新型磁性纳米材料和介孔氧化硅材料的设计合成及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料因其具有特殊的结构和性能,在化工、生物、医药、电子等领域有着广泛的应用。但在实际应用中纳米材料常遇到难以分离的问题,限制了其在催化、吸附分离等领域的应用。磁性纳米粒子具有不同于常规磁性材料的超顺磁性,可利用外磁场将其分离和回收,外磁场消失后,又可恢复粒子的高度分散性。所以功能化的超顺磁性的纳米粒子在生物和催化方面有着广阔的应用前景。近年来,人们在磁性纳米粒子的合成和应用方面的研究取得了不少进展,但是仍然存在一些问题,如(1)核壳结构的磁性纳米粒子的尺寸均匀性难以控制,不易达到适用于高分散性的纳米粒子的要求,特别是经过表面功能化后,粒子的形貌、尺寸均匀度、分散度难以控制;(2)致密的纳米粒子的比表面仍有限,不易引入高含量的功能化基团和物质。
     介孔材料因其具有规则的孔道结构、纳米范围可调变的孔径以及高的比表面,成为良好的催化剂载体。但是传统的介孔材料的合成中常使用价高的表面活性剂或对环境有害的有机含氮模板剂,因此利用低价且对环境影响较小的模板剂来合成介孔材料,探索其在催化中的应用十分重要。另外介孔氧化硅材料的骨架由无定形氧化硅组成,反应活性低,直接应用受到限制,而有机—无机杂化介孔材料的出现拓展了介孔材料的应用领域,因而受到了人们的极大关注。
     针对上述磁性纳米材料和介孔材料研究的现状和面临的问题,本论文重点研究了核壳结构的磁性纳米材料的可控合成、组装和功能化,以及功能化介孔氧化硅材料的合成与应用,所开展的具体研究工作分为以下五个部分:
     一、利用层层沉积的方法,在超顺磁性FePt纳米粒子表面进行SiO_2保护层和金属氧化物层的可控沉积,合成了系列三重核壳结构的磁性纳米粒子FePt@SiO_2@TiO_2、FePt@SiO_2@ZrO_2和FePt@SiO_2@Al_2O_3。TEM表征说明这种核壳结构的纳米粒子尺寸均匀,在乙醇溶液中具有高度分散性,磁性表征说明其具有超顺磁性,等电点(IEP)测试发现粒子表层为混合金属氧化物。通过对不同Ti含量的FePt@SiO_2@TiO_2样品进行详细的TEM、EDX、UV-Vis、IEP表征后发现,在合成过程中,钛酸丁脂的水解产物扩散进入SiO_2层中,从而形成具有烯烃环氧化反应活性的Ti-O-Si物种,即分散在SiO_2骨架中的四配位Ti(OSi)_4物种。通过此方法合成的磁性可分离的FePt@SiO_2/TO_2纳米催化剂在反式二苯乙烯环氧化反应中表现的较高的活性和选择性,在TiO_2含量为9.2 wt%样品上的转化率达到15%,选择性为91.5%。
     二、通过调控“反相微乳法”的反应条件,控制合成了粒径可调、尺寸均匀、高度分散的核壳结构的磁性纳米粒子FePt@SiO_2,并利用表面活性剂CO-520的作用将FePt@SiO_2自组装成的三维磁性纳米阵列。SAXS、TEM、N_2吸附表征结果说明,这种三维纳米阵列具有高度有序的介孔结构,并可通过改变FePt@SiO_2的粒经,获得具有不同介孔尺寸的三维纳米阵列。磁性表征说明这种三维纳米阵列具有超顺磁性。这种超顺磁性介孔材料被成功地应用于蛋白分子的选择性吸附分离:在外磁场诱导下,三维磁性纳米阵列提供了一种强诱导和区域化的磁场力,可将具有顺磁性的、与孔隙大小类似的细胞色素B5吸附到其由纳米粒子堆积而成的介孔空隙中,且在撤去外磁场后可再次释放细胞色素B5到溶液中;此材料对没有磁性的牛血清蛋白吸附作用很小。
     三、利用表面活性剂CTAB的作用,在核壳结构的超顺磁性纳米粒子FePt@SiO_2表面沉积一层介孔SiO_2,得到一种磁性介孔复合纳米粒子。通过控制合成条件,可得到具有不同中间SiO_2保护层厚和介孔SiO_2层厚的核壳结构的磁性介孔复合纳米粒子。XRD、N_2吸附以及TEM表征说明,这种磁性介孔复合纳米粒子具有较高的比表面、狭窄的孔径分布和有序的介孔孔道结构,并且孔道方向沿着球形纳米颗粒的径向生长。进一步通过普通嫁接法和“一步萃取表面改性法”将有机官能团-SH,-SO_3H,-NH_2引入到具有高比表面介孔层中,得到表面功能化的磁性介孔复合纳米粒子。TEM、XRD和NMR表征结果表明:相对于普通嫁接法,“一步萃取表面改性法”可以引入较高含量的有机官能团,并且在改性过程中,有序的介孔结构得到保持。由“一步萃取表面改性法”制备的表面-SH功能化的磁性介孔纳米粒子可用作重金属离子吸附剂,-NH_2功能化的磁性介孔纳米粒子可用作DNA分子吸附剂,并均可通过外磁场分离回收。
     四、以廉价、短链的戊二酸为有机模板剂,合成了一系列不同Cu/Si比的含铜介孔材料CMM-x。XRD、N_2吸附、TEM和漫反射UV-Vis光谱表征结果说明,CMM-x具有类似HMS和MSU的三维连续蠕虫状的介孔孔道,比表面积在600-800m~2g~(-1),孔容在0.66-0.88 cm~3g~(-1),平均孔径在3.3-5.7 nm,且孔径分布狭窄。CMM-x中的铜物种主要以高分散的氧化铜形式存在于介孔二氧化硅的骨架中。通过研究含有不同Cu/Si比的CMM-x在液相双氧水氧化苯酚反应中的性能发现,其具有与TS-1相当的催化性能,其中CMM-1/50的活性最好,苯酚转化率达到25.1%,二酚选择性达到98.8%,H_2O_2的效率达到75.4%。此外,还以CMM-1/50为催化剂,详细考察了反应溶剂、反应温度、苯酚/H_2O、催化剂用量和苯酚/H_2O_2对苯酚羟基化反应的活性和选择性的影响,获得了优化的实验条件。同时还研究了该反应的动力学,并在以上研究基础上,提出了此催化剂上可能的反应机理。另外还发现此催化剂在循环使用三次以后仍保持较高的活性和选择性。
     五、通过一步共合成法,合成了含-SH的有机—无机杂化介孔SiO_2材料。利用-SH和Ag~+的作用,将Ag~+定量引入到在介孔表面,经过处理得到了Ag纳米粒子/介孔SiO_2复合材料,并详细研究了-SH改性比例对Ag纳米粒子的形貌和分散性的影响。其中在5%和10%-SH改性的介孔SiO_2上得到的Ag纳米粒子尺度均匀,在孔道中高度分散。在室温下,Ag/meso-SiO_2-S10在苯乙酮加氢反应中表现出稳定的催化活性。
Nano-structured materials have wide potentials in chemical industry, biotechnology,medicals and electronics because of their special structures and properties.However,the difficulty of separation of nano-structured materials (especially for nanoparticles) limits their application in catalysis,adsorption, separation,etc.Magnetic nanoparticles display superparamagnetism,which means that the particles can be removed and recycled from solution using an external magnetic field and redispersed in solution after the removal of the external magnetic field.Hence,functionalized superparamagnetic nanoparticles show a great potential in many areas,such as catalysis,biomedical applications,etc.Significant progress has been made in the preparation and application of magnetic nanoparticles.However, some major problems still remain.It is difficult to control size distribution and morphology of magnetic nanoparticles,particularly those surface-functionalized ones. Also,it is difficult to introduce large amount of functional group to functionalize the surface of nanoparticles because of the low surface area of magnetic nanoparticles.
     Mesoporous materials have been used in many areas,such as catalyst supporters, owing to their highly ordered structures,tunable pore sizes in nanometer region,high surface areas and high pore volumes.Mesoporous materials are normally synthesized by using highly-cost surfactant or non environmental-friendly nitrogen-containing compound as the template.It is worthwhile to develop low-cost and environmental-benign templates for the preparation of mesoporous materials. Meanwhile,mesoporous silica materials usually consist of amorphous inorganic silica with little activity in catalysis.The discovery of organic-inorganic hybrid mesoporous materials broadened their application fields and attached much attention.
     According to the above problems encountered in magnetic nanomaterials and mesoporous materials,this thesis sheds light on the two main research topics,the controlled preparation,assembly and functionalization of magnetic core-shell nanoparticles and the preparation and application of functionalized mesoporous silica. The detailed research work is divided into following five parts.
     (1) FePt superparamagnetic nanoparticles were controllably coated with a silica protection shell and subsequent metal oxide shell to form a series of three-layer core-shell structured magnetic nanoparticles,FePt@SiO_2@TiO_2,FePt@SiO_2@ZrO_2 and FePt@SiO_2@Al_2O_3 by using a simple stepwise layer-by-layer deposition technique.TEM results show that the core-shell structured nanoparticles have very narrow particle size distribution and can be dispersed in ethanol with little aggregation. Magnetism characterization(VSM) demonstrates that the particles are superparamagnetic.IEP values of the nanoparticles reflect the external shell of the nanoparticles consist of mixed metal oxides.Through the detailed characterization of FePt@SiO_2@TiO_2 samples with different Ti content by TEM,EDX,UV-Vis,Zeta potential and catalytic test,it disclosed that the external shell of the nanoparticle is a Ti-O-Si mixture layer with tetrahedral Ti species dispersed in SiO_2(Ti(OSi)_4).The core-shell structured nanoparticles FePt@SiO_2@TiO_2 show high activity and selectivity for the trans-stilbene oxidation to the corresponding epoxide.The best activity was obtained over the sample with 9.2 wt%TiO_2 content,with conversion of 15%and selectivity of 91.5%.
     (2) The magnetic nanoparticles FePt@SiO_2 were synthesized by reverse emulsion method and self-assembled to three-dimensional(3D) superlattices under the contribution of the surfactant(CO-520).The SAXS,TEM and N_2 adsorption results show the 3D superlattices display highly ordered mesostructure and the pores size are tunable by changing the size of the FePt@SiO_2 nanoparticles.VSM characterization demonstrates the 3D superlattices are superparamagnetic.The superparamagnetic mesoporous materials can provide a strong induced localized magnetic force at well defined but controllable dimension of interstitial sites to attract and retain paramagnetic bio-or chemical entities.Our experiments demonstrate that Cytochrome B5 protein containing paramagnetic Fe(Ⅲ) with comparable size as the tailored interstices can be selectively retained by the 3D superlattices under an external magnetic filed whereas no such effect is observed over the larger size Bovine serum albumin protein with no paramagnetic centre.
     (3) A mesoporous SiO_2 layer was deposited on superparamagnetic FePt@SiO_2 nanoparticles using CTAB as template and the magnetic mesoporous composite nanoparticles were obtained.The thicknesses of inner SiO_2 protection layer and mesoporous silica layer may be controlled.The magnetic mesoporous nanoparticles show large surface area,narrow pore size distribution and highly ordered mesoporous channels radiated from the silica cores.The mesoporous layers were functionalized with the organic groups of -SH,-SO_3H and -NH_2 using common grafting method or one-step extraction-functionalization method.The results of TEM,XRD and NMR demonstrate that one-step extraction-functionalization method can introduce much more organic functional groups and retain the mesostructure better than the common grafting method.The -SH functionalized magnetic mesoporous composite nanoparticle may be used as heavy metal adsorbent and -NH_2 functionalized magnetic mesoporous composite nanoparticle as DNA adsorbent for magnetic separation.
     (4) A series of novel Cu-incorporated mesoporous materials(CMMs) with molar ratios of Cu/Si ranging from 1/200 to 1/20 were synthesized by the sol-gel method using glutaric acid as template.The characterization results indicate that the CMMs have a 3D worm-like mesoporous structure similar to HMS and MSU and narrow pore size distribution,with surface area of 600-800 m~2g~(-1),pore volume of 0.66-0.88 cm~3g~(-1),and average pore diameter of 3.3-5.7 nm.Copper species in the materials are highly dispersed Cu(Ⅱ) oxide within mesoporous siliceous matrices.The catalytic activity of these CMMs with different Cu/Si molar ratio in the phenol hydroxylation using H_2O_2 as oxidant was investigated and the catalysts showed the activity comparable to that of TS-1.Among all the catalysts,CMM-1/50 showed the highest activity:the conversion,diphenol selectivity and efficiency of H_2O_2 were 25.1,98.8 and 75.4%,respectively.The influence of various reaction parameters was investigated in detail,including solvent,reaction temperature,phenol/H_2O ratio, catalyst amount and phenol/H_2O_2 ratio,and the optimized reaction condition was acquired.The catalyst showed good catalytic performance after three cycles.
     (5) Thiol functionalized organic-inorganic hybrid mesoporous silicas were prepared by a one-step co-condensation method.After introduction of silver cation and following treatments under air and hydrogen atmosphere,Ag nanoparticles dispersed in mesoporous silica were obtained.The content of thiol in hybrid mesoporous SiO_2 shows great effect on the morphology and dispersibility of Ag nanoparticles.The Ag nanoparticles,which were prepared using the thiol functionalized mesoporous SiO_2 with the S/Si molar ratio of 5%and 10%,were high dispersed in the mesopores.The activity of Ag/meso-SiO_2-S10 sample for the acetophenone hydrogenation was investigated.
引文
[1]Mehra J.The Beat of a Different Drum:The Life and Science of Richard Feynmam[M].Oxford:Clarendon Press,1994:441.
    [2]Gleiter H.,Marquardt P.Z.Nanokristalline Strukturen-ein Weg zu neuen Materialien?[J].Metalkunde,1984,75,263-267.
    [3]Birringer R.,Gleiter H,Klein H.P.,Marquardt P.Nanocrystalline materials an approach to a novel solid structure with gas-like disorder?[J].Phys.Lett.A,1984,102(8):365-369.
    [4]Thiaville A.,Miltat J.Magnetism - Small is beautiful[J].Science,1999,284(5422):1939-1940.
    [5]Schaefer H.E.,Wurschum R.,Gleiter H.,Tsakalakos T.Proceedings of the second international conference on nanostructured materials - Universitat Stuttgart,Germany,October 3-7 1994-Foreword[J].Nanostruct.Mater.,1995,6(1-4):R5-R6.
    [6]Bein T.,Stucky G.D.Nanostructured materials - Preface to special issue[J].Chem.Mater.,1996,8(8):1569-1570.
    [7]Zeng H.,Rice P.M.,Wang S.X.,Sun S.H.Shape-Controlled Synthesis and Shape-Induced Texture of MnFe_2O_4 Nanoparticles[J].J.Am.Chem.Soc.,2004,126(37):11458-11459
    [8]Yoffe A.D.Low-Dimensional Systems - Quantum-Size Effects and Electronic-Properties of Semiconductor Microcrystallites(Zero-Dimensional Systems) and Some Quasi-2-Dimensional Systems[J].Adv.Phys.,1993.42(2):173-266.
    [9]Li Y.D.,Liao H.W.,Ding Y.,Fan Y.,Zhang Y.,Qian Y.T.Solvothermal elemental direct reaction to CdE(E=S,Se,Te) semiconductor nanorod[J].Inor.Chem.,1999,38(7):1382-1387.
    [10]Dai H.J.,Kong J.,Zhou C.W.,Franklin N.,Tombler T.,Cassell A.,Fan S.S.,Chapline M.Controlled chemical routes to nanotube architectures,physics,and devices[J].J.Phys.Chem.B 1999,103(51):11246-11255.
    [11]Chang Y.,Lye M.L.,Zeng H.C.Large-Scale Synthesis of High-Quality Ultralong Copper Nanowires[J].Langmuir,2005,21(9):3746-3748.
    [12]Pan Z.W.,Dai Z.R.,Wang Z.L.Nanobelts of Semiconducting Oxides[J].Science,2001,291(5510):1947-1949.
    [13]Kondo Y.,Ru Q.,Takayanagi K.Thickness induced structural phase transition of gold nanofilm[J].Phys.Rev.Left.,1999,82(4):751-754.
    [14]Cheng L.,Cox J.A.Nanocomposite multilayer film of a ruthenium metallodendrimer and a Dawson-type polyoxometalate as a bifunctional electrocatalyst[J].Chem.Mater.,2002,14(1):6-8.
    [15]Petit C.,Taleb A.,Pileni M.P.Cobalt nanosized particles organized in a 2D superlattice:Synthesis,characterization,and magnetic properties[J].J.Phys.Chem.B,1999,103(11):1805-1810.
    [16]Lu Y.,Yin Y.D.,Li Z.Y.,Xia Y.A.Synthesis and self-assembly of Au@SiO_2core-shell colloids[J].Nano Lett.,2002,2(7):785-788.
    [17]张立德.纳米材料[M].北京:化学工业出版社,2001,10-15.
    [18]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001,1-5.
    [19]Cavicchi R.E.,Silsbee R.H.Coulomb Suppression of Tunneling Rate from Small Metal Particles[J].Phys.Rev.Left.,1984,52(16):1453-1456.
    [20]Henglein A.Small-Particle Research:Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles[J].Chem.Rev.,1989,89(8):1861-1873.
    [21]Awschalom D.D.,McCord M.A.,Grinstein G.Observation of Macroscopic Spin Phenomena in Nanometer-Scale Magnets[J].Phys.Rev.Lett.,1990,65(6):783-786.
    [22]Lu L,Sui M.L.,Lu K.Superplastic extensibility of nanocrystalline copper at room temperature[J].Science,2000,287(5457):1463-1466.
    [23]李维芬.纳米材料的性质[J].现代化工,1999,19(6):44-47.
    [24]Ball P.,Garwin L.Science at the Atomic Scale[J].Nature,1992,355(6363):761-766.
    [25]Bean C.P.,Livingston J.D.Superparamagnetism[J].J.Appl.Phys.,1959,30(1):120-129.
    [26]Gleiter H.Nanostructure Materials[J].Adv.Mater.,1992,4(7-8):474-481.
    [27]张彩霞,刘维平.纳米材料及其应用现状与发展[J].南方冶金学院学报,2001,22(4):247-252.
    [28]高新,李稳宏,王锋,杨清翠.纳米材料的性能及其应用领域[J].石化技术与应用,2002,20(3):199-201.
    [29]李泉,曾广赋,席时权.纳米粒子[J].化学通报,1995(1):29-34.
    [30]Gleiter H.Nanocrystaline Materials[J].Prog.Mater.Sci.,1989,33(4):223-315.
    [31]孟弘.纳米材料制备研究进展[J].矿产保护和利用,2003,4:14-18.
    [32]严冬生.纳米粉体制备新方法[J].无机材料学报,1995,10(1):1-6.
    [33]Heggery J.S.,Canoon,W.R.Laser Induced Chemical Process[M].New York:Plenum Press,1981:165-241.
    [34]庞文琴.无机合成[M].北京:高等教育出版社,1991,217.
    [35]Ji M.,Chen X.Y.,Wai C.M.,Fulton J.L.Synthesizing and dispersing silver nanoparticles in a water-in-supercritical carbon dioxide microemulsion[J].J.Am.Chem.Soc.,1999,121(11):2631-2632.
    [36]Ennas G,Musinu A.,Piccaluga G,Zedda D.,Gatteschi D.,Sangregorio C.,Stanger J.L.,Concas G.,Spano G.Characterization of iron oxide nanoparticles in an Fe_2O_3-SiO_2 composite prepared by a sol-gel method[J].Chem.Mater.,1998,10(2):495-502.
    [37]Ko H.Y.Y.,Mizuhata M.,Kajinami A.,Deki S.Fabrication and characterization of Pt nanoparticles dispersed in Nb_2O_5 composite films by liquid phase deposition[J].J.Mater.Chem.,2002,12(5):1495-1499.
    [38]宋丽萍,化学气相沉积法在碳纤维复合材料领域的应用[J].化工新型材料,1994,8:25-32.
    [39]Rogach A.L.,Talapin D.V.,Shevchenko E.V.,Kornowski A.,Haase M.,Weller H.Organization of Matter on Different Size Scales:Monodisperse Nanocrystals and Their Superstructures[J].Adv.Func.Mater.,2002,12(10):653-664.
    [40]Matijevic E.Preparation and Properties of Uniform Size Colloids[J].Chem.Mater.1993,5(4):412-426.
    [41]Shchukin D.G.,Sukhorukov G.B.Nanoparticle Synthesis in Engineered Organic Nanoscale Reactors[J].Adv.Mater.,2004,16(8):671-682.
    [42]Liang W.B.,Martin,C.R.Template-Synthesized Polyacetylene Fibrils Show Enhanced Supermolecular Order[J].J.Am.Chem.Soc.1990,112(26):9666-9668.
    [43]戴遐明.喷雾热解--一种重要的微粉制备技术[J].粉体技术,1995,1(2):28-33.
    [44]Suslick K.S.,Choe S.B.,Cichowlas A.A.,Grinstaff M.W.Sonochemical Synthesis of Amorphous Iron[J].Nature,1991,353(6343):414-416.
    [45]Boxall D.L.,Lukehart C.M.Rapid synthesis of Pt or Pd/carbon nanocomposites using microwave irradiation[J].Chem.Mater.,2001,13(3):806-810.
    [46]Lee M.H.,Oh S.G.,Yi S.C.Preparation of Eu-doped Y_2O_3 luminescent nanoparticles in nonionic reverse microemulsions[J].J.Colloid Interf.Sci.,2000,226(1):65-70.
    [47]Agrell J.,Hasselbo K.,Jansson K.,Jaras S.G.,Boutonnet M.Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique[J].Appl.Catal.A-Gen.,2001,211(2):239-250.
    [48]Hou B.,Li Z.J.,Xu Y.,Wu D.,Sun Y.H.Size-controllable barium titanate nanopowder synthesized via one-pot solvothermal route in a mixed solvent[J].J.Electroceram.,2006,16(2):127-133.
    [49]Qian Y.T.,Chen Q.W.,Chen Z.Y.,Fan C.G.,Zhou G.Preparation of Ultrafine Powders of TiO_2 by Hydrothermal H_2O_2 Oxidation Starting from Metallic Ti[J].J.Mater.Chem.,1993,3(2):203-205.
    [50]Govindaraj A.,Satishkumar B.C.,Nath M.,Rao C.N.R.Metal Nanowires and Intercalated Metal Layers in Single-Walled Carbon Nanotube Bundles[J].Chem.Mater.2000,12(I):202-205.
    [51]Han Y.J.,Kim J.M.,Stucky G.D.Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15[J].Chem.Mater.2000,12(8):2068-2069.
    [52]Braun E.,Eichen Y.,Sivan U.,Ben-Yoseph G.DNA-Templated Assembly and Electrode Attachment of a Conducting Silver Wire[J].Nature,1998, 391(6669): 775-778.
    [53] Chikazumi S., Taketomi S., Ukita M., Mizukami M., Miyajima H., Setogawa M., Kurihara Y. Physics of Magnetic Fluids [J]. J. Magn. Magn. Mater. 1987, 65(2-3): 245-251.
    [54] Yoon T. J., Kim J. I., Lee J. K. Rh-based olefin hydroformylation catalysts and the change of their catalytic activity depending on the size of immobilizing supporters [J]. Inorganica Chimica Acta, 2003, 345, 228-234.
    [55] Gupta A. K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials, 2005, 26(18): 3995-4021.
    [56] Li Z., Wei L., Gao M. Y., Lei H. One-pot reaction to synthesize biocompatible magnetite nanoparticles [J]. Adv. Mater., 2005, 17(8): 1001-1005.
    [57] Hyeon T. Chemical synthesis of magnetic nanoparticles [J]. Chem. Commun., 2003, (8): 927-934.
    [58] Takafuji M., Ide S., Ihara H., Xu Z. H. Preparation of poly(1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions [J]. Chem. Mater., 2004, 16(10): 1977-1983.
    [59] Morrish A. H. The Physical Principles of Magnetism [M]. New York: Wiley, 1965: Ch. 7.
    [60] Unruh K. M., Chien C. L., in Nanomaterials: Synthesis, Properties and Applications (Eds: A. S. Edelstein, R. C. Cammarata) [M]. Bristol, UK: Institute of Physics Publishing, 1996: Ch. 14.
    [61] Weller D., Doerner M. F. Extremely high-density longitudinal magnetic recording media. [J]. Annu. Rev. Mater. Sci., 2000, 30: 611-644.
    [62] Moser A., Takano K., Margulies D. T., Albrecht M., Sonobe Y, Ikeda Y, Sun S. H., Fullerton E. E. Magnetic recording: advancing into the future [J]. J. Phys. D: Appl. Phys., 2002, 35(19): R157-R167.
    [63] Jordan A., Scholz R., Wust P., Filling H., Felix R. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles [J]. J. Magn. Magn. Mater. 1999, 201: 413-419.
    [64] Pankhurst Q. A., Connolly J., Jones S. K., Dobson J. Applications of magnetic nanoparticles in biomedicine [J]. J. Phys. D: Appl. Phys. 2003, 36(13): R167-R181.
    [65] Neuberger T., Sch(?)f B., Hofmann H., Hofmann M., von Rechenber B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system [J]. J. Magn. Magn. Mater. 2005, 293(1): 483-496.
    [66] Tsang S. C., Caps V., Paraskevas I., Chadwick D., Thompsett D. Magnetically separable, carbon-supported nanocatalysts for the manufacture of fine chemical [J]. Angew. Chem. Int. Ed., 2004, 43(42): 5645-5649.
    [67] Stevens P. D., Li G. F., Fan J. D., Yen M., Gao Y. Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions [J]. Chem. Commun., 2005, (35), 4435-4437.
    [68] Fried T., Shemer G, Markovich G. Ordered two-dimensional arrays of ferrite nanoparticles [J]. Adv. Mater., 2001, 13(15): 1158-1161.
    [69] Sun S. H., Zeng H. Size-controlled synthesis of magnetite nanoparticles [J]. J. Am. Chem. Soc, 2002, 124(28): 8204-8205.
    [70] Park S. J., Kim S., Lee S., Khim Z. G, Char K., Hyeon T. Synthesis and magnetic studies of uniform iron nanorods and nanospheres [J]. J. Am. Chem. Soc, 2000,122(35): 8581-8582.
    [71] Puntes V. F., Krishnan K. M., Alivisatos A. P. Colloidal nanocrystal shape and size control: The case of cobalt [J]. Science, 2001, 291 (5511): 2115-2117.
    [72] Chen Q., Rondinone A. J., Chakoumakos B. C, Zhang Z. J. Synthesis of superparamagnetic MgFe_2O_4 nanoparticles by coprecipitation [J]. J. Magn. Magn. Mater., 1999, 194(1-3): 1-7.
    [73] Hyeon T., Chung Y, Park J., Lee S. S., Kim Y. W., Park B. H. Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystal [J]. J. Phys. Chem. B, 2002, 106(27): 6831-6833.
    [74] Shevchenko E. V., Talapin D. V., Rogach A. L., Kornowski A., Haase M., Weller H. Colloidal synthesis and self-assembly of CoPt3 nanocrystal [J]. J. Am. Chem. Soc, 2002, 124 (38): 11480-11485.
    [75] Sun S. H., Murray C. B., Weller D., Folks L., Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices [J]. Science, 2000,287(5460): 1989-1992.
    [76] Starodoubtsev S. G, Saenko E. V., Khokhlov A. R., Volkov V. V., Dembo K. A., Klechkovskaya V. V., Shtykova E. V., Zanaveskina I. S. Poly(acrylamide) gels with embedded magnetite nanoparticles[J].Microelectronic Engineering,2003,69(2-4):324-329.
    [77]Kim Y.I.,Kim D.,Lee C.S.Synthesis and characterization of CoFe_2O_4magnetic nanoparticles prepared by temperature-controlled coprecipitation method[J].Physica B,2003,337(1-4):42-51.
    [78]Glavee G.N.,Klabunde K.J.,Sorensen C.M.,Hadjipanayis G.C.Chemistry of Borohydride Reduction of Iron(Ⅱ) And Iron(Ⅲ) Ions in Aqueous and Nonaqueous Media - Formation of Nanoscale Fe,Feb,and Fe2b Powders[J].Inorg.Chem.,1995,34(1):28-35.
    [79]Glavee G.N.,Klabunde K.J.,Sorensen C.M.,Hadjipanayis G.C.Borohydride Reduction of Cobalt Ions in Water - Chemistry Leading to Nanoscale Metal,Boride,or Borate Particles[J].Langmuir,1993,9(1):162-169.
    [80]Glavee G.N.,Klabunde K.J.,Sorensen C.M.,Hadjipanayis G.C.Borohydride Reduction of Nickel and Copper Ions in Aqueous and Nonaqueous Media - Controllable Chemistry Leading to Nanoscale Metal and Metal Boride Particles[J].Langmuir,1994,10(12):4726-4730.
    [81]Stolk J.,Manthiram A.Chemical synthesis and properties of nanocrystalline Cu-Fe-Ni alloys[J].Mater.Sci.Eng.,1999,B60(2):112-117.
    [82]Black C.T.,Murray C.B.,Sandstrom R.L.,Sun S.H.Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices[J].Science,2000,290(5494):1131-1134.
    [83]Eicke H.F.In 'Surfactants in solution'[M].New York:Plenum Press,1984:1533-1549.
    [84]Zulauf M.,Eicke H.F.Inverted Micelles and Microemulsions in the Ternary-System H_2O-Aerosol-OT-Isooctane as Studied by Photon Correlation Spectroscopy[J].J.Phys.Chem.,1979,83(4):480-486.
    [85]Pileni M.P.Nanosized particles made in colloidal assemblies[J].Langmuir,1997,13(13):3266-3276.
    [86]Ayyub P.,Maitra A.,Shah D.O.Microstructure of the CTAB-Butanol-Octane-Water Microemulsion System - Effect of Dissolved Salts[J].J.Chem.Soc.Faraday Trans.,1993,89(19):3585-3589.
    [87]Stecker M.M.,Benedek G.B.Theory of Multicomponent Micelles and Microemulsions[J].J.Phys.Chem.,1984,88(26):6519-6544.
    [88] Dimitrova G. T., Tadros T. F., Luckham P. F., Kipps M. R. Investigations into the phase behavior of nonionic ethoxylated surfactants using H-2 NMR spectroscopy [J]. Langmuir, 1996, 12(2): 315-318.
    [89] Inouye K., Endo R., Otsuka Y., Miyashiro K., Kaneko K., Ishikawa T. Oxygenation of Ferrous-Ions in Reversed Micelle and Reversed Micro-Emulsion [J]. J. Phys. Chem., 1982, 86(8): 1465-1469.
    [90] Carpenter E. E., O'Connor C. J., Harris V. G. Atomic structure and magnetic properties of MnFe_2O_4 nanoparticles produced by reverse micelle synthesis [J]. J.Appl.Phys., 1999, 85(8): 5175-5177.
    [91] Duxin N., Stephan O., Petit C, Bonville P., Colliex C, Pileni M. P. Pure alpha-Fe coated by an Fe_(1-x)B_x alloy [J]. Chem. Mater., 1997, 9(10): 2096-2100.
    [92] Wilcoxon J. P., Provencio P. P. Use of surfactant micelles to control the structural phase of nanosize iron clusters [J]. J. Phys. Chem. B, 1999, 103(45): 9809-9812.
    [93] Tanori 1, Duxin N., Petit C, Lisiecki I., Veillet P., Pileni M. P. Synthesis of Nanosize Metallic and Alloyed Particles in Ordered Phases [J]. Colloid Polym. Sci., 1995, 273(9): 886-892.
    [94] Liu C, Rondinone A. J., Zhang Z. J. Synthesis of magnetic spinel ferrite CoFe_2O_4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties [J]. Pure Appl. Chem., 2000, 72(1-2): 37-45.
    [95] Liu C, Zou B., Rondinone A. J., Zhang Z. J. Chemical Control of Superparamagnetic Properties of Magnesium and Cobalt Spinel Ferrite Nanoparticles through Atomic Level Magnetic Couplings [J]. J. Am. Chem. Soc, 2000, 122(26): 6263-6267.
    [96] Samia A. C. S., Hyzer K., Schlueter J. A., Qin C. J., Jiang J. S., Bader S. D., Lin X. M. Ligand effect on the growth and the digestion of co nanocrystals [J]. J. Am. Chem. Soc, 2005, 127(12): 4126-4127.
    [97] Puntes V. F., Krishnan K. M., Alivisatos P. Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal epsilon-Co nanoparticles [J]. Appl. Phys. Lett., 2001, 78(15): 2187-2189.
    [98] Sidorov S. N., Bronstein L. M., Davankov V. A., Tsyurupa M. P., Solodovnikov S. P., Valetsky P. M., Wilder E. A., Spontak R. J. Cobalt nanoparticle formation in the pores of hyper-cross-linked polystyrene: Control of nanoparticle growth and morphology [J]. Chem. Mater., 1999, 11(11): 3210-3215.
    [99] Dinega D. P., Bawendi M. G. A solution-phase chemical approach to a new crystal structure of cobalt [J]. Angew. Chem. Int. Ed., 1999, 38(12): 1788-1791.
    [100] Rotstein H. G, Tannenbaum R. Cluster coagulation and growth limited by surface interactions with polymers [J]. J. Phys. Chem. B, 2002, 106(1): 146-151.
    [101] Ould-Ely T., Amiens C, Chaudret B., Snoeck E., Verelst ML, Respaud M., Broto J. M. Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties [J]. Chem. Mater., 1999, 11(3): 526-529.
    [102] Vanleeuwen D. A., Vanruitenbeek J. M., Dejongh L. J., Ceriotti A., Pacchioni G, Haberlen O. D., Rosch N. Quenching of Magnetic-Moments by Ligand-Metal Interactions in Nanosized Magnetic Metal-Clusters [J]. Phys. Rev. Lett., 1994, 73(10): 1432-1435.
    [103] Osuna J., deCaro D., Amiens C, Chaudret B., Snoeck E., Respaud M., Broto J. M., Fert A. Synthesis, characterization, and magnetic properties of cobalt nanoparticles from an organometallic precursor [J]. J. Phys. Chem., 1996, 100(35): 14571-14574.
    [104] Verelst M., Ely T. O., Amiens C, Snoeck E., Lecante P., Mosset A., Respaud M., Broto J. M., Chaudret B. Synthesis and characterization of CoO, CO_3O_4, and mixed Co/CoO nanoparticules [J]. Chem. Mater., 1999, 11(10): 2702-2708.
    [105] Ely T. O., Pan C, Amiens C, Chaudret B., Dassenoy F., Lecante P., Casanove M. J., Mosset A., Respaud M., Broto J. M. Nanoscale bimetallic Co_xPt_(1-x) particles dispersed in poly(vinylpyrrolidone): Synthesis from organometallic precursors and characterization [J]. J. Phys. Chem., 2000, 104(4): 695-702.
    [106] Euliss L. E., Grancharov S. G, O'Brien S., Deming T. J., Stucky G. D., Murray C. B., Held G. A. Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media [J]. Nano Lett., 2003, 3(11): 1489-1493.
    [107] Liu X. Q., Guan Y. P., Ma Z. Y., Liu H. Z. Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization [J]. Langmuir, 2004, 20(23): 10278-10282.
    [108] Hong R., Fischer N. O., Emrick T., Rotello V. M. Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications [J]. Chem. Mater., 2005,17(18): 4617-4621.
    [109] Sahoo Y., Pizem H., Fried T., Golodnitsky D., Burstein L., Sukenik C. N., Markovich G. Alkyl phosphonate/phosphate coating on magnetite nanoparticles: A comparison with fatty acids[J]. Langmuir 2001, 17 (25): 7907-7911.
    [110] Kim M., Chen Y. F., Liu Y. C, Peng X. G. Super-stable, high-quality Fe_3O_4 dendron-nanocrystals dispersible in both organic and aqueous solutions [J]. Adv. Mater., 2005, 17(11): 1429-1432.
    [111] Kobayashi Y, Horie M., Konno M., Rodriguez-Gonzalez B., Liz-Marzan L. M. Preparation and properties of silica-coated cobalt nanoparticles [J]. J. Phys. Chem. B, 2003, 107(30): 7420-7425.
    [112] Lu A. H., Li W. C, Matoussevitch N., Spliethoff B., Bonnemann H., Schuth F. Highly stable carbon-protected cobalt nanoparticles and graphite shells [J]. Chem. Commun., 2005(1): 98-100.
    [113] Sobal N. S., Hilgendorff M., Mohwald H., Giersig M., Spasova M., Radetic T., Farle M. Synthesis and structure of colloidal bimetallic nanocrystal: The non-alloying system Ag/Co [J]. Nano Lett., 2002, 2(6): 621-624.
    [114] Lin J., Zhou W. L., Kumbhar A., Wiemann J., Fang J. Y, Carpenter E. E., O'Connor C. J. Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly [J]. J. Solid State Chem., 2001, 159(1): 26-31.
    [115] Nunez N. O., Tartaj P., Morales M. P., Bonville P., Serna C. J. Yttria-coated FeCo magnetic nanoneedles [J]. Chem. Mater., 2004, 16(16): 3119-3124.
    [116] Kim D. K., Mikhaylova M., Zhang Y, Muhammed M. Protective coating of superparamagnetic iron oxide nanoparticles [J]. Chem. Mater., 2003, 15(8): 1617-1627.
    [117] Peng D. L., Sumiyama K., Hihara T., Yamamuro S., Konno T. J. Magnetic properties of monodispersed Co/CoO clusters [J]. Phys. Rev. B, 2000, 61(4): 3103-3109.
    [118] Boyen H. G, Kastle G, Zurn K., Herzog T., Weigl F., Ziemann P., Mayer O., Jerome C, Moller M., Spatz J. P., Gamier M. G, Oelhafen P. A micellar route to ordered arrays of magnetic nanoparticles: From size-selected pure cobalt dots to cobalt-cobalt oxide core-shell systems [J]. Adv. Funct. Mater., 2003, 13(5): 359-364.
    [119] Bonnemann H., Brijoux W., Brinkmann R., Matoussevitch N., Waldofner N., Palina N., Modrow H. A size-selective synthesis of air stable colloidal magnetic cobalt nanoparticles [J]. Inorg. Chim. Acta, 2003,350, 617-624.
    [120] Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media [J]. IEEE Trans. Magn., 1981, MAG-17(2): 1247-1248.
    [121] Zins D., Cabuil V., Massart R. New aqueous magnetic fluids [J]. J. Mol. Liq. 1999, 83(1-3): 217-232.
    [122] Shen L. F., Laibinis P. E., Hatton T. A. Bilayer surfactant stabilized magnetic fluids: Synthesis and interactions at interfaces [J]. Langmuir, 1999, 15(2): 447-453.
    [123] Cornell R. M., Schertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses [M]. Weinheim: VCH Publishers, 1996
    [124] Wan M. X., Li J. C. Synthesis and electrical-magnetic properties of polyaniline composites [J]. J. Polymer Sci. Part A-Polymer Chem., 1998, 36(15): 2799-2805.
    [125] Butterworth M. D., Bell S. A., Armes S. P., Simpson A. W. Synthesis and characterization of polypyrrole-magnetite-silica particles [J]. J. Colloid Interf. Sci. 1996, 183(1): 91-99.
    [126] Tartaj P., Morales M. P., Gonzalez-Carreno T., Veintemillas-Verdaguer S., Serna C. J. Advances in magnetic nanoparticles for biotechnology applications [J]. J. Magn. Magn. Mater., 2005, 290: 28-34.
    [127] Barratt G. Colloidal drug carriers: achievements and perspectives [J]. Cell. Mol. Life Sci., 2003, 60(1): 21-37.
    [128] Xu X. L., Friedman G, Humfeld K. D., Majetich S. A., Asher S. A. Superparamagnetic photonic crystals [J]. Adv. Mater., 2001, 13(22): 1681-1684.
    [129] Farrell D., Majetich S. A., Wilcoxon J. P. Preparation and characterization of monodisperse Fe nanoparticles [J]. J. Phys. Chem. B, 2003, 107(40): 11022-11030.
    [130] Rivas J., Sanchez R. D., Fondado A., Izco C, Garciabastida A. J., Garciaotero J., Mira J., Baldomir D., Gonzalez A., Lado I., Quintela M. A. L., Oseroff S. B. Structural and Magnetic Characterization of Co Particles Coated with Ag [J]. J. Appl. Phys., 1994, 76(10): 6564-6566.
    [131] Park J. I., Cheon J. Synthesis of "solid solution" and "core-shell" type cobalt-platinum magnetic nanoparticles via transmetalation reactions [J]. J. Am. Chem. Soc, 2001, 123(24): 5743-5746.
    [132] Lyon J. L., Fleming D. A., Stone M. B., Schiffer P., Williams M. E. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding [J]. Nano Lett., 2004, 4(4): 719-723.
    [133] Cho S. J., Idrobo J. C, Olamit J., Liu K., Browning N. D., Kauzlarich S. M. Growth mechanisms and oxidation resistance of gold-coated iron nanoparticles [J]. Chem. Mater., 2005,17(12): 3181-3186.
    [134] Yu H., Chen M., Rice P. M., Wang S. X., White R. L., Sun S. H. Dumbbell-like bifunctional Au-Fe_3O_4 nanoparticles [J]. Nano Lett., 2005, 5(2): 379-382.
    [135] Caruntu D., Cushing B. L., Caruntu G, O'Connor C. J. Attachment of gold nanograins onto colloidal magnetite nanocrystals [J]. Chem. Mater., 2005, 17(13): 3398-3402.
    [136] Ban Z. H., Barnakov Y. A., Golub V. O., O'Connor C. J. The synthesis of core-shell iron@gold nanoparticles and their characterization [J]. J. Mater. Chem., 2005, 15(43): 4660-4662.
    [137] Zhang J., Post M., Veres T., Jakubek Z. J., Guan J. W., Wang D. S., Normandin F., Deslandes Y., Simard B. Laser-assisted synthesis of superparamagnetic Fe@Au core-shell nanoparticles [J]. J. Phys. Chem. B, 2006, 110(14): 7122-7128.
    [138] Lu Z. H., Prouty M. D., Guo Z. H., Golub V. O., Kumar C, Lvov Y. M. Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles [J]. Langmuir, 2005, 21(5): 2042-2050.
    [139] St(?)er W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in micron size range [J]. J. Colloid Interface Sci., 1968, 26: 62-69.
    [140] Lu Y, Yin Y. D., Mayers B. T., Xia Y. N. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach [J]. Nano Lett., 2002, 2(3): 183-186.
    [141] Graf C., Vossen D. L. J., Imhof A., van Blaaderen A. A general method to coat colloidal particles with silica [J]. Langmuir, 2003,19(17): 6693-6700.
    [142] Philipse A. P., Vanbruggen M. P. B., Pathmamanoharan C. Magnetic Silica Dispersions - Preparation and Stability of Surface-Modified Silica Particles with a Magnetic Core [J]. Langmuir, 1994, 10(1): 92-99.
    [143] Ulman A. Formation and structure of self-assembled monolayers [J]. Chem. Rev., 1996, 96(4): 1533-1554.
    [144] Zhao W. R., Gu J. L., Zhang L. X., Chen H. R., Shi J. L. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure [J]. J. Am. Chem. Soc, 2005,127(25): 8916-8917.
    [145] Yi D. K., Lee S. S., Papaefthymiou G. C., Ying J. Y. Nanoparticle architectures templated by SiO_2/Fe_2O_3 nanocomposites [J]. Chem. Mater., 2006, 18(3): 614-619.
    [146] Tartaj P., Serna C. J. Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites [J]. J. Am. Chem. Soc, 2003, 125(51): 15754-15755.
    [147] Vestal C. R., Zhang Z. J. Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core [J]. Nano Lett. 2003,3(12): 1739-1743.
    [148] Ang K. H., Alexandrou I., Mathur N. D., Amaratunga G. A. J., Haq S. The effect of carbon encapsulation on the magnetic properties of Ni nanoparticles produced by arc discharge in de-ionized water [J]. Nanotechnology, 2004, 15(5): 520-524.
    [149] Teunissen W., de Groot F. M. F., Geus J., Stephan O., Tence M., Colliex C. The structure of carbon encapsulated NiFe nanoparticles [J]. J. Catal., 2001, 204(1): 169-174.
    [150] Hayashi T, Hirono S., Tomita M., Umemura S. Magnetic thin films of cobalt nanocrystal encapsulated in graphite-like carbon [J]. Nature, 1996, 381(6585): 772-774.
    [151] Nesper R., Ivantchenko A., Krumeich F. Synthesis and characterization of carbon-based nanoparticles and highly magnetic nanoparticles with carbon coatings [J]. Adv. Funct. Mater., 2006, 16(2): 296-305.
    [152] Nikitenko S. I., Koltypin Y., Palchik O., Felner I., Xu X. N., Gedanken A. Synthesis of highly magnetic, air-stable iron iron carbide nanocrystalline particles by using power ultrasound [J]. Angew. Chem. Int. Ed., 2001, 40(23): 4447-4449.
    [153]Geng J.F.,Jefferson D.A.,Johnson B.F.G.Direct conversion of iron stearate into magnetic Fe and Fe_3C nanocrystals encapsulated in polyhedral graphite cages[J].Chem.Commun.,2004,(21):2442-2443.
    [154]Lu A.H.,Li W.C.,Salabas E.L.,Spliethoff B.,Schuth F.Low temperature catalytic pyrolysis for the synthesis of high surface area,nanostructured graphitic carbon[J].Chem.Mater.,2006,18(8):2086-2094.
    [155]Salgueirino-Maceira V.,Correa-Duarte M.A.,Farle M.,Lopez-Quintela A.,Sieradzki K.,Diaz R.Bifunctional gold-coated magnetic silica spheres[J].Chem.Mater.,2006,18(11):2701-2706.
    [156]Frankamp B.L.,Fischer N.O.,Hong R.,Srivastava S.,Rotello V.M.Surface modification using cubic silsesquioxane ligands.Facile synthesis of water-soluble metal oxide nanoparticles[J].Chem.Mater.,2006,18(4):956-959.
    [157]Jun C.H.,Park Y.J.,Yeon Y.R.,Choi J.R.,Lee W.R.,Ko S.J.,Cheon J.Demonstration of a magnetic and catalytic Co@Pt nanoparticle as a dual-function nanoplatform[J].Chem.Commun.,2006,(15):1619-1621.
    [158]常铮,郭灿雄,李峰,段雪.新型磁性纳米固体酸催化剂ZrO_2/Fe_3O_4的制备和表征[J].化学学报,2002,60(2):298-304.
    [159]常铮,郭灿雄,段雪.磁性超细固体酸催化剂SO_4~(2-)-ZrO_2/Fe_3O_4的组装及表征[J].催化学报,2003,24(1):47-51.
    [160]张密林,王君,梅长松,景晓燕,段雪.磁性固体超强酸的合成、表征及性能[J].高等学校化学学报,2002,23(7):1347-1351.
    [161]张慧,徐彦红,Evans David G,段雪.磁性纳米固体碱催化剂MgAl-OH-LDH/NiFe_2O_4的合成、表征和性能研究[J].化学学报,2004,62(8):750-756.
    [162]张海永,景晓燕,张密林.磁性镁铝水滑石固体碱催化苯甲醛于丙二酸二乙脂的反应.应用科技,2002,29(2):50-52.
    [163]Watson S.,Beydoun D.,Amal A.Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO_2 crystals onto a magnetic core[J].J.Photochem.Photobio.A:Chem.,2002,148:303-313.
    [164]Beydoun D.,Amal R.,Low G.K.C.,McEvoy S.Novel Photocatalyst:Titania-Coated Magnetite.Activity and Photodissolution[J].J.Phys.Chem.B,2000,104:4387-43960.
    [165]Dalaigh C.,Corr S.A.,Ko Y.G.,Connon S.J.A Magnetic-Nanoparticle-Supported 4-N,N-Dialkylaminopyridine Catalyst: Excellent Reactivity Combined with Facile Catalyst Recovery and Recyclability [J]. Angew. Chem. Int. Ed., 2007,46,4329-4332.
    [166] Stevens P. D., Li G. F., Fan J. D., Yen M., Gao Y. Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions [J]. Chem. Commun., 2005, (35): 4435-4437.
    [167] Hu A. G, Yee G. T., Lin W. B. Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones [J]. J. Am. Chem. Soc, 2005, 127(36): 12486-12487.
    [168] Lu A. H., Schmidt W., Matoussevitch N., Bonnemann H., Spliethoff B., Tesche B., Bill E., Kiefer W., Schuth F. Nanoengineering of a magnetically separable hydrogenation catalyst [J]. Angew. Chem. Int. Ed., 2004, 43(33): 4303-4306.
    [169] Shokouhimehr M., Piao Y. Z., Kim, J., Jang Y. J., Hyeon T. A magnetically recyclable nanocomposite catalyst for olefin epoxidation [J]. Angew. Chem. Int. Ed., 2007, 46(37): 7039-7043.
    [170] Xu C. J., Xu K. M., Gu H. W., Zheng R. K., Liu H., Zhang X. X., Guo Z. H., Xu B. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles [J]. J. Am. Chem. Soc, 2004, 126(32): 9938-9939.
    [171] Gu H. W., Xu K. M, Xu C. J., Xu B. Biofunctional magnetic nanoparticles for protein separation and pathogen detection [J]. Chem. Commun., 2006, (9): 941-949.
    [172] Safarik I., Safarikova M. Use of magnetic techniques for the isolation of cells [J]. J. Chromatogr. B, 1999, 722(1-2), 33-53.
    [173] Zhao X. J., Tapec-Dytioco R., Wang K. M., Tan W. H. Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers [J]. Anal. Chem., 2003, 75(14): 3476-3483.
    [174] Widder K. J., Senyei A. E., Scarpelli D. G. Magnetic Microspheres - Model System For Site Specific Drug Delivery Invivo [J]. Proceedings of the Society for Experimental Biology and Medicine, 1978, 158(2): 141-146.
    [175] Berry C. C. Possible exploitation of magnetic nanoparticle-cell interaction for biomedical applications [J]. J. Mater. Chem., 2005, 15(5): 543-547.
    [176] IUPAC Manual of symbols and terminology, Appendix 2, Part 1, Colloid and Surface [J]. Pure Appl. Chem., 1972, 31: 578.
    [177] Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C, Beck J. S. Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism [J]. Nature, 1992, 359(6397): 710-712.
    [178] Beck J. S., Vartuli J. C, Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu C. T. W., Olson D. H., Sheppard E. W., McCullen S. B., Higgins J. B., Schlenker J. L. A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates [J]. J. Am. Chem. Soc, 1992, 114(27): 10834-10843.
    [179] Ciesla U., Demuth D., Leon R., Petroff P. M., Stucky G. D., Unger K., Schuth, F. Surfactant Controlled Preparation of Mesostructured Transition-Metal Oxide Compounds [J]. Chem. Commun., 1994, (11): 1387-1388.
    [180] Firouzi A., Kumar D., Bull L. M., Besier T., Sieger P., Huo Q., Walker S. A., Zasadzinski J. A., Glinka C, Nicol J., Margolese D., Stucky G. D., Chmelka B. F. Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies [J]. Science, 1995, 267(5201): 1138-1143.
    [181] Huo Q. S., Leon R., Petroff P. M., Stucky G. D. Mesostructure Design with Gemini Surfactants - Supercage Formation in a 3-Dimensional Hexagonal Array [J]. Science, 1995, 268(5215): 1324-1327.
    [182] Tanev P. T., Chibwe M., Pinnavaia T. J. Titanium-Containing Mesoporous Molecular-Sieves for Catalytic-Oxidation of Aromatic-Compounds [J]. Nature, 1994, 368(6469): 321-323.
    [183] Tanev P. T., Pinnavaia T. J. A Neutral Templating Route to Mesoporous Molecular-Sieves [J]. Science, 1995, 267(5199): 865-867.
    [184] Bagshaw S. A., Prouzet E., Pinnavaia T. J. Templating of Mesoporous Molecular-Sieves by Nonionic Polyethylene Oxide Surfactants [J]. Science, 1995,269(5228): 1242-1244.
    [185] Zhao D. Y., Feng J. L., Huo Q. S., Melosh N., Fredrickson G. H., Chmelka B. F., Stucky G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279(5350): 548-552.
    [186] Zhao D. Y., Huo Q. S., Feng J. L., Chmelka B. F. Stucky G. D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc, 1998, 120(24): 6024-6036.
    [187] Yue Y. H., Gedeon A., Bonardet J. L., Melosh N., D'Espinose J. B., Fraissard J. Direct synthesis of A1SBA mesoporous molecular sieves: characterization and catalytic activities [J]. Chem. Commun., 1999, (19): 1967-1968.
    [188] Sayari A., Danumah C, Moudrakovski I. L. Boron-Modified Mcm-41 Mesoporous Molecular-Sieves [J]. Chem. Mater., 1995, 7(5): 813-815.
    [189] Cheng C. F., He H. Y, Zhou W. Z., Klinowski J., Goncalves J. A. S., Gladden L. F. Synthesis and characterization of the gallosilicate mesoporous molecular sieve MCM-41 [J]. Journal of Physical Chemistry, 1996,100(1): 390-396.
    [190] Yuan Z. Y, Liu S. Q., Chen T. H., Wang J. Z., Li H. X. Synthesis of Iron-Containing Mcm-41 [J]. Chem. Commun., 1995, (9): 973-974.
    [191] Tanev P. T., Chibwe M., Pinnavaia T. J. Titanium-Containing Mesoporous Molecular-Sieves for Catalytic-Oxidation of Aromatic-Compounds [J]. Nature, 1994, 368(6469): 321-323.
    [192] Reddy K. M., Moudrakovski I., Sayari A. Synthesis of Mesoporous Vanadium Silicate Molecular-Sieves [J]. Chem. Commun., 1994, (9): 1059-1060.
    [193] Tuel A., Gontier S., Teissier R. Zirconium containing mesoporous silicas: New catalysts for oxidation reactions in the liquid phase [J]. Chem. Commun., 1996, (5): 651-652.
    [194] Das T. K., Chaudhari K., Chandwadkar A. J., Sivasanker S. Synthesis and catalytic properties of mesoporous tin silicate molecular sieves [J]. Chem. Commun., 1995, (24): 2495-2496.
    [195] Aronson B. J., Blanford C. F., Stein A. Solution-phase grafting of titanium dioxide onto the pore surface of mesoporous silicates: Synthesis and structural characterization [J]. Chem. Mater., 1997, 9(12): 2842-2851.
    [196] Morey M., Davidson A., Eckert H., Stucky G. Pseudotetrahedral O3/2V=0 centers immobilized on the walls of a mesoporous, cubic MCM-48 support: Preparation, characterization, and reactivity toward water as investigated by V-51 NMR and UV-vis spectroscopies [J]. Chem. Mater., 1996, 8(2): 486-492.
    [197] Sutra P., Brunei D. Preparation of MCM-41 type silica-bound manganese (III) Schiff-base complexes [J]. Chem. Commun., 1996, (21): 2485-2486.
    [198] Jalil P. A., Al-Daous M. A., Al-Arfaj A. R. A., Al-Amer A. M., Beltramini J., Barri S. A. I. Characterization of tungstophosphoric acid supported on MCM-41 mesoporous silica using n-hexane cracking, benzene adsorption, and X-ray diffraction [J]. Appl. Catal.A-Gen., 2001, 207(1-2): 159-171.
    [199] Corma A., Martinez A., MartinezSoria V. Hydrogenation of aromatics in diesel fuels on Pt/MCM-41 catalysts [J]. J. Catal., 1997, 169(2): 480-489.
    [200] Raja R., Sankar G, Hermans S., Shephard D. S., Bromley S., Thomas J. M., Johnson B. F. G. Preparation and characterisation of a highly active bimetallic (Pd-Ru) nanoparticle heterogeneous catalyst [J]. Chem. Commun., 1999, (16): 1571-1572.
    [201] Rao R. R., Weckhuysen B. M., Schoonheydt R. A. Ethylene polymerization over chromium complexes grafted onto MCM-41 materials [J]. Chem. Commun., 1999, (5): 445-446.
    [202] Xu Y. M., Langford C. H. Photoactivity of titanium dioxide supported on MCM41, zeolite X, and zeolite Y [J]. J. Phys. Chem. B, 1997, 101(16): 3115-3121.
    [203] Morey M. S., Stucky G. D., Schwarz S., Froba M. Isomorphic substitution and postsynthesis incorporation of zirconium into MCM-48 mesoporous silica [J]. J. Phys. Chem. B, 1999, 103(12): 2037-2041.
    [204] Bagshaw S. A., Prouzet E., Pinnavaia T. J. Templating of Mesoporous Molecular-Sieves by Nonionic Polyethylene Oxide Surfactants [J]. Science, 1995, 269(5228): 1242-1244.
    [205] Fan J., Yu C. Z., Gao T., Lei J., Tian B. Z., Wang L. M., Luo Q., Tu B., Zhou W. Z., Zhao D. Y. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties [J]. Angew. Chem. Int. Ed., 2003, 42(27): 3146-3150.
    [206] Kleitz F., Choi S. H., Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes [J]. Chem. Commun., 2003, (17): 2136-2137.
    [207] El-Safty S. A., Hanaoka T. Monolithic nanostructured silicate family templated by lyotropic liquid-crystalline nonionic surfactant mesophases [J]. Chem. Mater., 2003, 15(15): 2892-2902.
    [208] Joo S. H., Choi S. J., Oh I., Kwak J., Liu Z., Terasaki O., Ryoo R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J]. Nature, 2001, 412(6843): 169-172.
    [209] Ryoo R., Joo S. H., Kruk M., Jaroniec M. Ordered mesoporous carbons [J]. Adv. Mater., 2001, 13 (9): 677-681.
    [210] Attard G. S., Bartlett P. N., Coleman N. R. B., Elliott J. M., Owen J. R., Wang J. H. Mesoporous platinum films from lyotropic liquid crystalline phases [J]. Science, 1997, 278(5339): 838-840.
    [211] Bartlett P. N., Gollas B., Guerin S., Marwan J. The preparation and characterisation of H-1-e palladium films with a regular hexagonal nanostructure formed by electrochemical deposition from lyotropic liquid crystalline phases [J]. Phys. Chem. Chem. Phys., 2002, 4(15): 3835-3842.
    [212] Lee K., Kim Y. H., Han S. B., Kang H. K., Park S., Seo W. S., Park J. T., Kim B., Chang S. B. Osmium replica of mesoporous silicate MCM-48: Efficient and reusable catalyst for oxidative cleavage and dihydroxylation reactions [J]. J. Am. Chem. Soc, 2003, 125(23): 6844-6845.
    [213] Yusuke Y., Azusa T., Masaki K., Makoto S., Tetsu O., Kazuyuki K. Vapor Infiltration of a Reducing Agent for Facile Synthesis of Mesoporous Pt and Pt-Based Alloys and Its Application for the Preparation of Mesoporous Pt Microrods in Anodic Porous Membranes [J]. Chem. Mater. 2008, 20(3): 1104-1111.
    [214] Yang P. D., Zhao D. Y, Margolese D. I., Chmelka B. F., Stucky G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature, 1998, 396(6707): 152-155.
    [215] Deng W., Bodart P., Pruski M., Shanks B. H. Characterization of mesoporous alumina molecular sieves synthesized by nonionic templating [J]. Micropor. Mesopor. Mater., 2002, 52(3): 169-177.
    [216] Jiao R, Harrison A., Jumas J. C, Chadwick A. V., Kockelmann W., Bruce P. G. Ordered mesoporous Fe_2O_3 with crystalline walls [J]. J. Am. Chem. Soc, 2006, 128(16): 5468-5474.
    [217] Yang P. D., Zhao D. Y, Margolese D. I., Chmelka B. R, Stucky G. D. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework [J]. Chem. Mater., 1999, 11(10): 2813-2826.
    [218] Gao R, Lu Q. Y, Zhao D. Y Synthesis of crystalline mesoporous CdS semiconductor nanoarrays through a mesoporous SBA-15 silica template technique [J]. Adv. Mater., 2003, 15(9): 739-742.
    [219] Braun P. V., Osenar P., Tohver V., Kennedy S. B., Stupp S. I. Nanostructure templating in inorganic solids with organic lyotropic liquid crystals [J]. J. Am. Chem. Soc, 1999, 121(32): 7302-7309.
    [220] Zhao D. Y., Luan Z. H., Kevan L. Synthesis of thermally stable mesoporous hexagonal aluminophosphate molecular sieves [J]. Chem. Commun., 1997, (11): 1009-1010.
    [221] Jimenez-Jimenez J., Maireles-Torres P., Olivera-Pastor P., Rodriguez-Castellon E., Jimenez-Lopez A., Jones D. J., Roziere J. Surfactant-assisted synthesis of a mesoporous form of zirconium phosphate with acidic properties [J]. Adv. Mater., 1998, 10(10): 812-815.
    [222] Guo X. F., Ding W. P., Wang X. G, Yan Q. J. Synthesis of a novel mesoporous iron phosphate [J]. Chem. Commun., 2001, (8): 709-710.
    [223] Stein A., Melde B. J., Schroden R. C. Hybrid inorganic-organic mesoporous silicates - Nanoscopic reactors coming of age [J]. Adv. Mater., 2000, 12(19): 1403-1419.
    [224] Jaroniec C. P., Kruk M., Jaroniec M., Sayari A. Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes [J]. J. Phys. Chem. B, 1998, 102(28): 5503-5510.
    [225] Feng X., Fryxell G. E., Wang L. Q., Kim A. Y, Liu J., Kemner K. M. Functionalized monolayers on ordered mesoporous supports [J]. Science, 1997, 276(5314): 923-926.
    [226] Zhao X. S., Lu G. Q. Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study [J]. J. Phys. Chem. B, 1998, 102(9): 1556-1561.
    [227] Van Rhijn W. M., De Vos D. E., Sels B. F., Bossaert W. D., Jacobs P. A. Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions [J]. Chem. Commun., 1998, (3): 317-318.
    [228] Sutra P., Brunel D. Preparation of MCM-41 type silica-bound manganese (III) Schiff-base complexes [J]. Chem. Commun., 1996, (21): 2485-2486.
    [229] Lim M. H., Stein A. Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials [J]. Chem. Mater., 1999, 11(11): 3285-3295.
    [230] Fowler C. E., Burkett S. L., Mann S. Synthesis and characterization of ordered organo-silica-surfactant mesophases with functionalized MCM-41-type architecture [J]. Chem. Commun., 1997, (18): 1769-1770.
    [231] Lim M. H., Blanford C. F., Stein A. Synthesis of ordered microporous silicates with organosulfur surface groups and their applications as solid acid catalysts [J]. Chem. Mater., 1998, 10(2): 467-470.
    [232] Koya M., Nakajima H. Hybrid inorganic-organic mesoporous molecular sieves [J]. Stud. Surf. Sci. Catal., 1998, 117: 243-248.
    [233] Burkett S. L., Sims S. D., Mann S. Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors [J]. Chem. Commun., 1996, (11): 1367-1368.
    [234] Lim M. H., Blanford C. F., Stein A. Synthesis and characterization of a reactive vinyl-functionalized MCM-41: Probing the internal pore structure by a bromination reaction [J]. J. Am. Chem. Soc. 1997, 119(17): 4090-4091.
    [235] Macquarrie D. J. Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl-MCM [J]. Chem. Commun., 1996, (16): 1961-1962.
    [236] Macquarrie D. J., Jackson D. B., Mdoe J. E. G, Clark J. H. Organomodified hexagonal mesoporous silicates [J]. New J. Chem., 1999, 23(5): 539-544.
    [237] Hall S. R., Fowler C. E., Lebeau B., Mann S. Template-directed synthesis of bi-functionalized organo-MCM-41 and phenyl-MCM-48 silica mesophases [J]. Chem. Commun., 1999, (2): 201-202.
    [238] Jones C. W., Tsuji K., Davis M. E. Organic-functionalized molecular sieves as shape-selective catalysts [J]. Nature, 1998, 393(6680): 52-54.
    [239] Jones C. W., Tsapatsis M., Okubo T., Davis M. E. Organic-functionalized molecular sieves. III. Shape selective catalysis [J]. Micropor, Mesopor. Mater., 2001, 42(1): 21-35.
    [240] Liu X. Y., Tian B. Z., Yu C. Z., Gao F., Xie S. H., Tu B., Che R. C, Peng L. M., Zhao D. Y. Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry [J]. Angew. Chem. Int. Ed., 2002, 41(20): 3876-3878.
    [241] Corriu R. J. P. Ceramics and nanostructures from molecular precursors [J]. Angew. Chem. Int. Ed., 2000, 39(8): 1376-1398.
    [242] Asefa T., MacLachlan M. J., Grondey H., Coombs N., Ozin G. A. Metamorphic channels in periodic mesoporous methylenesilica [J]. Angew. Chem. Int. Ed., 2000, 39(10): 1808-1811.
    [243] Guan S., Inagaki S., Ohsuna T., Terasaki O. Cubic hybrid organic-inorganic mesoporous crystal with a decaoctahedral shape [J]. J. Am. Chem. Soc, 2000, 122(23): 5660-5661.
    [244] Inagaki S., Guan S. Ohsuna T., Terasaki O. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure [J]. Nature, 2002, 416(6878): 304-307.
    [245] Kapoor M. P., Yang Q. H., Inagaki S. Self-assembly of biphenylene-bridged hybrid mesoporous solid with molecular-scale periodicity in the pore walls [J]. J. Am. Chem. Soc, 2002, 124(51): 15176-15177.
    [246] Temtsin G., Asefa T., Bittner S., Ozin G. A. Aromatic PMOs: tolyl, xylyl and dimethoxyphenyl groups integrated within the channel walls of hexagonal mesoporous silicas [J]. J. Mater. Chem., 2001, 11(12): 3202-3206.
    [247] Yoshina-Ishii C., Asefa T., Coombs N., MacLachlan M. J., Ozin G. A. Periodic mesoporous organosilicas, PMOs: fusion of organic and inorganic chemistry 'inside' the channel walls of hexagonal mesoporous silica [J]. Chem. Commun., 1999, (24): 2539-2540.
    [248] Corriu R. J. P., Lancelle-Beltran E., Mehdi A., Reye C, Brandes S., Guilard R. Hybrid materials containing metal(II) Schiff base complex covalently linked to the silica matrix by two Si-C bonds: Reaction with dioxygen [J]. Chem. Mater., 2003, 15(16): 3152-3160.
    [249] Burleigh M. C, Jayasundera S., Spector M. S., Thomas C. W., Markowitz M. A., Gaber B. P. A new family of copolymers: Multifunctional periodic mesoporous organosilicas [J]. Chem. Mater., 2004, 16(1): 3-5.
    [1]张密林,王君,梅长松,景晓燕,段雪.磁性纳米固体超强酸的合成、表征及性能[J].高等学校化学学报,2002,23(7):1347-1351.
    [2]张慧,徐彦红,Evans D.G,段雪.磁性纳米固体碱催化剂MgAl-OH-LDH/NiFe_2O_4的合成、表征和性能研究[J].化学学报,2004,62(8):750-756.
    [3]Beydoun D.,Amal R.,Low G.K.C.,McEvoy S.Novel Photocatalyst:Titania-Coated Magnetite.Activity and Photodissolution[J].J.Phys.Chem.B,2000,104:4387-4396.
    [4]Jun C.H.,Park Y.J.,Yeon Y.R.,Choi J.R.,Lee W.R.,Ko S.J.,Cheon J.Demonstration of a magnetic and catalytic Co@Pt nanoparticle as a dual-function nanoplatform[J].Chem.Commun.,2006,(15):1619-1621.
    [5]Dalaigh C.,Corr S.A.,Ko Y.G,S.J.Connon A Magnetic Nanoparticle Supported 4-N,N-Dialkylaminopyridine Catalyst:Excellent Reactivity Combined with Facile Catalyst Recovery and Recyclability[J].Angew.Chem.Int.Ed.,2007,46:4329-4332.
    [6]Stevens P.D.,Li G.F.,Fan J.D.,Yen M.,Gao Y.Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki,Heck,and Sonogashira cross-coupling reactions[J].Chem.Commun.,2005,(35):4435-4437.
    [7]Tsang S.C.,Caps V.,Paraskevas I.,Chadwick D.,Thompsett D.Magnetically separable,carbon-supported nanocatalysts for the manufacture of fine chemical [J].Angew.Chem.Int.Ed.,2004,43(42):5645-5649.
    [8]Sun S.H.,Anders S.,Thomson T.,Baglin J.E.E.,Toney M.F.,Hamann H.F.,Murray C.B.,Terris B.D.Controlled synthesis and assembly of FePt nanoparticles[J].J.Phys.Chem B,2003,107(23):5419-5425.
    [9] Sun S. H., Murray C. B., Weller D., Folks L., Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices [J]. Science, 2000, 287(5460): 1989-1992.
    [10] Lee H. S., Hur T., Kim S., Kim J. H., Lee H. I. Effects of pH and surface modification of TiO_2 with SiO_x on the photocatalytic degradation of a pyrimidine derivative [J]. Catal. Today, 2003, 84(3-4): 173-180.
    [11] Hashiba M., Okamoto H., Nurishi Y., Hiramatsu K. The Zeta-Potential Measurement for Concentrated Aqueous Suspension by Improved Electrophoretic Mass-Transport Apparatus - Application to Al_2O_3, ZrO_2 And SiC Suspensions [J]. J. Mater. Sci., 1988, 23(8): 2893-2896.
    [12] Reed J.S., Principles of Ceramics Processing, 2nd Ed [M]. New York: John Wiley&Sons, Inc. 1995: 152.
    [13] Sayari A. Catalysis by crystalline mesoporous molecular sieves [J]. Chem. Mater., 1996, 8(8): 1840-1852.
    [14] Srinivas N., Rani V. R., Kulkarni S. J., Raghavan K. V. Liquid phase oxidation of anthracene and trans-stilbene over modified mesoporous (MCM-41) molecular sieves [J]. J. Mol. Catal. A-Chem., 2002, 179(1-2): 221-231.
    [15] Huybrechts D. R. C, Buskens P. L., Jacobs P. A. Physicochemical And Catalytic Properties Of Titanium Silicalites [J]. J. Mol. Catal., 1992, 71(1): 129-147.
    [1]Yin Y.,Alivisatos A.P.Colloidal nanocrystal synthesis and the organic-inorganic interface[J].Nature,2005,437(7059):664-670.
    [2]Sun Y.G.,Xia Y.N.Shape-controlled synthesis of gold and silver nanoparticles [J].Science,2002,298(5601):2176-2179.
    [3]Wang X.,Zhuang J.,Peng Q.,Li Y.D.A general strategy for nanocrystal synthesis[J].Nature,2005,437(7055):121-124.
    [4]Naravanaswamy A.,Xu H.F.,Pradhan N.,Peng X.G.Crystalline nanoflowers with different chemical compositions and physical properties grown by limited ligand protection[J].Angew.Chem.Int.Ed.,2006,45(32):5361-5364.
    [5]Shevchenko E.V.,Talapin D.V.,Kotov N.A.,O'Brien S.,Murray C.B.Structural diversity in binary nanoparticle superlattices[J].Nature,2006.439(7072):55-59.
    [6]Dillenback L.M.,Goodrich G.P.,Keating C.D.Temperature-programmed assembly of DNA:Au nanoparticle bioconjugates[J].Nano Lett.,2006,6(1):16-23.
    [7]Judy J.H.Advancements in PMR thin-film media[J].J.Magn.Magn.Mater.,2005,287:16-26.
    [8]Thiele J.U.,Maat S.,Fullerton E.E.FeRh/FePt exchange spring films for thermally assisted magnetic recording media[J].Appl.Phys.Lett.,2003,82(17):2859-2861.
    [9]White R.L.,New R.M.H.,Pease R.F.W.Patterned media:A viable route to 50 Gbit/in(2) and up for magnetic recording[J].IEEE T.Magn.,1997,33(1):990-995.
    [10]Chappert C.,Bernas H.,Ferre J.,Kottler V.,Jamet J.P.,Chen Y.,Cambril E.,Devolder T.,Rousseaux F.,Mathet V.,Launois H.Planar patterned magnetic media obtained by ion irradiation[J].Science,1998,280(5371):1919-1922.
    [11]Sun S.H.,Murray C.B.,Weller D.,Folks L.,Moser A.Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J].Science,2000,287(5460):1989-1992.
    [12]Weller D.,Moser A.,Folks L.,Best M.E.,Lee W.,Toney M.F.,Schwickert M., Thiele J. U., Doerner M. F. High K-u materials approach to 100 Gbits/in(2) [J]. IEEE T. Magn., 2000, 36(1): 10-15.
    [13] Sun S. H., Fullerton E. E., Weller D., Murray C. B. Compositionally controlled FePt nanoparticle materials [J]. IEEE T. Magn., 2001, 37(4): 1239-1243.
    [14] Nam J. M., Thaxton C. S., Mirkin C. A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins [J]. Science, 2003, 301(5641): 1884-1886.
    [15] Tsang S. C, Caps V., Paraskevas I., Chadwick D., Thompsett D. Magnetically separable carbon-supported nanocatalysts for the manufacture of fine chemicals [J]. Angew. Chem. Int. Ed., 2004, 43(42): 5645-5649.
    [16] Wang W., Gu B. H., Liang L. Y., Hamilton W. Fabrication of two- and three-dimensional silica nanocolloidal particle arrays [J]. J. Phys. Chem. B, 2003, 107(15): 3400-3404.
    [17] Shklover V. Formation of aligned microfiber arrays via self-assembling SiO_2 nanocolloids. Change of microfiber structure during annealing [J]. Chem. Mate., 2005, 17(3): 608-614.
    [18] Lu Y., Yin Y. D., Li Z. Y, Xia Y. A. Synthesis and self-assembly of Au@SiO_2 core-shell colloids [J]. Nano Lett., 2002, 2(7): 785-788.
    [19] Murray C. B., Kagan C. R., Bawendi M. G. Synthesis and characterization of monodisperse nanocrystal and close-packed nanocrystal assemblies [J]. Annu. Rev. Mate. Sci., 2000, 30: 545-610.
    [20] Forster S., Timmann A., Konrad M., Schellbach C, Meyer A., Funari S. S., Mulvaney P., Knott R. Scattering curves of ordered mesoscopic materials [J]. J. Phys. Chem. B, 2005, 109(4): 1347-1360.
    [21] Tsang S. C., Davis J. J., Green M. L. H., Allen H., Hill O., Leung Y. C, Sadler P. J. Immobilization of Small Proteins in Carbon Nanotubes - High-Resolution Transmission Electron-Microscopy Study And Catalytic Activity [J]. Chem. Commun., 1995,(17): 1803-1804.
    [22] Gilpin R. K., Ehtesham S. E., Gregory R. B. Liquid-Chromatographic Studies of the Effect of Temperature on the Chiral Recognition of Tryptophan by Silica-Immobilized Bovine Albumin [J]. Anal. Chem., 1991, 63(24): 2825-2828.
    [1]Zhao,W.R.,Gu J.L.,Zhang L.X.,Chen H.R.,Shi J.L.Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure[J].J.Am.Chem.Soc.,2005,127(25):8916-8917.
    [2]Meng Y.D.,Chen D.R.,Jiao X.L.Fabrication and characterization of mesoporous Co_3O_4 core/mesoporous silica shell nanocomposites[J].J.Phys.Chem.B,2006,110(31):15212-15217.
    [3]Kim J.,Lee J.E.,Lee J.,Yu J.H.,Kim B.C.,An K.,Hwang Y.,Shin C.H.,Park J.G.,Kim J.,Hyeon T.Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals[J].J.Am.Chem.Soc.,2006,128(3):688-689.
    [4]Tang D.P.,Yuan R.,Chai Y.Q.,An H.Z.Magnetic-core/porous-shell CoFe_2O_4/SiO_2 composite nanoparticles as immobilized affinity supports for clinical immunoassays[J].Adv.Funct.Mater.,2007,17(6):976-982.
    [5]Shokouhimehr M.,Piao Y.Z.,Kim J.,Jang Y.J.,Hyeon T.A magnetically recyclable nanocomposite catalyst for olefin epoxidation[J].Angew.Chem.Int.Ed.,2007,46(37):7039-7043.
    [6]Antochshuk V.,Jaroniec M.Functionalized mesoporous materials obtained via interfacial reactions in self-assembled silica-surfactant systems[J].Chem.Mater.,2000,12(8):2496-2501.
    [7]Feng X.,Fryxell G.E.,Wang L.Q.,Kim A.Y.,Liu J.,Kemner K.M.Functionalized monolayers on ordered mesoporous supports[J].Science,1997,276(5314):923-926.
    [8]Kneuer C.,Sameti M.,Haltner E.G,Schiestel T.,Schirra H.,Schmidt H.,Lehr C.M.Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA[J].Int.J.Pharrn.,2000,196(2):257-261.
    [9]何晓晓,王柯敏,谭蔚泓,刘斌,林霞,黄杉生,李杜,何春梅,李军.基于氨基化SiO_2纳米颗粒的新型基因载体[J].科学通报,2002,47(18):1365-1369.
    [1]Edwards J.O.,Curci R.Catalytic Oxidations with Hydrogen Peroxide As Oxidant[M].Dordrecht:Kluwer Academic Publishers,1992,45-95.
    [2]Eliseev A.V.,Yatsimirskii A.K.Hydroxylation Selectivity of Phenol and O-Protected Phenols in the Fe(Ⅲ)-Catechol-H_2O_2 System[J].React.Kinet.Catal.L.,1991,43(2):419-423.
    [3]Sim醤di L.I.Dioxygen Activation and Homogeneous Catalytic Oxidation[M].Amsterdam:Elsevier,1991.
    [4]Yu J.F.,Yang Y.,Wu T.H.,Sun C.C.Catalytic activity of Dawson-molybdovanadophosphoric in phenol hydroxylation with hydrogen peroxide[J].Chem.J.Chinese U.,1996,17(1):126-128.
    [5]Liu Q.S.,Yu J.F.,Wang Z.L.,Yang P.P.,Wu T.H.Preparation characterization and catalytic properties of alpha-Fe_2O_3/SiO_2 catalyst in phenol hydroxylation with hydrogen peroxide[J].React.Kinet.Catal.L.,2001,73(1):179-186.
    [6]Xiao F.S.,Sun J.M.,Meng X.J.,Yu R.B.,Yuan H.M.,Xu J.N.,Song T.Y.,Jiang D.Z.,Xu R.R.Synthesis and structure of copper hydroxyphosphate and its high catalytic activity in hydroxylation of phenol by H_2O_2 [J]. J. Catal., 2001, 199(2): 273-281.
    [7] Yu R. B., Xiao F. S., Wang D., Sun J. M., Liu Y., Pang G. S., Feng S. H., Qiu S. L., Xu R. R., Fang C. G. Catalytic performance in phenol hydroxylation by hydrogen peroxide over a catalyst of V-Zr-0 complex [J]. Catal. Today, 1999, 51(1): 39-46.
    [8] Zhu K. Z., Liu C. B., Ye X. K., Wu Y. Catalysis of hydrotalcite-like compounds in liquid phase oxidation: (I) phenol hydroxylation [J]. Appl. Catal. A-Gen., 1998,168(2): 365-372.
    [9] Dubey A., Rives V., Kannan S. Catalytic hydroxylation of phenol over ternary hydrotalcites containing Cu Ni and Al [J]. J. Mol. Catal. A-Chem., 2002, 181(1-2): 151-160.
    [10] Ramaswamy V., Krishnan M. S., Ramaswamy A. V. Immobilization and characterization of copper chlorophthalocyanine on alumina-pillared montmorillonite [J]. J. Mol. Catal. A-Chem., 2002, 181(1-2): 81-89.
    [11] Taramasso M, Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides [P]. US Patent: 4410501, 1983-10-18.
    [12] Reddy J. S., Kumar R., Ratnasamy P. Titanium Silicalite-2 - Synthesis Characterization and Catalytic Properties [J]. Appl. Catal., 1990, 58(2): L1-L4.
    [13] Camblor M. A., Corma A., Martinez A., Perezpariente J. Synthesis of a Titaniumsilicoaluminate Isomorphous to Zeolite-Beta and Its Application as a Catalyst for the Selective Oxidation of Large Organic-Molecules [J]. Chem. Commun., 1992, (8): 589-590.
    [14] Wang J., Park J. N., Wei X. Y, Lee C. W. Room-temperature heterogeneous hydroxylation of phenol with hydrogen peroxide over Fe~(2+) Co~(2+) ion-exchanged Na beta zeolite [J]. Chem. Commun., 2003, (5): 628-629.
    [15] Carvalho W. A., Wallau M., Schuchardt U. Iron and copper immobilised on mesoporous MCM-41 molecular sieves as catalysts for the oxidation of cyclohexane [J]. J. Mol. Catal. A-Chem., 1999, 144(1): 91-99.
    [16] Fu Z. H., Chen J. H., Yin D. L., Yin D. H., Zhang L. X., Zhang Y. Y. Highly effective Cu-HMS catalyst for hydroxylation of phenol [J]. Catal. Lett., 2000, 66(1-2): 105-108.
    [17] Chou B. Y, Tsai J. L., Cheng S. F. Cu-substituted molecular sieves as liquid phase oxidation catalysts [J]. Micropor. Mesopor. Mat., 2001, 48(1-3): 309-317.
    [18] Lee C. W., Ahn D. H., Wang B., Hwang J. S., Park S. E. Hydroxylation of phenol over surface functionalized MCM-41 supported metal catalyst [J]. Micropor. Mesopor. Mat., 2001, 44: 587-594.
    [19] Zhao W., Luo Y. F., Deng P., Li Q. Z. Synthesis of Fe-MCM-48 and its catalytic performance in phenol hydroxylation [J]. Catal. Lett., 2001, 73(2-4): 199-202.
    [20] Han Y., Meng X. J., Guan H. B., Yu Y, Zhao L., Xu X. Z., Yang X. Y, Wu S., Li N., Xiao F. S. Stable iron-incorporated mesoporous silica materials (MFS-9) prepared in strong acidic media [J]. Micropor. Mesopor. Mat., 2003, 57(2): 191-198.
    [21] Wang L. P., Kong A. G, Chen B., Ding H. M., Shan Y. K., He M. Y. Direct synthesis characterization of Cu-SBA-15 and its high catalytic activity in hydroxylation of phenol by H_2O_2 [J]. J. Mol. Catal. A-Chem., 2005, 230(1-2): 143-150.
    [22] Choi J. S., Yoon S. S., Jang S. H., Ahn W. S. Phenol hydroxylation using Fe-MCM-41 catalysts [J]. Catal. Today, 2006, 111(3-4): 280-287.
    [23] Ren Y, Qian L. P., Yue B., He H. Y. Synthesis of Ti-containing silica mesoporous molecular sieves with high catalytic activity for epoxidation [J]. Chinese J. Catal., 2003, 24(12): 947-950.
    [24] Vanderpol A., Verduyn A. J., Vanhooff J. H. C. Comparison between Gas-Chromatography and High-Performance Liquid-Chromatography Analysis of the Reaction-Products Formed by the Hydroxylation of Phenol [J]. Appl. Catal. A-Gen., 1993, 96(2): L13-L20.
    [25] Ma N., Ma Z., Yue Y. H., Gao Z. Reaction testing of phenol hydroxylation and cyclohexane oxidation by gas chromatography: influence of residual hydrogen peroxide [J]. J. Mol. Catal. A-Chem., 2002, 184(1-2): 361-370.
    [26] Tanev P. T., Pinnavaia T. J. A Neutral Templating Route to Mesoporous Molecular-Sieves [J]. Science, 1995, 267(5199): 865-867.
    [27] Sing K. S. W, Everett D. H., Haul R. A. W., Moscou L., Pierotti R. A., Rouquerol J., Siemieniewska T. Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity. [J]. Pure Appl. Chem., 1985, 57(4): 603-619.
    [28] Ryoo R., Joo S. H., Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. J. Phy. Chem. B, 1999, 103(37): 7743-7746.
    [29] Shan Z., Gianotti E., Jansen J. C, Peters J. A., Marchese L., Maschmeyer T. One-step synthesis of a highly active mesoporous titanium-containing silica by using bifunctional templating [J]. Chem. Eur. J., 2001, 7(7): 1437-1443.
    [30] Itho Y., Nishiyama S., Tsuruya S., Masai M. Redox Behavior and Mobility of Copper Ions in Nazsm-5 Zeolite during Oxidation [J]. J. Phys. Chem., 1994, 98(3): 960-967.
    [31] Tkachenko O. P., Klementiev K. V., Loffler E., Ritzkopf I., Schuth F., Bandyopadhyay M., Grabowski S., Gies H., Hagen V., Muhler M., Lu L. H., Fischer R. A., Grunert W. The structure of zinc and copper oxide species hosted in porous siliceous matrices [J]. Phys. Chem. Chem. Phys., 2003, 5(19): 4325-4334.
    [32] Tuel A., Moussakhouzami S., Bentaarit Y., Naccache C. Hydroxylation of Phenol over TS-1 - Surface and Solvent Effects [J]. J. Mol. Catal., 1991, 68(1): 45-52.
    [33] Reddy J. S., Sivasanker S., Ratnasamy P. Hydroxylation of Phenol over TS-2 a Titanium Silicate Molecular-Sieve [J]. J. Mol. Catal., 1992, 71(3): 373-381.
    [34] Liu C. B., Zhao Z., Yang X. G, Ye X. K., Wu Y. Superconductor mixed oxides La_(2-x)Sr_xCuO_(4(?)) for catalytic hydroxylation of phenol in the liquid-solid phase [J]. Chem. Commun., 1996, (9): 1019-1020.
    [1]Froba M.,Kohn R.,Bouffaud G.,Richard O.,van Tendeloo G.Fe_2O_3nanoparticles within mesoporous MCM-48 silica:In situ formation and characterization[J].Chem.Mater.,1999,11(10):2858-2865.
    [2]Choudhary V.R.,Jana S.K.,Kiran B.P.Highly active Si-MCM-41-Supported Ga_2O_3 and In_2O_3 catalysts for Friedel-Crafts-type benzylation and acylation reactions in the presence or absence of moisture[J].J.Catal.,2000,192(2):257-261.
    [3]Zecchina A.,Scarano D.,Spoto G.,Bordiga S.,Lamberti C.,Bellussi G.Surface properties of Cu_2O/MCM-41 mesoporous systems[J].Stud.Surf.Sci.Catal.,1998,117,343-350.
    [4]Han Y.J.,Kim J.M.,Stucky G.D.Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15[J].Chem.Mater.,2000,12(8):2068-2069.
    [5]Liu Z.,Sakamoto Y.,Ohsuna T.,Hiraga K.,Terasaki O.,Ko C.H.,Shin H.J.,Ryoo R.TEM studies of platinum nanowires fabricated in mesoporous silica MCM-41[J].Angew.Chem.Int.Ed.,2000,39(I7):3107-3110.
    [6]Coleman N.R.B.,Morris M.A.,Spalding T.R.,Holmes J.D.The formation of dimensionally ordered silicon nanowires within mesoporous silica[J].J.Am.Chem.Soc.,2001,123(1):187-188.
    [7]Gao F.,Lu Q.Y.,Liu X.Y.,Yah Y.S.,Zhao D.Y.Controlled synthesis of semiconductor PbS nanocrystals and nanowires inside mesoporous silica SBA-15 phase[J].Nano Lett.,2001,1(12):743-748.
    [8]Zhu K.K.Yue B.Zhou W.Z.He H.Y.Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15[J].Chem.Commun.,2003,(1):98-99.
    [9] Mitsudome T. Mikami Y. Funai H. Mizugaki T. Jitsukawa K. Kaneda K. Heterogeneous Catalysis - Oxidant-free Alcohol Dehydrogenation Using a Reusable Hydrotalcite-supported Silver Nanoparticle Catalyst [J]. Angew. Chem. Int. Ed., 2008,47(1): 138-141.
    [10] Shen J. Shan W. Zhang Y. H. Du J. M. Xu H. L. Fan K. N. Shen W. Tang Y. A Novel Catalyst with High Aactivity for Polyhydric Alcohol Oxidation: Nanosilver/zeolite film [J]. Chem. Commun., 2004, (24): 2880-2881.
    [11] Besson S., Gacoin T., Ricolleau C, Boilot J. P. Silver nanoparticle growth in 3D-hexagonal mesoporous silica films [J]. Chem. Commun., 2003, (3): 360-361.
    [12] Fukuoka A., Araki H., Kimura J., Sakamoto Y, Higuchi T., Sugimoto N., Inagaki S., Ichikawa M. Template synthesis of nanoparticle arrays of gold platinum and palladium in mesoporous silica films and powders [J]. J. Mater. Chem., 2004, 14(4): 752-756.
    [13] Huang M. H., Choudrey A., Yang P. D. Ag nanowire formation within mesoporous silica [J]. Chem. Commun., 2000, (12): 1063-1064.
    [14] Yang P. D., Zhao D. Y, Margolese D. I., Chmelka B. F., Stucky G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature, 1998, 396(6707): 152-155.
    [15] Sing K. S. W., Everett D. H., Haul R. A. W., Moscou L., Pierotti R. A., Rouquerol J., Siemieniewska T. Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity [J]. Pure Appl. Chem., 1985, 57(4): 603-619.
    [16] Tanev P. T., Pinnavaia T. J. A Neutral Templating Route to Mesoporous Molecular-Sieves [J]. Science, 1995, 267(5199): 865-867.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700