铝酸钠溶液诱导成核制备晶种的分解过程产品粒度控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在拜耳法生产氧化铝工艺中,种分过程是决定产品化学纯度和物理性能的关键步骤。尽管对种分过程已有大量研究,但我国氧化铝生产中晶种分解过程还是普遍存在分解率低、分解时间长、种子比大和设备产能低等问题。为了提高设备利用率,论文研究了溶液诱导方式和引发剂种类对铝酸钠溶液诱导成核制备晶种的分解过程的影响,并讨论了温度对少量溶液慢速诱导成核所制得晶种粒度的影响。结果表明:
     1)直接添加固体引发剂诱导成核的分解过程仅在低苛性比溶液和低分解初温的条件下才能进行,其产品粒度较细;少量溶液快速诱导成核的分解过程由于晶种制备段条件难以控制,故难以得到粗颗粒氢氧化铝;相比之下,少量溶液慢速诱导成核的分解过程控制较高的晶种制备段温度,却可得到粒度较粗的氢氧化铝产品;
     2)引发剂种类对铝酸钠溶液诱导成核制备晶种的分解过程有较大影响,其中引发剂A效果最佳;
     3)对于在少量溶液中慢速诱导成核制备晶种过程,温度越高,分解率越低,所得晶种粒度越大。
     在此基础上,为了控制所得氢氧化铝产品的粒度,本文研究了该分解过程中细颗粒的行为,并讨论影响细颗粒长大行为的因素和抑制细颗粒附聚的条件。结果表明:
     1)对于少量溶液慢速诱导成核制备晶种的分解过程,控制较高的晶种制备段温度(80℃)可制得粗晶种,可制得粒度约为50μm的氢氧化铝产品;
     2)对于铝酸钠溶液诱导成核制备晶种的分解过程,较低的分解温度(45-50℃)可抑制细颗粒的附聚,最终得到平均粒度为1-2μm的超细氢氧化铝产品,而有机添加剂B可强化分解过程,细化产品粒度,完善产品形貌;
     3)引发剂A的添加量增加促进分解过程的进行,但对细颗粒的长大无影响;晶种制备段较慢的诱导速度、溶液分段添加和有机添加剂E均可促进细颗粒的长大;铝酸钠溶液中碳酸钠和硫酸钠抑制分解过程,但可促进晶体长大;
     4)对于低温下大量活性晶种循环或高温下溶液中添加大量活性晶种的分解过程,细颗粒的行为以长大为主;对于高温下溶液中添加少量活性晶种的分解过程,细颗粒的行为以附聚为主;
     5)分解过程中添加适量工业粗晶种可减少产品中细颗粒的含量,粗晶种添加量越大,产品中细颗粒越少,但并未彻底粗化产品。
The seeded precipitation of sodium aluminate solution is the key process to control the chemical purities and physical properties of products in the Bayer process of alumina production. Though numerous investigations on seeded precipitation have been undertaken, the low precipitation rate, the big ratio of seeds, long precipitation time and low equipment productivity are still the severe problems in the gibbsite (Al(OH)3) precipitation process. In order to improve the utilization efficiency of equipment, this paper investigated the influence of inducing methods and species of initiators on the precipitation process with seeds prepared by inducing nucleation in sodium aluminate solution. Furthermore, the effect of temperature on the particle size of seeds prepared by slowly inducing nucleation in a small amount of solution was also discussed. Conclusions are as follows:
     1) The precipitation process of inducing nucleation by directly adding solid initiator occurred only under conditions of low precipitation temperature and low caustic ratio of the sodium aluminate solution, and super-fine products can be achieved. The coarse aluminum hydroxide cannot be prepared in precipitation process of rapid inducing nucleation in a small amount of solution due to the difficulty in controlling the conditions in the stage of preparing seeds. In contrast, coarse aluminum hydroxide particles were achieved under high temperature in the stage of preparing seeds during the precipitation process with seeds prepared by slowly inducing nucleation in a small amount of solution.
     2) Initiator species had great influence on the precipitation process, and initiator A was the best one among them.
     3) The precipitation rate was low and the particle size of seeds obtained was large under the high temperature in the process of preparing seeds by slowly induced nucleation from a small amount of solution.
     And then, in order to control the particle size of products, this paper has investigated the behavior of fine particles in the precipitation process. The influences on the growing of fine particles and the conditions of inhibiting the agglomeration have also been discussed in this paper. Conclusions are as follows:
     1) Coarse products with mean particle size of 50μm were obtained in the precipitation process with coarse seeds prepared by slowly inducing nucleation in a small amount of solution under high temperature (80℃).
     2) Fine products with mean particle size of 1-2μm were obtained in the precipitation process with seeds prepared by inducing nucleation under low temperature (45-50℃) while the agglomeration was inhibited. Moreover, organic additive B can facilitate the precipitation process, refine the particle size of products and improve the morphology of products.
     3) When the amount of initiator A was increased, the precipitation rate raised, but the particle size of products remained the same. Meanwhile, the slow inducing rate in the process of preparing seeds, the fractionated addition of sodium aluminate solution and organic additive E can increase the particle size of products. In addition, the sodium carbonate and sodium sulfate in sodium aluminate solution inhibited precipitation, but facilitated the growth of particles.
     4) Grow-up was the dominant behavior of particles in solution when a great amount of seeds recycled under low temperature or a large amount of active seeds were added into solution under high temperature. Agglomeration was the dominant behavior of particles in solution when a small amount of active seeds were added into solution under high temperature.
     5) The appropriate addition of coarse seeds during the precipitation can reduce the amount of fine particles in the products. The more the addition amount, the less fine particles in the products, but the fine particles still existed in products.
引文
[1]杨重愚.氧化铝生产工艺学[M].北京:冶金工业出版社,1993:2-7
    [2]王一雍,张延安,陈霞,等.我国铝土矿溶出技术的发展趋势[J].世界有色金属,2006,1(1):25-27
    [3]赵清杰.中国氧化铝生产技术的发展方向[J].有色金属,2000,1(6):31-34
    [4]Li Xiao-bin, Wang Dan-qin, Zhou Qiu-sheng, et al. Concentration variation of aluminate ions during the seeded precipitation process of gibbsite from sodium aluminate solution[J]. Hydrometallurgy,2011,1 (106):93-98
    [5]Moolenaar R. J, Evans J.C.,McKeever L.D., The structure of the aluminate ion in solutions at high PH[J]. Physical Chemistry,1970,1(74):3629-3636
    [6]李彩今,李守贵,肖丰收.硅铝酸钠溶液中27Al和29Si的核磁共振研究[J].高等学校化学学报,2009,30(6):1092-1094
    [7]谢雁丽,毕诗文,杨毅宏,等.氧化铝生产中铝酸钠溶液结构的研究[J].有色金属,2001,53(2):59-62
    [8]翟玉春,田彦文,王雅静.铝酸钠和含硅铝酸钠溶液结构和性质[J].中国稀土学报,2004,22(21):113-116
    [9]Robert C. Plumb, James W. swaine. Oxide-eoated electrodes.Ⅱ. Aluminum in Alkaline Solutions and the Nature of the aluminate ion [J]. The Journal of Chemistry Physical,1964,68(8):50-57
    [10]下里纯一郎.铝酸钠溶液的特性[J].工业化学杂志,1962,65(11):1779-1782.
    [11]Khodukovsky I.L, Katorcha I.V. Thermodynamic properties of compounds in the Al2O3-H2O system and their equilibrium relations in the range 25-300℃[J]. Geochimica,1980,1(11):1606-1624
    [12]Ellis R. Lippincott, James A Psellos, Marvin C. Tobin. The Raman Spectra and Structures of Aluminate and Zincate Ions [J]. The Journal of Chemistry Physical, 1952,20(3):536-537
    [13]Mal'tsev G.Z, Malinin G. V. Thermodynamic properties and H1 and N23NMR spectra of sodium hydroxide solutions [J]. Structural Chemistry,1965, (6):353-358
    [14]Mironov V E, Pavlov L V. The structure of aluminatessinos [J]. Tsvetnye Mentally, 1969,42(7):56-57
    [15]李小斌,王丹琴,梁爽,等.铝酸钠溶液的电导率与结构的关系[J].高等学校化学学报,2010,31(8):1651-1655
    [16]Gutowsky. H. S, Saika A. Dissociation chemical exchange and the proton magnetic resonance in some aqueous electrolytes[J]. Phys. Chem,1953,1(21):1688-1694
    [17]Jardetzki, O, Wertz, J. E. Weak complexes of the sodium ion in aqueous solution studied by nuclear spin resonance [J]. Journal of the American Chemical Society, 1960,1(82):318-323
    [18]Griffiths V. S, Socrates G. The sodium resonance of aqueous salts [J]. Molecular Spectroscopy,1968,1(27):358-363
    [19]Sharma, S. K, Kashyap, S. G. Ion interaction in alkali metal hydroxide solutions-A Raman Spectral Investigation [J]. Inorganic and Nuclear Chemistry,1972,1(34): 3623-3630
    [20]Lyapunov, A. N, Khodukova. Solubility of hydrargillite in NaOH solutions, Containing soda or sodium chloride, at 60℃ and 95℃ [J]. Tsvetnye Mentally,1964, 37(2):48-51
    [21]Pascal, M. L, Anderson, C. M. Speciation of Al, Si and K in supercritical solutions: Experimental study and interpretation [J]. Geochimica et Cosmochimica Acta,1989, (53):1843-1855
    [22]Anderson G M, Castet S. Reaction of quartz and corundum with aqueous chloride and hydroxide solutions at high temperatures and pressure [J]. American J. of Science, 1967,265(1):12-27
    [23]Anderson G M., Castet S. Feldspar solubility and the transport of aluminum under metamorphic condition [J]. American J. of Science,1983,238(1):283-297
    [24]李洁,陈启元,尹周澜.过饱和铝酸钠溶液结构性质与分解机理研究现状[J].化学进展,2003,1(5):170-177
    [25]Damien R H, Roland I K, Clive A P. A dynamic light scattering investigation of nucleation and growth in supersaturated alkaline sodium aluminate solutions (synthetic Bayer liquors) [J]. Colloids and Surfaces A,1999,154(3):343-352
    [26]张立川,陈启元,尹周澜.电导法研究过饱和铝酸钠溶液均相成核过程[J].物理化学学报,2008,24(6):1111-1114
    [27]Cao Shao-tao, Zhang Yi-fei, Zhang Yi. Nucleation and Morphology of Monosodium Aluminate Hydrate from Concentrated Sodium Aluminate Solutions [J]. Journal of Crystal Growth & Design,2010,10(4):1605-1610
    [28]Zhang Yi-fei, Li Ying-hui, Zhang Yi. Super solubility and induction of aluminosilicate nucleation from clear solution [J]. Journal of Crystal Growth,2003,254(1):156-163
    [29]Sawsan J F, Gordon M P, Manijeh M R. Atomic force study of the growth mechanism of gibbsite crystals [J]. Journal of Chemical Physics,2004,6(1):1049-1055
    [30]Misra C, White E T. Kinetics of Crystallization of aluminium trihydroxide from seeded caustic aluminate solution [J]. Chem Eng Progr Sympos Ser,1970,110 (2):53-64
    [31]Li Hui-xin, Addai-mensah J, John C T. The crystallization mechanism of A1(OH)3 from sodium aluminate solutions [J]. Journal of Crystal Growth,2005,279(3): 508-520
    [32]刘战伟,陈文泪,李旺兴.结晶助剂在铝酸钠溶液种分过程中的作用机理[J].中南大学学报,2005,41(5):1709-1713
    [33]吴玉胜,于海燕,杨毅宏.添加剂对铝酸钠溶液晶种分解过程附聚及二次成核的影响[J].化工学报,2005,56(12):2434-2438
    [34]王云生,沙作良,曾向东.悬浮状态下氯化钠晶体二次成核过程研究[J].盐业与化工,2009,38(1):7-10
    [35]Brown N. The production of coarse mosaic aluminium trihydroxide from Ball-Milled seed[C]//Anaheim, California:TMS Light Metals,1990, (2):131-139
    [36]Halfon A. Secondary nucleation and growth rate kinetics [J]. The Canadian Journal of Chemical Engineering,1976,54 (6):160-167
    [37]White E T, Bateman S H. Effect of caustic concentration on the growth rate of A1(OH)3 particles[C]//Phoenix, Arizona:TMS Light Metals,1988, (3):157-162
    [38]Brown N. Crystal Growth and nucleation of aluminum trihydroxite from seeded caustic aluminate solutions [J]. Journal of Crystal Growth,1972, (12):39-45
    [39]Gerald Roach. Alumina and hydrate-unmasking their mysteries [J]. Eight Years On Fourth International Alumina Quality Workshop,1996, (7):1-9
    [40]Jaroslav Nyvlt, Otakar Sohnel, Marie Mauchova. The kinetics of industrial crystallization [J]. Chemical Engineering Monographs.1985,1 (19):193-204
    [41]徐晓辉.铝酸钠溶液种分过程晶体长大速率模型[D].长沙:中南大学,2004:76-77
    [42]Li Xiao-bin, Liu Zhi-jian, Xu Xiao-hui, et al. Model characterizing apparent crystal growth rate and kinetics of seeded precipitation from sodium aluminate solution [J]. J.CENT.SOUTH UNIV.TECHNOL.,2005,12(6):662-666
    [43]刘志坚.晶种分解后期过程分解机理研究[D].长沙:中南大学,2005:67-68
    [44]Yamada K. Crystallization of aluminium trihydroxide from sodium aluminate solution[C].AIME, New York:TMS Light Metals,1978,1(1):19-38
    [45]周辉放,杨重愚,陈光渊,等.铝酸钠溶液中晶体附聚机理研究[J].有色金属, 1994,46(4):54-57
    [46]Houslow M I, Ryall R L, Marshall V R. A discretized population balance for nucleation, Growth and Aggregation [A]. AI Ch E J,1990,34(1):1821-1832
    [47]Beckman J R, Farmer RW. Bi-model CSD Barite due to Agglomeration in an MSMPR Crystallizer [J]. A I Ch E Symp Ser,1987,83 (253):85-94
    [48]Euardo J. Evaluation of agglomeration stage conditions to control alumina and hydrate particle breakage[C]//San Diego, California:TMS Light Metals,1992, 199-202
    [49]谢雁丽,吕子剑.铝酸钠溶液晶种分解[M].北京:冶金工业出版社,2003:6-10
    [50]刘述平.高浓度铝酸钠溶液晶种分解产物强度的研究[J].有色金属,1989,41(1):22-25
    [51]李旺兴.种子分解过程温度对分解率的影响[J].轻金属,1998,1(5):14-18
    [52]柳尧文,高贵超.种分作业制度的确定及在拜耳法上的应用[J].轻金属,2000,1(4):13-17
    [53]薛红,毕诗文,谢雁丽.晶种对拜耳法铝酸钠溶液分解的影响[J].有色金属,1997,1(1):26-28
    [54]王熙慧,于海燕,卢东,等.硫酸钠对铝酸钠溶液种分过程的影响[J].材料与冶金学报,2007,6(3):184-187
    [55]Li Jun, Clive A, Prestidge, et al. The influence of Alkali Metal Ions on Homogeneous Nucleation of A1(OH)3 Crystals from Supersaturated Caustic Aluminate Solutions [J]. J. Colloid and Interface Science,2000,224(1):317-324
    [56]陈国辉,陈启元,尹周澜.铝酸钠种分过程强化研究进展[J].湖南冶金,2003,(1):3-6
    [57]赵清杰,杨巧芳,晏唯真.提高拜耳法种分分解率的研究[J].轻金属,2000,1(7):20-21
    [58]Bhattacharya.I.N, Pradhan.J.K, Gochhayat.P.K, et al. Factors controlling precipitation of finer size alumina trihydrate [J]. Int. J. Miner. Process.,2002,1 (65):109-124
    [59]Bhattacharya I.N., Pradhan J.K., Goch hayat P.K., et al. Factors controlling precipitation of finer size alumina trihydrate [J]. Int.J.Miner.Process,2001,65(2): 109-124
    [60]Wu Xiu-yong, Meng Xian-feng, Jing Ding, et al. Preparation of core-shell structured amorphous aluminum hydroxide ultra-fine powders via a microwave-hydrothermal route [J]. Materials Letters,2011,1 (65):2133-2135
    [61]Sung Oh Lee, Kyoung Hun Jung, Chi Jung Oh. Precipitation of fine aluminium hydroxide from Bayer liquors[J].Hydrometallurgy,2009,1(98):156-161
    [62]刘有智,李裕,柳来栓.改性纳米Al(OH)3粉体的制备[J].过程工程学报,2003,3(1):57-61
    [63]张鹏远,公延明,陈建锋.超重力碳分制备纳米氢氧化铝[J].华北工学院学报,2002,23(4):235-239
    [64]刘志强,李小斌,彭志宏,等.超细氧化铝粉制备的研究[J].矿冶工程,2000,20(2):28-30
    [65]王凤春,朱兴松,张显友.制备条件对Al(OH)3超细粒子尺寸及分布的影响[J].哈尔滨理工大学学报,2003,8(1):79-82
    [66]陆胜,方荣利,解晓斌.W/O型微乳液碳化法制备超细氢氧化铝和氧化铝粉体[J].无机盐工业,2003,35(5):18-20
    [67]陈龙武,甘礼华,岳天仪,等.微乳液反应法制备氧化铝(含水)超细微粒[J].高等学校化学学报,1995,16(1):13-16
    [68]刘卫,吴贤熙,陈肖虎,等.醇盐水解工艺制备超微细氢氧化铝的研究[J].轻金属,2004,34(1):11-13
    [69]Onishi. Reduced particle-size aluminum hydroxide with increased material strength as flame retardant filler:WO 2003000591 A1[P].2003:1-5
    [70]Telyatnikov G V. Method for manufacture of aluminum hydroxide:RU 2175641 C2[P].2001:1-5
    [71]张良苗,冯永利,陆文聪,等.溶胶-凝胶法制备纳米氢氧化铝溶胶[J].物理化学学报,2007,23(5):728-732
    [72]Nguven Hue Trinh. Study on the synthesis of aluminum hydroxide and Al2O3 [J]. Colloid and Polymer Science,2002,40 (1):91-97
    [73]Kim Dee Woong. Preparation of high dispersion aluminum hydroxide [J]. Journal of Dispersion Science and Technology,2001,38(3):267-273
    [74]柳学义,刘亚青,卫芝贤.超细氢氧化铝粉末的制备及其阻燃性能[J].化工进展,2006,25(2):218-222
    [75]李友凤,周继承,廖立民,等.超重力碳分反应沉淀法制备分散性纳米氢氧化铝[J].硅酸盐学报,2006,34(10):1290-1294
    [76]代培刚,刘志鹏,陈英杰,等.无机阻燃剂发展现状[J].广东化工,2008,35(7):62-64
    [77]Mamchik A I. Thermal behavior of aluminum hydroxide prepared by ion exchange [J]. Journal of Materials Chemistry,1998,43(1):22-26
    [78]Maria Lucia Pereira Anunes, Helena de Souza Santos, Persio de Souza Santos. Characterization of the aluminum hydroxide micro-cystals formed in some alcohol water solutions [J]. Materials Chemistry and Physics,2002,76(3):243-249
    [79]H.S卡茨,J.V米路西剀编.塑料用填料及增强剂手册[M].化学工业出版社,1985:22-25
    [80]王二星,刘焦萍,武福运.氢氧化铝在造纸及有机材料领域的应用[J].非金属矿,1999,22(5):27-29
    [81]邓邵平.Al(OH)3对树脂型阻燃剂的阻燃增效作用[J].福建林学院学报,2003,23(1):75-78
    [82]Zhao Su, Bi Shi-wen, Ding Xiang-qun, et al. Influences of novel surfactants on the physicochemical properties of sodium aluminate solution relevant to the aluminium hydroxide precipitation process [J]. Transaction of the Institutions of Mining and Metallurgy. Section C:Mineral Processing and Extractive Metallurgy,2005, 114(1):53-56
    [83]杨重愚.轻金属冶金学[M].北京:冶金工业出版社,1991:21-27
    [84]吴争平,尹周澜,陈启元,等.氢氧化铝表面性质的CASTEP计算及其晶面叠合分析[J].中国有色金属学报,2009,19(1):179-188
    [85]Zeng Ji-shu, Yin Zhou-lan, Chen Qi-yuan. Intensification of precipitation of gibbsite from seeded caustic sodium aluminate liquor by seed activation and addition of crown ether[J]. Hydrometallurgy,2008,1 (90):154-160
    [86]Zeng Ji-shu, Yin Zhou-lan, Zhang Ai-min, et al. Unusual effect of 1,2-octanediol on sodium aluminate solutions leading to inhibition of gibbsite crystallization[J]. Hydrometallurgy,2007,1 (89):107-116
    [87]Smith P.G., Watling H.R., Crew p. The effects of model organic compounds on gibbsite cry stylization from alkaline aluminate solution [J]. Colloids Surfaces A:Physicochem.Eng.Aspects,1996,1(111):119-130
    [88]吴晓华,李小斌,周秋生,等.表面活性剂PEG3000强化铝酸钠溶液晶种分解的研究[J].广东有色金属学报,2006,1(12):243-246
    [89]Zhang Ying, Zheng Shi-li, Du Hao. Improved precipitation of gibbsite from sodium aluminate solution by adding methanol[J]. Hydrometallurgy,2009,1(98):38-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700