2007; 98: 543-547
    
    36. Lucas A, Cobelens PM, Kavelaars A, Heijnen CJ, Holtmann G, Haag S,Gerken G, Langhorst J, Dobos GJ, Schedlowski M, Elsenbruch S. Disturbed in vitro adrenergic modulation of cytokine production in inflammatory bowel diseases in remission. J Neuroimmunol 2007; 182: 195-203
    
    37.Heitkemper M, Burr RL, Jarrett M, Hertig V, Lustyk MK, Bond EF. Evidence for autonomic nervous system imbalance in women with irritable bowel syndrome.Dig Dis Sci 1998; 43: 2093-2098
    
    38. Barbara G, Wang B, Stanghellini V, de Giorgio R, Cremon C, Di Nardo G,Trevisani M, Campi B, Geppetti P, Tonini M, Bunnett NW, Grundy D,Corinaldesi R. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 2007; 132: 26-37
    
    39. Greenwood-van Meerveld B. Importance of 5-hydroxytryptamine receptors on intestinal afferents in the regulation of visceral sensitivity. Neurogastroenterol Motil 2007;19 Suppl 2:13-18
    
    40.Coates MD, Mahoney CR, Linden DR, Sampson JE, Chen J, Blaszyk H,Crowell MD, Sharkey KA, Gershon MD, Mawe GM, Moses PL. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology 2004; 126:1657-1664
    
    41. Zou BC, Dong L, Wang Y, Wang SH, Cao MB. Expression and role of 5-HT7 receptor in brain and intestine in rats with irritable bowel syndrome. Chin Med J (Engl) 2007; 120: 2069-2074
    
    42.Wang GD, Wang XY, Hu HZ, Fang XC, Liu S, Gao N, Xia Y, Wood JD.Angiotensin receptors and actions in guinea pig enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2005; 289: G614-G626
    
    43.Dunlop SP, Jenkins D, Neal KR, Spiller RC. Relative importance of enterochromaffin cell hyperplasia, anxiety, and depression in postinfectious IBS.Gastroenterology 2003; 125: 1651-1659
    
    44.Wu HG, Jiang B, Zhou EH, Shi Z, Shi DR, Cui YH, Kou ST, Liu HR.Regulatory Mechanism of Electroacupuncture in Irritable Bowel Syndrome:Preventing MC Activation and Decreasing SP VIP Secretion.2008 ;53(6):1644-51
    
    45.Moskwa A, Boznanska P. Role of serotonin in the pathophysiology of the irritable bowel syndrome. Wiad Lek 2007; 60: 371-376
    
    46. Spiller R. Recent advances in understanding the role of serotonin in gastrointestinal motility in functional bowel disorders: alterations in 5-HT signalling and metabolism in human disease. Neurogastroenterol Motil 2007; 19 Suppl 2:25-31
    
    47. Gershon MD. Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol 2005; 39: S184-S193
    
    48. Yu PL, Fujimura M, Okumiya K, Kinoshita M, Hasegawa H & Fujimiya M.Immunohistochemical localization of tryptophan hydroxylase in the human and rat gastrointestinal tracts. J Comp Neurol.1999( 411), 654-665.
    
    49. Andrews, P. L. R., Davis, C. J., Bingham, S., Davidson, H. I. M., Hawthorn, J.& Maskell, L. The abdominal visceral innervation and the emetic reflex: pathways,pharmacology, and plasticity. Canadian Journal of Physiology and Pharmacology.1990( 68), 325-345.
    
    50. Bearcroft, C. P., Perrett, D. & Farthing, M. J. (1998). Postprandial plasma 5-hydroxytryptamine in diarrhea predominant irritable bowel syndrome: a pilot study. Gut. 1998( 42), 42-46.
    
    51. Dunlop SP, Jenkins D, Neal KR, Spiller RC. Relative importance of enterochromaffin cell hyperplasia, anxiety, and depression in postinfectious IBS.Gastroenterology 2003; 125: 1651-1659.
    
    52. Coates MD, Mahoney CR, Linden DR, Sampson JE, Chen J, Blaszyk H,Crowell MD, Sharkey KA, Gershon MD, Mawe GM & Moses PL . Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology ,2004(126),1657-1664.
    
    53.Bearcroft, C. P., Perrett, D. & Farthing, M. J. Postprandial plasma 5-hydroxytryptamine in diarrhea predominant irritable bowel syndrome: a pilot study. Gut. 1998(42), 42-46.;
    
    54. Houghton, L. A., Whitaker, P., Atkinson, W., Whorwell, P. J., Flicker, J.,Rimmer, M., Jacques, L. & Mills, J. Increased platelet stores of 5-hydroxytryptamine (5-HT) in female patients with diarrhoea predominant irritable bowel syndrome. Gastroenterology.2001( 120), A636.
    
    55. Houghton LA, AtkinsonW,Whitaker RP,Whorwell PJ & Rimmer MJ.Increased platelet depleted plasma 5-hydroxytryptamine concentration following meal ingestion in symptomatic female subjects with diarrhoea predominant irritable bowel syndrome. Gut,2003( 52), 663-670.
    
    56. Kirkup AJ, Brunsden AM, Grundy D. Receptors and transmission in the brain-gut axis: potential for novel therapies. I. Receptors on visceral afferents. Am J Physiol Gastrointest Liver Physiol 2001; 280: G787-G794
    
    57. Camilleri M. Management of the irritable bowel syndrome. Gastroenterology.2001(120), 652-668.
    
    58. Blackshaw, L. A. & Grundy, D. Effects of 5-hydroxytryptamine on discharge of vagal mucosal afferent fibres from the upper gastrointestinal tract of the ferret.Journal of the Autonomic Nervous System 1993(45), 41-50.
    
    59. Hillsley, K., Kirkup, A. J. & Grundy, D. Direct and indirect actions of 5-hydroxytryptamine on the discharge of mesenteric afferent fibres innervating the rat jejunum. Journal of Physiology ,1998(506), 551-561.
    60. Zhu, J. X., Zhu, X. Y., Owyang, C. & Li, Y.. Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. Journal of Physiology,2001 (530), 431-442.
    
    61. Gareth A. Hicks, Jonathan R. Coldwell, Marcus Schindler, Philip A. Bland Ward, David Jenkins,Penny A. Lynn, Patrick P. A. Humphrey and L. Ashley Blackshaw. Excitation of rat colonic afferent fibres by 5-HT3 receptors. Journal of Physiology ,2002(544.3),pp. 861-869
    
    62. Zeitz KP, Guy N, Malmberg AB, Dirajlal S, Martin WJ, Sun L, Bonhaus DW,Stucky CL, Julius D & Basbaum AI The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J Neurosci,2002( 22), 1010-1019.
    
    63. K. Hillsley and D. Grundy. Sensitivity to 5-hydroxytryptamine in different afferent subpopulations within mesenteric nerves supplying the rat jejunum. Journal of Physiology .1998, (509).3, pp. 717—727
    
    64. Kirkup AJ, Brunsden AM, Grundy DI. Receptors on visceral afferents. Am J Physiol Gastrointest Liver Physiol 2001 .(280), G7878-94
    
    65. Gebhart GF. Pathobiology of visceral pain: molecular mechanisms and therapeutic implications IV. Visceral afferent contributions the pathobiology of visceral pain. Am J Physiol Gastrointest Liver Physiol 2000,(278);G834-8
    66.Ritchie J. Pain from distension of the pelvic colon by inflating a balloon in the irritable colon syndrome. Gut. 1973;14: 125-32.
    
    67. Ritchie J. Mechanisms of pain in the irritable bowel syndrome. In: Read N, ed.Irritable bowel syndrome. New York: Grune and Stratton, 1985:163-71.
    
    68. Lasser RB, Bond JH, Levitt ND. The role of intestinal gas in functional abdominal pain. N Engl J Med 1975; 293:524-527.
    
    69. Lemann M, Dederding JP, Fluorie B, Franchisseur C, Rambaud J, Jain R.Abnormal perception of visceral pain in response to gastric distension in chronic idiopathic dyspepsia: The irritable stomach. Dig Dis Sci 1991;36:1249-1254.
    
    70. Richter JE, Barish CF, Castell DL. Abnormal sensory perception in patients with esophageal chest pain. Gastroenterology 1986;91:845-852.
    
    71. Kocher L, Anton F, Reeh PW& Handwerker HO (1987). The effect of carrageenan-induced inflammation on the sensitivity of unmyelinated skin nociceptors in the rat. Pain 29,363-373.
    
    72. Schaible HG & Schmidt RF (1988). Time course of mechanosensitivity changes in articular afferents during a developing experimental arthritis. J Neurophysiol. 1998; 60,2180-2195.
    
    73. Habler HJ, Janig W & Koltzenburg M . Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. J Physiol.1990; 425, 545-562.
    
    74. Andrew D & Greenspan JD . Mechanical and heat sensitization of cutaneous nociceptors after peripheral inflammation in the rat. J Neurophysiol. 1999; 82,2649-2656
    
    75. Koltzenburg M, Bennett DL, Shelton DL & McMahon SB . Neutralization of endogenous NGF prevents the sensitization of nociceptors supplying inflamed skin. Eur J Neurosci.1999; 11,1698-1704.
    
    76. Wynn G, Ma B, Ruan HZ & Burnstock G . Purinergic component of mechanosensory transduction is increased in a rat model of colitis. Am J Physiol Gastrointest Liver Physiol ,2004;287, G647-G657.
    
    77. Jonathan R. Coldwell, Benjamin D. Phillis, Kate Sutherland, Gordon S.Howarth and L. Ashley Blackshaw. Increased responsiveness of rat colonic splanchnic afferents to 5-HT after inflammation and recovery. J Physiol.2007;579.1 .pp203-213
    
    78.Page AJ, O'Donnell TA & Blackshaw LA. P2X purinoceptor-induced sensitization of ferret vagal mechanoreceptors in oesophageal inflammation. J Physiol .2000,523,403-411.
    
    79. Chang L, Munakata J, Mayer EA, Schmulson MJ, Johnson TD, Bernstein CN,Saba L, Naliboff B, Anton PA & Matin K . Perceptual responses in patients with inflammatory and functional bowel disease. Gut.2000; 47,497-505.
    80. Isgar B, Harman M, Kaye MD &Whorwell PJ . Symptoms of irritable bowel syndrome in ulcerative colitis in remission. Gut,1983; 24, 190-192.
    
    81. C.-Y. Liu, W. Jiang,M. H. Mue Ller, D. Grundy, M. E. Kreis. Sensitization of mesenteric afferents to chemical and mechanical stimuli following systemic bacterial lipopolysaccharide. Neurogastroenterol Motil .2005;17, 89-101
    
    82. Weifang Rong, Kirk Hillsley, John B Davis, Gareth Hicks, Wendy J Winchester and David Grundy . Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice. J Physiol ,2004;560, 867-881
    
    83. Booth CE, Kirkup AJ, Hicks GA, Humphrey PP, Grundy D. Somatostatin sst(2) receptor-mediated inhibition of mesenteric afferent nerves of the jejunum in the anesthetized rat. Gastroenterology 2001; 121: 358-69.
    
    84. Sengupta JN, Gebhart GF. Mechanosensitive afferent fibers in the gastrointestinal and lower urinary tracts. In: Gebhart GF, ed. Visceral Pain,Progress in Pain Research and Management Vol 5. Seattle, WA:IASP;1994:75-98.
    
    85. G.F. Gebhart, Ph.D. J.J. Bonica Lecture—2000: Physiology, Pathophysiology,and Pharmacology of Visceral Pain, Reg Anesth Pain Med.2000 ;25(6):632-8
    
    86. Jaenig, W. & Morrison, J. F. B. (1986). Functional properties of spinal visceral afferents supplying abdominal and pelvic organs with special emphasis on visceral nociception. In Progress in Brain Research, vol. 67, ed. Cervero, F. &Morrison, J. F. B., pp. 87—144. Elsevier, New York.
    
    87.Ness, T. J. & Gebhart, G. F.. Visceral pain: a review of experimental studies.Pain,1990;41,167—234.
    
    88. Grundy, D. & Scratcherd, T. (1989). Sensory afferents from the gastrointestinal tract. In American Handbook of Physiology, vol. 1, Motility and Circulation, ed. Woods, J., pp. 593—620. Oxford University Press, New York.
    
    89. Haupt, P., Janig, W. & Kohler, W. (1983). Response pattern of visceral afferent fibres, supplying the colon, upon chemical and mechanical stimuli.Pflugers Arch.1983;398(1):41-7
    90. Longhurst, J. C., Stebbins, C. L. & Ordway, G. A.. Chemically induced cardiovascular reflexes arising from the stomach of the cat. American Journal Physiology . 1984;247, H459-466.
    
    91. Longhurst, J. C. & Dittman, L. E. Hypoxia, bradykinin and prostaglandins stimulate ischemically sensitive visceral afferents. American Journal of Physiology ,1987;240, H539—545.
    
    92.Sengupta, J. N. & Gebhart, G. F. Characterization of mechanosensitive pelvic nerve afferent fibers innervating the colon of the rat. Journal of Neurophysiology,1994; 71, 2046—2060.
    
    93.Pan, H. L. & Longhurst, J. C. Ischaemia-sensitive sympathetic afferents innervating the gastrointestinal tract function as nociceptors in cats. Journal of Physiology ,1996;492, 841—850.
    
    94. Regoli, D. & Barabe, J. Pharmacology of bradykinin and related kinins.Pharmacological Reviews ,1980;32,1—46.
    
    95. Szolcsanyi, J. Selective responsiveness of polymodal nociceptors of the rabbit ear to capsaicin, bradykinin and ultraviolet irradiation. Journal of Physiology ,1987;388, 9—23.
    
    96. Cuschieri, A. & Onabanjo, O. A. Kinin release after gastric surgery. British Medical Journal ,1971;3, 565—566.
    
    97. A Stadnicki, R B Sartor, R Janardham, I Stadnicka, A A Adam, C Blais, Jr and R W Colman. Kallikrein-kininogen system activation and bradykinin (B2) receptors in indomethacin induced enterocolitis in genetically susceptible Lewis rats. Gut,1998;43;365-374
    
    98. Levine, J. D., Fields, H. L. & Basbaum, A. J. Peptides and the primary afferent nociceptor. Journal of Neuroscience,1993; 13,2273—2286.
    
    99. Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins, kallikrein,kininogens and kinases. Pharmacol Rev 1992;44:l-80.
    
    100. Gaginella TS, Kachur JF. Kinins as mediators of intestinal secretion. Am J Physiol,1989;256:Gl-15.
    101. Teranka, L.R., Burch, R.M., 1991. Bradykinin antagonists in pain and inflammation. In: Burch, R.M. Ed. , Bradykinin Antagonists, Basic and Clinical Research. Marcel Dekker, New York, p. 191.
    
    102. Farmer, S.G., Burch, R.M.. Biochemical and molecular pharmacology of kinin receptors. Annu. Rev. Pharmacol. Toxicol,1992; 32, 511.
    
    103. Karen A. Maubach and David Grundy. The role of prostaglandins in the bradykinin-induced activation of serosal afferents of the rat jejunum in vitro.Journal of Physiology ,1999;515.1,277—285
    
    104. Babbedge, R., Dray, A. & Urban, L. Bradykinin depolarizes the rat isolated superior cervical ganglion via Bu receptor activation. Neuroscience Letters, 1995;193,161—164.
    
    105. Pan, H. L., Stahl, G. L., Rendig, S. V., Carretero, O. A. & Longhurst, J. C. .Endogenous BK stimulates ischemically sensitive abdominal visceral C fiber afferents through kinin B2 receptors. American Journal of Physiology ,1994;267,H2398—2406.
    
    106. Everett, C. M, Hall, J. M., Mitchell, D. & Morton, I. K. Contrasting properties of bradykinin receptor subtypes mediating contractions of the rabbit and pig isolated iris sphincter pupillae preparation. Agents Actions Supplement ,1992;38, 378—381.
    
    107. Whalley ET, Clegg S, Stewart JM, Vavrek RJ. The effect of kinin agonists and antagonists on the pain response of the human blister base.Naunyn-Schmiedeberg's Arch. Pharmacol. 1987;336(6):652-5
    
    108. Beresford, I.J.M., Birch, P.J. Antinociceptive activity of bradykinin antagonist HOE-140 in rat and mouse. Br. J. Pharmacol, 1992; 105,135p.
    
    109. Blais C Jr, Couture R, Drapeau G, et al. Endogenous kinins are involved in the pathogenesis of peptidoglycan-induced arthritis in the Lewis rat. Arthritis Rheum, 1997;40:1327-33.
    
    110. Carlos R. Tonussi , Sergio H. Ferreira. Bradykinin-induced knee joint incapacitation involves bradykinin B2 receptor mediated hyperalgesia and bradykinin B receptor-mediated 1 nociception. European Journal of Pharmacology ,1997;326, 61-65
    
    111. Dray, A. & Bevan, S.. Inflammation and hyperalgesia: highlighting the team effort. Trends in Pharmacological Science ,1993;14, 287—290.
    
    112. Steranka, L.R., Burch, R.M., 1991. Bradykinin antagonists in pain and inflammation. In: Burch, R.M. Ed. , Bradykinin Antagonists, Basic and Clinical Research. Marcel Dekker, New York, p. 191.
    
    113. Farmer, S.G., Burch, R.M.. Biochemical and molecular pharmacology of kinin receptors. Annu. Rev. Pharmacol. Toxicol.1992; 32, 511.
    
    114. Schaible, H.-G., Schmidt, R.F.. Effects of experimental arthritis on the sensory properties of fine articular afferent units. J. Neurophysiol,1985;54, 1109.
    
    115. Brierley SM, Jones RC 3rd, Xu L, Gebhart GF, Blackshaw LA. Activation of splanchnic and pelvic colonic afferents by bradykinin in mice. Neurogastroenterol Motil 2005; 17: 854-62
    1.G. F. Gebhart . Pathobiology of Visceral Pain: Molecular Mechanisms and Therapeutic Implications IV. Visceral afferent contributions to the pathobiology of visceral pain Am J Physiol Gastrointest Liver Physiol.2000; 278: G834-G838
    
    2. Kuiken SD, Lindeboom R, Tytgat GN, et al. Relationship between symptoms and hypersensitivity to rectal distension in patients with irritable bowel syndrome.Aliment Pharmacol The. 2005;22:157-64.
    
    3.Anand P, Aziz Q, Willert R, van Oudenhove L. Peripheral and central mechanisms of visceral sensitization in man. Neurogastroenterol Motil 2007; 19(1 Suppl): 29-46.
    
    4. Brenda Ruthruff .Clinical review of Crohn's disease J Am Acad Nurse Pract.2007 Aug;19(8):392-7
    
    5.Nikolaus S, Schreiber S,Diagnostics of Inflammatory Bowel Disease.Gastroenterology.2007 ;133(5): 1670-89
    
    6.Coldwell JR, Phillis BD, Sutherland K, Howarth GS, Blackshaw LA. Increased responsiveness of rat colonic splanchnic afferents to 5-HT after inflammation and recovery. J Physiol. 2007; 579.1: 203-213.
    
    7. Wynn G, Ma B, Ruan HZ & Burnstock G. Purinergic component of mechanosensory transduction is increased in a rat model of colitis. Am J Physiol Gastrointest Liver Physiol .2004;287, G647-G657
    
    8.Modigliani R, Mary JY, Simon JF, Cortot A, Soule JC, Gendre JP, Rene E.Clinical, biological, and endoscopic picture of attacks of Crohn's disease.Evolution on prednisolone. Gastroenterology .1990; 98: 811-818.
    
    9.Chang L, Munakata J, Mayer EA, Schmulson MJ, Johnson TD, Bernstein CN,Saba L, Naliboff B, Anton PA & Matin K . Perceptual responses in patients with inflammatory and functional bowel disease. Gut.2000; 47,497-505
    
    10.Bernstein CN, Niazi N, Robert M, Mertz H, Kodner A, Munakata J, Naliboff B,Mayer EA. Rectal afferent function in patients with inflammatory and functional intestinal disorders. Pain. 1996; 66: 151-161
    11.Liu CY, Jiang W, Muller MH, Grundy D, Kreis ME. Sensitization of mesenteric afferents to chemical and mechanical stimuli following systemic bacterial lipopolysaccharide. Neurogastroenterol Motil. 2005; 17: 89-101
    
    12.Elson CO, Sartor RB, Tennyson GS, Riddell RH. Experimental models for inflammatory bowel disease. Gastroenterology. 1995; 109: 1344-1367
    
    13.Yoshida H, Soh H, Sando K, Wasa M, Takagi Y, Okada A. Beneficial Effects of n-9 Eicosatrienoic Acid on Experimental Bowel Lesions. Surg Today. 2003; 33:600-605
    
    14.Hausmann M, Obermeier F, Paper DH, Balan K, Dunger N, Menzel K, Falk W,Schoelmerich J, Herfarth H, Rogler G In vivo treatment with the herbal phenylethanoid acteoside ameliorates intestinal inflammation in dextran sulphate sodium-induced colitis. Clin Exp Immunol. 2007; 148: 373-381
    
    15.Thompson NT, Bonser RW, and Garland LG. Receptor-coupled phospholipase D and its inhibition. TiPS. 1991; 12: 404-408
    
    16.Garland LG; and Zhang C, Walker LM, and Mayeux PR. Role of nitric oxide in lipopolysaccharide-induced oxidant stress in the rat kidney. Biochem Pharmacol .2000; 59:203-209
    
    17.Eskandari MK, Kalff JC, Billiar TR, Lee KKW, Bauer AJ. LPS-induced muscularis macrophage nitric oxide suppresses rat jejunal circular muscle activity.Am J Physiol Gastrointest Liver Physiol .1999; 277: G478-G486
    
    18.Ettarh RR, Carr KE. Structural and morphometric analysis of murine small intestine after indomethacin administration. Scand J Gastroenterol.1993; 28:795-802
    
    19.M. Porras, M. T. Martin, R. Torres, and P. Vergara Cyclical upregulated iNOS and long-term downregulated nNOS are the bases for relapse and quiescent phases in a rat model of IBD. Am J Physiol Gastrointest Liver Physiol.290:G423-G430,2006
    
    20. Wallace JL, Arfors KE, McKnight GW, A monoclonal antibody against the CD18 leukocyte adhesion molecule prevents indomethacin-induced gastric damage in the rabbit. Gastroenterology.1991;100(4):878-83
    21. Takeuchi K, Furukawa O, Okada M, Okabe S. Duodenal ulcers induced by indomethacin plus histamine in the dog. Involvement of the impaired duodenal alkaline secretion in their pathogenesis. Digestion. 1988;39(4):230-40
    22.Sharon P, Ligumsky M, Rachmilewitz D, Zor U. Role of prostaglandins in ulcerative colitis. Enhanced production during active disease and inhibition by sulfasalazine. Gastroenterology. 1978;75(4):638-640
    
    23.Lauritsen K, Laursen LS, Bukhave K, Rask-Madsen J. In vivo profiles of eicosanoids in ulcerative colitis, Crohn's colitis, and Clostridium difficile colitis.Gastroenterology 1988; 95: 11-7.
    
    24. Whittle BJ Temporal relationship between cyclooxygenase inhibition, as measured by prostacyclin biosynthesis, and the gastrointestinal damage induced by indomethacin in the rat. Gastroenterology. 1981 ;80(1):94-8.
    
    25. Weissenborn U, Maedge S, Buettner D, Sewing KF .Indometacin-inducedgastrointestinal lesions in relation to tissueconcentration,food intake and bacterial invasion in the rat. Pharmacology .1985; 30:32-39
    
    26. Piepoli AL, De Salvatore G, De Salvia MA, Mitolo CI, Siro-Brigiani G,Marzullo A, Grattagliano I, Mitolo-Chieppa D, Palasciano G, Portincasa P Indomethacin-induced ileitis is associated with tensiometric, vascular and oxidative changes in the experimental rat model European Journal of Clinical Investigation .2005;35, 271-278
    
    27.. Basivireddy J, Jacob M, Ramamoorthy P, Pulimood AB, Balasubramanian KA . Indomethacin-induced free radical-mediated changes in the intestinal brush border membranes.Biochem Pharmacol. 2003;65(4):683-95
    
    28.Hatazawa R, Ohno R, Tanigami M, Tanaka A, Takeuchi K. Roles of endogenous prostaglandins and cyclooxygenase isozymes in healing of indomethacin-induced small intestinal lesions in rats. J Pharmacol Exp Ther 2006;318:691-9.
    
    29.Tanaka A, Hase S, Miyazawa T, Ohno R, Takeuchi K Role of cyclooxygenase (COX)-1 and COX-2 inhibition in nonsteroidal anti-inflammatory drug-induced intestinal damage in rats: relation to various pathogenic events.J Pharmacol Exp Then 2002 ;303(3):1248-54
    
    30 Kunikata T, Tanaka A, Miyazawa T, Kato S, Takeuchi K. 16,16-Dimethyl prostaglandin E2 inhibits indomethacin-induced small intestinal lesions through EP3 and EP4 receptors. Dig Dis Sci. 2002;47(4):894-904
    
    31. Tanaka A, Hase S, Miyazawa T, Takeuchi k. Up-regulation of cyclooxygenase-2 by inhibition of cyclooxygenase-1: a key to nonsteroidal anti-inflammatory drug-induced intestinal damage. J Pharmacol Exp Ther.2002;300(3):754-61
    
    32. Yokota A, Taniguchi M, Takahira Y, Tanaka A, Takeuchi K. Rofecoxib produces intestinal but not gastric damage in the presence of a low dose of indomethacin in rats. J Pharmacol Exp Ther. 2005 ;314(1):302-9
    
    33. Kobayashi O, Miwa H, Watanabe S, Tsujii M, Dubois RN, and Sato N .Cyclooxygenase-2 downregulates inducible nitric oxide synthase in rat intestinal epithelial cells. Am J Physiol, 281:G688-G696.
    
    34. Takeuchi K, Tanaka A, Ohno R, Yokota A. Role of COX inhibition in pathogenesis of NSAID-induced small intestinal damage. J Physiol Pharmacol 2003;54(Suppl.4):165-82.
    
    35. Konaka A, Nishijima M, Tanaka A, Kunikata T, Kato S, Takeuchi K. Nitric oxide, superoxide radicals and mast cells in pathogenesis of indomethacin-induced small intestinal lesions in rats. J Physiol Pharmacol 1999;50:25-38.
    
    36. Nygard, G., Anthony, A., Khan, K., Bounds, S.V., Caldwell, J., Dhillon, A.p.,Wakefield, A.J., 1995. Intestinal site-dependent susceptibility to chronic indomethacin in the rat: a morphological and biochemicalstudy. Aliment.Pharmacol. Ther. 1995 ,9(4):403-10 39
    
    37.Whittle, B.J.R., Laszlo, F., Evans, S.M., Moncada, S. Induction of nitric oxide synthase and microvascular injury in the rat jejunum provoked by indomethacin. Br. J. Pharmacol. 1995,116, 2286-2290.
    
    38.Satoh, H., Guth, P., Grossman, M.I., Role of bacteria in gastric ulceration produced by indomethacin in the rat: cytoprotective action of antibiotics.Gastroenterology,1983,;84,483-489.
    
    39. Bjarnason, I., Fehilly, B., Smethhurst, P., Menzees, I.S., Levi, A.J.,.Importance of local versus systemic effects of non-steroidal anti-inflammatory drugs in increasing small-intestinal permeability in man. Gut ,1991;32, 275-277.
    
    40..Zuccato, E., Bertolo, C, Colombo, L., Mussini, E., . Indomethacininduced enteropathy: effect of the drug regimen on intestinal permeability in rats. Agents Actions, 1992;C18-C21.
    
    41.Robert, A., Asano, T.,. Resistance of germ-free rats to indomethacin- induced intestinal lesions. Prostaglandins.1977 ;14(2): 333-341.
    
    42..Boughton-Smith, N.K., Evans, S.M., Laszlo, F., Whittle, B.J.R., Moncada, S.,.The induction of nitric oxide synthase and intestinal vascular permeability by endotoxin in the rat. Br. J. Pharmacol. 1993;110,1189-1195.
    
    43. Chen, K., Hirota, S., Wasa, M., Okada, A.. Expression of NOS II and its role in experimental small bowel ulceration in rats. Surgery, 1999; 126,553- 561.
    
    44.. Evans SM, Laszlo F, Whittle BJ .Site-specific lesion formation, inflammation and inducible nitric oxide synthase expression by indomethacin in the rat .European Journal of Pharmacology .2000,388(3):281-285
    
    45.Tugendreich S, Pearson CI, Sagartz J, Jarnagin K, Kolaja K. NSAID-induced acute phase response is due to increased intestinal permeability and characterized by early and consistent alterations in hepatic gene expression. Toxicol Pathol 2006; 34: 168-79
    
    46.Sharkey KA, Kroese AB. Consequences of intestinal inflammation on the enteric nervous system: neuronal activation induced by inflammatory mediators.Anat Rec 2001; 262: 79-90
    
    47.Haupt W, Jiang W, Kreis ME, Grundy D.Prostaglandin EP receptor subtypes have distinctive effects on jejunal afferent sensitivity in the rat. Gastroenterology 2000; 119: 1580-9
    
    48.Takeuchi K, Hatazawa R, Tanigami M, Tanaka A, Ohno R, Yokota A. Role of endogenous nitric oxide (NO) and NO synthases in healing of indomethacin-induced intestinal ulcers in rats. Life Sci .2007,;80: 329-36
    
    49.Parasher G, Frenklakh L, Goodman , Siddiqui T, Nandi J, Levine RA. Nitric oxide inhibitors ameliorate indomethacin-induced enteropathy in rats. Dig Dis Sci .2001; 46: 2536-41
    
    50.Wolkow PP.Involvement and dual effects of nitric oxide in septic shock.Inflamm Res. 1998;47(4):152-66
    
    51.Das UN.Pyruvate is an endogenous anti-inflammatory and anti-oxidant molecule.Med Sci Monit. 2006;12(5):RA79-84
    
    52.Derkach V, Surprenant A, North RA. 5-HT_3 receptors are membrane ion channels. Nature. 1989; 339: 706-9
    
    53.Liao JK, Homcy CJ. The G proteins of the G alpha i and G alpha q family couple the bradykinin receptor to the release of endothelium-derived relaxing factor. J Clin Invest 1993; 92: 2168-2172
    
    54.Booth CE, Shaw J, Hicks GA, Kirkup AJ, Winchester W, Grundy D. Influence of the pattern of jejunal distension on mesenteric afferent sensitivity in the anaesthetized rat. Neurogastroenterol Motil. 2008; 20: 149-58
    
    55.Kokkola T, Savinainen JR, Monkkonen KS, Retamal MD, Laitinen JT.S-nitrosothiols modulate G protein-coupled receptor signaling in a reversible and highly receptor-specific manner. BMC Cell Biol. 2005; 6: 21
    
    56.Jian K, Chen M, Cao X, Zhu XH, Fung ML, Gao TM. Nitric oxide modulation of voltage-gated calcium current by S-nitrosylation and cGMP pathway in cultured rat hippocampal neurons. Biochem Biophys Res Commun .2007; 359:481-5
    
    57.Arbogast S, Darques JL, Bregeon F, Jammes Y. Effects of endogenous nitric oxide in activation of group IV muscle afferents. Muscle Nerve .2001 24: 247-53
    
    58.Hatanaka S, Niijima A, Furuhama K. Possible mechanisms underlying the suppression of gastric vagal afferents due to ecabapide (DQ-2511), a gastroprokinetic agent, in rats. Jpn J Pharmacol 1997; 74: 105-8
    59.Tamura K, Schemann M, Wood JD. Actions of nitric oxide-generating sodium nitroprusside in myenteric plexus of guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol. 1993; 265: G887-93.
    1. Hanauer SB. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis .2006;12:S3-9
    
    2. Anand P, Aziz Q, Willert R, van Oudenhove L. Peripheral and central mechanisms of visceral sensitization in man. Neurogastroenterol Motil .2007;19(1 Suppl): 29-46
    
    3. Mayer EA, Raybould HE. Role of visceral afferent mechanisms in functional bowel disorders. Gatroenterology.l990;99(6):1688-1704
    
    4. Bueno L, Fioramonti J, Delvaux M, Frexinos J. Mediators and pharmacology of visceral sensitivity: from basic to clinical investigations.Gastroenterology.1997'112(5): 1714-43
    
    5. Gebhart GF. Pathobiology of visceral pain: molecular mechanisms and therapeutic implications IV. Am J Physiol Gastrointest Liver Physiol. 2000; 278:834-838
    
    6. Kuiken SD, Lindeboom R, Tytgat GN, et al. Relationship between symptoms and hypersensitivity to rectal distension in patients with irritable bowel syndrome.Aliment Pharmacol Ther. 2005;22:157-64
    
    7. Liu CY, Jiang W, Mueller MH, Grundy D, ME Kreis. Sensitization of mesenteric afferents to chemical and mechanical stimuli following systemic bacterial lipopolysaccharide.Neurogastroenterol Motil. 2005, 17(1):89-101
    
    8. Wynn G, Ma B, Ruan HZ, Burstock G. Purinergic component of mechanosensory transduction is increased in a rat model of colitis. Am J Physiol Gastrointest Liver Physiol .2004; 287: G647-G657
    
    9. Brierley SM, Jones RC 3rd, Xu L, Gebhart GF, Blackshaw LA. Activation of splanchnic and pelvic colonic afferents by bradykinin in mice,Neurogastroenterol Motil. 2005;17, 854-862
    
    10. Coldwell JR, Phillis BD, Sutherland K, Howarth GS, Blackshaw LA.Increased responsiveness of rat colonic splanchnic afferents to 5-HT after inflammation and recovery. J Physiol. 2007; 579(1): 203-213
    11. Ness TJ, Gebhart GF. Visceral pain: a review of experimentalstudies. Pain 1990;41:167-234.
    
    12. Gareth A. Hicks, Jonathan R. Coldwell, Marcus Schindler, Philip A. Bland Ward, David Jenkins, Excitation of rat colonic afferent fibres by 5-HT3 receptors.Journal of Physiology 2002;544(3): 861-869
    
    13. Babbedge, R., Dray, A. & Urban, L.. Bradykinin depolarizes the rat isolated superior cervical ganglion via B2 receptor activation. Neuroscience Letters, 1995:193, 161—164
    
    14. Mueller MH, Glatzle J, Kampitoglou D, Kasparek MS, Grundy D, Kreis ME.Differential sensitization of afferent neuronal pathways during postoperative ileus in the mouse jejunum. Ann Surg. 2008;247(5):791-802
    
    15. Christian F. Krieglstein, Wolfgang H. Cerwinka, F. Stephen Laroux, James W.Salter, Janice M. Russell, Guido Schuermann, Matthew B. Grisham, Christopher R. Ross and D. Neil Granger, Regulation of Murine Intestinal Inflammation by Reactive Metabolites of Oxygen and Nitrogen : Divergent Roles of Superoxide and Nitric Oxide. J Exp Med. 2001 ; 194(9): 1207-18
    
    16. M. Miampamba, D. T. Tan, M. R. Oliver, K. A. Sharkey and R. B. Scott.Intestinal anaphylaxis induces Fos immunoreactivity in myenteric plexus of rat small intestine.Am J physiol Gastrointest Liver Physiol ,1997,272,181-189
    
    17. B. Wang, J. Glatzle, M. H. Mueller, M. Kreis, P. Enck, D. Grundy.Lipopolysaccharide-induced changes in mesenteric afferent sensitivity of rat jejunum in vitro: role of prostaglandins. Am J Physiol Gastrointest Liver Physiol.2005;289(2):G254-60
    
    18. Hillsley K, Kirkup AJ, and Grundy D. Direct and indirect actions of 5-hydroxytryptamine on the discharge of mesenteric afferent fibers innervating the rat jejunum. J Physiol .1998;506: 551-561
    
    19. Howarth GS, Xian CJ & Read LC . Insulin-like growth factor-I partially attenuates colonic damage in rats with experimental colitis induced by oral dextran sulphate sodium. Scand J Gastroenterol.1998; 33,180-190.
    20. Christianson JA, Traub RJ & Davis BM (2006). Differences in spinal distrbution and neurochemical phenotype of colonic afferents in mouse and rat. J Comp Neurol 494,246-259.
    
    21.Barbara G, Wang B, Stanghellini V, de Giorgio R, Cremon C, Di Nardo G,Trevisani M, Campi B, Geppetti P, Tonini M, Bunnett NW, Grundy D,Corinaldesi R, Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome, Gastroenterology, 2007,132(1):26-37
    
    22. Brunsden AM, Grundy D, Sensitization of visceral afferents to bradykinin in rat jejunum in vitro Journal of Physiology . 1999, 521 (2): 517—527
    
    23. Maubach KA, Grundy D. The role of prostaglandins in the bradykinin-induced activation of serosal afferents of the rat jejunum in vitro. Journal of Physiology .1999;515(1): 277—285
    
    24. Nicol, G. D. & Cui, M. Enhancement by prostaglandin E2 of bradykinin activation of embryonic rat sensory neurones. Journal of Physiology .1994;480,485—492.
    
    25. Kreis, M. E., W. Haupt, A. J. Kirkup, and D. Grundy.Histamine sensitivity of mesenteric afferent nerves in the rat jejunum. Am. J. Physiol. Gastrointest. Liver Physiol. 1998;38,G675-G680
    
    26. Kreis, M. E., W. Jiang, A. J. Kirkup, and D. Grundy. Cosensitivity of vagal mucosal afferents to histamine and 5-HT in the rat jejunum. Am J Physiol Gastrointest Liver Physiol.2002; 283: G612-G617.
    
    27. Menozzi A, Pozzoli C, Poli E, Lazzaretti M, Grandi D, Coruzzi G.Long-term study of TNBS-induced colitis in rats: focus on mast cells.Inflamm Res. 2006,55(10):416-22
    
    28. Iba Y, Sugimoto Y, Kamei C. Participation of mast cells in colitis inflammation induced by dextran sulfate sodium. Methods Find Exp Clin Pharmacol. 2002,24(1): 15-8
    29. Egger B, Bajaj-Elliott M, MacDonald TT, Inglin R, Eysselein VE, Buchler MW. Characterisation of acute murine dextran sodium sulphate colitis: cytokine profile and dose dependency. Digestion.2000; 62:240-8.
    
    30. Melgar S, Karlsson A, Michaelsson E. Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/cmice: correlation between symptoms and inflammation.Am J Physiol Gastrointest Liver Physiol.2005; 288:G1328-38
    
    31. Ozaktay AC, Kallakuri S, Takebayashi T, Cavanaugh JM, Asik I, DeLeo JA,Weinstein JN. Effects of interleukin-1 beta, interleukin-6, and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats.Eur Spine J .2006;15:1529-1537
    
    32. Zhang JM, Li H, Liu B, Brull SJ. Acute topical application of tumor necrosis factor evokes protein kinase A-dependent responses in rat sensory neurons. J Neurophysiol .2002, 88: 1387-1392
    
    33. Stead Rh, Kosecka-Janiszewska U, Oestreicher Ab, Dixon Mf, Bienenstock J.Remodeling of B-50 (GAP-43)- and NSE-immunoreactive mucosal nerves in the intestines of rats infected with Nippostrongylus brasiliensis. J Neurosci.1991;11(12):3809-21
    
    34. Bueno L, Fioramonti J. Effects of inflammatory mediators on gut sensitivity.Can J Gastroenterol .1999;13, Suppl A: 42A-46A
    
    35. Bueno L, Fioramonti J. Visceral perception: inflammatory and non-inflammatory mediators. Gut .2002;51, Suppl 1: il9-i23
    
    36. Regoli, D. & Barabe, J.Pharmacology of bradykinin and related kinins.Pharmacological Reviews.1980;32,1—46.
    
    37. Szolcsanyi, J. Selective responsiveness of polymodal nociceptors of the rabbit ear to capsaicin, bradykinin and ultraviolet irradiation. Journal of Physiology .1987;388,9—23.
    
    38. Cuschieri, A. & Onabanjo, O. A. Kinin release after gastric surgery. British Medical Journal .1971;3, 565—566.
    39. A Stadnicki, R B Sartor, R Janardham, I Stadnicka, A A Adam, C Blais, Jr and R W Colman. Kallikrein-kininogen system activation and bradykinin (B2) receptors in indomethacin induced enterocolitis in genetically susceptible Lewis rats. Gut.1998;43;365-374
    
    40. Schaible HG & Schmidt RF . Time course of mechanosensitivity changes in articular afferents during a developing experimental arthritis. J Neurophysiol..1988;60,2180-2195.
    
    41. Andrew D & Greenspan JD . Mechanical and heat sensitization of cutaneous nociceptors after peripheral inflammation in the rat. J Neurophysiol.1999; 82,2649-2656
    
    42. Koltzenburg M, Bennett DL, Shelton DL & McMahon SB. Neutralization of endogenous NGF prevents the sensitization of nociceptors supplying inflamed skin. Eur JNeurosci .1999,1,1698-1704
    
    43. Schlegel T, Sauer SK, Handwerker HO & Reeh PW. Responsiveness of C-fiber nociceptors to punctate force-controlled stimuli in isolated rat skin: lack of modulation by inflammatory mediators and flurbiprofen. Neurosci Lett. 2004;61,163-167
    
    44. G.F. Gebhart. J.J. Bonica Lecture—2000: Physiology, Pathophysiology, and Pharmacology of Visceral Pain. Regional Anesthesia and Pain Medicine,2000;Vol 25, No 6 , 632-638
    
    45. Blackshaw LA & Grundy D. Effects of 5-hydroxytryptamine on discharge of vagal mucosal afferent fibres from the upper gastrointestinal tract of the ferret. J Auton Nerv Syst.1993;45, 41-50
    
    46. Koltzenburg M, Bennett DL, Shelton DL & McMahon SB . Neutralization of endogenous NGF prevents the sensitization of nociceptors supplying inflamed skin. Eur J Neurosci ,1999,11,1698-1704
    
    47. Banik RK, Kozaki Y, Sato J, Gera L & Mizumura K . B2 receptor-mediated enhanced bradykinin sensitivity of rat cutaneous C-fiber nociceptors during persistent inflammation. J Neurophysiol.2001; 86,2727-2735
    48. Barbara G, Stanghellini V, De Giorgio R, Cremon C, Cottrell GS, Santini D,Pasquinelli G, Morselli-Labate AM, Grady EF, Bunnett NW, Collins SM,Corinaldesi R. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome.Gastroenterology .2004; 126:693-702.
    
    49. Galli SJ, Maurer M, Lantz CS. Mast cells as sentinels of innate immunity.Curr Opin Immunol. 1999;11:53-59
    
    50. Stevens RL, Austen KF. Recent advances in the cellular and molecular biology of mast cells. Immunol Today. 1989;10:381- 386
    
    51. Barbara G, De Giorgio R, Stanghellini V, Cremon C, Corinaldesi R. A role for inflammation in irritable bowel syndrome. Gut .2002; 51(suppl 1):i41-i44.
    
    52. Barbara G, Stanghellini V, De Giorgio R, Corinaldesi R. Functional gastrointestinal disorders and mast cells: implications for therapy.Neurogastroenterol Motil .2006; 18:6-17.
    
    53. Bueno L, Fioramonti J, Delvaux M, Frexinos J. Mediators and pharmacology of visceral sensitivity: from basic to clinical investigations. Gastroenterology.1997,112:1714-1743.
    
    54. Vergnolle N, Ferazzini M, D'Andrea MR, Buddenkotte J, Steinhoff M.Proteinase-activated receptors: novel signals for peripheral nerves. Trends Neurosci .2003;26:496-500.
    
    55. Mitsuaki Okayama . Shusaku Hayashi . Yoko Aoi . Hikaru Nishio . Shinichi Kato . Koji Takeuchi, Aggravation by Selective COX-1 and COX-2 Inhibitors of Dextran Sulfate Sodium (DSS)-Induced Colon Lesions in Rats, Dig Dis Sci .2007;52:2095-2103.
    
    56. Fornai M, Blandizzi C, Antonioli L, Colucci R, Bernardini N, Segnani C, De Ponti F, Del Tacca M. Differential Role of Cyclooxygenase 1 and 2 Isoforms in the Modulation of Colonic Neuromuscular Function in Experimental Inflammation. J Pharmacol Exp Ther.2006;317(3);938-45
    
    57. Tsubouchi R, Hayashi S, Aoi Y, Nishio H, Terashima S, Kato S, Takeuchi K.Healing Impairment Effect of Cyclooxygenase Inhibitors on Dextran Sulfate Sodium-Induced Colitis in Rats. Digestion.2006;74(2):91-100
    
    58. Martin AR, Villegas I, Alarcon de la Lastra C. The COX-2 inhibitor, rofecoxib,ameliorates dextran sulphate sodium induced colitis in mice, Inflamm Res.2005 ;54(4):145-51
    
    59. Booth CE, Shaw J, Hicks GA, Kirkup AJ, Winchester W, Grundy D. Influence of the pattern of jejunal distension on mesenteric afferent sensitivity in the anaesthetized rat. Neurogastroenterol Motil. 2008; 20: 149-58
    
    60. Kawasaki Y, Zhang L, Cheng JK, Ji RR. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-lbeta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci. 2008;14;28(20):5189
    
    61. Heller, P., Taiwo, Y., Ahlgren, S., Gold, M. & Levine, J. (1993).The irritated nociceptor. In Basic and Clinical Aspects of Chronic Abdominal Pain, chap. 15,ed. Mayer, E. A. & Raybould, H. E., pp. 189—199. Elsevier Science Publishers BV

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700