酶解与多糖接枝改性花生蛋白及其构效机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花生蛋白是我国重要的植物蛋白资源,但目前并未被有效利用。本论文旨在探寻适于花生蛋白资源利用的途径。研究了花生球蛋白与伴球蛋白组分的物化和功能特性,探讨了花生分离蛋白在制备过程中的变性程度,酶解或多糖接枝改性技术对花生分离蛋白功能特性的影响,并进一步研究了其相关改性机理。主要研究结果如下:
     对花生球蛋白(arachin)与伴球蛋白(conarachin)的物化和功能特性进行了分析和比较,从蛋白结构与功能性关系角度揭示了两者功能性差异的机制。结果表明,花生球蛋白在等电点附近(pH4.5-6.0)比花生伴球蛋白具有更高的溶解性(PS),而在偏离等电点时其溶解性低于伴球蛋白,花生伴球蛋白的乳化活性指数(EAI)、起泡能力(FC)和凝胶能力显著高于花生球蛋白(P<0.05);花生球蛋白的变性温度Td(104.84℃)及焓变值ΔH(13.78 Jg~(-1))显著高于花生伴球蛋白的变性温度(89.47℃)与焓变值(8.11 Jg~(-1))(P<0.05);花生球蛋白分子表面的巯基(SH)较少,大部分巯基包裹于球蛋白分子内部,而花生伴球蛋白中大部分巯基暴露于分子的表面。圆二色谱(CD)、荧光光谱和表面疏水性(H_0)分析表明,花生伴球蛋白比花生球蛋白具有更疏松的三级结构和更高的界面活性。
     花生蛋白经碱溶酸沉提取后其溶解性(PS)、乳化活性指数(EAI)、起泡能力(FC)和凝胶能力均有不同程度的下降。碱溶酸沉提取使花生球蛋白中分子量为97.4 kDa的亚基条带消失,而伴球蛋白亚基条带无明显变化;相对于天然花生蛋白(NPP),花生分离蛋白(PPI)中球蛋白与伴球蛋白组分的变性温度(Td)与变性焓(ΔH)显著降低(P<0.05);碱溶酸沉提取过程使花生蛋白中暴露巯基、总巯基和二硫键含量降低。圆二色光谱(CD)、荧光光谱和表面疏水性(H_0)分析表明,花生分离蛋白发生部分变性,其制备过程中的酸碱处理导致蛋白分子伸展、H_0增加及三级结构的改变。蛋白变性是导致分离蛋白功能特性降低的主要原因。
     花生球蛋白的酸性亚基(42 kDa和39kDa)对Alcalse酶解相对更加敏感,其次为花生伴球蛋白亚基(66 kDa)和花生球蛋白的碱性亚基(22 kDa)。酶水解降低了花生球蛋白与伴球蛋白组分的焓变值(ΔH),增加了球蛋白组分的热稳定性并且导致花生分离蛋白酶解产物中二硫键含量迅速升高。荧光光谱分析可知Alcalse蛋白酶酶解使花生分离蛋白的空间构象更加疏松,易于水分子的直接进入和水化,因而显著改善了花生分离蛋白的溶解性、起泡能力和热诱导凝胶形成的能力,但破坏了花生分离蛋白形成乳状液的能力。
     在干热条件下,花生分离蛋白中的伴球蛋白组分易与葡聚糖发生交联反应生成大分子的接枝产物,而花生球蛋白较难与葡聚糖发生反应,这限制了花生分离蛋白与葡聚糖整体的糖接枝反应程度;与葡聚糖的混合或者接枝反应显著地改善了花生分离蛋白的热稳定性(P<0.05),但使其空间构象变得更加紧凑,导致蛋白质内部包裹的赖氨酸残基很难与多糖发生接枝反应;与葡聚糖的接枝反应使花生分离蛋白的溶解性显著提高,尤其改善了其在酸性条件(pH 4.5–6.0)下的溶解性(P<0.05);与葡聚糖的混合过程会显著改善花生分离蛋白的乳化和起泡特性(P<0.05),而糖接枝反应能够在此基础上进一步改善其相关的功能特性,当干热反应至第7d,其乳化活性指数与起泡能力达到最优值,分别为120 m~2/g和87%。
     花生球蛋白与葡聚糖能够在干热条件下进行美拉德反应生成多糖接枝产物。花生球蛋白酸性亚基比碱性亚基更易与葡聚糖发生接枝反应。对花生球蛋白的预加热处理不能提高其与葡聚糖的反应速度。花生球蛋白与热处理花生球蛋白在与多糖接枝反应过程中,其三级结构皆变得更加紧凑,限制了蛋白与多糖的接枝反应速度与反应程度。未经热预处理的花生球蛋白与多糖的接枝产物具有很高的溶解性和乳化活性,在干热反应第14d其溶解性和乳化活性指数达到实验条件下的最高值,分别为95%和149 m~2/g。
Peanut protein is one of the most important and underutilized protein resources in China. The aim of this study was to explore utilization means for proteins from peanut protrein. Physiochemical and functional properties of arachin and conarachin fractions was studied and compared, the related mechanism was elucidated. Enzymatic hydrolysis and conjugation with dextran were used to modify peanut protein isolate for improving its functional properties. The possible relationship between structure and functional properties of peanut protein isolate was also discussed. Main results are as follows:
     Arachin had higher thermal stability, more ordered structure and lower cooperativity of the thermal transition than conarachin. Most of free SH of arachin was buried in the interior while most of them of conarachin was located at the surface. TheΔH of arachin was remarkable higher than conarachin. The surface hydrophobicity of conarachin was higher than arachin. Compared with conarachin, arachin had the more compacted tertiary conformation. Conarachin had the higher solubility than arachin except at near pI. Conarachin had better emulision ability index, foam capacity and gel properties than arachin.
     Peanut protein isolate (PPI) was extracted by alkali dissolution and acid precipitation from defatted peanut flour. The effects of extraction conditions on the denaturation and functional properties of PPI were investigated. In comparison with native peanut protein (NPP) which was extracted by ammonium sulfate, the PPI extracted by alkali dissolution and acid precipitation had a higher extent of denaturation. Arachin was affected more easily by the extraction process than conarachin and led to a noticeable decrease of thermal stability of PPI. PPI contained much lower sulfhydryl and disulfide bond contents than NPP. The analyses of intrinsic fluorescence spectra indicated a more compacted tertiary conformation of NPP than PPI. Extraction process influenced the functional properties of PPI, such as protein solubility, emulsifying activity index and foaming capacity. The relatively poor functional properties of PPI might be associated with protein denaturation/unfolding and subsequent protein aggregation.
     Effects of limited enzymatic hydrolysis by Alcalase on the conformational and functional properties of peanut (Arachis hypogaea L.) protein isolate (PPI) were investigated. Acid subunits of arachin were most susceptible to Alcalase hydrolysis, followed by conarachin and the basic subunits of arachin. Enzymatic hydrolysis increased the thermal stability of arachin and led to a sharp increase of the number of disulphide bonds with a decrease of sulfhydryl group in PPI hydrolysates in comparison with PPI. The analysis of intrinsic fluorescence spectra indicated more loosed tertiary conformation of PPI hydrolysates than PPI. The limited emzymatic hydrolysis improved the functional properties of PPI, such as protein solubility and gel-forming ability, but impaired the emulsifying activity index.
     Reaction mixtures containing peanut protein isolate (PPI) and dextran (1:1 weight ratio) were dry-heated at 60℃and 79% relative humidity for 7 days. SDS-PAGE analysis indicated PPI had become complexed with dextran to form conjugates of higher molecular weight. Arachin, accounting for over 50% of peanut proteins, was hard to glycosylate with dextran, which might limit the extent of glycosylation of PPI. The thermal stability of PPI has been remarkably improved by mixture/conjugation with dextran. Proteins in mixtures/conjugates might have a more compacted tertiary conformation than PPI. The protein solubility of conjugates at pH 4.5–6.0 was remarkably increased compared with the PPI/mixture. Mixture with dextran could significantly improve the emulsifying and foaming properties of PPI (p < 0.05). Conjugation with dextran could further enhance emulsifying and foaming properties of PPI on the base of mixture.
     Arachin can become complexed with dextran to form conjugates of higher molecular weight. Acid subunits of arachin were earier to glycosylate with dextran than basic subunits. The heat-pretreatment of arachin could not increase the speed of Maillard reaction with dextran. Proteins in mixtures/conjugates might have a more compacted tertiary conformation than arachin, which might limit the extent of glycosylation. The conjugation with dextran could improve the solubility and emulsifying properties of arachin, while it was hard to improve the functional properties of arachin. pretreated by heat.
引文
[1]王金水.酶解-膜超滤改性小麦面筋蛋白功能特性研究.华南理工大学,博士学位论文,2006
    [2]张敏.花生制油工艺的现状与发展趋势[J].农机化研究. 2002, 4: 19-2
    [3]公共营养与发展中心.花生营养价值与产业前景. [J].食品工业. 1/2005
    [4]邱庆树、李正超、胡文广、陈培军.花生的营养价值. [J].中国食物与营养. 2001年第3期
    [5]张二全、杜同年.花生的营养价值与合理利用.食品工业. [J]. 2003年第3期
    [6] http://www.chinapeanut.net
    [7] http://www.FAO.org
    [8]周瑞宝,中国花生生产、加工产业现状及发展建议[J].中国油脂:2005(2):5~9
    [9]章胜勇,李崇光.中美大豆和花生生产及贸易的对比分析[J].国际经贸探索,2005,21(4):26~29.
    [10] Pena-Ramos E.A., Xiong Y.L.L. Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties[J]. Meat Science. 2002, 64: 259-263.
    [11]王瑛瑶.水酶法从花生中提取油与水解蛋白的研究.博士学位论文.江南大学. 2005. 9
    [12]胡晓军,姜延程.花生分离蛋白质基础研究.郑州粮食学院学报,1998,19:13-18
    [13]袁道强,梁丽琴,王振锋等.改性植物蛋白的研究及应用.食品研究与开发,2005,26(6): 13-15
    [14] K. Govindaraju , H. Srinivas. Studies on the effects of enzymatic hydrolysis on functional and physico-chemical properties of arachin. Food science and Technology,2006,Vol. 39(l): 54-62
    [15]赵志强.花生油的加工及利用前景[J].花生科技, 1991, 2: 31-39
    [16]周瑞宝.花生加工技术[M].化学工业出版社.2002
    [17] Duh P. D., Yen G. C. Antioxidant efficacy of Methanolic extracts from peanut hulls [J]. Journal of the American oil chemists’Society. 1993, 70(4): 383-385.
    [18] Adler-Nissen J. Proteases. In: Enzymes in Food Processing-3rd [M]. T. Nagodawithana and G. Reed (Ed.) Academic Press, Inc. London. 1993. p159-203.
    [19] Hamaguchi K. The Protein Molecular-Conformation, Stability and Folding [M]. Japan Scientific Societies Press. Tokyo. 1992. p252.
    [20] Hoseney R.C. Principles of Cereal Science and Technology-2rd [M]. AACC, Inc. St. Paul, Mn. 1994. p378.]
    [21] F. Sanger, E. O. P. Thompson, Ruth Kitai. The amide groups of insulin. [J] Biochem J. 1955 March; 59(3): 509–518.
    [22] CB Anfinsen. Principles that govern the folding of protein chains. [J] Science, Vol. 181, No. 4096(Jul. 20, 1973), 223-230
    [23]管斌,林洪,王广策.食品蛋白质化学. [M].化学工业出版社,2005:1
    [24] Parkin K. General Characteristics of Enzymes. In: Enzymes in Food Processing-3rd [M]. T.Nagodawithana and G. Reed (Ed.) Academic Press, Inc. London. 1993. p7-37.
    [25] W. T. Astbury, S. V. Perry, R. Reed and L. C. Spark. An electron microscope and X-ray study of actin: I. Electron microscope. [J] Biochimica et Biophysica Acta. 1947, Volume 1: 379-392
    [26] Kinsella J.E. Relationship between structure and functional properties of food proteins. In: Food Proteins [M]. Fox P.F., Condon J.J. (Ed.) Applied Science Publishers. London. 1982. p51-103.
    [27]王蕾.花生种子伴花生球蛋白160.5KDa多肽的cDNA克隆.硕士学位论文,2001:14-15
    [28] P. Vincent Monteiro, V. Prakash. Effect of Proteases on Arachin,Conarachin I,and Conarachin II from Peanut (Araehis hypogaea L.). Department of Protein Technology,1994,Vol. 42:268~273
    [29] S Basha. Identification of cultivar differences in seed polypeptide composition of peanuts (Arachis hypogaea L.) by two-dimensional polyacrylamide gel electrophoresis. [J] Plant Physiology February 1979 vol. 63 no. 2 301-306
    [30] Rama Sri Sathanoori and Sheikh M. Basha. Methionine Content of the Polypeptides of Methionine-Rich Protein from Peanut. [J] J. Agric. Food Chem., 1996, 44 (8), pp 2134–2136
    [31]郑红艳,钟耕.花生蛋白改性研究及开发前景[J].粮食与油脂,2009,1:14-16.
    [32] Moure A,Sineiro J,Dominguez,et al. Functionality of oilseed protein products:a review[J].Food Research Intemational,2006,39(9):945-963.
    [33]周雪松.花生蛋白改性研究[J].粮食加工,2005,(3):42-44.
    [34]高云中.花生粕蛋白的提取及性质研究.硕士学位论文.江南大学. 2009. 6
    [35] Kato A,Osako Y,Matsudomi N,et al.Emulsifying and foaming properties of protein during heat denaturation.Agric.Biol.Chem 1983,47(1):33-37.
    [36]李汴生.等.高压处理后大豆分离蛋白溶解性和流变特性的变化及其机理[J].高压物理学报,1999,13(1):22-29.
    [37] Hua YuFei,Ni PeiDe,Gu WenYing,et al.Mechanism of Physical Modification of Insoluble Soy Protein Concentrate.JAOCS,1996,73(8):1067-1070.
    [38] Chau Chi-Fai,Wen Yu-Ling,Wang Yi-Ting.Effects of micronization on the characteristics and physicochemical properties of insoluble fibers[J].Journal of the science of Food and Agriculture. 2006:2380-2386.
    [39] Liang,W.P.,Liu,M.H.,Guo,G.L.etc.Handbook of nanophase and nanostructed materials–synthesis[G].New York:Kluwer Academic/Plenum Publishers,2002:1-25.
    [40] Ogawa,S.Decker,E.A.Mcclements,D.J.Production and characterization of O/W emulsions containing cationic droplet stabilized by lecithin-chitosan membranes[J].Journal of Agricultural Food Chemistry,2003,51:2806-2812.
    [41] Soppimath,K.S.Aminabhavi,T.M,Kulkarni,etc.Biodegradable polymeric nanoparticles as drug delivery debices[J].Journal of Controlled Release,2001,70:1-20.
    [42] Chen,H.Weiss,J.Shahidi,F.Nanotechnology in nutraceuticals and functional foods[J].Food Technology,2006,3:30-36.
    [43] Oberdo¨rster,G.,Oberdo¨rster,E.,&Oberdo¨rster,J.Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles[J].Environmental Health Perspectives, 2005,113:823-839.
    [44] Sanguansri,P.,&Augustin,M.A.Nanoscale materials development–A food industry perspective [J].Trends in Food Science andTechnology,2006,17:547-556.
    [45] [46]Bilgicli N,banoglu,Herken E N.Effect of dietary fibre addition on the selected nutritional properties of cookies[J].Journal of Food Engineering,2007,78:86-89.
    [46]杨再,陈俊平,陈佳铭.超微粉碎技术的原理和应用[J].饲料博览,2007,19:36-38.
    [47] Kinsella, J. E. (1976). Functional properties of food proteins: A review. CRC Crit. Rev. Food Sci Nutr. 7: 219-280.
    [48] Owen R. Fennema著,王璋,许时婴,江波等译.食品化学(第三版),中国轻工业出版社,2003:303.
    [49] Pour-El A. Protein functionality: Classification, definition and methodology. In: Protein Functionality in Foods [M]. J.P. Cherry (Ed.). ACS Symposium Series 147. American Chemical Society. Washington D.C. 1981. p1-19.
    [50] Ma C.Y., Liu W.S., Kwok K.C., et al. Isolation and characterization of proteins from soymilk residues (Okara) [J]. Food Research Interational. 1996, 29(8): 799-805.
    [51]周瑞宝,周兵.大豆7s和115球蛋白的结构和功能性质.中国粮油学报,1998,13(06)39~42
    [52] Utsumi S,Matsumura Y,Mori T. Structure 2 function relationships of soy proteins [A]. Damodaran S,Paraf A. Food Proteins and Their Application. New York: Marcel Dekker,1997.257-291.
    [53] Yamauehi F,Sato M,Sato w,et al. Isolation and identification of a new type ofβ-conglyeinin in soybean globulins. Agrie.Biol.Chem.,1981,45:2863一2868
    [54]姚玉静,杨晓泉,邱礼平等,食品蛋白质化学改性研究进展.粮食与油脂,2006,13(7):21~24
    [55] Garcra M C. ComPosition and characterization of soybean protein and related products. Critical reviews in food science and nutrition, 1997, VOI.37(4):361-391.
    [56]吴高峻.大豆分离蛋白的功能特性.中国食品添加剂,1998,2:37-41
    [57]曾卫国.花生蛋白溶解性和乳化性的研究.农产品加工学刊,2005,l:16-18
    [58]华欲飞,顾玉兴.功能性大豆浓缩蛋白的性能及应用研究.中国油脂,1997,22(l);22~24
    [59]朱建华,杨晓泉,邹文中等.超声处理对大豆分离蛋白功能特性的影响.食品科学,2004,25(7):56-58.
    [60]周素梅.蛋白质在焙烤制品中功能性作用.粮食与油脂,1999,1: 25-26
    [61] Maruyama N,Katsube T,Wada Y,et al. The roles of the N linked glycans and extension regions of soybeanβ-conglycinin in folding,assembly and structural features. Eur. J.Bioehem.,1998,258:854-862
    [62] Szuhaj B.F., Sipos E.F. Food emulsifiers from soybean. In: Food Emulsifiers-Chemistry, Technology, Functional Properties and Applications [M]. G. Charalambous and G. Doxastakis (Ed.). Elsevier Amsterdam. 1989. p113-186.
    [63]黄友如,华欲飞,裘爱泳.大豆分离蛋白功能性质及其影响因素.粮食与油脂,2003,5;13~15
    [64]江志炜,沈蓓英,潘秋琴.蛋白质加工技术.化学工业出版社,2002
    [65] Adler-Nissen J. Enzymatic hydrolysis of protein for increase solubility[J]. Journal Agricultural and Food Chemistry, 1976, 24: 1090-1093.
    [66] Kinsella J E. Functional properties of soy proteins[J]. Journal of American Oil Chemist’s Society, 1979, 56: 242-258.
    [67] Yamauchi F, Yamagishi T, Iwabuchi S. Molecular understanding of heat-induced phenomena of soybean protein.Food Review International, 1991, 7:721-729.
    [68] Sorgentini D A, Wagner J R, Anon M C. Effects of thermal treatment of soy protein isolate on the characteristics and structure-function relationship of soluble and insoluble fractions. Journal of Agricultural and Food Chemistry, 1995, 43:2471-2479.
    [69] Ren C G, Tang L, Zhang M, Guo S T. Structural characterization of heat-Induced protein particles in Soy Milk[J]. J. Agric. Food Chem, 2009, 57, 1921–1926
    [70] Davidson R.M., Johnson R.E. Methods for processing soy protein and composition of matter.U.S.Patent41, 72, 828.
    [71] Molina E, Papadopoulou A, Ledward D A. Emulsifying properties of high- pressure soy protein isolates and 7S and 11S globulins. Food hydrocolloids, 2001, 15:263-269.
    [72] Keerati-u-rai M, Corredig M. Effect of dynamic high pressure homogenization on the aggregation state of soy protein [J].Agric. Food Chem, 2009, 3556(57), 3556–3562.
    [73] Silva J L, Weber G. Pressure stability of proteins. Annu. Rev. Phys. Chem. 1993, 44, 89–113.
    [74] Tedford L A, Smith D, Schaschke C J. High pressure processing effects on the molecular structure of ovalbumin, lysozyme and beta-lactoglobulin. Food Res. Int. 1999, 32 (2), 101–106.
    [75] Puppo M C, Speroni F, Chapleau N, de Lamballerie M, Anon M C, Anton M. Effect of high-pressure treatment on emulsifying properties of soybean proteins. Food Hydrocolloids 2005, 19, 289–296.
    [76] Puppo C, Chapleau N, Speroni F, Lamballerie-Anton M, Michel F, Anon C, Anton M. Physicochemical modifications of high-pressure-treated soybean protein isolates. J.Agric. Food Chem. 2004, 52 (6), 1564–1571.
    [77] Molina E, Papadopoulou A, Ledward D,A. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins. Food Hydrocolloids 2001, 15 (3), 263–269.
    [78] Messens W, Camp J V, Huyghebaert A. The use of high pressure to modify the functionality of food proteins[J]. Trends in Food Science & Technology, 1997, 8, 107-112.
    [79] Floury J, Desrumaux A, Legrand J. Effect of ultra-highpressure homo-genization on structure and on rheological properties of soy protein-stabilized emulsions. J. Food Sci. 2002, 67 (9), 3388–3395.
    [80] Wang X, Tang C, Li B, Yang, X, Li L, Ma C. Effect of high pressure treatment on some physicochemical and functional properties of soy proteins isolates. Food Hydrocolloids 2008, 22 (4), 560–567.
    [81] Zhang H, Li L, Eizo Tatsumi E, Kotwald S. Influence of high pressure on conformational changes of soybean glycinin[J]. Innovative Food Science and Emerging Technologies, 2003, 4, 269–275.
    [82] Zhang H K, Li L T, Tatsumi E, Isobe S. High-pressure treatment effects on proteins in soy milk. LWT-Food Sci. Technol. 2005, 38, 7–14.
    [83] Cruz N, Capellas M, Hernandez M, Trujillo A J, Guamis B, Ferragut V. Ultra high pressure homogenization of soymilk: Microbiological, physicochemical and microstructural characteristics. Food Res. Int. 2007, 40, 725–732.
    [84] C H, Ching-Yung Ma C Y. Effect of high pressure treatment on aggregation and structural properties of soy protein isolate[J]. LWT - Food Science and Technology, 2009,42,606–611.
    [85] Torrezan R, Tham W P, Bell A E, Frazier R A, Cristianini, M. Effects of high pressure on functional properties of soy protein. Food Chem. 2007, 104 (1), 140–147.
    [86] Floury J, Desrumaux A, Legrand J.Effect of ultra-high-pressure homogenization on structure and on rheological properties of soy protein-stabilized emulsions[J].Food Engineering and Physical Properties, 2002, 67, 3388-3395.
    [87] Li T M, Hook JW, Drickamer HG, et al. Plurality of pressure-denatured forms in chymotrypsinogen and lysozyme[J]. Biochenistry,1976, 15:5571-5580.
    [88] Masson P, Arciero D, Hooper AB, et al. Electrophoresis at elevated hydrostatic pressure of the imultiheme hydroxylamine oxidoreductase[J]. Electrophoresis, 1990, 11:128-133.
    [89] Defaye AB, Ledward DA, MacDougall DB, et al. Renaturation of metmyoglobin subjected to high isostatic pressure[J]. Food Chemistry, 1995, 52(1):19-22.
    [90] Floury J, Desrumaux A, Legrand. Effect of ultra-high-pressure homogenization on structure and on rheological properties of soy protein-stabilized emulsions[J]. Journal of Food Science, 2006, 67(9), 3388-3395.
    [91] Kajiyama N, Isobe S, Uemura K, et al. Changes of soy protein under ultra-high hydraulic pressure[J]International Journal of Food Science&Technology,1995, 30:147-158.
    [92]刘成梅,刘伟.微射流均质机流体动力学行为分析[J].食品科学,2004, (4): 58-62.
    [93]潘家祯,田肃岩.超细粉碎技术概述[J].化工设备与防腐蚀,2000,13(1): 19-21.
    [94]涂宗财,汪菁琴,阮榕生等.超高压均质对大豆分离蛋白功能特性的影响[J].食品工业科技. 2006, 27(1): 66-67.
    [95]涂宗财,汪菁琴,阮榕生等.动态超高压微射流均质对大豆分离蛋白起泡性、凝胶性的影响[J].食品科学,2006, 27(10): 168-170.
    [96]涂宗财,张雪春,刘成梅.动态超高压均质对花生蛋白溶解性和乳化性的影响[J].食品工业科技,2007, 28(06): 88-89.
    [97] Sang-Ho Lee S-H, Lefèvre T, Subirade M, Paquin P. Effects of ultra-high pressure homogenization on the properties and structure of interfacial protein layer in whey protein-stabilized emulsion[J]. Food Chemistry. 2009,113,191–195.
    [98] Jafari S M, He Y, Bhandari B. Optimization of nanoemulsions production by microfluidization. European Food Research and Technology[J]. Europe Food Research Technology, 2007, 225: 733-741.
    [99] Roesch R R, Corredig M. Texture and microstructure of emulsions prepared with soy protein concentrate by high-pressure homogenization[J].Lebensm.-Wiss. U.-Technol, 2003, 36, 113–124
    [100] Masson P. Pressure denaturation of proteins. High pressure and biotechnology 1992 , 89–99. Montrouge: colloque INSERM/John Libbey Eurotext Ltd.]
    [101]杨国龙,赵谋明,杨晓泉,彭志英.超滤法生产大豆浓缩蛋白.食品与发酵工业,2004, 37(8), 120-124.
    [102] Shallo H E, Rao A, Erieson A P, Thomas R L. Preparation of soy protein concentrate by ultrafiltration. J. Food Sci, 2001,66(2),242-246.
    [103] Krishna Kumar N S, Yes M K, Cheryan M. Soy protein concentrates by ultrafiltration. J. Food Sci., 2003, 68(7), 2278-2283
    [104] Subirade M, Kelly I, Guéguen J, Pézolet M. Molecular basis of film formation from a soybean protein: comparison between the conformation of glycinin in aqueous solution and in films. International Journal of Biological Macromolecules, 1998,23:241-249.
    [105] Haris P I, and Chapman D. The conformational analysis of peptides using Fourier transform IR spectroscopy, Biopolymers, 1995, 37:251-263.
    [106] Jackson M, and Mantsch H H. The use and misuse of FTIR spectroscopy in the determination of protein structure, Critical Reviews in Biochemistry and Molecular Biology, 1995, 30(2): 95-120.
    [107]朱建华.超声对大豆蛋白功能及结构特性影响的研究.华南理工大学硕士学位论文, 2004.
    [108] Wang L C. Soybean protein agglomeration: promotion by ultrasonic treatment. J. Agric. Food Chem, 1981, 29(1), 177-180.
    [109] Cheftel J C, Kitagawa M, Queguiner C. New protein texturization processes by extrusion cooking at high moisture levels[J]. Food Reviews International, 1992, 8(2):235–275.
    [110] Choudhury G S, Moir M A, Gogoi B K. High moisture extrusion: possibilities and prospects[J]. Advances in Food Engineering (Proceed.4th Conf. Food Eng.),1997:117-124.
    [111] Li Y H,A,Dep A E.Texturization of soy protein with wheat starch at high moisture conditions using a twin screw extruder.[J].1996 IFT annual meeting:book of abstracts,1996.
    [112] Lin S H, A Correspondence R F. Texture and chemical characteristics of soy protein meat analog extruded at high moisture[J]. Journal of Food Science, 2000, 65(2):264-269.
    [113] Lin S, Huff H E, Hsieh F. Extrusion process parameters, sensory characteristics, and structural properties of a high moisture soy protein meat analog[J] .J. Food Sci, 2002, 67(3):1066-1072.
    [114]周雪松.花生蛋白改性研究.粮食加工,2005,3;42-45
    [115]莫文敏,曾庆孝.蛋白质改性研究进展.食品科学,2000,21(6):6-10
    [116] Petruccelli S, Anon M C. Relationship between the method of obtention and the structural and functional properties of soy protein isolates.2.Surface properties. Journal of Agricultural and Food Chemistry,1994,42:2170-2176.
    [117] Puppo M C, Lupano C E, Anon M C. Gelation of soybean protein isolates on acidic condition. Effect of pH and protein concentration. Journal of Agricultural and Food Chemistry, 1995, 43: 2353-2361.
    [118] Puppo M C, Anon M C. Soybean protein dispersions at acidic pH. Thermal and rheological behavior. Journal of Food Science,1999,64:50-56.
    [119] Wagner J R, Sorgentini D A, Anon M C. Thermal and electrophoretic behavior, hydrophobicity, and some functional properties of acid-treated soy isolates. Journal of Agricultural and Food Chemistry, 1996, 44:1881-1889.
    [120] Franzen K L, Kinsella J.E. Functional properties of succinylated and acetylated soy protein. J Agric. Food Chem., 1976, 24(4), 788-795.
    [121] Hettiaraehehy N S, Kalapathy U. Functional properties of soy proteins. ACS Symp .Ser., 1998, 708, 80-95.
    [122] Sung H Y, Chen H J, Liu T Y, et al. Improvement of the functionalition of soy protein isolate through chemical phosphorylation. J. FoodSei, 1983, 48,716-719.
    [123] Ross L F, Bhatnagar D. Enzymatic phosphorylation of soybean proteins. J Agric. Food Chem., 1989, 37(4), 841-844.
    [124] Campbell N F, Shi F F, Marshall W.E. Enzymatic phosphorylation of soy protein Isolate for improved functional Properties. J. Agric. Food Chem.,1992, 40(3),403-406.
    [125] Shih F F. Interaction of soy isolate with polysaccharides and its effect on film properties.J.Am.011Chem.Soc., 1994, 71(11), 1281-1285.
    [126]潘秋琴,沈蓓英,程霜.花生蛋白质的磷酸化改性.1997,22(l):25-27
    [127] C. W. Cater and W. E. F. Naismith. Further studies on the denaturation of arachin with urea and guanidinium chloride. Archives of Biochemistry and BioPhysies,1958,Vol.77(l):98-107
    [128] Navin Kumar D. Kella. Effect of amides and ureas on the reversible gelation of araehin. Intemational Journal of Biologieal Macromoleeules,1987,VOI.9(4):238-244
    [129] Skanderby M. Protein hydrolysates: their functionality and applications[J]. Food Technol European. 1994, 10: 141-148.
    [130] Lee K.A., Kim S.H. SSGE and DEE, new peptides isolated from a soy protein hydrolysate that inhibit platelet aggregation[J]. Food Chemistry. 2005, 90: 389-393.
    [131] Molina Ortiz S.E., Wagner J.R. Hydrolysates of native and modified soy protein isolates: structure characteristics, solubility and foaming properties[J]. Food Research International. 2002, 35: 511-518.
    [132] SurówkA K., Zmudziński D., Surówka J. Enzymatic modification of extruded soy protein concentrate as a method of obtaining new functional food components[J]. Trends in Food Science and Technollogy. 2004, 15: 153-160.
    [133] Panyam D., Kilara A. Enhancing the functionality of food proteins by enzymatic modification[J]. Trends in Food Science and Technology. 1996, 7: 120-125.
    [134] Wu W.U., Hettiarachchy N.S., Qi M. Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration[J]. Journal of American Oil Chemist’s Society. 1998, 75: 845-850.
    [135] Vioque J., Sanchez-Vioque R., Clemente A., et al. Partial hydrolysed rapeseed protein isolates with improved functional properties[J]. Journal of American Oil Chemist’s Society. 2000, 77: 447-450.
    [136]张雪春.超高压微射流技术对花生蛋白改性的研究.硕士研究生学位论文.南昌大学. 2007. 12
    [137]杜军,张绍英.戴元忠等.动力作用作为冷杀菌方法的可行性初探.中困乳品,一业,2002,30(6):25-27
    [138] Navin Kumar D. Kella.Heat-induced reversible gelation of arachin: kinetics ,thermodynamics and protein species involved in the process. International Journal of Biologieal Macromolecules,1989,Vol.ll(2):105-112
    [1] Prakash, V., & Rao, M. S. N. Physicochemical properties of oilseed proteins. CRC Critical Reviews in Biochemistry, 1986, p265-363.
    [2] Neucere, N. J. Isolation ofα-arachin, the major peanut globulin. Analytical biochemistry, 1969, p15-24.
    [3] Basha S.M.M., Cherry J.P., Young C.T. Changes in free amino-acids, carbohydrates, and proteins of maturing seeds from various peanut (Arachis-Hypogaea L.) cultivars [J]. Cereal Chemistry 1976, 53: 586-597.
    [4] Yamada, T., Aibara, S. and Morita, Y.. Dissociation-association behaviour of arachin between dimeric and monomeric forms. Agricultural Biology and Chemistry, 1979, 43, p2549–2556.
    [5] Bhushan R., Agarwal R. Reversed-phase high-performance liquid chromatographic, gel electrophoretic and size exclusion chromatographic studies of subunit structure of arachin and its molecular species [J]. Biomedical Chromatography, 2006, 20, 561-568.
    [6] Basha S.M.M., Cherry J.P. Composition, solubility, and gel electrophoretic properties of proteins isolated from florunner (Arachis hypogaea L.) peanut seeds [J]. Journal of Agriculture and Food Chemistry 1976, 24(2): 359-365.
    [7]杨晓泉,陈中,赵谋明.花生蛋白的分离及部分性质研究[J].中国粮油学报, 2001, 16(5): 25-28.
    [8] Chiou, Y.Y. Effects of heat treatment on peanut arachin and conarachin [J]. Journal of Food Biochemistry. 1990, 14: 219-232.
    [9] Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature. 1970, 227, 680-685
    [10] Meng, G. T., Ma C. Y.. Thermal properties of Phaseolus angularis (red bean) globulin. [J]. Food Chemistry, 2001, 23, 453–460.
    [11] Beveridge T., Toma S.J., Nakai S. Determination of SH and S一S groups in some food proteins using Ellman's reagent [J]. Journal of Food Science, 1974, 39: 49-51
    [12] Ellman, G.D. Tissue sulfhydryl groups [J]. Arch. Biochem. Biophys, 1959, 82, 70-72.
    [13] Thannhauser, T. W., Konishi, Y., & Scheraga, H. A. Sensitive quantitative analysis of disulfide bonds in polypeptides and proteins. [J]. Analytical Chemistry, 1984, 138, 181-188.
    [14] Petruccelli, S., & A?ón, M. C.. Partial reduction of soy protein isolate disulfide bonds. [J]. Journal of Agricultural and Food Chemistry, 1995, 43, p2001-2006.
    [15] Kato A., Nakai S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins [J]. Biochimica et Biophysica Acta, 1980, 624: 13-20
    [16] Haskard C.A., Li C.E. Hydophobicity of bovine serum albumin and ovalbumin determined using uncharged (PRODAN) and anionic (ANS-) fluorescent probes [J]. Journal of Agricultural and Food Chemistry, 1998, 46: 2671-2677
    [17] Petrucelli S., Anon M. C. Relationship between the method of obtention and the structural and functional properties of soy protein isolates. 1 .Structural and hydration properties [J]. Journal of Agricultural and Food Chemistry, 1994, 42: 2161-2169
    [18] Wang J.S., Zhao M.M., Jiang Y.M. Effects of wheat gluten hydrolysate and its ultrafiltration fractions on dough properties and bread quality [J]. Food Technology and Biotechnology, 2007, 45: 410-414.
    [19] Fernandez Q.A., Macarulla M.T. Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain [J]. Plant Foods for Human Nutrition, 1997,51, 331-34
    [20] Jian-Hua Zhu, Xiao-Quan Yang, Ijaz Ahmad, et al. Rheological properties ofκ-carrageenan and soybean glycinin mixed gels. [J]. Food Research International, 2008, (41): 219- 228.
    [21] Arntfield, S. D., & Murray, E. D. (1981). The influence of processing parameters on food protein functionality. I. Differential scanning calorimetry as an indicator of protein denaturation. Canadian Institute of Food Science and Technology Journal, 14, 289–294.
    [22] Yin S.W., Tang C.H., Cao J.S., et al. Effects of limited enzymatic hydrolysis with trypsin on the functional properties of hemp (Cannabis sativa L.) protein isolate [J]. Food chemistry, 2008, 106: 1004-1013.
    [23] Shewry P.R., Tatham A.S. Disulphide bonds in sequences [J]. Journal of Cereal Science. 1997, 25: 207–227.
    [24] Hamm R., Hofmann K. Changes in the sulphydryl and disulfide groups in beef muscle proteins during heating [J]. Nature. 1965, 18: 1269-1271.
    [25] Opstvedt J., Miller R., Hardy R.W. Heat induced changes in sulfhydryl groups and disulfide bonds in fish protein and their effect on protein and amino acid digestibility in rainbow trout (Salmo gairdneri) [J]. Journal of Agricultural and Food Chemistry. 1984, 32: 929-935.
    [26] Pallares L., Vendrell J., Aviles F. X., et al. Amyloid fibril formation by a partially structured intermediate state of a-chymotrypsin [J]. Journal of Molecular Biology, 2004, 342: 321-331
    [27] Panyam D., Kilara A. Enhancing the functionality of food proteins by enzymatic modification [J]. Trends in Food Science Technology, 1996, 7, 120–125.
    [28] Kella N.K.D., Barbeau W.E., Kinsella J.E. Effect of oxidative sulfitolysis of disulfide bonds of glycinin on solubility, surface hydrophobicity, and in vitro digestibility [J]. Journal of Agricultural and Food Chemistry, 1986, 34, 251–256.
    [29] Lakemond C.M.M., Jongh H.H.J., Hessing M., et al. Soy Glycinin: Influence of pH and Ionic Strength on Solubility and Molecular Structure at Ambient Temperatures [J]. Journal of Agriculture and Food Chemistry, 2000, 48(6), 1985-1990
    [30] Yin S.W., Tang C.H., Wen Q.B. Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate: Effect of high-pressure treatment [J]. Food Chemistry, 2008,110: 938–945
    [31]尹寿伟.芸豆蛋白的物化修饰及相关构效机理研究.华南理工大学,博士学位论文,2010.
    [32] Kinsella J.E. Functional properties of soy proteins [J]. Journal of American Oil Chemists’Society, 1979, 56, 242–258.
    [33] Li M., Lee T. Relationship of the extrusion temperature and the solubility and disulfide bond distribution of wheat proteins [J]. Journal of Agricultural and Food Chemistry. 1997, 45: 2711–2717.
    [34] Li C.E., Nakai S., Wood D.F. Hydrophobicity and solubility of meat protein and their relationship to emulsifying properties [J]. Journal of Food Science, 1984, 49: 345-350.
    [35] McWaters A, Holemes M. Influence of moist heat on solubility and emulsification properties of soy and peanut fours [J]. Journal of Food Science, 1979, 44: 774-776.
    [36] Hettiarachchy N.S., Ziegler G. R. Structure–function relationship of food protein. In N. S. Hettiarachchy & G. R. Ziegler (Eds.), Protein functionality in food systems (1994, pp. 1–38). New York: Marcel Dekker.
    [37] E.N. Clare Mills, Ling Huang, Timothy R. Noel, A. Patrick Gunning, Victor J. Morris. Formation of thermally induced aggregates of the soya globulin L-conglycinin [J]. Biochimica et Biophysica Acta, 2001, 1547: 339-350.
    [38] Nagano, T.; Mori, H.; Nishinari, K. Effect of heating and cooling on the gelation kinetics of 7S globulin from soybeans [J]. Journal of Agriculture and Food Chemistry. 1994, 42, 1415-1419.
    [39] Kamata Y., Takahata H., Yamauchi F. Gelling properties of cleaved soybean globulins by limited proteolysis [J]. Nipp Shoku Kog Gakkai. 1989, 36, 557–562.
    [1] Basha S.M., Pancholy S.K. Composition and characteristics of basic proteins from peanut (Arachis hypogaea L.) [J]. Journal of Agricultural and Food Chemistry, 1982, 30, 1176-1179.
    [2] Prakash V., Rao M.S.N. Physicochemical properties of oilseed proteins [J]. CRC Critical Reviews in Biochemistry, 1986, 20, 265-363.
    [3] Chiou R.Y. Y. Effects of heat treatments on peanut arachin and conarachin [J]. Journal of Food Biochemistry, 1990, 14, 219-232.
    [4] Monteiro P.V., Prakash V. Functional properties of homogeneous protein fractions from peanut (Arachis hypogaea L.) [J]. Journal of Agriculture and Food Chemistry, 1994, 42, 274-278.
    [5] Yamada T., Aibara S., Morita Y. Isolation and some properties of arachin subunits [J]. Agricultural and Biological Chemistry, 1979, 43 (12), 2563-2568.
    [6] Bhushan R., Agarwal R. Reversed-phase high-performance liquid chromatographic, gel electrophoretic and size exclusion chromatographic studies of subunit structure of arachin and its molecular species [J]. Biomedical Chromatography, 2006, 20, 561-568.
    [7] Govindaraju K., Srinivas H. Studies on the effects of enzymatic hydrolysis on functional and physico-chemical properties of arachin [J]. LWT-Food Science and Technology, 2006, 39, 54-62.
    [8] Hermansson A.M. Methods of studying functional characteristics of vegetable proteins [J]. Journal of the American Oil Chemists' Society, 1979, 56, 272-279.
    [9] Kristinsson H.G., Hultin H.O. Effect of low and high pH treatment on the functional properties of cod muscle protein [J]. Journal of Agricultural and Food Chemistry, 2003, 51, 5103-5110.
    [10] Yin S.W., Tang C.H., Wen Q.B., et al. Functional and conformational properties of phaseolin (Phaseolus vulgris L.) and kidney bean protein isolate: A comparative study [J]. Journal of the Science of Food Agriculture 2010, 90, 599-607.
    [11] Colombo A., Ribotta P.D., León A.E. Differential scanning calorimetry (DSC) studies on the thermal properties of peanut proteins [J]. Journal of Agricultural and Food Chemistry, 2010, 58, 4434-4439.
    [12] Jamdar S. N., Rajalakshmi V., Pednekar M.D., et al. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate [J]. Food Chemistry, 2010, 121, 178–184.
    [13] Laemmli U.K.. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature, 1970, 227, 680-685.
    [14] Thannhauser T.W., Konishi Y., Scheraga H.A. Sensitive quantitative analysis of disulfide bonds in polypeptides and proteins [J]. Analytical Chemistry, 1984, 138, 181-188.
    [15] Petruccelli S., A?ón M.C. Partial reduction of soy protein isolate disulfide bonds [J]. Journal of Agricultural and Food Chemistry, 1995, 43, 2001-2006.
    [16] Mu L.X., Zhao M.M., Yang B., et al. Effect of ultrasonic treatment on the graft reaction between soy protein isolate and gum acacia and on the physicochemical properties of conjugates [J]. Journal of Agriculture and Food Chemistry, 2010, 58, 4494-4499.
    [17] Lowry O.H., Rosembroug H.J., Lewis A., et al. Protein measurement with the Folin Phenol reagent [J]. The Journal of Biological Chemistry, 1951, 19, 265-275.
    [18] Wang J.S., Zhao M.M., Jiang Y. M. Effects of wheat gluten hydrolysate and its ultrafiltration fractions on dough properties and bread quality [J]. Food Technology and Biotechnology, 2007, 45, 410-414.
    [19] Fernandez Q.A., Macarulla M.T. Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain [J]. Plant Foods for Human Nutrition, 1997, 51, 331-342.
    [20] Slade L., Levine H. Optimization of roasting process and product quality of peanuts [J]. Journal of Thermal Analysis and Calorimetry, 2006, 83, 163-166.
    [21] Arntfield S.D., Murray E.D. The influence of processing parameters on food protein functionality. I. Differential scanning calorimetry as an indicator of protein denaturation [J]. Canadian Institute of Food Science and Technology Journal, 1981, 14, 289-294.
    [22] Pallarès I., Vendrell J., Avilès F. X., et al. Amyloid fibril formation by a partially structured intermediate state ofα-chymotrypsin [J]. Journal of Molecular Biology, 2004, 342, 321-331.
    [23] Dufour E., Hoa G.H., HaertléT. High-pressure effects ofβ-lactoglobulin interactions with ligands studied by fluorescence [J]. Biochimica et Biophysica Acta, 1994, 1206, 166-172.
    [24] Li C.E., Nakai S.D.F. Hydrophobicity and solubility of meat protein and their relationship to emulsifying properties [J]. Journal of Food Science, 1984, 49, 345-350.
    [25] Turgeon S.L., Gauther S.F., Paquin P. Emulsifying property of whey peptide fractions as a function of pH and ionic strength [J].Journal of Food Science.1992, 57:601-604.
    [26] Damodaran S. Interfaces protein films and foams [J].Advance in Food and Nutritional Research.1990,34:1-79.
    [27] Wierenga P. A., Meinders M.B.J., Egmont M.R., et al. Protein exposed hydrophobicity reduces thekinetic barrier for adsorption of ovalbumin to the airwater interface [J]. Langmuir, 2003, 19, 8964-8970.
    [28] Hiller B., Lorenzen P.C. Surface hydrophobicity of physicochemically and enzymatically treated milk proteins in relation to techno-functional properties [J]. Journal of Agricultural and Food Chemistry, 2008, 56, 461-468.
    [1] Yu J., Aahmedna M., Goktepe I. Peanut protein concentrate: Production and functional properties as affected by processing [J]. Food Chemistry, 2007, 103: 121-129.
    [2] Cherry J.P. Peanut protein and product functionality [J]. Journal of the American Oil Chemists’Society, 1990, 67(5): 293-301.
    [3] Wu H., Wang Q., Ma, T., et al. Comparative studies on the functional properties of various protein concentrate preparations of peanut protein [J]. Food Research International, 2009, 42: 343-348.
    [4] Panyam D., Kilara A. Enhancing the functionality of food proteins by enzymatic modification [J]. Trends in Food Science and Technology, 1996, 7: 120-125.
    [5] Jung S., Murphy P.A., Johnson L.A. Physicochemical and functional properties of soy protein substrates modified by low levels of protease hydrolysis [J]. Journal of Food Science, 2005,70: 180-186.
    [6] Surówka K., ?mudziński D., Fik M., et al. New protein preparations from soy flour obtained by limited enzymic hydrolysis of extrudates [J]. Innovative Food Science and Emerging Technologies, 2004, 5: 225-234.
    [7] Martineza K.D., Baeza R.I., Millán F., et al. Effect of limited hydrolysis of sunflower protein on the interactions with polysaccharides in foams [J]. Food Hydrocolloids, 2005, 19: 361-369.
    [8] Guan X., Yao H.Y., Chen Z.X., et al. Some functional properties of oat bran protein concentrate modified by trypsin [J]. Food Chemistry, 2007, 101: 163-170.
    [9] Yin S.W., Tang C.H., Cao J.S., et al. Effects of limited enzymatic hydrolysis with trypsin on the functional properties of hemp (Cannabis sativa L.) protein isolate [J]. Food chemistry, 2008, 106: 1004-1013.
    [10] Jamdar S.N., Rajalakshmi V., Pednekar M.D., et al. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate [J]. Food Chemistry, 2010, 121: 178-184.
    [11] Nielsen P.M., Petersen D., Dambmann C. Improved method for determining food protein degree of hydrolysis [J]. Journal of Food Science, 2001, 66: 642-646.
    [12] Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature, 1970, 227: 680-685.
    [13] Yin S.W., Tang C.H., Wen Q.B., et al. Functional and conformational properties of phaseolin (Phaseolus vulgris L.) and kidney bean protein isolate: A comparative study [J]. Journal of the Science of Food Agriculture, 2010, 90: 599-607.
    [14] Thannhauser T.W., Konishi Y., Scheraga H.A. Sensitive quantitative analysis of disulfide bonds in polypeptides and proteins [J]. Analytical Chemistry, 1984, 138: 181-188.
    [15] Mu L.X., Zhao M.M., Yang B., et al. Effect of ultrasonic treatment on the graft reaction between soy protein isolate and gum acacia and on the physicochemical properties of conjugates [J]. Journal of Agriculture and Food Chemistry, 2010, 58, 4494-4499.
    [16] Petruccelli S., A?ón M.C. Partial reduction of soy protein isolate disulfide bonds [J]. Journal of Agricultural and Food Chemistry, 1995, 43: 2001-2006.
    [17] Lowry O.H., Rosembroug H.J., Lewis A., et al. Protein measurement with the Folin Phenol reagent [J]. The Journal of Biological Chemistry, 1951, 19: 265-275.
    [18] Wang J.S., Zhao M.M., Jiang Y.M. Effects of wheat gluten hydrolysate and its ultrafiltration fractions on dough properties and bread quality [J]. Food Technology and Biotechnology, 2007, 45: 410-414.
    [19] Fernandez Q.A., Macarulla M.T. Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain [J]. Plant Foods for Human Nutrition, 1997, 51: 331-342.
    [20] Bianchi H.C.M., Keys R.D., Stalker H.T., et al. Diversity of seed storage protein patterns in wild peanuts (Arachis, Fabaceae) species [J]. Plant Systematics and Evolution, 1993, 186: 1-15.
    [21] Chiou R.Y.Y. Effects of heat treatments on peanut arachin and conarachin [J]. Journal of Food Biochemistry, 1990, 14: 219-232.
    [22] Plietz P., Zirwer D., Schlesier B., et al. Shape, symmetry, hydration and secondary structure of the leguminfrom Vicia faba in solution [J]. Biochemical et Biophysical Acta, 1984, 784: 140-146.
    [23] Colombo A., Ribotta P.D., León A.E. Differential scanning calorimetry (DSC) studies on e thermal properties of peanut proteins [J]. Journal of Agricultural and Food Chemistry, 2010, 58: 4434-4439.
    [24]Tang C.H., Sun X., Yin S.W. Physicochemical, functional and structural properties of vicilin-rich protein isolates from three Phaseolus legumes: Effect of heat treatment [J]. Food Hydrocolloids, 2009, 23: 1771-1778.
    [25]Arntfield S.D., Murray E.D. The influence of processing parameters on food protein functionality. I. Differential scanning calorimetry as an indicator of protein denaturation [J]. Canadian Institute of Food Science and Technology Journal, 1981, 14: 289-294.
    [26] Surówka K., ?mudziński D., Surówka J. Enzymic modification of extruded soy protein concentrates as a method of obtaining new functional food components [J]. Trends in Food Science and Technology, 2004, 15: 153–160.
    [27] Creusot N., Gruppena H. Hydrolysis of whey protein isolate with Bacillus licheniformis protease: fractionation and identification of aggregating peptides [J]. Journal of Agricultural and Food Chemistry, 2007, 55: 9241-9250.
    [28] Dufour E., Hoa G.H., HaertléT. High-pressure effects ofβ-lactoglobulin interactions with ligands studied by fluorescence [J]. Biochimica et Biophysica Acta, 1994, 1206: 166-172.
    [29] Pallarès I., Vendrell J., Avilès F. X., et al. Amyloid fibril formation by a partially structured intermediate state ofα-chymotrypsin [J]. Journal of Molecular Biology, 2004, 342: 321-331.
    [30] Renkema J.M.S., Gruppen H., Vliet T.V. Influence of pH and ionic strength on heat-induced formation and rheological properties of soy protein gels in relation to denaturation and their protein compositions [J]. Journal of Agricultural and Food Chemistry, 2002, 50 (21): 6064-6071.
    [31] Molina O.S.E., A?ón M.C. Enzymatic hydrolysis of soy protein isolates [J]. DSC study. Journal of Thermal Analysis and Calorimetry, 2001, 66: 489-499.
    [32] Yamada T., Aibara S., Morita Y. Isolation and some properties of arachin subunits [J]. Agricultural and Biological Chemistry, 1979, 43 (12): 2563-2568.
    [1] Jamdar S.N., Rajalakshmi V., Pednekar M.D., et al. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate [J]. Food Chemistry, 2010, 121: 178-184.
    [2] Basha S.M., Pancholy S.K. Composition and characteristics of basic proteins from peanut (Arachis hypogaea L.). Journal of Agricultural and Food Chemistry, 1982, 30: 1176-1179.
    [3] Wu H., Wang Q., Ma T., et al. Comparative studies on the functional properties of various protein concentrate preparations of peanut protein [J]. Food Research International, 2009, 42: 343-348.
    [4] Govindaraju K., Srinivas H. Studies on the effects of enzymatic hydrolysis on functional and physico-chemical properties of arachin [J]. LWT-Food Science and Technology, 2006, 39: 54-62.
    [5] Lawal O.S., Adebowale K.O., Adebowale Y.A. Functional properties of native and chemically modified protein concentrates from bambarra groundnut [J]. Food Research International, 2007, 40: 1003-1011.
    [6] Monteiro P.V., Prakash V. Effect of proteases on Arachin, conarachin I and conarachin II from peanut (Arachis hypogaea L.) [J]. Journal of Agriculture and Food Chemistry, 1994, 42: 268-273.
    [7] Patil U.G., Chavan J.K., Kadam S.S., et al. Effects of dry heat treatments to peanut kernels on the functional properties of the defatted meal [J]. Plant Foods for Human Nutrition, 1993, 43: 157-162.
    [8] Yu J.M., Ahmedna M., Goktepe I. Peanut protein concentrate: Production and functional properties as affected by processing [J]. Food Chemistry, 2007, 103: 121-129.
    [9] Dickinson E. Interfacial structure and stability of food emulsions as affected by protein-polysaccharide interactions [J]. Soft Matter, 2008, 4: 932-942.
    [10] Oliver C.M., Melton L.D., Stanley R.A. Creating proteins with novel functionality via the Maillard reaction: A review [J]. Critical Reviews in Food Science and Nutrition, 2006, 46: 337-350.
    [11] Wooster T.J., Augustin M.A.β-Lactoglobulin-dextran Maillard conjugates: Their effect on interfacial thickness and emulsion stability [J]. Journal of Colloid and Interface Science, 2006, 303: 564-572.
    [12] Dickinson E. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids [J], 2009, 23: 1473-1482.
    [13] Kato A. Preparation and functional properties of protein-polysaccharide conjugates. In Surface Activity of Proteins. New York: Marcel Dekker, Inc, pp. 1996: 115-130.
    [14] Wooster T.J., Augustin M.A. Rheology of whey protein-dextran conjugate films at the air/water interface [J]. Food Hydrocolloids, 2007, 21: 1072-1080.
    [15] Diftis N., Kiosseoglou V. Physicochemical properties of dry-heated soy protein isolate-dextran mixtures [J]. Food Chemistry, 2006, 96: 228-233.
    [16] Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature, 1970, 227: 680-685.
    [17] Zacharius R.M., Zell T.E., Morrison J.H., et al. Glycoprotein staining following electrophoresis on acrylamide gel [J]. Analytical Biochemistry, 1969, 30(1) : 148-152.
    [18] Lowry O.H., Rosembroug H.J., Lewis A., et al. Protein measurement with the Folin Phenol reagent [J]. The Journal of Biological Chemistry, 1951, 19: 265-275.
    [19] Wang J.S., Zhao M.M., Jiang Y.M. Effects of wheat gluten hydrolysate and its ultrafiltration fractions on dough properties and bread quality [J]. Food Technology and Biotechnology, 2007, 45: 410-414.
    [20] Fernandez Q.A., Macarulla M.T. Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain [J]. Plant Foods for Human Nutrition, 1997, 51: 331-342.
    [21] Akhtar M., Dickinson E. Whey protein-maltodextrin conjugates as emulsifying agents: an alternative to gum arabic [J]. Food Hydrocolloids, 2007, 21: 607-616.
    [22] Diftis N., Kiosseoglou V. Physicochemical properties of dry-heated soy protein isolate-dextran mixtures [J]. Food Chemistry, 2006, 96: 228-233.
    [23] Chiou R.Y.Y. Effects of heat treatments on peanut arachin and conarachin [J]. Journal of Food Biochemistry, 1990, 14: 219-232.
    [24] Ibanoglu E. Effect of hydrocolloids on the thermal denaturation of proteins [J]. Food Chemistry, 2005, 90: 621-626.
    [25] Boye J.I., Alli I., Ismail A.A. Interactions involved in the gelation of bovine serum albumin [J]. Journal of Agricultural and Food Chemistry, 1996, 44: 996-1004.
    [26] Pallarès I., Vendrell J., Avilès F.X., et al. Amyloid fibril formation by a partially structured intermediate state ofα-chymotrypsin [J]. Journal of Molecular Biology, 2004, 342: 321-331.
    [27] Choi S.J., Kim H.J., Kwan H.P., et al. Molecular characteristics of ovalbumin-dextran conjugates formed through the Maillard reaction [J]. Food Chemistry, 2005, 92(1) : 93-99.
    [28] Hattori M., Nagasawa K., Ametani A. Functional changes inβ-lactoglobulin by conjugation with carboxymethyl dextran [J]. Journal of Agricultural and Food Chemistry, 1994, 42: 2120-2125.
    [29] Hattori M., Numamoto K., Kobayashi K., et al. Functional changes inβ-lactoglobulin by conjugation with cationic saccharides [J]. Journal of Agricultural and Food Chemistry, 2000, 48: 2050-2056.
    [30] Jiménez-Casta?o L., López-Fandi?o R., Olano A., et al. Study onβ-lactoglobulin glycosylation with dextran: Effect on solubility and heat stability [J]. Food Chemistry, 2005, 93: 689-695.
    [31] Sun Y.X., Hayakawa S., Izumori K. Modification of ovalbumin with a rare ketohexose through the Maillard reaction: Effect on protein structure and gel properties [J]. Journal of Agricultural and Food Chemistry, 2004, 52: 1293-1299.
    [32] Dickinson E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems [J]. Food Hydrocolloids, 2003, 17: 25-40.
    [33] Kato A., Nakai S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins [J]. Biochimica et Biophysica Acta, 1980, 624: 13-20
    [1] Dickinson E. Interfacial structure and stability of food emulsions as affected by protein-polysaccharide interactions [J]. Soft Matter, 2008, 4: 932-942.
    [2] Oliver C.M., Melton L.D., Stanley R.A. Creating proteins with novel functionality via the Maillard reaction: A review [J]. Critical Reviews in Food Science and Nutrition, 2006, 46: 337-350.
    [3] Wooster T.J., Augustin M.A.β-Lactoglobulin-dextran Maillard conjugates: Their effect on interfacial thickness and emulsion stability [J]. Journal of Colloid and Interface Science, 2006, 303: 564-572.
    [4] Dickinson E. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids [J], 2009, 23: 1473-1482.
    [5] Kato A. Preparation and functional properties of protein-polysaccharide conjugates. In Surface Activity of Proteins. New York: Marcel Dekker, Inc, pp. 1996: 115-130.
    [6] Tang, C. H., Sun, X., Yin, S. W. Physicochemical, functional and structural properties of vicilin-rich protein isolates from three Phaseolus legumes: Effect of heat treatment. [J] 2009, p1771–1778.
    [7] Kato, A., Osako, Y., Matsudomi, N., & Kobayashi, K. Changes in the emulsifying and foaming properties of proteins during heat denaturation. [J]. Agricultural and Biological Chemistry, 1983, 47, p33–37.
    [8] Chiou, Y.Y. Effects of heat treatment on peanut arachin and conarachin [J]. Journal of Food Biochemistry. 1990, 14: 219-232.
    [9] Diftis N., Kiosseoglou V. Physicochemical properties of dry-heated soy protein isolate-dextran mixtures [J]. Food Chemistry, 2006, 96: 228-233.
    [10] Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature, 1970, 227: 680-685.
    [11] Zacharius R.M., Zell T.E., Morrison J.H., et al. Glycoprotein staining following electrophoresis on acrylamide gel [J]. Analytical Biochemistry, 1969, 30(1) : 148-152.
    [12] Lowry O.H., Rosembroug H.J., Lewis A., et al. Protein measurement with the Folin Phenol reagent [J]. The Journal of Biological Chemistry, 1951, 19: 265-275.
    [13] Wang J.S., Zhao M.M., Jiang Y.M. Effects of wheat gluten hydrolysate and its ultrafiltration fractions on dough properties and bread quality [J]. Food Technology and Biotechnology, 2007, 45: 410-414.
    [14] Akhtar M., Dickinson E. Whey protein-maltodextrin conjugates as emulsifying agents: an alternative to gum arabic [J]. Food Hydrocolloids, 2007, 21: 607-616.
    [15] Diftis N., Kiosseoglou V. Physicochemical properties of dry-heated soy protein isolate-dextran mixtures [J]. Food Chemistry, 2006, 96: 228-233.
    [16] Ibanoglu E. Effect of hydrocolloids on the thermal denaturation of proteins [J]. Food Chemistry, 2005, 90: 621-626.
    [17] Boye J.I., Alli I., Ismail A.A. Interactions involved in the gelation of bovine serum albumin [J]. Journal of Agricultural and Food Chemistry, 1996, 44: 996-1004.
    [18] Yin S.W., Tang C.H., Cao J.S., et al. Effects of limited enzymatic hydrolysis with trypsin on the functional properties of hemp (Cannabis sativa L.) protein isolate [J]. Food chemistry, 2008, 106: 1004-1013.
    [19] Opstvedt J., Miller R., Hardy R.W. Heat induced changes in sulfhydryl groups and disulfide bonds in fish protein and their effect on protein and amino acid digestibility in rainbow trout (Salmo gairdneri) [J]. Journal of Agricultural and Food Chemistry. 1984, 32: 929-935.
    [20] Pallares L., Vendrell J., Aviles F. X., et al. Amyloid fibril formation by a partially structured intermediate state of a-chymotrypsin [J]. Journal of Molecular Biology, 2004, 342: 321-331
    [21] Yin, S. W., Tang, C. H., Wen, Q. B. and Yang, X. Q. Functional and conformational properties of phaseolin (Phaseolus vulgris L.) and kidney bean protein isolate: A comparative study. [J]. Journal of the Science of Food and Agriculture, 2010; 90: p599–607
    [22] Wang, J. S., Zhao, M. M., Yang, X. Q., & Jiang, Y. M. (2006). Improvement of emulsifying properties of wheat gluten hydrolysate /λ-carrageenan conjugates. [J]. Food Technology and Biotechnology, 44 (1), 25-32.
    [23] Jiménez-Casta?o L., López-Fandi?o R., Olano A., et al. Study onβ-lactoglobulin glycosylation with dextran: Effect on solubility and heat stability [J]. Food Chemistry, 2005, 93: 689-695.
    [24] Yin S.W., Tang C.H., Wen Q.B. Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate: Effect of high-pressure treatment [J]. Food Chemistry, 2008,110: 938–945.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700