甲烷低温等离子体活化与煤热解耦合过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以实现CH4/C02低温活化并与煤热解制油最佳温度区间相匹配,从而提高CH4/CO2活化与煤热解耦合过程焦油产率为出发点,开展以下几方面的工作:
     (1)探索和比较了多种用于CH4/CO2低温等离子体转化的介质阻挡放电(DBD)反应器形式,并选择了介质层位于低压电极侧的单层介质DBD反应器;对反应器的结构参数和工艺条件进行了优化。用设计的反应器进行C02转化实验表明:增大气体流量、提高原料气中CO2的含量或向反应气氛中添加Ar/H2有利于高温条件下放电的稳定进行;增加输入功率能显著提高气体的转化率;升高温度对C02转化有促进作用,但效果不明显,且会对放电稳定性产生较大影响。CH4等离子体中主要发生裂解出一个H·形成"CH3的反应。
     (2)研究了各工艺条件对神木烟煤(SM)和霍林河褐煤(HLH)在CH4/CO2低温等离子体(P)活化与煤热解耦合过程中产物分布的影响。结果表明,向CH4/CO2中添加50%的H2形成混合气(MG),不仅能促进放电的稳定,还能获得较高的焦油产率;不同气氛对提高焦油产率的作用大致有如下顺序:MG-P> CH4-P≈CH4/H2-P≈CO2/H2-P>H2-P>H2>N2,在低温范围内(400~500。C)这种趋势更为明显;增大气体流量能促进放电的稳定和煤的转化,但水产率也随之增加,SM煤焦油产率随流量的增大而增加,而HLH煤则相反;在不影响放电稳定性的前提下,增加反应时间和输入功率有利于焦油产率的提高。
     (3)采用H2等离子体直接处理法制备了Ni/SiO2催化剂,与传统先煅烧再加氢还原的工艺制备的催化剂相比,其具有更好的CH4/CO2催化重整活性和稳定性。研究了工艺条件对H2等离子体直接处理法制备的Ni/SiO2和Ni/Al2O3的催化重整与等离子体-催化重整性能的影响,发现等离子体-催化重整能促进Ni/Al2O3催化剂上CH4和CO2的转化;但对于Ni/SiO2,只能促进CO2的转化;等离子体放电条件下的液体产率高于不放电时的液体产率。将CH4/CO2催化重整和等离子体-催化重整过程分别与煤热解过程耦合(ICCC和ICCP),发现对ICCC过程来说,Ni/Al2O3催化剂和较高的热解温度或较长的反应时间有利于焦油产率的提高;对ICCP过程来说,Ni/SiO2催化剂、较低的温度范围、较短的反应时间、混合气中较高的H2含量以及较高的输入功率等条件有利于焦油产率的提高;催化剂Ni担载量对产物产率的影响较小。ICCC和ICCP过程的最高焦油产率分别为25.5%和23.7%,均高于相应条件的MG-P气氛下的焦油产率。
     (4)对不同气氛下半焦的FT-IR分析表明:等离子体与煤之间确实存在着相互作用,不同气氛的等离子体与煤之间的相互作用不同。对焦油的1HNMR分析表明,H2-P气氛下,芳香氢含量升高,脂肪氢含量降低,而其它等离子体气氛下芳香氢含量降低,脂肪氢含量升高;13C NMR分析表明,CH4/H2-P、CO2/H2-P和MG-P气氛下,与3个H相连的饱和脂肪碳(CH3)含量升高,CO2/H2-P和MG-P气氛下,与-OH相连的芳香碳含量增加;等离子体气氛下,焦油的芳香度降低。对焦油的280℃前馏分的GC-MS和GC分析表明,其主要成分是酚、萘及它们的同系物;酚和萘的同系物中,C1和C2烷基取代物是主要的存在形式,且等离子体气氛下它们的相对含量更高。上述结果表明,等离子体气氛中丰富的H·、·CHx、·OH等自由基参与了焦油的形成,促进了焦油的轻质化。
     (5)对耦合过程的能效分析表明,耦合过程平均每增产1g焦油需消耗有效放电能量约5.1Wh,仍存在改进空间。对等离子体放电的原位发射光谱诊断表明,等离子体中存在H、CH、C+等离子;模拟计算了放电条件下的气体转动温度和振动温度。耦合过程的同位素示踪显示,焦油的主要成分如苯酚、甲酚和萘中均能检测到不止1个D原子存在,说明耦合过程确实有CD4分解产生的自由基与煤热解自由基结合。
The main purpose of this dissertation was to explore a new process which can effectively activate methane under relatively low temperature and match the optimal temperature range during coal pyrolysis for high tar yield. The main research works and results are summarized as follows:
     (1) Several kinds of dielectric barrier discharge (DBD) reactors were investigated for methane activation, and the optimum reactor with one dielectric layer located on the low-voltage electrode side was determined. The structural parameters of the reactor and reaction conditions were optimized to ensure that the discharge can be operated under high temperature. The results for CH4/CO2conversion in the designed DBD reactor show that increasing the gas flow rate, CO2content in the feed gas or adding Ar/H2to the feed gas can promote the stability of the discharge under high temperature; increasing the input power can remarkably increase the CH4and CO2conversion. However, increasing the temperature only has weak effect on increasing the CH4and CO2conversion and leads to the instability of the discharge. CH4molecule in DBD plasma are mainly dissociated to H-and-CH3.
     (2) The effects of reaction conditions on the product yields in the integrated process of Shenmu (SM) subbituminous coal and Huolinhe (HLH) lignite pyrolysis with CH4/CO2activation by DBD plasma were investigated. The results showed that when50%H2was added to CH4/CO2(1:1) to form a mixed gas (MG), the stability of the discharge could be promoted and a high tar yield could be achieved. The effect of different atmospheres on increasing the tar yield is in the following order:MG-P> CH4-P≈CH4/H2-P≈CO2/H2-P> H2-P> H2> N2, especially at low temperature range (400~500℃). Increasing the gas flow rate is favorable for the discharge stability and can improve the coal conversion, but the water yield increases, too, the tar yield of SM coal increases while that of HLH lignite decreases. Increasing the pyrolysis time and the input power can increase the tar yield on condition that the discharge is stable.
     (3) Ni/SiO2catalyst was prepared by exposing the precursor directly in H2plasma, and it shows better catalytic activity and stability compared with Ni/SiO2prepared by normal method in CO2reforming methane (CRM). The catalytic and plasma-catalytic performances of Ni/SiO2and Ni/Al2O3prepared by H2plasma were investigated and the results indicated that CH4and CO2conversion were improved in plasma-catalytic process compared with catalytic process on Ni/Al2O3, while only CO2conversion was improved in plasma-catalytic process on Ni/SiO2. The effect of reaction conditions on product yield in the integrated process of coal pyrolysis with CRM by catalyst (ICCC) or plasma-catalyst (ICCP) was investigated. The results showed that Ni/Al2O3catalyst and high reaction temperature, or long reaction time are beneficial to increase the tar yield in the ICCC, while Ni/SiO2catalyst, low reaction temperature, short reaction time, high H2content in the feed gas and high input power are good for the ICCP. The Ni loading amount has weak effect on product yield of both processes. The highest tar yield is25.5%and23.7%for the ICCC and ICCP, respectively, which is higher than the tar yield under MG plasma.
     (4) The FT-IR analyses of chars under different atmospheres indicate that the interaction between coal and plasma does exist and it is different under different atmospheres. The1H NMR analyses of tar show that the aromatic hydrogen content decreases while the aliphatic hydrogen content increases under plasma atmospheres except that under H2plasma which has the reversed change.13C NMR analyses show that the content of the saturated aliphatic C to three H bond increases under CH4/H2-P, CO2/H2-P and MG-P atmosphere, the content of the aromatic C which bond to-OH increases under CO2/H2-P and MG-P atmosphere, and the aromaticity decreases under plasma atmospheres. The main components identified by GC-MS and quantified by GC in the volatile fraction (280℃) of tar are phenol, naphthalene and their Ci-C3alkyl-substitute homologues, in which C1-C2substitutes are the main forms. All these analyses suggest that the abundant H·,·CHX,·OH radicals exist in plasma involved in tar formation during coal pyrolysis and have effect on upgrading the coal tar.
     (5) Analysis showed that the consumption of the effective discharge energy is about5.1Wh for1g of tar increment, which still need to be improved. Radicals like H, CH and C+are detected in plasma by Optical Emission Spectrum, and the rotational temperature and vibration temperature were analogue calculated according to the spectra. Isotope analysis of the tar formed in the integrated process show that more than one deuterium atom exists in the main component of tar, such as phenol, cresol and naphthalene, which indicates that the radicals decomposed from CD4(CH4) by plasma combined with those generated from coal in the integrated process.
引文
[1]高晋生.煤的热解、炼焦和煤焦油加工[M].北京:化学工业出版社,2010.
    [2]虞继舜.煤化学[M].北京:冶金工业出版社,2000.
    [3]郭崇涛.煤化学[M].北京:化学工业出版社,1992.
    [4]Miura K. Mild conversion of coal for producing valuable chemicals [J]. Fuel Processing Technology, 2000,62:119-135.
    [5]Solomon P R, Serio M A, Despande G V, Kroo V. Cross-linking reactions during coal conversion [J]. Energy & Fuels,1990,4:42-54.
    [6]Xu W C, Tomita A. Effect of coal type on the flash pyrolysis of various coals [J]. Fuel,1987,66: 627-631.
    [7]Wanzl W, Bittner D. Experiments on pyrolysis behaviour of different coals [J]. Fuel Processing Technology,1990,24:11-17.
    [8]Hashimoto K, Miura K, Ueda T. Correlation of gasification rates of various coals measured by a rapid heating method in a steam atmosphere at relatively low temperatures [J]. Fuel,1986,65:1516-1523.
    [9]de la Puente G, Iglesias M J, Fuente E, Pis J J. Changes in the structure of coals of different rank due to oxidation-effects on pyrolysis behaviour [J]. Journal of Analytical and Applied Pyrolysis,1998,47: 33-42.
    [10]朱学栋,朱子彬,唐黎华,张成芳.煤的热解研究Ⅱ煤化程度对氢气气氛下热解的影响[J].华东理工大学学报,1998,24(3):262-266.
    [11]王鹏,文芳,步学朋,刘玉华,边文,邓一英.煤热解特性研究[J].煤炭转化,2005,28(1):8-13.
    [12]Cai H Y, Megaritis A, Messembock R, Dix M, Dugwell D R, Kandiyoti R. Pyrolysis of coal maceral concentrates under pf-combustion conditions (I):changes in volatile release and char combustility as function of rank [J]. Fuel,1998,77:1273-1282.
    [13]孙庆雷,李文,陈皓侃,李保庆.神木煤显微组分热解和加氢热解的焦油组成[J].燃料化学学报,2005,33(4):412-415.
    [14]李文英,谢克昌.平朔气煤的煤岩显微组分结构研究[J].燃料化学学报,1992,20(4):375-383.
    [15]赵云鹏.西部弱还原性煤的热解特性研究[D].大连:大连理工大学,2010.
    [16]谢克昌,赵明举,凌大琦.矿物质对煤焦表面性质和煤焦-CO2气化反应的影响[J].燃料化学学报,1990,18(4):316-323.
    [17]朱廷钰,黄戒介,工洋,陈富艳.煤温和气化焦油性质研究[J].煤炭转化,1999,22(1):70-73.
    [18]Seewald J S, Eglinton L B, Ong Y L. An experimental study of organic-inorganic interactions during vitrinite maturation [J]. Geochimica et Cosmochimica Acta,2000,64 (9):1577-1591.
    [19]张军,袁建伟,徐益谦.矿物质对煤粉热解的影响[J].燃烧科学与技术,1998,4(1):63-68.
    [20]缪岩,蒋君衍,张鹤声.煤催化热解过程的动力学研究[J].燃烧科学与技术,1995,1(2):140-150.
    [21]李凡,张永发,谢克吕.矿物质对煤显微组分热解的影响[J].燃料化学学报,1992,20(3):300-306.
    [22]赵娅鸿,常丽萍,谢克昌,李灵芝.矿物质对煤转化过程中含氮物迁移的影响[J].现代化工,2004,24(S1):11-15.
    [23]周强.煤的热解行为及硫的脱除[D].大连:大连理工大学,2004.
    [24]刘全润.煤的热解转化和脱硫研究[D].大连:大连理工大学,2005.
    [25]Anthony D B, Howard J B, Hottel H C, Meissner H P. Rapid devolatilization and hydrogasification of bituminous coal [J]. Fuel,1976,55:121-128.
    [26]Gavalas G R, Wilks K A. Intraparticle mass transfer in coal pyrolysis [J]. AIChE Journal,1980,26: 201-212.
    [27]崔银萍,秦玲丽,杜娟,常丽萍.煤热解产物的组成及其影响因素分析[J].煤化工,2007,(2):10-15.
    [28]李保庆.煤加氢热解研究Ⅰ.宁夏灵武煤加氢热解的研究[J].燃料化学学报,1995,23(1):57-61.
    [29]李保庆.我国煤加氢热解研究11.先锋褐煤加氢及催化加氢热解的热重研究[J].燃料化学学报,1995,23(2):186-191.
    [30]李保庆.我国煤加氢热解研究Ⅲ.神府煤加氢、催化加氢及H2-CH4气氛下热解的研究[J].燃料化学学报,1995,23(2):192-197.
    [31]廖洪强,李保庆,张碧江.煤-焦炉气共热解特性的研究-温度的影响[J].燃料化学学报,1998,26(3):270-274.
    [32]朱子彬,王欣荣,马智华,俞丰,倪燕慧,张成芳.快速加氢热解有效利用烟煤的研究[J].自然科学进展,1997,6(4):495-498.
    [33]Liu J H, Hu H Q, Jin L J, Wang P F. Effects of the catalyst and reaction conditions on the integrated process of coal pyrolysis with CO2 reforming of methane [J]. Energy & Fuels,2009,23 (10): 4782-4786.
    [34]Liu J H, Hu H Q, Jin L J, Wang P F, Zhu S W. Integrated coal pyrolysis with CO2 reforming of methane over Ni/MgO catalyst for improving tar yield [J]. Fuel Processing Technology,2010,91 (4): 419-423.
    [35]Wang P F, Jin L J, Liu J H, Zhu S W, Hu H Q. Analysis of coal tar derived from pyrolysis at different atmospheres [J]. Fuel,2010, doi:10.1016/j.fuel.2010.06.041.
    [36]王鹏飞.煤热解与甲烷二氧化碳重整耦合过程中焦油的形成机理及组成分析[D].大连:大连理工大学,2011.
    [37]Hill R J, Jenden P D, Tang Y C, Teerman S C, Kaplan I R. Influence of pressure on pyrolysis of coal. ACS Symposium Series,1994,570,161-193.
    [38]熊源泉,刘前鑫,章名耀.加压条件下煤热解反应动力学的试验研究[J].动力工程,1999,19(3):77-84.
    [39]Cypres R, Li B Q. Effects of pretreatment by various gases on hyoropyrolysis of a belgian coal [J]. Fuel Processing Technol.1988,20:337-347.
    [40]Graff R A, Brandes S D. Modification of coal by subcritical steam:pyrolysis and extraction yields [J]. Energy & Fuels,1987,1(1):84-88.
    [41]Brandes S D, Graff R A, Gorbaty M L, Siskin M. Modification of coal by subcritical steam:An examination of modified Illinois No.6 coal [J]. Energy & Fuels,1989,3 (4):494-498.
    [42]Ofosu-Asante K, Stock L M, Zabransky R F. Pathways for the decomposition of linear paraffinic materials during coal pyrolysis [J]. Fuel,1989.68 (5):567-572.
    [43]Franklin H D, Cosway R G, Peters W A, Howard J B. Effects of cations on the rapid pyrolysis of a Wyodak subbituminous coal [J]. Industrial & Engineering Chemistry Process Design and Development,1983,22 (1):39-42.
    [44]Miura K, Mae K, Asaoka S, Yoshimura T, Hashimoto K. A new coal flash pyrolysis method utilizing effective radical transfer from solvent to coal [J]. Energy & Fuels,1991.5 (2):340-346.
    [45]Miura K, Mae K, Sakurada K, Hashimoto K. Flash pyrolysis of coal following thermal pretreatment at low temperature [J]. Energy Fuels,1992,6 (1):16-21.
    [46]Hayashi J, Kawakami T, Kusakabe K, Morooka S. Physical and chemical modification of low-rank coals with alkyl chains and the roles of incorporated groups in pyrolysis [J]. Energy Fuels,1993.7 (6): 1118-1122.
    [47]Greene M I. Engineering development of a short residence time, coal hydropyrolysis process [J]. Fuel Processing Technology.1978,1(3):169-185.
    [48]Fynes G, Ladner W R. Newman J O H. The hydropyrolysis of coal to BTX [J]. Progress in Energy and Combustion Science,1980,6(3):223-232.
    [49]Furfari S. Hydropyrolysis of coal, ICTIS/TR 20 [R]. London:IEA Coal Research,1982.
    [50]陈皓侃,李保庆,张碧江.反应条件对煤加氢热解产物分布的影响[J].燃料化学学报,1997,25(1):49-54.
    [51]Zhou Q, Hu H Q, Liu Q R, Zhu S W, Zhao R. Effect of atmosphere on evolution of sulfur-containing gases during coal pyrolysis [J]. Energy Fuels,2005,19 (3):892-897.
    [52]Steinberg M, Fallon P T. Make ethylene and benzene by flash methanolysis of coal [J]. Hydrocarbon processing,1982,61 (1):92-96.
    [53]Colkins W H, Bonifaz C. Coal flash pyrolysis:5. pyrolysis in an atmosphere of methane [J]. Fuel, 1984,63(12):1716-1719.
    [54]Braekman-Danheux C. Cypres R, Fontana A. Laurent P, Van Hoegaerden M. Coal hydromethanolysis with coke-oven Gas:1. influence of temperature on the pyrolysis yields [J]. Fuel,1992,71 (3): 251-255.
    [55]Braekman-Danheux C, Cypres R, Fontana A, Van Hoegaerden M. Coal hydromethanolysis with coke-oven gas:2. influence of the coke-oven gas components on pyrolysis yields [J]. Fuel,1995,74 (1):17-19.
    [56]Braekman-Danheux C. Fontana A, Labani A, Laurent P. Coal hydromethanolysis with coke-oven gas: 3. influence of the coke-oven gas components on the char characteristics [J]. Fuel,1996,75 (11): 1274-1278.
    [57]Cypres R, Furfari S. Low-temperature hydropyrolysis of coal under pressure of H2-CH4 mixtures. Fuel, 1982,61 (8):721-724.
    [58]廖洪强,孙成功,李保庆,刘泽常.煤焦炉气共热解特性的研究Ⅰ.固定床热解反应特性[J].燃料化学学报,1997,25(2):104-108.
    [59]廖洪强,孙成功,李保庆,刘泽常.煤-焦炉气共热解特性研究Ⅲ.热解焦油分析[J].燃料化学学报,1998,26(1):7-12.
    [60]廖洪强,李保庆,张碧江,刘泽常.煤-焦炉气共热解特性研究Ⅳ.甲烷和一氧化碳对热解的影响[J].燃料化学学报,1998,26(1):13-17.
    [61]廖洪强,李保庆,张碧江.煤-焦炉气共热解特性及其增油减水方法研究[J].煤炭转化,1998,21(3):55-58.
    [62]廖洪强,孙成功,李保庆,刘泽常.富氢气氛下煤热解特性的研究[J].燃料化学学报,1998,26(2):19-23.
    [63]廖洪强,李保庆,张碧江.煤-合成气共热解特性的研究[J].煤化工,1999,(3):22-25.
    [64]Doolan K R, Mackie J C. Products from the rapid pyrolysis of a brown coal in inert and reducing atmospheres [J]. Fuel,1985,64 (3):400-405.
    [65]Ren R L, Itoh H, Makabe M, Ouchi K. Dealkylation of coal-derived oil by hydrogen from methanol decomposition:1. Dealkylation of ethylbenzene as a model of coal-derived oil [J]. Fuel,1987,66 (5): 643-648.
    [66]Smith G V, Wiltowski T, Phillips J B. Conversion of coals and chars to gases and liquids by treatment with mixtures of methane and oxygen or nitric oxide [J]. Energy & Fuels 1989,3 (4):536-537.
    [67]Miura K, Mae K, Murata A, Sato A, Sakurada K, Hashimoto K. Flash pyrolysis of coal in solvent vapor for controlling product distribution [J]. Energy & Fuels,1992,6 (2):179-184.
    [68]Snape C E, Bolton C, Dosch R G, Stephens H P. High liquid yields from bituminous coal via hydropyrolysis with dispersed catalysts [J]. Energy Fuels 1989,3 (3):421-425.
    [69]Li B Q, Braekman-Danheux C, Cypres R. Catalytic hydropyrolysis by impregnated sulphided Mo catalyst [J]. Fuel,1991,70 (2):254-258.
    [70]Takarada T, Tonishi T, Fusegawa Y, Nakagawa N, Kato K. Catalytic pyrolysis of coal in a powder-particle fluidized bed [C]. Proceedings of the 6th Conference of the Asia Pacific Confederation of Chemical Engineering, Melbourne,1993.
    [71]Ma Z C, Ma X X, Luo J C, Xu L, Yang F. Catalytic hydropyrolysis of five Chinese coals [J]. Energy & Fuels,2012,26(1):511-517.
    [72]Hodek W, Furtjes T, Van Heek K H. Fundamental principles in the chemistry of co-pyrolysis of coal and plastic waste [J]. Erdoel Erdgas Kohle,1995,111 (9):376-378.
    [73]廖洪强,李保庆,刘力,张碧江.不同气氛下煤-废塑料共热解特性的对比研究[J].煤炭转化,1998,21(4):64-68.
    [74]李保庆,张碧江,田福军,廖洪强.废塑料在煤-焦炉气共热解中的增油减水效应[J].燃料化学学报,1999,27(5):385-388.
    [75]廖洪强,李保庆,张碧江.工艺条件对煤-废塑料在焦炉气气氛下共热解特性的影响[J].煤炭转化.1998,21(4):58-61.
    [76]邓德敏,刘霞,廖洪强.废轮胎与煤共热解失重特性研究[J].化工环保.2010.30(2):117-120.
    [77]李希尧.煤与聚乙烯、聚丙烯的热解及共热解研究[D].大连:大连理工大学,2008.
    [78]Kriz V, Bicakova O. Hydrogen from the two-stage pyrolysis of bituminous coal/waste plastics mixtures [J]. International Journal of Hydrogen Energy,2011,36 (15):9014-9022.
    [79]李文,李保庆,孙成功,尉迟唯,曹变英.生物质热解、加氢热解及其与煤共热解的热重研究[J].燃料化学学报,1996,24(4):341-347.
    [80]李世光.煤热解和煤与生物质共热解过程中硫的变迁[D].大连:大连理工大学,2006.
    [81]王鹏,文芳,边文,邓一英.煤与生物质共热解特性初步研究[J].煤炭转化,2008,31(4):40-44.
    [82]Liu Q R, Hu H Q, Zhu S W. Integrated process of coal pyrolysis with catalytic partial oxidation of methane. International Conference on Coal Science & Technology.2005 Oct.9-14, Okinawa. Japan.
    [83]胡浩权,刘全润.一种以甲烷为反应气提高煤热解焦汕产率的方法:中国,ZL200510045853.8 [P].2009.
    [84]胡浩权,刘佳禾,朱盛维,靳立军.一种以富含甲烷混合气为反应气氛提高流化床煤热解焦油产率的方法:中国,CN101747922A[P].2010.
    [85]胡浩权,周逊,靳立军.利用烃类芳构化与煤热解耦合提高焦油产率的方法:中国,CN102161904A[P].2011.
    [86]Gueret C, Daroux M, Billaud F. Methane pyrolysis:thermodynamics [J]. Chemical Engineering Science,1997,52 (5):815-827.
    [87]Sun Q, Tang Y C, Gavalas G R. Methane pyrolysis in a hot filament reactor [J]. Energy Fuels,2000. 14 (2):490-494.
    [88]Schneider J J. Si-H and C-H activation by transition metal complexes:a step towards isolable alkane complexes? [J]. Angewandte Chemie International Edition,1996,35 (10):1068-1075.
    [89]Shilov A E, Shul'pin G B. Activation of C-H bonds by metal complexes [J]. Chemical Reviews,1997, 97 (8):2879-2932.
    [90]Yuliati L, Yoshida H. Photocatalytic conversion of methane Leny [J]. Chemical Society Reviews, 2008,37,1592-1602.
    [91]Kuijpers E G M, Breedijk A K, van der Wai W J J, Geus J W. Chemisorption of methane on Ni/SiO2 catalysts and reactivity of the chemisorption products toward hydrogen [J]. Journal of Catalysis,1983. 81 (2):429-439.
    [92]贺黎明,沈召军.甲烷的转化和利用[M].北京:化学工业出版社,2005.
    [93]Koerts T, Vansanten R A, Ross J R H, Solymosi F, Moyes, R B, Bhasin, M M, and et al. Reaction routes for methane conversion on transition-metals at low-temperature [J]. Studies in Surface Science and Catalysis,1993,75:1065-1078.
    [94]陈来元,徐竹生,张涛,林励吾.甲烷在担载过渡金属氧化物上转化的初步研究[J].天然气化工(C1化学与化工),1994,19(6):1-6.
    [95]余林,袁书华,田久英,王升,储伟.甲烷部分氧化制合成气载体及助剂对Ni系催化剂活性的影响[J].催化学报,2001,22(4):383-386.
    [96]Hou Z Y, Yokota O, Tanaka T. Yashima T. A novel KCaNi/alpha-Al2O3 catalyst for CH4 reforming with CO2 [J]. Catalyst Letters,2003,87 (1-2):37-42.
    [97]王海涛,李振花,田树勋,何菲.助剂对甲烷部分氧化制合成气镍基催化剂性能的影响[J].燃料化学学报.2004,32(4):475-480.
    [98]Zhang Y, Smith K J. CH4 decomposition on Co catalysts:effect of temperature, dispersion, and the presence of H2 or CO in the feed [J]. Catalysis Today.2002.77 (3):257-268.
    [99]Intergovernmental Panel on Climate Change. Climate Change 2001:The Scientific Basis (Eds.: Houghton J T, Ding Y, Griggs D J, Noguer M, van der Linden P J, Dai X. Maskell K. and Johnson C A.), Cambridge:Cambridge University Press.2001.
    [100]Wang S B, Lu G Q, Millar G J. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts:state of the art [J]. Energy & Fuels,1996,10 (4):896-904.
    [101]Zhang J G, Wang H, Dalai A K. Development of stable bimetallic catalysts for carbon dioxide reforming of methane [J]. Journal of Catalysis,2007,249 (2):300-310.
    [102]Jablonski G A, Geurts F W A H, Sacco Jr A, Biederman R R. Carbon deposition over Fe, Ni, and Co foils from CO-H2-CH4-CO2-H2O, CO-CO2, CH4-H2, and CO-H2-H2O gas mixtures:Ⅰ. Morphology [J]. Carbon,1992,30 (1):87-98.
    [103]路勇,余长春,刘育,沈师孔.CH4/CO2重整制合成气Co催化剂上积炭的XPS/AES、TEM和XRD表征[J].天然气化工,1998,23(1):4-8.
    [104]余长春,沈师孔.Ni/Al2O催化剂上CH4/CO,重整反应积碳的研究[J].化学物理学报,1997,10(3):42-45.
    [105]Ashcroft A T, Cheetham A K, Green M L H, Vernon PDF. Partial oxidation of methane to synthesis gas using carbon dioxide [J]. Nature,1991,352:225-226.
    [106]Jablonski G A, Geurts F W A H, Sacco Jr A. Carbon deposition over Fe, Ni, and Co foils from CO-H2-CH4-CO2-H2O, CO-CO2, CH4-H2, and CO-H2-H2O gas mixtures:Ⅱ. Kinetics [J]. Carbon, 1992,30(1):99-106.
    [107]唐松柏,.邱发礼,吕绍洁,赵明英.天然气-H2-CO2转化制取合成甲醇原料气的研究Ⅰ.反应条件对合成气组成的影响[J].天然气化工,1995,20(6):20-24.
    [108]York APE, Xiao T C, Green M L H. Brief overview of the partial oxidation of methane to synthesis gas [J]. Topics in Catalysis,2003,22 (3-4):345-358.
    [109]Fan M S, Abdullah A Z, Bhatia S. Catalytic technology for carbon dioxide reforming of methane to synthesis gas [J]. ChemCatChem,2009,1 (2):192-208.
    [110]Bradford M C J, Vannice M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts Ⅱ. Reaction kinetics [J]. Applied Catalysis A:General,1996,142 (1):97-122.
    [111]Wei J M, Iglesia E. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts [J]. Journal of Catalysis,2004,224 (2): 370-383.
    [112]Hu Y H, Ruckenstein E. Isotopic GCMS study of the mechanism of methane partial oxidation to synthesis gas [J]. The Journal of Physical Chemistry A,1998,102(51):10568-10571.
    [113]Nandini A, Pant K K, Dhingra S C. Kinetic study of the catalytic carbon dioxide reforming of methane to synthesis gas over Ni-K/CeO2-Al2O3 catalyst [J]. Applied Catalysis A:General,2006,308: 119-127.
    [114]Wang S B, Lu G Q. Reaction kinetics and deactivation of Ni-based catalysts in CO2 reforming of methane. In:Reaction Engineering for Pollution Prevention, Editors:Abrahan M A, Hesketh R P. 2000,75-84.
    [115]Erdohelyi A, Cserenyi J, Solymosi F. Activation of CH4 and its reaction with CO2 over supported Rh catalysts [J]. Journal of Catalysis,1993,141 (1):287-299.
    [116]余长春.CH4/CO2重整反应镍催化剂的表面化学的研究[D].兰州:中国科学院兰州化学物理研究所,1999.
    [117]Iyer M V, Norcio L P, Kugler E L. Dadyburjor D B. Kinetic modeling for methane reforming with carbon dioxide over a mixed-metal carbide catalyst [J]. Industrial & Engineering Chemistry Research, 2003,42 (12):2712-2721.
    [118]Mark M F, Maier W F. CO2-reforming of methane on supported Rh and Ir catalysts [J]. Journal of Catalysis,1996(1):122-130.
    [119]Fridman A. Plasma chemistry [M]. Cambridge; New York:Cambridge University Press,2008.
    [120]许根慧,姜恩永,盛京等.等离子体技术与应用[M].北京:化学工业出版社,2006.
    [121]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996.
    [122]赵化侨.等离子体化学与工艺[M].合肥:中国科技大学出版社,1993.
    [123]吕永康,庞先勇,谢克昌.煤的等离子体转化[M].北京:化学工业出版社,2011.
    [124]Liu C J, Marafee A, Hill B, Xu G H, Mallinson R, Lobban L. Oxidative coupling of methane with ac and dc corona discharges [J]. Industrial & Engineering Chemistry Research.1996,35 (10): 3295-3301.
    [125]张秀玲,朱爱民,宫为民,阮桂色,师华.纯甲烷气体在脉冲电晕等离子体中的偶联反应[J].大连轻工业学院学报,1997,16(3):82-85.
    [126]朱爱民,宫为民,张秀玲,周杰,师华,张报安.脉冲电晕等离子体应用于甲烷偶联的探索研究[J].天然气化工,1997,22(2):1-5.
    [127]朱爱民,张秀玲,宫为民,代斌,张报安.脉冲电晕等离子体作用下甲烷偶联反应的研究Ⅱ.反应添加气的影响[J].应用化学,1999,16(4):70-73.
    [128]Zhu A M, GongW M, Zhang X L, Zhang B A. Coupling of methane under pulse corona plasma (I) in the absence of oxygen [J]. Science in China (Series B),2000, (2):208-214.
    [129]朱爱民,张秀玲,宫为民,张报安.有氧气氛下等离子体甲烷偶联反应的研究[J].物理化学学报,2000,16(9):839-843.
    [130]Malik M A, Jiang X Z. The CO2 reforming of natural gas in a pulsed corona discharge reactor [J]. Plasma Chemistry and Plasma Processing,1999,19 (4):505-512.
    [131]Kado S, Urasaki K, Sekine Y, Fujimoto K, Nozaki T, Okazaki K. Reaction mechanism of methane activation using non-equilibrium pulsed discharge at room temperature [J]. Fuel,2003,82 (18): 2291-2297.
    [132]Kado S, Sekine Y, Nozaki T, Okazaki K. Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion [J]. Catalysis Today.2004,89 (1-2):47-55.
    [133]Li X S, Zhu A M, Wang K J, Xu Y, Song Z M. Methane conversion to Ci hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques [J]. Catalysis Today,2004,98 (4):617-624.
    [134]李小松.等离子体一催化作用下甲烷无氧转化制芳烃和氢[D].大连:大连理工大学,2006.
    [135]蔺灿坤.大气压下火花放电等离子体高效转化甲烷制氢和乙炔的研究[D].大连:大连理工大学,2008.
    [136]Li X S, Zhu B, Shi C, Xu Y, Zhu A M. Carbon dioxide reforming of methane in kilohertz spark-discharge plasma at atmospheric pressure [J]. AIChE Journal.2011,57 (10):2854-2860.
    [137]Sreethawong T, Thakonpatthanakun P, Chavadej S. Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system [J]. International Journal of Hydrogen Energy,2007,32 (8):1067-1079.
    [138]Indarto A, Choi J W, Lee H, Song H K. Effect of additive gases on methane conversion using gliding arc discharge [J]. Energy,2006,31 (14):2986-2995.
    [139]Rueangjitt N, Sreethawong T, Chavadej S, Sekiguchi H. Plasma-catalytic reforming of methane in ac microsized gliding arc discharge:effects of input power, reactor thickness, and catalyst existence [J]. Chemical Engineering Journal,2009,155 (3):874-880.
    [140]Zhou L M, Xue B Z, Kogelschatz U, Eliasson B. Nonequilibrium plasma reforming of greenhouse gases to synthesis gas [J]. Energy & Fuels,1998,12(6):1191-1199.
    [141]Zhou L M, Xue B Z, Kogelschatz U, Eliasson B. Partial oxidation of methane to methanol with oxygen or air in a nonequilibrium discharge plasma [J]. Plasma Chemistry and Plasma Processing, 1998,18 (3):375-393.
    [142]刘昌俊,李阳,姜涛,韩森,许根慧,Eliasson B, Xue B Z.气体放电等离子体直接转化CH4和CO2制备高碳烃研究[J].自然科学进展,2000,10(12):1125-1130.
    [143]Liu C J, Xue B Z, Eliasson B, He F, Li Y, Xu G H. Methane conversion to higher hydrocarbons in the presence of carbon dioxide using dielectric-barrier discharge plasmas [J]. Plasma Chemistry and Plasma Processing,2001,21 (3):301-310.
    [144]Li Y, Xu G H, Liu C J, Eliasson B, Xue B Z. Co-generation of syngas and higher hydrocarbons from CO2 and CH4 using dielectric-barrier discharge:effect of electrode materials [J]. Energy & Fuels, 2001,15 (2):299-302.
    [145]Li Y, Liu C J, Eliasson B, Wang Y. Synthesis of oxygenates and higher hydrocarbons directly from methane and carbon dioxide using dielectric-barrier discharges:product distribution [J]. Energy& Fuels,2002,16 (4):864-870.
    [146]Kline L E, Partlow W D, Bies W E. Electron and chemical kinetics in methane rf glow-discharge deposition plasmas [J]. Journal of Applied Physics,1989,65 (1):70-78.
    [147]Huang J, Suib S L. Dimerization of methane through microwave plasmas [J]. The Journal of Physical Chemistry,1993,97 (37):9403-9407.
    [148]Cui J H, Xu G H, Liu C J. Novel plasma reactor with rotary multi-tip electrode used in CH4 coupling [J]. Acta Physico-Chimica Sinica,2004,20 (5):557-560.
    [149]王达望,马腾才,崔锦华.大气压旋转螺旋状电极辉光放电等离子体催化甲烷偶联[J].物理化学学报,2005,21(11):99-102.
    [150]Liu C J, Marafee A, Mallinson R, Lobban L. Methane conversion to higher hydrocarbons in a corona discharge over metal oxide catalysts with OH groups [J]. Applied Catalysis A:General,1997,164 (1-2):21-33.
    [151]Marafee A, Liu C J, Xu G H, Mallinson R, Lobban L. An experimental study on the oxidative coupling of methane in a direct current corona discharge reactor over Sr/La2O3 catalyst [J]. Industrial & Engineering Chemistry Research,1997.36 (3):632-637.
    [152]Zhu A M, Zhang X L, Gong W M. Zheng G H. Dehydrogenative coupling of methane under pulse corona plasma over a MnOx/γ-Al2O3 catalyst [J]. Journal of Natural Gas Chemistry.1999,8 (1): 47-52.
    [153]Liu C J, Li Y, Zhang Y P, Jiang T, Xia Q, Xu G H, Eliasson B, Xue B Z. A new pathway of gas-to-liquid conversion using catalytic dielectric-barrier discharge [J]. Journal of Chemical Industry and Engineering,2000,51 (S):147-150.
    [154]Liu C J, Eliasson B, Xue B Z, Li Y, Wang Y Q. Zeolite-enhanced plasma methane conversion directly to higher hydrocarbons using dielectric-barrier discharges [J]. Reaction Kinetics and Catalysis Letters,2001,74(1):71-77.
    [155]Eliasson B, Liu C J, Kogelschatz U. Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites [J]. Industrial & Engineering Chemistry Research,2000,39 (5):1221-1227.
    [156]Kraus M, Eliasson B, Kogelschatz U, Wokaun A. CO2 reforming of methane by the combination of dielectric-barrier discharges and catalysis [J]. Physical Chemistry Chemical Physics,2001,3 (3): 294-300.
    [157]Lee H, Song H K, Min B R. Heating effect of plasma catalytic reaction on the CH4 reforming of CO2 over Ni/y-Al2O3 catalyst in dielectric-barrier discharge reactor [J]. Chemistry Letters,2006,35 (6): 646-647.
    [158]Wang Q, Yan B H, Jin Y. Cheng Y. Dry reforming of methane in a dielectric barrier discharge reactor with Ni/Al2O3 catalyst:interaction of catalyst and plasma [J]. Energy & Fuels,2009,23 (8): 4196-4201.
    [159]Liu D P, Xu Y, Yang X F, Yu S J, Sun Q, Zhu A M, Ma T C. Diagnosis of dielectric barrier discharge CH4 plasmas for diamond-like carbon film deposition [J]. Diamond and Related Materials, 2002,11 (8):1491-1495.
    [160]代斌,陈韩飞,洪成林,李金平,宫为民,张秀玲.张家良.脉冲电晕等离子体作用下CH4/H2反应的机理[J].化学研究与应周,2007,19(7):770-774.
    [161]Zhang X L, Liu Z F, Li X H. Dai B, Gong W M, Zhang J L, Deng X L. A study of the reaction mechanisms of methane in cold plasma using optical emission spectroscopy [J]. Chinese Journal of Light Scattering,2004,16(2):166-171.
    [162]Liu C J. Oxidative synthesis of higher hydrocarbons from CO2 and CH4 by streamer discharges [J]. Chemistry Letters,1996, (9):749-750.
    [163]Kozlov K V, Michel P, Wagner H E. Synthesis of organic compounds from mixtures of methane with carbon dioxide in dielectric-barrier discharges at atmospheric pressure [J]. Plasmas and Polymers, 2000,5(3):129-150.
    [164]Kraus M, Egli W, Haffner K. Eliasson B. Kogelschatz U. Wokaun A. Investigation of mechanistic aspects of the catalytic CO2 reforming of methane in a dielectric-barrier discharge using optical emission spectroscopy and kinetic modeling [J]. Physical Chemistry Chemical Physics.2002.4 (4): 668-675.
    [165]刘钟阳,吴彦,工宁会.DBD等离子体反应器放电功率测量的研究[J].仪器仪表学报,2001.22(3):78-79.
    [166]屈广周.DBD等离子体降解活性炭吸附的有机物及活性炭再生研究[D].大连:大连理工大学,2010.
    [167]Yao S L, Nakayama A, Suzuki E. Methane conversion using a high-frequency pulsed plasma: discharge features [J]. AIChE Journal,2001,47 (2):419-426.
    [168]黄珍.介质阻挡放电条件下甲烷二氧化碳重整制备合成气的研究[D].大连:大连理工大学,2008.
    [169]董丽芳,李雪辰,尹增谦,王龙.大气压介质阻挡放电中的自组织斑图结构[J].物理学报,2002,51(10):2296-2301.
    [170]王静,蔡忆昔,王军.王攀,李小华.介质阻挡放电等效电容的测量与分析[J].高电压技术,2008,34(2):264-266.
    [171]Zhang Y P, Li Y, Liu C J, Eliasson B. Influence of electrode configuration on direct methane conversion with CO2 as a co-reactant using dielectric-barrier discharges. ACS Symp. Ser.,2003,852: 100-115.
    [172]张玉文,丁伟中,郭曙强,徐匡迪.等离子态氢还原金属氧化物初探[J].中国有色金属学报,2004,14(2):317-321.
    [173]Dai B, Zhang X L, Gong W M, He R. Effects of hydrogen on the methane coupling under non-equilibrium plasma [J]. Plasma Science & Technology,2001,3 (1):637-639.
    [174]Cui J H, Xu G H, Han S. Eliminating coke formed in CH4 coupling under plasma via pure H2 discharge in the system [J]. Acta Physico-Chimica Sinica,2002,18 (3):276-278.
    [175]Liu C J, Xu G H, Wang T M. Nonthermal plasma approaches in CO2 utilization [J]. Fuel Processing Technology,1999,58,119-134.
    [176]Maya L. Plasma-assisted reduction of carbon dioxide in the gas phase [J]. Journal of Vacuum Science and Technology, A:Vacuum, Surfaces, and Films,2000,18 (1):285-287.
    [177]Eliasson B, Kogelschatz U, Xue B Z, Zhou L M. Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst. Industrial & Engineering Chemistry Research,1998,37 (8):3350-3357.
    [178]Zhao Y, Pan Y X, Xie Y B, Liu C J. Carbon dioxide reforming of methane over glow discharge plasma-reduced Ir/Al2O3 catalyst [J]. Catalysis Communications,2008,9 (7):1558-1562.
    [179]Liu C J, Yu K L, Zhang Y P, Zhu X L, He F, Eliasson B. Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion. Applied Catalysis B:Environmental,2004,47 (2): 95-100.
    [180]Kim S S, Lee H, Na B K, Song H K. Plasma-assisted reduction of supported metal catalyst using atmospheric dielectric-barrier discharge [J]. Catalysis Today,2004,89 (1-2):193-200.
    [181]Liu G H, Li Y L, Chu W, Shi X Y, Dai X Y, Yin Y X. Plasma-assisted preparation of Ni/SiO2 catalyst using atmospheric high frequency cold plasma jet [J]. Catalysis Communications,2008,9 (6): 1087-1091.
    [182]Wang Z J, Zhao Y, Cui L, Du H Y, Yao P. Liu C J. CO2 reforming of methane over argon plasma reduced Rh/Al2O3 catalyst:a case study of alternative catalyst reduction via non-hydrogen plasmas [J]. Green Chemistry,2007,9:554-559.
    [183]Jose Iglesias M, Jose Cuesta M, Suarez-Ruiz 1. Structure of tars derived from low-temperature pyrolysis of pure vitrinites:influence of rank and composition of vitrinites [J]. Journal of Analytical and Applied Pyrolysis,2001,58-59:255-284.
    [184]Jose Iglesias M, del Rio J C, Laggoun-Defarge F, Jose Cuesta M, Suarez-Ruiz I. Control of the chemical structure of perhydrous coals; FTIR and Py-GC/MS investigation [J]. Journal of Analytical and Applied Pyrolysis,2002,62 (1):1-34.
    [185]Yao S L, Nakayama A, Suzuki E. Methane conversion using a high-frequency pulsed plasma: important factors [J]. AIChE Journal,2001,47 (2):413-418.
    [186]肖重发.大气压下介质阻挡放电的发射光谱诊断[D].大连:大连理工大学,2003.
    [187]郭卿超.开放氩等离子体的射频容性放电模式及诊断[D].大连:大连理工大学,2010.
    [188]郭卿超,张家良,刘莉莹,王德真.大气压Ar射频容性放电模式转变的温度表征[J].物理学报、2011,60(2):025207(1-8).
    [189]Teii K, Ito H, Hori M, Takeo T, Goto T. Kinetics and role of C, O, and OH in low-pressure nanocrystalline diamond growth [J]. Journal of Applied Physics,2000.87:4572-4579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700