芸豆蛋白的物化修饰及相关构效机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在探寻适于芸豆蛋白资源利用的途径。研究了芸豆球蛋白(Phaseolin)和分离蛋白(KPI)的物化和功能特性及其相关机制,探讨了KPI的物化改性及其相关构效机理。主要研究结果如下:
     对芸豆球蛋白和KPI的物化和功能特性进行了分析和比较,从蛋白结构与功能性关系角度揭示了两者功能性差异的机制。结果表明,芸豆球蛋白具有良好的功能特性,其溶解度(PS)、乳化活性指数(EAI)、乳化稳定性指数(ESI)和凝胶能力均显著高于KPI (P < 0.05);芸豆球蛋白的变性焓变(ΔH)为20.3 J g-1,而KPI的ΔH仅为11.2 J g-1;芸豆球蛋白的暴露巯基(SHE)、总离巯基(SHT)和二硫键(SS)含量显著低于KPI(P < 0.05)。圆二色光谱(CD)、荧光光谱和表面疏水性(H0)分析表明,KPI是部分变性的,其制备过程中的酸碱处理导致蛋白分子伸展、H0增加及三级结构的改变。蛋白变性是导致KPI功能性降低的原因。
     运用溶解度(PS)、比浊法、热分析(DSC)、荧光光谱和CD光谱法探讨了不同压力微射流处理(HM)对KPI构象和功能特性的影响。HM诱导不溶性蛋白聚合物解聚,增加了KPI的PS和EAI;CD和荧光光谱分析表明,HM对KPI的二级、三级结构没有明显的影响;DSC表明,蛋白的Td和ΔH均未受到显著的影响(P > 0.05)。
     研究了高静压处理(HP)对KPI物化和功能特性的影响,通过Try荧光光谱、ANS荧光光谱和SHE分析以揭示HP导致KPI构象改变的规律。结果表明,200 MPa处理诱导KPI中的可溶性高聚物(空体积处)解离,而400和600 MPa处理导致的不溶性聚集物解离,改善KPI的PS;200和400 MPa处理改善KPI的EAI和ESI,而600 MPa处理造成EAI和ESI下降;400和600 MPa处理降低KPI消化性能。HP导致KPI分子伸展、SHE和H0的增加,但仅600 MPa处理导致KPI三级结构的改变;HP不影响KPI的Td,降低KPI的ΔH,但600 MPa处理KPI的ΔH高达11.2 J g-1(约占对照KPI的60%)。在酸酐-蛋白比为0~0.1(乙酰化)和0~0.2(琥珀酰化) g g-1时,N-酰化度从0迅速增至93~94%;再增加酸酐与蛋白比,N-酰化度仅增加2~3%,羟基(Thr, Ser)开始参与酰化反应。
     酰化诱导KPI的PS-pH曲线向酸性偏移;S-KPI(琥珀酰化)的PS随酸酐-蛋白比的增加而增加,而A-KPI(乙酰化)的PS却是先增加后降低;酰化(尤其琥珀酰化)显著改善KPI的EAI(P<0.05);琥珀酰化弱化KPI的凝胶能力,而乙酰化改善KPI的凝胶能力;酰化改善KPI的体外消化性能。
     酰化蛋白的Iep随N-酰化度增加而线性降低,羟基酰化不影响KPI的Iep;在相同的N-酰化度,S-KPI具有与A-KPI相似或略低的Iep;酰化导致KPI的Zeta电势-pH曲线整体向下平移,回归分析表明,酰化蛋白的Zeta电势随N-酰化度的增加而线性增加(pH 7.0)。
     酰化影响KPI的亲水/疏水平衡。ε-氨基(lys)酰化阶段,KPI的H0逐渐下降;在羟基酰化阶段,琥珀酰化导致H0下降,乙酰化却导致H0增加。
     荧光光谱分析表明,ε-氨基酰化不影响KPI的三级构象,羟基酰化诱导KPI分子伸展和三级构象的改变,CD研究印证了这一结果。DSC也表明ε-氨基酰化不影响KPI的Td;羟基酰化导致KPI的Td和ΔH逐渐下降,表明蛋白变性(或分子伸展)。
     总之,HM、HP、乙酰化和琥珀酰化都可改善KPI的PS、EAI和ESI,琥珀酰化的改性效果最明显,其PS、EAI和ESI是接近于芸豆球蛋白的。四种技术手段均可诱导不溶性聚集物解离,HM不影响KPI的构象;HP导致KPI分子伸展,600 MPa处理导致KPI三级结构的改变;在羟基酰化阶段,乙酰化和琥珀酰化导致KPI分子伸展及三级结构的改变。
The aim of this study was to explore utilization means for proteins from red kidney bean (Phaseolus vulgaris L). Physiochemical and functional properties of phaseolin (the main storage globulin) and red kidney bean protein isolate (KPI) was studied and compared, the related mechanism was elucidated. Physiochemical modifications were used to modify KPI for improving its functional properties. The possible relationship between structure and functional properties of KPI was also discussed. Main results are as follows:
     Phaseolin showed excellent functional properties, its protein solubility (PS), emulsifying activity index (EAI), and gel-forming ability were much higher than those of KPI (P < 0.05). Differential scanning calorimetry analyses suggested that phaseolin was less denatured than KPI, the enthalpy change (ΔH) of phaseolin was about 20 J g?1, while enthalpy change (ΔH) of KPI was only 11.2 J g?1. The exposed SH (SHE), total SH (SHT) and SS content of phaseolin was significantly lower than those of KPI. Near-UV CD spectra and intrinsic fluorescence spectrum analyses confirmed much loss of tertiary conformation of KPI, relative to phaseolin, which may be attributed to acid and alkaline treatment during KPI preparation resulted in protein denaturation, exposure of hydrophobic groups.
     The effects of microfluidization on functional properties as well as conformational properties of KPI were investigated by solubility and turbidimetric measurements, DSC, fluorescence spectrum and Far-UV CD. The microfluidization led to dissociation of insoluble aggregates, thus improved PS and EAI of KPI, in a pressure dependent manner. Fluorescence emission spectra and far- UV CD spectrum analyses showed that both the tertiary conformation and the secondary structure of the proteins in KPI were nearly unaffected by the microfluidization treatment. DSC analysis indicated the microfluidization-treated KPI samples presented similar Td andΔH, relative to that of untreated KPI.
     The effects of high-pressure (HP) treatment at 200–600 MPa on functional properties and in vitro trypsin digestibility of vicilin-rich red kidney bean (Phaseolus vulgaris L.) protein isolate (KPI) were investigated. HP-induced conformation changes were also evaluated by Try fluorescence spectrum, surface hydrophobicity (H0) and free sulfhydryl (SH) contents analyses. HP treatment at 200 MPa led to dissociation of soluble aggregates (at void volume), while HP treatment at 400 and 600 MPa led to dissociation of insoluble aggregates in KPI, thus improve PS. HP treatment at 200 and 400 MPa significantly increased emulsifying activity index (EAI) and emulsion stability index (ESI); however, EAI and ESI were significantly decreased at 600 MPa (relative to untreated KPI). The in vitro trypsin digestibility of KPI was decreased only at a pressure above 200 MPa and for long incubation time (e.g., 120 min). HP treatment resulted in gradual unfolding of protein structure, as evidenced by gradual increases in SHE and H0 as well as decrease inΔH. However, only 600 MPa HP treatment resulted in loss of tertiary conformation of KPI, as evidenced by Try fluorescence spectrum analyses. Interestingly, theΔH of HP treated KPI (at 600 MPa) was 11.2 J g-1, account for 60% of that of untreated KPI.
     The degree of N-acylation sharply increased to about 93-94 % with the anhydride levels increasing from 0 to 0.1 (acetylation) or 0.2 g g-1 (succinylation). Further increase in the ratio just resulted in a slight increase (about 2% to 3%) in extent of acylation. The O-acylation (Thr, Ser) distinctly occurred only when degree of N-acylation was higher than 93-94 %.
     The acylation treatment (at a ratio of anhydride to protein of 0.05 g/g) resulted in a shift of the minimal of PS profile of KPI toward a more acidic pH. In the succinylation case, the PS progressively increased with the increase in ratio of anhydride to protein. Whereas in the acetylation case, the PS gradually increased to a maximum (from 70% to about 85%) at an anhydrideto-protein ratio of 0.2 g/g, and then on the contrary decreased upon further increase in ratio of anhydride to protein. Acylation, especially succinylation remarkably improved EAI at neutral pH. Succinylation resulted in a marked decrease in mechanical moduli of heat-induced gels of KPI, while the mechanical moduli were, on the contrary, increased by acetylation. Additionally, in vitro trypsin digestibility was improved by the acylation in an anhydride-type and level-dependentmanner.
     The succinylation led to progressive and significant decrease in H0, from 879 (control) to 118-119 (at degree of N-acylation of 97 %). Whereas in the acetylation case, the H0 decreased first, and reached a minimum (at degree of N-acylation of about 93 %) and then increased to a value (957) even higher than control.
     There was a close and negative relationship between Ip and degree of N-acylation, the Ip of acetylated KPI was similar or slightly higher than that of succinylated KPI. On the other hand, zeta potential at neutral pH of acylated KPI samples also linearly decreased with the increase in degree of N-acylation.
     In short, microfluidization, high-pressure, acetylation and succinylation resulted in increase in PS, EAI and ESI of KPI. Succinylation is the most effective for improving functional properties of KPI, the PS, EAI and ESI of succinylated KPI are close to those of phaseolin. These modification technologies led to dissociation of insoluble aggregate. Microfluidization treatment had little effect on the conformation of KPI. HP led to protein unfolding of KPI, however, only HP treatment at 600 MPa resulted in change in tertary conformation of KPI. Upon acylation marked structural unfolding (or change in tertiary conformation) occurred when the degree of O-acylation began to increase.
引文
[1]沈同,王镜岩主编.生物化学[M].北京:高等教育出版社,1990:74-195
    [2] Sathe S. K. Dry bean protein functionality [J]. Critical Reviews in Biotechnology, 2002, 22: 175?223
    [3] Adler-Nissen J. Proteases. In: Enzymes in Food Processing-3rd [M]. T. Nagodawithanaand G. Reed (Ed.) Academic Press, Inc. London. 1993:159-203
    [4] Hamaguchi K. The Protein Molecular-Conformation, Stability and Folding [M]. Japan Scientific Societies Press. Tokyo. 1992:25
    [5] Hoseney R.C. Principles of Cereal Science and Technology-2rd [M].AACC,Inc.St.Paul, Mn.1994.p378
    [6] Parkin K. General Characteristics of Enzymes.In: Enzymes in Food Processing-3rd[M]. T.Nagodawithana and G.Reed (Ed.) Academic Press, Inc. London.1993.p7-37
    [7] Osborne T.B. The proteins of wheat kernel [M]. Publication of Washington DC, Carnegie Institution of Washington,1907
    [8]管斌,林洪,王广策.食品蛋白质化学[M].北京:化学工业出版社,2000:2
    [9] W.C. Johnson Jr., Protein secondary structure and circular dichroism: A practical guide. Proteins: Structure, Function, and Bioinformatics, 1990, 7:205-214
    [10] Rogers N. K. The role of electrostatic interactions in the structure of globular proteins. In: Fasman G D ed. Prediction of protein structure and the principle of protein conformation. New York: Plenum press, 1989. 359-390
    [11] Rose G D, Wolfenden R. Hydrogen bonding, hydrophobicity, packing, and protein folding. Ann Rev Biophys Biomeol Struct, 1993, 22: 381-415
    [12] Pour-El A. Protein functionality: Classification, definition and methodology. In: Protein Functionality in Foods[M].J.P.Cherry(Ed.).ACS Symposium Series 147.American Chemical Society.Washington D.C.1981.p1-19
    [13]王金水.酶解-膜超滤改性小麦面筋蛋白功能特性研究.华南理工大学,博士学位论文,2006
    [14] Kinsella J. E. Relationship between structure and functional properties of foodproteins.In: Food Proteins [M].Fox P.F.,Condon J.J.(Ed.)Applied Science Publishers.London.1982. p51-103
    [15] Ma C.Y., Liu W.S., Kwok K.C., et al. Isolation and characterization of proteins from soymilk residues(Okara) [J]. Food Research Interational. 1996, 29:799-805
    [16] Szuhaj B. F., Sipos E. F. Food emulsifiers from soybean.In: Food Emulsifiers-Chemistry, Technology,Functional Properties and Applications[M].G. Charalambous and G. Doxastakis(Ed.).Elsevier Amsterdam.1989.p113-186
    [17] Damodaran S. Structure-Function Relationship of Food Proteins. In: Protein Functionality in Food Systems[M].N.S.Hettiarchchy and G.R.Ziegler(Ed.).IFT Basic Symposium Series,Chicago,IL.1994.p1-37
    [18] Yeshajahu D. Chapter 5 Proteins: General. In: Functional properties of food components (second Edition)[M].Academic Press,Inc.1985.p126-185
    [19]江志炜,沈蓓英,潘秋琴.蛋白质加工技术[M].北京:化学工业出版社,2003,p112
    [20] Gueguen J., Cerletti P. Proteins of some legume seeds: soybean,pea,fababean. In: New and Developing Sources of Food Proteins[M].B.J.F.Hudson(Ed.).Chapman&Hall. London.1994.p145-193
    [21] Hamm R. Changes of muscle proteins during the heating of meat.In:Physical,Chemical and Biological Changes in Food Caused by Thermal Processing[M].T.Toyem and O.Kvale (Ed.).Applied Science Publishers Ltd.London.1977.p101-134
    [22] Mangino M.E. Protein interactions in emulsions: Protein-lipid interactions. In: Protein Functionality in Food Systems[M].N.S.Hettiarachchy and G.R.Ziegler(Ed.).IFT Basic Symposium Series,Chicago IL.1994.p147-179
    [23] Damodaran S. InterrelationshiP of moleeular and funetional ProPerties of food Proteins. In: William G. and SoueieJ., ed., Food Portein. Am oil Chem. Soc. ChamPaign.IL,1997
    [24] Hua Y. F., Huang Y. R., Qiu A.Y., et al. Properties of soy protein isolate prepared from aqueous aleohol washed soy flakes. Food Research International, 2005, 38: 273-279
    [25] Snyder H.E.eds.Soy bean utilization.New York:Van Nostrand Reinhold,1987
    [26] Pearce K. N., Kinsella J. E. Emulsiyfing ProPerties of Proteins: evaluation of a turbidimetrie teehnique. Journal of Agricultural and Food Chemistry,1978,26(3),716-723
    [27] Nir 1., Feldman Y, AserinA., et al. Surface Properties and emulsification behavior of denatured soy Proteins . Journal of Food Science, 1994, 59: 606-609
    [28] Damodaran S.Food Proteins: an overview.In:Damadarm S.and Paraf A. eds. Food Portein and their applications. Mareel Dekker Inc., NewYork,1997
    [29] Panyam D., and Kilara S. Enhancing the functionality of food proteins by enzymatic modification. Trends in Food Science & Technology, 1996, 7(4):120-125
    [30] Utsumi S,Matsumura Y and Mori T. Structure-function relationships of soy oteins. In Damadarm S.and Paraf A.eds .Food Protein and their appliealions. Mareel Dekker Inc.,New York,1997
    [31] Catsimpoolas N., Rogers D. S., Cricle S.J., et al. Purification and structural studies of the11S component of soy bean Proteins. Cereal Chemistry, 1967, 44(6): 631-637
    [32]杨国龙.酶解-膜分离制备改性大豆蛋白的研究.华南理工大学博士学位论文[M].2005.
    [33] Katsuta K., Reetor D., Kinsella J.E. Viscoelastie Properties of whey Protein gels: Meehanieal model and effects of Protein concentration on creep. Journal of Food Science,1990, 55:516-521
    [34] Puppo M. C., A?ón M.C. Structural properties of heat-induced soy protein gels as affected by ionic strength and pH. Journal of Agricultural and Food Chemistry, 1998, 469:3583-3589
    [35] Renkema J. M. S., Lakemond C. M. M., de Jongh H. H.J., et al. The effect of pH on heat denaturation and gel forming properties of soy proteins. Journal of Biotechnology, 2000, 79(2): 223-230
    [36] Lakemond Catriona M.M., de Jongh H.H.J., Paques M., et al. Gelation of soy glycinin: influence of pH and ionic strength on network structure in relation to Protein conformation. Food Hydrocolloids, 2003, 17(3):365-377
    [37] Kang I.J.Gelation and gel properties of soybean glycicin in a transglutaminase-catalyzed system[J].Journal of Agricultural and Food Chemistry.1994,42(1):159-165.
    [38]华欲飞.大豆分离蛋白性能优化关键技术[J].中国油脂.2001,26(6):79-81
    [39]莫文敏.蛋白质改性研究进展[J].食品科学.2000,6:6-9
    [40] Wang X. S., Tang C. H., Li B. S., et al. Effects of high pressure treatment on some physicochemical and functional properties of soy protein isolates [J]. Food Hydrocolloids, 2008, 22: 560?567
    [41] Dickinson, E., Murray, B. S., Pawlowsky, K. On the effect of high-pressure treatment on the surface activity ofβ-casein [J]. Food Hydrocolloids, 1997, 11: 507?509
    [42] Foegeding E. A., Davis J. P., Doucet D., et al. Advances in modifying and understanding whey protein functionality [J]. Trends in Food Science and Technology, 2002, 13: 151?159
    [43] Galazka V. B., Dickinson E., Ledward D. A. Effect of high pressure on the emulsifying behaviour ofα-lactoglobulin [J]. Food Hydrocolloids, 1996, 10: 213?219
    [44] Iametti S., Transidico P., Bonomi F., et al. Molecular modifications ofα-lactoglobulin upon exposure to highpressure [J]. Journal of Agriculture and Food Chemistry, 1997, 45: 23?29
    [45] Ibanoglu E., Karatas S. High pressure effect on foaming behaviour of whey protein isolate [J]. Journal of Food Engineering, 2001, 47: 31?36
    [46] Pittia P., Wilde P. J., Husband F. A., et al. Functional and structural properties ofβ-lactoglobulin as affected by high pressure treatment [J]. Journal of Food Science, 1996, 61, 1123?1128
    [47] Balny C., Masson P. Effects of high pressure on proteins [J]. Food Review International, 1993, 9: 611?628
    [48] Silva J. L., Weber G. Pressure stability of proteins [J]. Annual Review in Physics and Chemistry, 1993, 44: 89?113
    [49] Vélez-Ruiz J. F., Swanson B. G., Barbosa-Canovas G. V. Flow and viscoelastic properties of concentrated milk treated by high hydrostatic pressure [J]. Lebensmittel Wissenschaft und Technologie, 1998, 31: 182?195
    [50] Galazka V.B.,Dickinson E.,Ledward D.A.Influence of high pressure processing on protein solutions and emulsions[J].Current Opinion in Colloid & Interface Science, 2000, 5: 182?187
    [51] Molina E., Papdopoulou A., Ledward D.A. Emulsifying properties of high pressuretreated soy protein isolate and 7S and 11S globulins[J].Food Hydrocolloids, 2001, 15:263?269
    [52]李汴生,曾庆孝.高压处理大豆分离蛋白溶解性和流变特性的变化及其机理[J].高压物理学报.1999,1:22?29
    [53]李汴生.超高压处理对豆浆感官状态和流变特性的影响[J].食品与发酵工业.1998,24(6):12?18
    [54] Laneuville S.I., Paquin P., Turgeon S.L. Effect of preparation conditions on the characteristics of whey protein—xanthan gum complexes[J]. Food Hydrocolloids, 2000, 14: 305–314
    [55] Morris, V. J. (1990). Science, structure and applications of microbial polysaccharides. In G. O. Phillips, P. A. Williams & D. J. Wedlock, Gums and stabilizers for the food industry (pp. 315–328). vol. 5. Washington, DC: IRL Press
    [56] Rahway, N. J. (1988). Xanthan gum. Merck Co., Inc. Kelco Division
    [57] Sutherland, I. W. (1990). Biotechnology of microbial exopolysaccharides. Melbourne: Cambridge University Press
    [58] Perrier-Cornet J.M., Marie P., Gervais P. Comparison of emulsification efficiency of protein-stabilized oil-in-water emulsions using jet, high pressure and colloid mill homogenization. Journal of Food Engineering, 2005, 66: 211?217
    [59] Paquin P., Lebeuf Y., Richard J. P., et al. Microparticulation of milk proteins by high pressure homogenization to produce a fat substitute [A]. Abstracts of Papers, IDF Special Issue 9303 [C]. International Dairy Federation: Brussels, Belgium, 1993, 389-396
    [60] Iordache M., Jelen P. High pressure microfluidization treatment of heat denatured whey proteins for improved functionality [J]. Innovative Food Science and Emerging Technologies , 2003, 4: 367?376
    [61] Britten, M., Giroux, H. Acid-induced gelation of whey protein polymers: effect of pH and calcium concentration during polymerization. Food Hydrocolloids, 2001, 15: 609 ?617
    [62] Adler-Nissen J. Enzymatic hydrolysis of protein for increase solubility[J].Journal ofAgricultural and Food Chemistry,1976, 24:1090?1093
    [63]班玉凤,朱海峰,关纳新.热处理对大豆蛋白酶解性能的影响[J].现代食品科技.2005, 21(1):72-77
    [64] Kinsella J. E. Functional properties of soy proteins. Journal of American Oil Chemist’s Society, 1979, 56:242?258
    [65]李川,蒋和体,曾凡坤.大豆蛋白改性.食品科技.2000,3:22-23
    [66] Skanderby M. Protein hydrolysates: their functionality and applications[J].Food Technol European.1994,10:141-148
    [67] Lee K. A., Kim S. H. SSGE and DEE, new peptides isolated from a soy protein hydrolysate that inhibit platelet aggregation[J]. Food Chemistry, 2005, 90:389?393
    [68] Molina Ortiz S. E.,Wagner J.R. Hydrolysates of native and modified soy protein isolates: structure characteristics, solubility and foaming properties[J]. Food Research International, 2002, 35:511?518
    [69] Panyam D., Kilara A. Enhancing the functionality of food proteins by enzymatic modification[J].Trends in Food Science and Technology, 1996, 7:120-125
    [70] Franzen K. L., Kinsella J. E. Functional properties of acetylated and succinylated soy protein [J]. Journal of Agricultural and Food Chemistry, 1976, 24:788?795
    [71] Mirmoghtadaie L., Kadivar M., Shahedi M. Effects of succinylation and deamidation on functional properties of oat protein isolate [J]. Food Chemistry, 2009, 114: 127?131
    [72] Mohamed A., Biresaw G., Xu J. Y., et al. Oats protein isolate: Thermal, rheological, surface and functional properties [J]. Food Research International, 2009, 42: 107?114
    [73] Dua S., Mahajan A., Mahajan A. Improvement of functional properties of rapeseed (Brassica campestris Var. Toria) preparations by chemical modification [J]. Journal of Agricultural and Food Chemistry, 1996, 44: 706?710
    [74] Wanasundara P. K. J. P. D., Shahidi F. Functional properties of acylated flax protein isolates [J]. Journal of Agricultural and Food Chemistry, 1997, 45: 2431?2441
    [75] Krause J. P., Mothes R., Schwenke K. D. Some physicochemical and interfacial properties of native and acetylated legumin from faba beans (Vicia faba L.) [J]. Journal of Agricultural and Food Chemistry, 1996, 44: 429?437
    [76] Schwenke K. D., Knopfe C., Mikheeva L. M., et al. Structural changes of legumin from faba beans (Vicia faba l.) by succinylation [J]. Journal of Agricultural and Food Chemistry, 1998, 46: 2080?2086
    [77] El-Adawy T. A. Functional properties and nutritional quality of acetylated and succinylated mung bean protein isolate [J]. Food Chemistry, 2000, 70:83?91
    [78] Lawal O. S. 2005. Functionality of native and succinylated Lablab bean (Lablab purpureus) protein concentrate [J]. Food Hydrocolloids 19:63?72
    [79] Lawal O. S., Adebowale K. O. The acylated protein derivatives of Canavalia ensiformis (jack bean): A study of functional characteristics [J]. LWT- Food Science and Technology, 2006, 39: 918?929
    [80] Kim S. H., Kinsella J. E. Effects of progressive succinylation on some molecular properties of soy glycinin [J]. Cereal Chemistry,1986, 63: 342?345
    [81] Gruener L., Ismond M. A. H. Effects of acetylation and succinylation on the functional properties of the canola 12S globulin [J]. Food Chemistry, 1997, 60: 513?520
    [82] Ma C. Y., Oomah B. D., Holme J. Effect of deamidation and succinylation on some physicochemical and baking properties of gluten [J]. Journal of Food Science, 1986, 51: 99?103
    [83] Siu M., Thompson L. U. In vitro and in vivo digestibilities of succinylated cheese whey protein concentrates [J]. Journal of Agricultural and Food Chemistry, 1982, 30: 743?747
    [84] Tayyab S., Haq S. K., Sabeeha., et al. Effect of lysine modification on the conformation and indomethacin binding properties of human serum albumin [J]. International Journal of Biological Macromolecules, 1999, 26: 173?180
    [85] Narayana K., Narasinga Rao M. S. Effect of Acetylation and Succinylation on the Physicochemical Properties of Winged Bean (Psophocarpus tetragonolobus) Proteins [J]. Journal of Agricultural and Food Chemistry, 1991, 39: 259?26
    [86] Matsudomi N. Conformation changes and functional properties of acid-modified soy protein[J]. Agricutural and Biological Chemistry,1985, 49:1251-1256
    [87] Ma C.Y., Khanzada G. Functional properties of deamidated oat protein isolates[J]. Journal of Food Science, 1987, 52:1583-1587
    [88] Chan W.M., Ma C.Y. Acid modification of proteins from soymilk residue(okara)[J]. Food Research International, 1999, 32: 119-127
    [89]卢寅泉.磷酸化大豆蛋白功能特性的研究[J].食品与发酵工业.1993,1:17-24
    [90] Mitchell J. R., Hill S. E. The use and control of chemical reactions to enhance the functionality of macromolecules in heat-produced foods[J].Trends in Food Science and Technology, 1995, 6:219-224
    [91] Aoki T., Hiidome Y. Improvement of heat stability and emulsifying activity of ovalbumin by conjugation with glucoronic acid though the maillard reaction[J].Food Research Intrenational, 1999, 32:129-133
    [92] Babiker E.E., Hiroyuki A. Effect of polysaccharide conjugation or transglutaminase treatment on the allergenicity and functional properties of soy protein[J].Journal of Agricultural and Food Chemistry, 1998, 46: 866-871
    [93] Fayle S E., Gerrard J. A. Crosslinkage of proteins by dehydroascorbic acid and its degradation products[J].Food Chemistry, 2000,70:193-198
    [94] Pulse Canada. 2000. Benas. Copyright 1999 ? Pulse Canada, Winnipeg, MB. URL: www.pulsecanada.com/beans/default.htm (April 04, 2001).
    [95] FAO.2002.Food and Agricultural Organization of the United Nations.[online database] Agriculture bulletin Board on Data Collection,Dissemination and Quality of Statistics. URL: http//apps.fao.org/cgi-bin/nph-db.pI?subset=agriculture (August 01, 2002).
    [96] Bellido G. G. Effects of pretreatment and micronization on the cookability, chemical components and physical structure of navy and black beans (Phaseolus vulgaris L.). Degree of Master of science. Department of food science, university of Manitoba, Winnipeg, MB
    [97] Deshpande S S,Sathe SK and Salunkhe, DK.1984. Interrelationships between certain physical and chemical properties of dry beans(phaseolus vulgaris L).Qual.Plant Foods Hum.Nutr.34:53-65.
    [98] Salunkhe DK Sathe SK and Deshpande SS. 1989. French bean Vol 2.page 23-63 in:handbook of world legumes: nutritional chemistry,processing technology,and utilization. Salunkhe DK Sathe SK and Deshpande SS ed.CRC press Inc, BocaRaton,FL.
    [99] Labaneiah MEO and Luh BS. 1981. Change of starch, crude fiber, and oligosaccharides in germinating dry beans. Cereal chemistry. 58:135-137
    [100] Reddy NR,Sathe SK and Salunkhe DK.1989. Carbohydrates. Volume 1 pages 51-74 in: Handbook of world legumes: nutritional chemistry,processing technology,and utilization. Salunkhe DK Sathe SK and Deshpande SS ed.CRC press Inc, Boca Raton,FL.
    [101] Jadhav, S.J., Reddy, N.R., and Salunkhe, D.K. 1989.Poluphenols. Vol.I. Pages 145-162 in: Handbook of world food legumes: Nutritional chemistry, processing technology, and utilization. Salunkhe, D.K. and Kadam, S.S. ed. CRC press Inc., Boca Raton, FL
    [102] Uzogara, S.G., Morton, I.D. and Daniel, J.W. 1990. Influence of various salts in the cooking water on pectin losses and cooked texture of cowpeas (Vigna Unguiculata). Journal of food biochemistry, 14: 283-291
    [103] Adsule RN and Kadam S S,1989. Protein. Volume 1.pages 75-98 in handbook of world legumes: nutritional chemistry,processing technology,and utilization. Salunkhe DK Sathe SK and Deshpande SS ed.CRC press Inc, Boca Raton,FL.
    [104] Sathe SK and Salunkhe DK 1981.Solubilization and electrophoretic characterization of the great notthern bean (Phaseolus vulgaris L) protein. Journal of food science, 46:82-87
    [105] Deshpande SS and Damodaran S.1990. Food Legumes, chemistry and technology. Pages 147-241 in advance in cereal science and technology.Pomeranz, V ed.American Association of cereal chemists, ST.Paul,MN
    [106] Romero J., Sun S. M., McLeester R. C., et al. Heritableva riation in a polypeptide subunit of the major storage protein of the bean, Phaseolus vulgaris L. Plant Physiology, 1975, 56, 776–779
    [107] Bollini R., Vitale A. Genetic variability in charge microheterogeneity andpolypeptide compositions of Phaseolus vulgaris; and peptide maps of its three major subunits. Plant Physiology, 1981, 52:96–1003
    [108] Hall, T. C., McLeester, R. C., & Bliss, F. A. Equal expression of the maternal andpaternal alleles for the polypeptide subunits of the major storage protein of thebean Phaseolus vulgaris L.. Plant Physiology, 1977, 59:1122–1124
    [109] Paaren, H. E., Slightom, J. L., Hall, T. C., et al. Purification of a seed glycoprotein: N-terminal and deglycosylation analysis of Phaseolin. Phytochemistry,1987, 26: 335–343
    [110] Sun, S. M., McLeester, R. C., Bliss, F. A., et al. Reversible and irreversibledissociation of globulins from Phaseolus vulgaris seed. Journal of Biological Chemistry, 1974, 249: 2118–2121
    [111] Ren J. Y., Shi J., Kakuda Y., et al. Phytohemagglutinin isolectins extracted and purified from red kidney beans and its cytotoxicity on human H9 lymphoma cell line. Separation and Purification Technology, 2008, 63: 122–128
    [112] Felsted R.L., Egorin M.J., Leavitt R.D., et al. Recombinations of subunits of Phaseolus vulgaris isolectins. Journal of Biological Chemistry, 1977, 252: 2967–2971
    [113]党根友。芸豆栽培品种经济性状及种子贮藏蛋白特性研究西北农林科技大学;作物栽培学与耕作学硕士学位论文
    [114]党根友;冯佰利;高小丽;高金锋;高冬丽;柴岩;芸豆种子蛋白组分及其在种子萌发过程中的变化华北农学报2008年23(05):85-88
    [115]党根友;冯佰利;高冬丽;高小丽;柴岩;不同芸豆品种种子发育过程中贮藏蛋白积累研究西北植物学报2008,28(7):1366-1370
    [116] Codex Alimentarius Commission Document Alinorms 89/4 1989. Working Group’s Report of the Fifth Session of Codex Committee on Vegetable Proteins (CCVP) on protein quality measurement, Food & Agriculture Organization (FAO), Rome, Italy
    [117] Venkatachalam M., Sathe S. K. Phaseolin in vitro pepsin digestibility: role of acids and phenolic compounds[J]. Journal of Agricultural and Food Chemistry, 2003, 53: 3466-3472
    [118] Chang K. C., Satterlee L. D. Isolation and characterization of the major protein from Great Northern beans (Phaseolus Vulgaris). Journal of Food Science, 1981, 46, 1368-1373
    [119] Liener I. E., Thomspon R. M. In vitro and in vivo studies on the digestibility of the major storage protein of the navy bean (Phaseolus vulgaris). Qualitas Plantarum Plant Foods for Human Nutrition, 1980, 30: 13-25
    [120] Liener, I. E. Protease Inhibitors and other toxic factors in seeds. In Plant Protein; Norton, G., Ed.; Butterworth’s: London, 1976; p 117
    [121] Romero, J.; Ryan, D. S. Susceptibility of the major storage protein of beans, Phaseolus Vulgaris L., to in Vitro enzymatic hydrolysis. Journal of Agricultural and Food Chemistry, 1978, 26, 784-788
    [122] Genovese, M. I. and Lajolo, F. M. In vitro digestibility of albumin proteins from Phuseolus vulguris L. Effect of chemical modification[J]. Journal of Agricultural and Food Chemistry,1996, 44: 3022-3028
    [123] Deshpande, S. S. Food legumes in human nutrition: A personal perspective. CRC Crit. Reviews in Food Science and Nutrition, 1992, 32: 333-363
    [124] Jivotovskaya A. V., Senyuk V. I., Rotari V. I., et al. Proteolysis of phaseolin in relation to its structure[J]. Journal of Agricultural and Food Chemistry, 1996, 44: 3768-3772
    [125] Nielsen S. S. Degradation of bean proteins by endogenous and exogenous proteases. A review. Cereal Chemistry, 1988, 65: 435-442
    [126] Santoro L. G., Grant G., Pusztai A. In Vivo degradation and stimulating effect of phaseolin on nitrogen secretion in rats. Plant Foods for Human Nutrition, 1999, 53: 223-236
    [127] Marquez U.M., Lajolo F.M. In Vivo Digestibility of Bean (Phaseolus vulgaris L.) Proteins: The Role of Endogenous Protein[J] Journal of Agricultural and Food Chemistry. 1991,39:1211-1215
    [128] DiLollo A., Alli I., Biliarderis C., et al. Thermal and surface activeproperties of citric acid-extracted and alkali-extracted proteins from Phaseolus beans. Journal of Agricultural and Food Chemistry.1993, 41: 24–29
    [129] Yin S. W., Tang C. H., Wen Q. B, et al. Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate: Effect ofhigh-pressure treatment [J]. Food Chemistry, 2008, 110: 938-945
    [130] Li Z., Alli I., Kermasha S. Tryptic Hydrolysis (in Vitro) of Crystalline and Noncrystalline Proteins from Phsseolus Beans[J]. Journal of Agricultural and Food Chemistry, 1989, 37: 643-647
    [131] Deshpande S. S., Damodaran S. (1989). Structure-digestibility relationship of legume 7S proteins. Journal of Food Science, 54, 108–113
    [132] Marquez U. M. L., Lajolo F. M. Composition and digestibility of albumins, globulins, and glutelins from Phaseolus vulgaris[J]. Journal of Agricultural and Food Chemistry, 1981, 29: 1068-1074
    [133] Genovese, M. I., and Lajolo, F. M. Effect of bean (Phuseolus vulgaris) albumins on phaseolin in vitro digestibility. Role of trypsin inhibitors. Journal of Food Biochemistry,1996, 20:275-294
    [134] Tang C. H., Xin S., Yin S. W., et al. Transglutaminase-induced cross-linking of vicilin-rich kidney protein isolate: Influence on the functional properties and in vitro digestibility[J].Food Research International, 2008, 41: 941–947
    [135] Mariniello L., Giosafatto C.V.L., Di Pierro P., et al. Synthesis and Resistance to in Vitro Proteolysis of Transglutaminase Cross-Linked Phaseolin, the Major Storage Protein from Phaseolus vulgaris J. Agric. Food Chem. 2007, 55, 4717-4721
    [136] Blagrove R.J., colman P.M., lilley G.G., et al. Physicochemical and structural studies of phaseolin from French bean seed. Qual Plant Plant Foods Hum Nutr, 1983, 33: 227-229
    [137] Suzuki E, Van Donkelaar A, Varghese JN, et al. Crystallization of phaseolin from Phaseolus vulgaris. Journal of Biological Chemistry,1983 , 258, (4): 2634-2636
    [138] Dyer J. M., Nelson J.W., Murai N. Biophysical analysis of phaseolin denaturation induced by urea, guanidinium chloride, pH, and temperature. Journal of Protein Chemistry, 1992, 11(3): 281-288
    [139] Deshpande S. S. and Damodaran S. Denaturation behavior of phaseolin in urea, guanidine hydrochloride, and sodium dodecyl sulfate solutions. Journal of Protein Chemistry, 1991, 10, (1): 103-115.
    [140] Alli, I.; Baker, B. E. Constitution of leguminous seeds: VIII. The microscopic structure of proteins isolated from Phaseolus beans [J]. Journal of the Science and Food Agriculture, 1980, 31: 1316?1322
    [141] Tang C. H., Ma C. Y. Heat-induced modifications in the functional and structural properties of vicilin-rich protein isolate from kidney (Phaseolus vulgaris L.) bean [J]. Food Chemistry, 2009, 115: 859-866.
    [1] FAO. (1993). Production Yearbook, 1992. Vol. 26 [S]. Food and Agriculture Organization of the United Nations, Rome
    [2] Gueguen I., Cerletti P. New and developing sources of food proteins [M], In F. J. B. Hudson (Ed.) London: Chapman & Hall., 1994145?193
    [3] Sathe S. K. Dry bean protein functionality [J]. Critical Reviews in Biotechnology, 2002, 22: 175?223
    [4] Romero J., Sun S. M., McLeester R. C., et al. Heritable variation in a polypeptide subunit of the major storage protein of the bean, Phaseolus vulgaris L [J]. Plant Physiology, 1975, 56: 776-779
    [5] DiLollo A., Alli I., Biliarderis C., et al. Thermal and Surface Active Properties of Citric Acid-Extracted and Alkali-Extracted Proteins from Phaseolus Beans [J]. Journal of Agricultural and Food Chemistry, 1993, 41: 24?29
    [6] Jivotovskaya A. V., Vitalyi, I. S., Vitalyi, I. R., et al. Proteolysis of phaseolin in relation to its structure[J]. Journal of Agricultural and Food Chemistry 1996, 44: 3768?3772
    [7] Yin S.W., Tang C. H., Wen Q. B., et al. Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate: Effect of high-pressure treatment [J]. Food Chemistry, 2008, 110, 938?945
    [8]尹寿伟,唐传核,温其标,杨晓泉.微射流处理对芸豆蛋白构象和功能特性的影响[J].华南理工大学学报(自然科学版)(Accepted)
    [9] Tang, C. H. Thermal denaturation and gelation of vicilin-rich protein isolates from three Phaseolus legumes: A comparative study [J]. Lebensmittel Wissenschaft und Technologie -Food Science and Technology, 2008, 41: 1380?1388
    [10] Tang C. H., Sun X., Yin S. W., et al. Transglutaminase-induced Cross-linking of Vicilin-rich Kidney Protein Isolate: Influence on the Functional Properties and in vitro Digestibility [J], Food Research International, 2008, 41: 941?947
    [11] Alli, I.; Baker, B. E. Constitution of leguminous seeds: VIII. The microscopic structure of proteins isolated from Phaseolus beans [J]. Journal of the Science and Food Agriculture. 1980, 31: 1316?1322
    [12] Bollini R., Vitale A. Genetic variability in charge microheterogeneity and polypeptide compositions of Phaseolus vulgaris; and peptide maps of its three major subunits [J]. Plant Physiology, 1981, 52: 96?1003
    [13] Hall T. C., McLeester R. C., Bliss F. A. Equal expression of the maternal and paternal alleles for the polypeptide subunits of the major storage protein of the bean Phaseolus vulgaris L [J]. Plant Physiology, 1977, 59: 1122?1124
    [14] Sun S. M., Mcleester R. C., Bliss F. A., et al. Reversible and Irreversible Dissociation of Globulins from Phaseohs vulgaris Seed [J]. Journal of Biological Chemistry, 1974, 249: 2118?2121
    [15] Paaren H. E., Slightom J. L., Hall T. C., et al. Purification of a seed glycoprotein:N-terminal and deglycosylation analysis of Phaseolin [J]. Phytochemistry, 1987, 26, 335?343
    [16] Sun S. M., Hall T. C. Solubility characteristics of globulins from Phaseolus seeds in regard to their isolation and characterization [J]. Journal of Agricultural and Food Chemistry, 1975, 23: 184?189
    [17] Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature. 1970, 227, 680?685
    [18] Petrucelli S., A?ón M. C. Relationship between the method of obtention and the structural and functional properties of soy protein isolates. 1. Structural and hydration properties [J]. Journal of Agricultural and Food Chemistry, 1994, 42: 2161?2169
    [19] Lowry O. H., Rosembroug H. J., Lewis A., et al. Protein measurement with the folin phenol reagent[J]. Journal of Biological Chemistry, 1951, 19: 265?275
    [20] Pearce K. N., Kinsella J. E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique [J]. Journal of Agricultural and Food Chemistry, 1978, 26: 716?723
    [21] Beveridge T., Toma S. J., Nakai S. Determination of SH and S-S groups in some food proteins using Ellman’s reagent [J]. Journal of Food Science, 1974, 39: 49?51
    [22] Ellman, G. D. Tissue sulfhydryl groups [J]. Arch. Biochem. Biophys, 1959, 82, 70?72
    [23] Thannhauser T. W., Konishi Y., Scheraga H. A. Sensitive quantitative analysis of disulfide bonds in polypeptides and proteins [J]. Analytical Biochemistry, 1984, 138: 181?188
    [24] Petrucelli S., A?ón M. C. Partial reduction of soy proteins isolate disulfide bonds [J]. Journal of Agricultural and Food Chemistry, 1995, 43: 2001?2006
    [25] Kato A., Nakai S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins [J]. Biochimica et Biophysica Acta, 1980, 624: 13?20
    [26] Haskard C. A., Li-Chan E. C. Y. Hydophobicity of bovine serum albumin and ovalbumin determined using uncharged (PRODAN) and anionic (ANS?) fluorescent probes[J]. Journal of Agricultural and Food Chemistry, 1998, 46: 2671?2677
    [27] Shi J., Xue S. J., Kakuda Y., et al. Isolation and characterization of lectins from kidney beans (Phaseolus vulgaris) [J]. Process Biochemistry, 2007, 42: 1436?1442
    [28] Genovese M. I., Lajolo F M. Influence of naturally acid-soluble proteins from beans (Phaseolus vulgaris L.) & in vitro digestibility determination [J]. Food Chemistry, 1998, 62: 315?323
    [29] Yin S. W., Tang C. H., Wen Q. B., et al. Functional and Conformational Properties of Phaseolin (Phaseolus vulgris L.) and Kidney Bean Protein Isolate. A Comparative Study. Journal of the Science of Food and Agriculture (submitted)
    [30] Kinsella J. E. Relationship between structure and functional properties of food proteins [M]. In: P.F. Fox and J.J. Cowden, Editors, Food proteins, Applied Science Publisher, London 1982: 51?103
    [31] Pallarès I., Vendrell J., Avilès F. X., et al. Amyloid fibril formation by a partially structured intermediate state of a-chymotrypsin [J]. Journal of Molecular Biology, 2004, 342: 321?331
    [32] Arrese E. L., Sorgentini D. A., Wagner J. R., et al. Electrophoretic, Solubility, and Functional Properties of Commercial Soy Protein Isolates [J]. Journal of Agricultural and Food Chemistry, 1991, 39: 1029?1032
    [33] Li-Chan E., Nakai S., Wood D. F. Hydrophobicity and solubility of meat protein and their relationship to emulsifying properties [J]. Journal of Food Science, 1984, 49: 345?350
    [34] McWaters A., Holemes M. Influence of moist heat on solubility and emulsification properties of soy and peanut fours [J]. Journal of Food Science, 1979, 44: 774?776
    [35] Dufour E., Hoa G. H., HaertléT. High-pressure effects of hlactoglobulin interactions with ligands studied by fluorescence[J]. Biochimica et Biophysica Acta, 1994, 1206: 166?172
    [36] Kelly S. M., Jess T. J., Price N. C. How to study proteins by circular dichroism [J]. Biochimca et Biophysica Acta, 2005, 1751: 119?139
    [37] Zirwer D., Gast K., Welfle H., et al. Secondary structure of globulins from plant seeds: A re-evaluation from circular dichroism measurements [J]. International Journal of Biological Macromolecules, 1985, 7: 105?108
    [38] Harwalkar V. R., Ma C. Y. Study of thermal properties of oat globulin by differentialscanning calorimetry [J]. Journal of Food Science. 1987, 52: 394?398
    [39] Tang C. H. Thermal properties of buckwheat proteins as related to their lipid contents [J]. Food Research International, 2007, 40: 381?387
    [40] Li-Chan, E. C. Y., Ma, C. Y. Thermal analysis of flaxseed (Linum usitatissimum) proteins by differential scanning calorimetry [J]. Food Chemistry, 2002, 77: 495?502
    [41] Meng G. T., Ma C. Y. Tthemal properties of phaseolus angularis (red bean) globulin [J]. Food Chemistry, 2001, 73: 453?460
    [42] Boye J. I., Ma C.-Y., Harwalkar, V. R. Thermal denaturation and coagulation of proteins. In S. Damodaran, & A. Paraf (Eds.), Food proteins and their applications [M]. New York, Marcel Dekker, 1997: 25–56
    [43] Arntfield S. D., Murray E. D., Ismond, M. A. H. Effect of salt on the thermal stability of storage proteins from fababean (Vicia faba) [J]. Journal of Food Science, 1986, 51, 371?377
    [44] Biliaderis, C. G. Differential scanning calorimetry in food research. A review [J]. Food Chemistry, 1983, 10, 239?265
    [45] Privalov P. L., Khechinashvili N. N., Atanssaov, B. P. Thermodynamic analysis of thermal transition in globular proteins.I. Calorimetric study of chymotrypsinogen, ribonuclease and myoglobin [J]. Biopolymers, 1971, 10, 1865?1890
    [46] Choi S. M., Ma C. Y. Structural characterization of globulin from common buckwheat (Fagopyrum esculentum Moench) using circular dichroism and Raman spectroscopy [J]. Food Chemistry, 2007, 102,150?160
    [47] Ellepola S.W., Ma C. Y. Thermal properties of globulin from rice (Oryza sativa) seeds [J]. Food Research International, 2006, 39: 257?264
    [48] Bigelow C. C. On the average hydrophobicity of proteins and the relationship between it and protein structure [J]. Journal of Theoretical Biology, 1967, 16, 187?211
    [49] Arakawa J., Timasheff, S. N. Preferential interactions of proteins with salts in concentrated solutions [J]. Biochemistry, 1982, 24, 6545?6552
    [50] von Hippel, P. H., Scheich, T.. The effect of neutral salts on the structure and conformational stability of macromolecules in solution. In S. N. Timesheff, & G. D.Fasman (Eds.), Structure and stability of biological macromolecule (Vol. 2) [M]. NewYork: Marcel-Dekker, 1969: 417–574
    [51] Morrissey P. A., Mulvihill D. M., & O Neill, E. M. Functional properties of muscle proteins. In B. J. F. Hudson (Ed.). Development in food proteins (Vol. 5) [M]. London: Elsevier Applied Science, 1987: 195–256
    [52] Koshiyama I., Hamano M., Fukushima D. A heat denaturation study of the 11S globulin in soybean seeds [J]. Food Chemistry, 1981, 6: 309?322
    [53] Arntfield S. D., Murray E. D. The influence of processing parameters on food protein functionality. I. Differential scanning calorimetry as an indicator of protein denaturation [J]. Canadian Institute of Food Science and Technology Journal, 1981, 14: 289?294
    [54] Steinhardt, J. The nature of specific and non-specific interactions of detergent with protein: complexing and unfolding. In Protein ligand interaction[M]; Sund, H., Blauer, G., Eds.; de Gruyter: Berlin, Germany, 1975: 412?426
    [55] Franks, F., & England, D. The role of solvent interactions in protein conformation [J]. CRC Critical Review of Biochemistry, 1975, 3: 165?219.
    [56] Privalov, P. L. Stability of proteins: Proteins which do not present a single cooperative system [J]. Advances in Protein Chemistry, 1982, 35: 1?104
    [57] Ma, C.-Y., & Harwalkar, V. R. Thermal coagulation of oat globulin. Cereal Chemistry, 1987, 64, 212–218
    [58] Brinegar, A. C., Peterson, D. M. Separation and characterizationof oat globulin polypeptides [J]. Archives in Biochemistry and Biophysics, 1982, 219: 71?79
    [59] Wolf, W. J., Tamura, T. Heat denaturation of soybean 11sprotein [J]. Cereal Chemistry, 1969, 46, 331?344
    [60] Damodaran, S., & Kinsella, J. E.. Effects of ions on protein conformation and functionality. In J. P. Cherry (Ed.). ACS Symposium Series (Vol. 206). Washington, DC: American Chemical Society, 1982: 327–357
    [61] Tanford, C. Contribution of hydrophobic interactions to the stability of the globular conformation [J]. Journal of American Chemical Society, 1962, 84: 4240?4247
    [62] Harwalkar, V. R., & Ma, C.-Y.. Evaluation of interactions of blactoglobulin bydifferential scanning calorimetry. In H. Visser (Ed.), Protein interactions [M]. Weinheim: VCH Publishers, 1992: 359–378
    [63] Gerlsma, S. Y., Stuur, E. J. The effect of polyhydric and monohydric alcohols on the heat-induced reversible denaturation of lysozyme and ribonuclease [J]. International Journal of Peptide and Protein Research, 1972, 4: 377?383
    [1] Gueguen I, Cerletti P. Proteins of some legume seeds: Soybean, pea, fababean and lupin, In Hudson FJ B, editor. New and developing sources of food proteins [M]. London: Chapman & Hall. 1994: 145–193
    [2] Sathe S. K. Dry bean protein functionality [J]. Critical Reviews in Biotechnology, 2002, 22: 175?223
    [3] Yin S.W., Tang C.H., Cao J.S., et al. Effects of limited enzymatic hydrolysis with trypsin on the functional properties of hemp (Cannabis sativa L.) protein isolate [J]. Food Chemistry, 2008, 106: 1004?1013
    [4] Wang X. S., Tang C. H., Li B. S., et al. Effects of high pressure treatment on some physicochemical and functional properties of soy protein isolates [J]. Food Hydrocolloids, 2008, 22: 560?567
    [5] Dickinson, E., Murray, B. S., Pawlowsky, K. On the effect of high-pressure treatment on the surface activity ofβ-casein [J]. Food Hydrocolloids, 1997, 11: 507?509
    [6] Foegeding E. A., Davis J. P., Doucet D., et al. Advances in modifying and understandingwhey protein functionality [J]. Trends in Food and Science and Technology, 2002, 13: 151?159
    [7] Galazka V. B., Dickinson E., Ledward D. A. Effect of high pressure on the emulsifying behaviour ofα-lactoglobulin [J]. Food Hydrocolloids, 1996, 10: 213?219
    [8] Iametti S., Transidico P., Bonomi F., et al. Molecular modifications ofα-lactoglobulin upon exposure to highpressure [J]. Journal of Agriculture and Food Chemistry, 1997, 45: 23?29
    [9] Ibanoglu E., Karatas S. High pressure effect on foaming behaviour of whey protein isolate [J]. Journal of Food Engineering, 2001, 47: 31?36
    [10] Pittia P., Wilde P. J., Husband F. A., et al. Functional and structural properties of X-lactoglobulin as affected by high pressure treatment [J]. Journal of Food Science, 1996, 61, 1123?1128
    [11] Balny C., Masson P. Effects of high pressure on proteins [J]. Food Review International, 1993, 9: 611?628
    [12] Silva J. L., Weber G. Pressure stability of proteins [J]. Annual Review in Physics and Chemistry, 1993, 44: 89?113
    [13] Vélez-Ruiz J. F., Swanson B. G., Barbosa-Canovas G. V. Flow and viscoelastic properties of concentrated milk treated by high hydrostatic pressure [J]. Lebensmittel Wissenschaft und Technologie, 1998, 31: 182?195
    [14] Floury J., Desrumaux A., Legrand J. Effect of ultra-highpressure homogenisation on structure and on rheological properties of soy protein-stabilized emulsions [J]. Journal of Food Science, 2002, 67: 3388?3395
    [15] Grácia-JuliáA, RenéM, Cortés-Mu?oz M, et al. Effect of dynamic high pressure on whey protein aggregation: A comparison with the effect of continuous short-time thermal treatments [J]. Food Hydrocolloids, 2008, 22: 1014?1032
    [16] Floury J., Desrumaux A., Legrand J. Effect of ultra-highpressure homogenisation on structure and on rheological properties of soy protein-stabilized emulsions [J]. Journal of Food Science, 2002, 67, 3388?3395
    [17] Zamora A., Ferragut V., Jaramillo P. D., et al. Effects of Ultra-High PressureHomogenization on the Cheese-Making Properties of Milk [J]. Journal of Dairy Science, 2007, 90:13?23
    [18] Floury J., Desrumaux A., Lardie` res J. Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions [J]. Innovative Food Science & Emerging Technologies, 2000, 1: 127?134
    [19] Jafari S. M., He Y., Bhandari B. Production of sub-micron emulsions by ultrasound and microfluidization techniques [J]. Journal of Food Engineering , 2007, 82 (4) : 478?488
    [20] Paquin P., Lebeuf Y., Richard J. P., & Kalab, M. Microparticulation of milk proteins by high pressure homogenization to produce a fat substitute [A]. Abstracts of Papers, IDF Special Issue 9303 [C]. International Dairy Federation: Brussels, Belgium, 1993, 389-396
    [21] Iordache M., Jelen P. High pressure microfluidization treatment of heat denatured whey proteins for improved functionality [J]. Innovative Food Science and Emerging Technologies , 2003, 4: 367?376
    [22] Petruccelli S., A?on M. C. Relationship between the method of obtention and the structural and functional properties of soy protein isolates. 1. Structural and hydration properties [J]. Journal of Agricultural and Food Chemistry, 1994, 42: 2161?2169
    [23] Pearce K. N., Kinsella J. E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique [J]. Journal of Agricultural and Food Chemistry, 1978, 26: 716?723
    [24] Li-Chan E., Nakai S., Wood D.F. Hydrophobicity and solubility of meat proteins and their relationship to emulsifying properties [J]. Journal of Food Science, 1984, 49: 345?350
    [25] Ragone R., Colonna G, Balestrieri C. et al. Determination of tyrosine exposure in proteins by secondderivative spectroscopy [J]. Biochemistry, 1984, 23: 1871?1875
    [26] Jivotovskaya A. V., Vitalyi I. S., Vitalyi I. R., et al. Proteolysis of phaseolin in relation to its structure [J]. Journal of Agricultural and Food Chemistry, 1996, 44: 3768?3772
    [27] Romero J., Ryan D. S. Susceptibility of the major storage protein of the bean, Phaseolus vulgaris L., to in vitro enzymatic hydrolysis [J]. Journal of Agricultural and Food Chemistry, 1978, 26: 784?788
    [28] Arntfield S. D., Murray E. D. The influence of processing parameters on food protein functionality. I. Differential scanning calorimetry as an indicator of protein denaturation [J]. Canadian Institute of Food Science and Technology Journal, 1981, 14: 289?294
    [29] Bouaouina H., Desrumaux A., Loisel C., et al. Functional properties of whey proteins as affected by dynamic high-pressure treatment [J]. International Dairy Journal, 2006, 16: 275?284
    [30] Van der veen M., Norde W., Stuart M. C. Effects of Succinylation on the Structure and Thermostability of Lysozyme [J]. Journal of Agriculture and Food Chemistry, 2005, 53: 5702?5707
    [31] Dufour E., Hoa G. H., HaertléT. High-pressure effects of hlactoglobulin interactions with ligands studied by fluorescence [J]. Biochimica et Biophysica Acta, 1994, 1206: 166?172
    [32] Zirwer D., Gast K., Welfle H., et al. Secondary structure of globulins from plant seeds: A re-evaluation from circular dichroism measurements [J]. International Journal of Biological Macromolecules, 1985, 7: 105?108
    [1] Gueguen I., Cerletti P. Proteins of some legume seeds: Soybean, pea, fababean and lupin, In Hudson FJ B, editor. New and developing sources of food proteins [M]. London:Chapman & Hall. 1994: 145–193
    [2] Sathe S. K. Dry bean protein functionality [J]. Critical Reviews in Biotechnology, 2002, 22: 175?223
    [3] Wang X. S., Tang C. H., Li B. S., et al. Effects of high pressure treatment on some physicochemical and functional properties of soy protein isolates [J]. Food Hydrocolloids, 2008, 22: 560?567
    [4] Dickinson, E., Murray, B. S., Pawlowsky, K. On the effect of high-pressure treatment on the surface activity ofβ-casein [J]. Food Hydrocolloids, 1997, 11: 507?509
    [5] Foegeding E. A., Davis J. P., Doucet D., et al. Advances in modifying and understanding whey protein functionality [J]. Trends in Food and Science and Technology, 2002, 13: 151?159
    [6] Galazka V. B., Dickinson E., Ledward D. A. Effect of high pressure on the emulsifying behaviour ofα-lactoglobulin [J]. Food Hydrocolloids, 1996, 10: 213?219
    [7] Iametti S., Transidico P., Bonomi F., et al. Molecular modifications ofα-lactoglobulin upon exposure to highpressure [J]. Journal of Agriculture and Food Chemistry, 1997, 45: 23?29
    [8] Ibanoglu E., Karatas S. High pressure effect on foaming behaviour of whey protein isolate [J]. Journal of Food Engineering, 2001, 47: 31?36
    [9] Pittia P., Wilde P. J., Husband F. A., et al. Functional and structural properties of X-lactoglobulin as affected by high pressure treatment [J]. Journal of Food Science, 1996, 61, 1123?1128
    [10] Balny C., Masson P. Effects of high pressure on proteins [J]. Food Review International, 1993, 9: 611?628
    [11] Silva J. L., Weber G. Pressure stability of proteins [J]. Annual Review in Physics and Chemistry, 1993, 44: 89?113
    [12] Vélez-Ruiz J. F., Swanson B. G., Barbosa-Canovas G. V. Flow and viscoelastic properties of concentrated milk treated by high hydrostatic pressure [J]. Lebensmittel Wissenschaft und Technologie, 1998, 31: 182?195
    [13] Petrucelli S., A?ón M. C. Relationship between the method of obtention and thestructural and functional properties of soy protein isolates. 1. Structural and hydration properties [J]. Journal of Agricultural and Food Chemistry, 1994, 42: 2161?2169
    [14] Pearce K. N., Kinsella, J. E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique [J]. Journal of Agricultural and Food Chemistry, 1978, 26: 71?723
    [15] Ellman G. D. Tissue sulfhydryl groups [J]. Archives of Biochemistry and Biophysics, 1959, 82, 70?72
    [16] Beveridge T., Toma S. J., Nakai, S. Determination of SH and S–S groups in some food proteins using Ellman’s reagent [J]. Journal of Food Science, 1974, 39, 49?51
    [17] Petruccelli S., A?ón, M. C. Partial reduction of soy proteins isolate disulfide bonds [J]. Journal of Agricultural and Food Chemistry, 1995, 43: 2001?2006
    [18] Thannhauser T. W., Konishi Y., Scheraga, H. A. Sensitive quantitative analysis of disulfide bonds in polypeptides and proteins [J]. Analytical Biochemistry, 1984, 138: 181?188.
    [19] Kato A., Nakai S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins [J]. Biochimica et Biophysica Acta, 1980, 624: 13?20
    [20] Haskard C. A., Li-Chan E. C. Y. Hydophobicity of bovine serum albumin and ovalbumin determined using uncharged (PRODAN) and anionic (ANS?) fluorescent probes[J]. Journal of Agricultural and Food Chemistry, 1998, 46: 2671?2677
    [21] Tang C. H., Sun X., Yin S. W., et al. Transglutaminase-induced cross-linking of vicilin-rich kidney protein isolate: Influence on the functional properties and in vitro digestibility.Food Research International, 2008, 41: 941?947
    [22] Zhao Y., Mine Y., Ma C. Y. Study of thermal aggregation of oat globulin by laser light scattering. Journal of Agricultural and Food Chemistry, 2004, 52, 3089?3096
    [23] Pallarès I., Vendrell J., Avilès F. X., et al. Amyloid fibril formation by a partially structured intermediate state ofα-chymotrypsin. Journal of Molecular Biology, 2004, 342: 321–331
    [24] Dufour E., Hoa G. H., HaertléT. High-pressure effects of hlactoglobulin interactions withligands studied by fluorescence [J]. Biochimica et Biophysica Acta, 1994, 1206: 166?172
    [25] Yang J., Powers J., Clark S., et al. Hydrophobic probe binding ofβ-lactoglobulin in the native and molten globule state induced by high pressure as affected by pH, KLO3 and N-ethylmaleimide. Journal of Agricultural and Food Chemistry, 2002, 50: 5207–5214
    [26] Puppo M. C., Speroni F., Chapleau N., et al. Effect of high-pressure treatment on emulsifying properties of soybean proteins [J]. Food Hydrocolloids, 2005, 19: 289–296
    [27] Molina E., Papadopoulou A., Ledward, D. A. Emulsifying properties of high-pressure-treated soy protein isolate and 7S and 11S globulins [J]. Food Hydrocolloids, 2001, 15, 263–269
    [28] Van der Plancken I., Van Loey A., Hendrickx, M. Combined effect of high pressure and temperature on selected properties of egg white proteins [J]. Innovative Food Science and Emerging Technologies, 2005, 6: 11–20
    [29] Cheftel J. C., Hayashi, R., Heremans, K., et al. Effects of high hydrostatic pressure on food constituents: An overview. In C. Balny, R. Hayashi, K. Heremans, & P. Masson (Eds.), High pressure and biotechnology [M]. London: John Libbey and Company Ltd. 1992: 195–209
    [30] Di Lollo A., Alli I., Biliarderis C., et al. Thermal and surface active properties of citric acid-extracted and alkali-extracted proteins from Phaseolus Beans [J]. Journal of Agricultural and Food Chemistry, 1993, 41, 24–29
    [31] Chapleau N., De Lamballerie-Anton M. Improvement of emulsifying properties of lupin proteins by high pressure induced aggregation [J]. Food Hydrocolloids, 2003, 17, 273–280
    [32] Yin S. W., Tang C. H., Wen Q. B., et al. Functional Properties and in vitro Trypsin Digestibility of Red Kidney Bean (Phaseolus vulgaris L.) Protein Isolate :Effect of High Pressure Treatment[J]. Food Chemistry, 2008, 110: 938–945
    [33]尹寿伟,唐传核,温其标等.微射流处理对芸豆蛋白构象和功能特性的影响[J].华南理工大学学报(自然科学版)[J]. 2009, 10
    [34] Iametti S., Donnizzelli E., Vecchio G., et al. Macroscopic and structural consequences of high pressure treatment of ovalbumin solutions [J]. Journal of Agricultural and FoodChemistry, 1998, 46: 3521–3527
    [35] Jivotovskaya A. V., Vitalyi I. S., Vitalyi I. R., et al. Proteolysis of phaseolin in relation to its structure [J]. Journal of Agricultural and Food Chemistry, 1996, 44, 3768–3772
    [36] Yeboah F. K., Alli I., Simpson B. K., et al. Tryptic fragments of phaseolin from protein isolates of Phaseolus beans [J]. Food Chemistry, 1999, 67: 105–112
    [37] Romero J., Ryan D. S. Susceptibility of the major storage protein of the bean, Phaseolus vulgaris L., to in vitro enzymatic hydrolysis [J]. Journal of Agricultural and Food Chemistry, 1978, 26: 784–788
    [38] Van der Plancken I., Van Remoortere M., Van Loey A., et al. Heat-induced changes in the susceptibility of egg white proteins to enzymatic hydrolysis: A kinetic study [J]. Journal of Agricultural and Food Chemistry, 2003, 51: 3819–38
    [1] Gueguen I, Cerletti P. Proteins of some legume seeds: Soybean, pea, fababean and lupin, In Hudson FJ B, editor. New and developing sources of food proteins [M]. London: Chapman & Hall. 1994: 145–193
    [2] Sathe S. K. Dry bean protein functionality [J]. Critical Reviews in Biotechnology, 2002, 22: 175?223
    [3] Franzen K. L., Kinsella J. E. Functional properties of acetylated and succinylated soy protein [J]. Journal of Agricultural and Food Chemistry, 1976, 24:788?795
    [4] Mirmoghtadaie L., Kadivar M., Shahedi M. Effects of succinylation and deamidation on functional properties of oat protein isolate [J]. Food Chemistry, 2009, 114: 127?131
    [5] Mohamed A., Biresaw G., Xu J. Y., et al. Oats protein isolate: Thermal, rheological, surface and functional properties [J]. Food Research International, 2009, 42: 107?114
    [6] Dua S., Mahajan A., Mahajan A. Improvement of functional properties of rapeseed (Brassica campestris Var. Toria) preparations by chemical modification [J]. Journal of Agricultural and Food Chemistry, 1996, 44: 706?710
    [7] Wanasundara P. K. J. P. D., Shahidi F. Functional properties of acylated flax protein isolates [J]. Journal of Agricultural and Food Chemistry, 1997, 45: 2431?2441
    [8] Krause J. P., Mothes R., Schwenke K. D. Some physicochemical and interfacial properties of native and acetylated legumin from faba beans (Vicia faba L.) [J]. Journal of Agricultural and Food Chemistry, 1996, 44: 429?437
    [9] Schwenke K. D., Knopfe C., Mikheeva L. M., et al.. Structural changes of legumin fromfaba beans (Vicia faba l.) by succinylation [J]. Journal of Agricultural and Food Chemistry, 1998, 46: 2080?2086
    [10] El-Adawy T. A. Functional properties and nutritional quality of acetylated and succinylated mung bean protein isolate [J]. Food Chemistry, 2000, 70:83?91
    [11] Lawal O. S. 2005. Functionality of native and succinylated Lablab bean (Lablab purpureus) protein concentrate [J]. Food Hydrocolloids 19:63?72
    [12] Lawal O. S., Adebowale K. O. The acylated protein derivatives of Canavalia ensiformis (jack bean): A study of functional characteristics [J]. LWT- Food Science and Technology, 2006, 39: 918?929
    [13] Habeeb A. F. S. A. Determination of free amino groups in proteins by trinitrobenzenesulphonic acid [J]. Analytical Biochemistry, 1966, 14:328?336
    [14] Petruccelli S., A?ón M. C. Relationship between the method of obtention and the structural and functional properties of soy protein isolates. 1. Structuraland hydration properties [J]. Journal of Agricultural and Food Chemistry, 1994, 42: 2161?216
    [15] Tang C. H., Sun X., Yin S. W., et al. Transglutaminase-induced cross-linking of vicilin-rich kidney protein isolate: Influence on the functional properties and in vitro digestibility [J].Food Research International, 2008, 41: 941?947
    [16] Pearce K. N., Kinsella, J. E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique [J]. Journal of Agricultural and Food Chemistry, 1978, 26: 716?723
    [17] Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature, 1970, 227: 680?685
    [18] Howell, R. W. Chemical and enzymatic modifications. In Food Proteins: Properties and Characterization; Nakai, S., Modler, H. W., Eds.; VCH Publishers: New York, 1996; pp 260-310.
    [19] Yin S. W., Tang C. H., Wen Q. B., et al. Functional and Structural Properties and in vitro Digestibility of Acylated Hemp (Cannabis sativa L.) Protein Isolates [J]. International Journal of Food Science and Technology (accepted)
    [20] Barber K. J., Wartheson J. J. Some functional properties of acylated wheat gluten [J].Journal of Agricultural and Food Chemistry, 1982, 30: 930?934
    [21] Beuchat L. R. Functional and electrophoretic characteristics of succinylated peanut flour protein [J]. Journal of Agricultural and Food Chemistry, 1977, 25: 258?261
    [22] Bora P. S. Functional poperties of native and succinylated lentil (Lens culinaris) globulins [J]. Food Chemistry, 2002, 77:171?176
    [23] Rahma E. H., Narasinga Rao M. S. Effect of acetylation and succinylation of cottonseed flour on its functional properties [J]. Journal of Agricultural and Food Chemistry, 1983, 31:352?355
    [24] Li-Chan E., Nakai S., Wood D. F. Hydrophobicity and solubility of meat protein and their relationship to emulsifying properties [J]. Journal of Food Science, 1984, 49: 345?350
    [25] Lawal O. S., Adebowale K.O., Adebowale Y.A. Functional properties of native and chemically modified protein concentrate from bambarra groundnut [J]. Food Research International, 2007, 40: 1003?1011
    [26] Kinsella J. E. Functional properties of soy proteins [J]. Journal of the American Oil Chemists' Society, 1979, 56: 254?262
    [27] Ma C. Y., Wood D. F. Functional properties of oat protein modified by acylation, trypsin hydrolysis and linoleate treatment [J]. Journal of the American Oil Chemists' Society, 1987, 64: 1726?1731
    [28] Gruener L., Ismond M. A. H. Effects of acetylation and succinylation on the functional properties of the canola 12S globulin [J]. Food Chemistry, 1997, 60: 513?520
    [29] Tang C. H., Sun X., Yin S. W., et al. Transglutaminase-induced cross-linking of vicilin-rich kidney protein isolate: Influence on the functional properties and in vitro digestibility [J]. Food Research International, 2008, 41: 941?947
    [30] Jivotovskaya A. V., Vitalyi I. S., Vitalyi I. R., et al. Proteolysis of phaseolin in relation to its structure [J]. Journal of Agricultural and Food Chemistry, 1996, 44: 3768?3772
    [31] Di Lollo A., Alli I., Biliarderis C., et al. Thermal and surface active properties of citric acid-extracted and alkali-extracted proteins from Phaseolus Beans [J]. Journal of Agricultural and Food Chemistry, 1993, 41: 24?29
    [32] Yeboah F. K., Alli I., Simpson B. K., et al. Tryptic fragments of phaseolin from proteinisolates of Phaseolus beans [J]. Food Chemistry, 1999, 67:105?112
    [33] Johnson E. A., Brekke C. J. Functional properties of acylated pea proteins isolates [J]. Journal of Food Science, 1983, 48: 722?725
    [34] Ma C. Y. Functional properties of acylated oat protein [J]. Journal of Food Science, 1984, 49: 1128?1131
    [1] Franzen K. L., Kinsella J. E. Functional properties of acetylated and succinylated soy protein [J]. Journal of Agricultural and Food Chemistry, 1976, 24: 788?795
    [2] Habeeb A. F. S. A. Determination of free amino groups in proteins by trinitrobenzenesulphonic acid [J]. Analytical Biochemistry, 1966, 14, 328?336
    [3] Gounaris A. D.; Perlmann, G. E. Succinylation of pepsinogen [J]. Journal of Biological Chemistry, 1967, 242: 2739?2745
    [4] Ellman G. D. Tissue sulfhydryl groups [J]. Archives of Biochemistry and Biophysics, 1959: 82, 70?72
    [5] Beveridge T., Toma S. J., Nakai S. Determination of SH and S-S groups in some food proteins using Ellman’s reagent [J]. Journal Food Science, 1974, 39, 49?51
    [6] Davis B. J. Disc electrophoresis II: Method and application to human serum proteins [J]. Annals of the New York Academy of Science, 1964, 121: 404?427
    [7] Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature, 1970, 227: 680?685
    [8] Haskard C. A., Li-Chan E. C. Y. Hydophobicity of bovine serum albumin and ovalbumin determined using uncharged (PRODAN) and anionic (ANSˉ) fluorescent probes [J]. Journal of Agricultural and Food Chemistry, 1998, 46: 2671?2677
    [9] Kato A., Nakai S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins [J]. Biochimca et Biophysica Acta, 1980, 624: 13?20
    [10] Schwenke K. D., Knopfe C., Mikheeva L M., et al. Structural Changes of Legumin from Faba Beans (Vicia faba L.) by Succinylation [J]. Journal of Agricultural and Food Chemistry 1998, 46: 2080?2086
    [11] Siu M., Thompson L. U. In vitro and in vivo digestibilities of succinylated cheese whey protein concentrates [J]. Journal of Agricultural and Food Chemistry, 1982, 30: 743?747
    [12] Tayyab S., Haq S. K., Sabeeha., et al. Effect of lysine modification on the conformation and indomethacin binding properties of human serum albumin [J]. International Journalof Biological Macromolecules, 1999, 26: 173?180
    [13] Narayana K., Narasinga Rao M. S. Effect of Acetylation and Succinylation on the Physicochemical Properties of Winged Bean (Psophocarpus tetragonolobus) Proteins [J]. Journal of Agricultural and Food Chemistry, 1991, 39: 259?261
    [14] Sheen S. J. Effect of Succinylation on Molecular and Functional Properties of Soluble Tobacco Leaf Proteins [J]. Journal of Agricultural and Food Chemistry, 1991, 39: 1070?1074
    [15] Yin S. W., Tang C. H., Wen, Q. B., et al. Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate: Effect of high-pressure treatment [J]. Food Chemistry, 2008, 110: 938?945
    [16] Paulson A. T., Tung M. A. Solubility, hydrophobicity and net charge of succinylated canola protein isolate[J]. Journal of Food Science, 1987, 52:1557?1561
    [17] Gruener L., Ismond M. A. H. Effects of acetylation and succinylation on the physicochemical properties of the canola 12S globulin[J]. Part I. Food Chemistry, 1997, 60: 357?363
    [18] Ma C. Y., Oomah B. D., Holme J. Effect of deamidation and succinylation on some physicochemical and baking properties of gluten [J]. Journal of Food Science, 1986, 51: 99?103
    [19] Kim S. H., Kinsella J. E. Effects of progressive succinylation on some molecular properties of soy glycinin [J]. Cereal Chemistry,1986, 63: 342?345
    [20] Wang X. S., Tang C. H., Li B. S., et al. Effects of high pressure treatment on some physicochemical and functional properties of soy protein isolates [J]. Food Hydrocolloids, 2008, 22: 560?567
    [21] Kelly S. M., Jess T. J., Price N. C. How to study proteins by circular dichroism [J]. Biochimca et Biophysica Acta, 2005, 1751: 119?139
    [22] Veen M. V. D., Norde W., Stuart, M. C. Effects of Succinylation on the Structure and Thermostability of Lysozyme [J]. Journal of Agricultural and Food Chemistry, 2005, 53: 5702?5707
    [23] Dufour E., Hoa G. H., HaertléT. High-pressure effects ofβ-lactoglobulin interactionswith ligands studied by fluorescence [J]. Biochimica et Biophysica Acta, 1994, 1206: 166?172
    [24] Venktesh A., Prakash, V. Total proteins and 11S protein fraction (Helianthinin) of sunflower seed (Helianthus annuus L.) [J]. Effect of acetylation and succinylation. Nahrung/Food, 1994, 38: 359?368
    [25] Zaghloul L. M., Prakash, V. Effect of succinylation on the functional and physicochemical properties ofα-globulin, the major protein fraction from Sesamum indicum [J]. Nahrung/Food, 2002, 46: 364?369
    [26] Zirwer D., Gast K., Welfle H., et al. Secondary structure of globulins from plant seeds: A re-evaluation from circular dichroism measurements [J]. International Journal of Biological Macromolecules, 1985, 7: 105?108
    [27] Manavalan P., and Johnson, Jr., W.C. (1983) Sensitivity of circular dichroism to protein tertiary structure classNature 305, 831?832

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700