[Ag(L)(bbi)]配位聚合物制备Ag/C催化剂及氧在Ag/C上还原反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银是典型的氧还原催化剂之一。在碱性电解质中,银对氧还原具有很高的催化活性。而且,对过氧化物离子分解也是很好的催化剂。因此,银被认为是燃料电池和金属空气电池中比较理想的氧电极催化剂。银催化剂在制备和使用过程中,容易引起团聚问题,难以制备出粒径较小、在催化剂载体上分布均匀的银粒子。所以,银作为催化剂,关键在于尽可能提高银的比表面积,使银粒子均匀地散布在催化剂载体上。本文提出了Ag(Ⅰ)配位聚合物还原法制备Ag/C催化剂,并考察了催化剂的制备条件。同时探讨了Ag/C催化剂的催化活性和氧在Ag/C上的还原反应。并将Ag/C用作直接硼氢化钠燃料电池和锌-空气电池的催化剂,测试了氧电极的性能。
     采用溶液法,基于磺酸Ag(Ⅰ)配位化合物([Ag(L)]),分别以亚丁基二咪唑(bbi)、三苯基膦为配体(tpp),合成了[Ag(L)(bbi)]和[Ag(tpp)_2(L)]·C_2H_3N两种配位聚合物。通过Rigaku RAXIS-RAPID日本理学单晶衍射仪,获得了[Ag(L)(bbi)]和[Ag(tpp)_2(L)]·C_2H_3N两种配位聚合物的晶体结构。经文献检索证明,[Ag(L)(bbi)]和[Ag(tpp)_2(L)]·C_2H_3N两种配位聚合物单晶均确系为新单晶。在探索合成条件中,考察了酸度、溶剂和时间对两种配位聚合物生成的影响。有关[Ag(L)(bbi)]和[Ag(tpp)_2(L)]·C_2H_3N两种配位聚合物的性质,分别进行了耐酸碱和耐温试验。
     应用[Ag(L)(bbi)]和[Ag(tpp)_2(L)]·C_2H_3N两种配位聚合物,以NaBH4为还原剂,通过Ag(Ⅰ)配位聚合物还原法,分别制备了Ag/C催化剂。经Ag/C催化剂电催化活性比较,选择了[Ag(L)(bbi)]配位聚合物作为研究对象。并考察了[Ag(L)(bbi)]配位聚合物粉末粒径对Ag/C催化剂电催化活性的影响,以及超声波振荡时间对Ag粒子在活性炭载体上分散程度的影响。通过X-射线光电子能谱(XPS)、X-射线衍射(XRD)和扫描电子显微镜(SEM)对Ag/C催化剂进行表征,结果表明,使用Ag(Ⅰ)配位聚合物还原法制备Ag/C催化剂,[Ag(L)(bbi)]配位聚合物中的一价Ag(Ⅰ)还原为金属Ag反应的还原度高;Ag(Ⅰ)配位聚合物还原法制备的Ag/C催化剂中Ag颗粒的平均粒径比Ag2O还原法制备的小;与Ag2O还原法相比,Ag(Ⅰ)配位聚合物还原法制备的Ag/C催化剂中,Ag的颗粒较小、形状规则。并讨论了Ag(Ⅰ)配位聚合物还原法制备的Ag/C催化剂的电催化活性比Ag2O还原法制备的Ag/C催化剂明显增强的原因。
     利用循环伏安法,在碱性电解质中,探讨了Ag/C催化剂中Ag颗粒粒径对氧还原路径的影响,考察了Ag颗粒粒径与氧还原反应所产生的过电位之间的关系。结果表明,在粒径较大的Ag颗粒上,氧还原反应以四电子路径进行;在粒径较小的Ag颗粒上,氧还原反应以四电子路径和二电子路径同时进行。通过旋转圆盘电极法,研究了氧在Ag/C催化剂上的还原动力学反应。实验研究揭示,在碱性电解质中,Ag颗粒的粒径越小,越有利于氧还原反应按二电子路径进行;Ag颗粒的粒径越大,越有利于氧还原反应按四电子路径进行。根据Koutecky-Levich方程,测定了氧还原动力学反应的电子数目和速率常数,获得了氧在Ag/C催化剂上按四电子路径和二电子路径进行还原反应的比例。
     使用Ag(Ⅰ)配位聚合物还原法制备的10wt% Ag/C作为氧电极催化剂,分别组装了流动碱性电解质直接硼氢化钠燃料电池和流动碱性电解质锌-空气电池。通过VEGA51365B型扫描电子显微镜观测了氧电极催化层的微观表面形貌;又采用HIROMX-5040RZ体视显微镜观测了氧电极和Au/C电极催化层的微观表面形态。对硼氢化钠燃料电池,考察了NaBH4燃料溶液浓度和流速的影响;通过电极极化曲线和电化学阻抗谱(EIS),讨论了氧电极和Au/C电极的性能。对锌-空气电池,通过电极极化曲线,讨论了氧电极和锌电极的性能。结果表明,在硼氢化钠燃料电池和锌-空气电池中,阳极极化较小,受温度影响较小;氧电极极化较大,其极化随着温度的上升而降低。于不同温度下,分别测试了硼氢化钠燃料电池和锌-空气电池的功率密度,并同时测定了NaBH4燃料的电氧化效率。
Silver is one of the typical catalysts of oxygen reduction. Ag has a reasonably high catalytic activity for O2 reduction in alkaline electrolyte. Furthermore, it is a good catalyst for perhydroxyl ion decomposition. Therefore, Ag is known as the ideal catalyst in the fuel cell and metal-air battery. Ag particles are easy to accumulate into larger particles in the process of preparation and usage, and therefore it is difficult to prepare finer and well-dispersed Ag particles on the carrier of catalysts. So the key to Ag as the catalysts lies in raising the specific surface area of Ag as far as possible and making Ag particles dispersed evenly onto the carrier of catalysts. In the present study, the Ag(Ⅰ) coordination polymer reduction method was introduced to prepare Ag/C catalysts, and the preparing condition of the catalysts was examined. The Ag/C catalytic activity and the reduction reaction of O2 on Ag/C were explored. The performance of the oxygen electrode was measured using Ag/C as catalysts for the direct sodium borohydride fuel cell and the zinc-air battery
     Based on Ag(Ⅰ) sulfonate complexes ([Ag(L)]), the coordination polymers of [Ag(L)(bbi)] and [Ag(tpp)_2(L)]·C_2H_3N have been synthetized using 1,1′-(butane-1,4-diyl)- diimidazole(bbi) and triphenylphosphine(tpp) as ligands by the conventional solution method. The crystal structures of [Ag(L)(bbi)] and [Ag(tpp)_2(L)]·C_2H_3N coordination polymers were obtained on a Rigaku RAXIS-RAPID diffractometer. The literature retrieval proved that the [Ag(L)(bbi)] and [Ag(tpp)_2(L)]·C_2H_3N coordination polymers were the new single crystals. The effects of acidity, solvent and time on the growth of the two coordination polymers were examined in the exploration of synthesis conditions. The tests for acid- and base-resistance and temperature-resistance were carried out on the properties of [Ag(L)(bbi)] and [Ag(tpp)_2(L)]·C_2H_3N coordination polymers.
     Ag/C catalysts were prepared by the Ag(Ⅰ) coordination polymer reduction method through [Ag(L)(bbi)] and [Ag(tpp)_2(L)]·C_2H_3N coordination polymers using NaBH4 as the reductant. The coordination polymer of [Ag(L)(bbi)] was selected as the object of study by comparing the electrocatalytic activity of Ag/C catalysts. The effects of the particle sizes of [Ag(L)(bbi)] powders on the electrocatalytic activity of Ag/C catalysts and the ultrasonic vibration time on the dispersity on Ag particles on the carrier were examined. By characterizing Ag/C catalysts throuhg X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM), the result showed that the reduction degree of Ag(Ⅰ) ions in [Ag(L)(bbi)] coordination polymer was high preparing Ag/C catalysts by the Ag(Ⅰ) coordination polymer reduction method, and the average particle size of Ag in Ag/C catalysts prepared by the Ag(Ⅰ) coordination polymer reduction method was smaller than that of Ag in Ag/C catalysts prepared by the Ag2O reduction method, and that the size of Ag particle in Ag/C catalysts prepared by the Ag(Ⅰ) coordination polymer reduction method was smaller and regular in shape compared with Ag/C catalysts prepared by the Ag2O reduction method. The cause of the significant enhancement of electrocatalytic activity was discussed for Ag/C catalysts prepared by the Ag(Ⅰ) coordination polymer reduction method compared with Ag/C catalysts prepared by the Ag2O reduction method.
     The effect of the particle size of Ag in Ag/C catalysts was investigated on the pathway of oxygen reduction in alkaline electrolyte using the cyclic voltammetry. The relationship was examined between the Ag particle size and the overpotential of the oxygen reduction reaction. The result indicated that the oxygen reduction reaction proceeded by the four-electron pathway mechanism on larger Ag particles, and proceeded by the four-electron pathway and the two-electron pathway, simultaneously, on finer Ag particles. The kinetics of oxygen reduction reaction was studied on Ag/C catalysts in alkaline electrolyte through the rotating disk electrode method. The experimental results showed that the finer Ag particles were beneficial to the oxygen reduction reaction proceeding by the two-electron pathway, and the larger Ag particles were beneficial to the oxygen reduction reaction proceeding by the four-electron pathway in alkaline electrolyte. According to the Koutecky-Levich equation, the electron number and the rate constant of the oxygen reduction reaction were determined, and the ratios of the oxygen reduction reaction of the four-electron pathway and the two-electron pathway were obtained on Ag/C catalysts.
     The direct sodium borohydride fuel cell and zinc-air battery with flowing alkaline electrolyte were assembled using 10wt%Ag/C prepared by the Ag(Ⅰ) coordination polymer reduction method as catalysts of the oxygen electrodes. The morphology of the catalyst layer of the oxygen electrode was observed by a VEGA51365B scanning electron microscopy(SEM), and the surface morphologies of the catalyst layers of the oxygen electrode and the Au/C electrode were observed by a HIROMX—5040RZ stereomicroscopy. The effects of the concentration and flow rate of NaBH4 solution were examined for the sodium borohydride fuel cell, and the performances of the oxygen electrode and Au/C electrode were discussed through the polarization curves of electrodes and electrochemical impedance spectroscopies(EIS). The performances of the oxygen electrode and zinc electrode were discussed for the zinc-air battery through the polarization curves of electrodes. The results indicated that the polarizations of the anodes are smaller and less effected by the temperature, and the polarizations of the oxygen electrode are larger and declines with rising temperature in the sodium borohydride fuel cell and zinc-air battery. The power densities of the sodium borohydride fuel cell and zinc-air battery were measured at different temperatures, and the electro-oxidation efficiency of the NaBH4 fuel was determined.
引文
1 H. K. Lee, J. P. Shim. Oxygen Reduction Behavior with Silver Alloy Catalyst in Alkaline Media. Materials Chemistry and Physics. 1996, 45:238~242
    2 E. Agel, J. Bouet, J. F. Fauvarque. Characterization and Use of Anionic Membrances for Alkaline Fuel Cells. J. Power Sources. 2001, 101:267~274
    3 Z. D. Wei, L. Li, L. L. LI, et al. State-of-Art of Electrocatalysts for Oxygen Electrode. Chinese J. Power Sources. 2004, 28(2):116~120
    4 Shouyan Wang, Jining Xie, Tierui Zhang, et al. Silver Decoratedγ-Manganese Dioxide Nanorods for Alkaline Battery Cathode. J. Power Sources, 2009, 186(2):532~538
    5 W. F. Liu, Q. Tanf, B. L. Yi, et al. Research Progress on Cathode Electrocatalyst for Fuel Cells. Chinese J. Power Sources. 2002, 26(6):457~461
    6 Y. F. Yang, Y. H. Zhou. Particle Size Effects for Oxygen Reduction on Dispersed Silver+Carbon Electrodes in Alkaline Solution. Journal of Electroanalytical Chemistry. 1995, 397:271~278
    7 C. Y. Wu, P. W. Wu, P. Lin, et al. Silver-Carbon Nanocapsule Electrocatalyst for Oxygen Reduction Reaction. Journal of The Electrochemical Society. 2007, 154(10):B1059~B1062
    8 N. Wagner, M. Schulze. Long-Term Investigations of Silver Cathodes for Alkaline Fuel Cells. J. Power Sources. 2004, 127:264~272
    9 W. Q. Yang, S. H. Yang, W. Sun, et al. Nanostructured Silver Catalyzed Nickel Foam Cathode for An Aluminum-Hydrogen Peroxide Fuel cell. J. Power Sources. 2006, 160:1420~1424
    10 F. P. Hu, X. G. Zhang, F. Xiao, et al. Oxygen Reduction on Ag-MnO2/SWNT and Ag-MnO2/AB Electrodes. Carbon. 2005, 43:2931~2936
    11 Steven K. Hau, Hin-Lap Yip, Kirsty Leong, et al. Spraycoating of Silver Nanoparticle Electrodes for Inverted Polymer Solar Cells. Organic Electronics. 2009, 10(4):719~723
    12 H. T. Liu, X. Xia. Study on Electrochemical Properties of Nanophase Ag2O. Acta Chimica Sinica. 2000, 58(8):992~995
    13 D.R. Sahu, Shin-Yuan Lin, Jow-Lay Huang. Study on the Electrical and Optical Properties of Ag/Al-doped ZnO Coatings Deposited by Electron Beam Evaporation. Applied Surface Science. 2007, 253(11):4886~4890
    14 Wu Shihua, Zhu Changying, Huang Weiping, et al. Preparation of Polymer Immobolized Pd-Cu Bimetallic Cluster by Metal Vapor Method. Polymeric Materials Science and Engineering. 1996, 12(2):24~27
    15 Y. Kiros, S. Schwartz. Long-Term Hydrogen Oxidation Catalysts in Alkaline Fuel Cells. J. Power Sources. 2000, 87:101~105
    16 M. Kim, C. Jihoon, C. Kyuwoong, et al. Particle Size and Alloying Effects of Pt-Based Alloy Catalysts for Fuel Cell Applications. Electrochimica Acta. 2000, 45:4211~4217
    17 T. Toda, H. Igarashi, H. Uchida. Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co. J. Electrochem Soc. 1999, 146:3750~3756
    18 G. Tamizhmani, G. A. Capuano. Improved Electrocatalytic Oxygen Reduction Performance of Platinum Ternary Alloy-Oxide in Solid-Ploymer-Electrolyte Fuel Cells. J. Electrochem Soc. 1994, 141(4):41~45
    19 S. Ye, K. Vijha, H. Daol. Carbonized Aerogel-Platinum Composite as Fuel Cell Electrocatalysts: Some Electrochemical and Surface Effects. J. New Materials for Electrochemical Systems. 1998, 1(1):17~20
    20 C. K. Mark, Z. G. QI, G. P. Peter. Electronically Conducting Proton Exchange Polymers as Catalyst Supports for Proton Exchange Membrane Fuel Cells. J. Electrochem Soc. 1999, 146:2054~2058
    21 Danmin Xing, Huamin Zhang, Liang Wang, et al. Investigation of the Ag- SiO2/Sulfonated Poly(Biphenyl Ether Sulfone) Composite Membranes for Fuel Cell. Journal of Membrane Science. 2007, 296(1-2):9~14
    22 Tal Z. Sholklapper, Velimir Radmilovic, Craig P. Jacobson, et al. Nano- composite Ag-LSM Solid Oxide Fuel Cell Electrodes. J. Power Sources. 2008, 175(1):206~210
    23 A. Kawashima, E. Akiyama, H. Habazaki, et al. Characterization of Sputter- Deposited Ni-Mo and Ni-W Alloy Electrocatalysts for Hydrogen Evolution in Alkaline Solution. Materials Science and Engineering. 1997, A226(7):905~909
    24 G. Tamizhmani, J. P. Dodelet, D. Guay, et al. Electrocatalyticactivity of Nafion-Impregnated Pyrolyzed Cobalt Phthalocyanine. J. Electrochem Soc. 1994, 141:41~45
    25 G. Lalande, G. Faubert, R. Cote, et al. Catalytic Activity and Stability of Heat-Treated Iron Phthalocyanines for the Electroreduction of Oxygen inPolymer Electrolyte Fuel Cells. J. Power Sources. 1996, 61:227~237
    26 T. Kudo, H. Obayashi, M. Yoshida. Rare Earth Cobaltites as Oxygen Electrode Materials for Alkaline Solution. J. Electrochem Soc. 1997, 124:321~325
    27 T. Hyodo, M. Hayashi, N. Miura, et al. Catalytic Activities of Rare-Earth Manganites for Cathodic Reduction of Oxygen in Alkaline Solution. J. Electrochem Soc. 1996, 143:L266~L267
    28 Y. Shimizu, K .Uemura, H. Matsuda. Bi-Functional Oxygen Electrode Using Large Surface Area La1-xCaxCoO3 for Rechargeable Metal-Air Battery. J. Electrochem Soc. 1990, 137:3430~3433
    29 C. K. Lee, K. A. Striebel, F. R. Mclarnon, et al. Thermal Treatment of La0.6Ca0.4CoO3 Perovskites for Bifunctional Air Electrodes. J. Electrochem Soc. 1997, 144:3801~3806
    30 J.Z. Wu, J.P. Tu, Y.F. Yuan, et al. Ag-Modification Improving the Electro- chemical Performance of ZnO Anode for Ni/Zn Secondary Batteries. Journal of Alloys and Compounds. 2009, 479(1-2):624~628
    31 Huang. H, Holme. T, Prinz. F. B. Oxygen Reduction Characteristics on Ag, Pt and Ag-Pt Alloys in Low Temperature SOFCs. ECS Transactions, 2007, 3(32): 31~40
    32 Pishbin. M.H, Mohammadi. A.R, Nasri. M. Optimisation of Manufacturing Parameters for An Ni-Ag Fuel Cell Electrode. Fuel Cells. 2007, 7(4):291~297
    33 Yi. Qingfeng, Li. Lei, Yu. Wenqiang. A Novel Titanium-Supported Ag/Ti Electrode for the Electro-Oxidation of Hydrazine. Journal of Molecular Catalysis A: Chemical. 2008, 295(1-2):34~38
    34唐伦成,金丽华.碱性燃料电池氧电极高效表面催化层的研究.电源技术. 1995, 19(1):12~15
    35滕加伟,金丽华,唐伦成.碱性燃料电池氧电极的研究—助催化剂的添加对Ag/C催化剂活性的影响.电化学. 1997, 3(4):428~432
    36 Z. D. Wei, W. H. Huang, S. T. Zhang, et al. Carbon-Based Air Electrodes Carrying MnO2 in Zinc-Air Batteries. J. Power Sources. 2000, 91:83~85
    37 L. Jaajji, K. Juhani, J. L. Markku, et al. Preparation of Air Electrodes and Long Run Tests. J. Electrochem Soc. 1991, 138:905~908
    38蒋太祥,史鹏飞,李君.铝空气电池氧电极催化剂的工艺研究.电源技术. 1994, 18(2):23~27
    39 P. J. Sebastian. Chemical Synthesis and Characterization of MoxRuySez -(CO)n Electrocatalysts. Int. J. Hydrogen Energy. 2000, 25:255~259
    40 F. J. Rodriguez, P. J. Sebastian. MoxSez-(CO)n Electrocatalyst Prepared by Screen-Printing and Sintering. Int. J. Hydrogen Energy. 2000, 25:243~247
    41 A. B. Anderson, T. V. Albu. Ab Initio Determination of Reversible Potentials and Activation Energies for Outer-Sphere Oxygen Reduction to Water and the Reverse Oxidation Reaction. J. Amer Chem Soc. 1999, 121(50):11855~11863
    42 A. B. Anderson, T. V. Albu. Ab Initio Approach to Calculating Activation Enerdies as Functions of Electrode Potential: Trail Application to Four-Electron Reduction of Oxygen. Electrochem Commun. 1999, 1(6): 230~237
    43 C. Hartnig, M. T. M. Koper. Molecular Dynamics Simulation of the First Transfer Step in the Oxygen Reduction Reaction. J. Electroanal Chem. 2002, 532(1-2):165~170
    44 G. Lyenge, C. W. Oloman. Influence of Surfactants on the Electroreduction of Oxygen to Hydrogen Peroxide in Acid and Alkaline Electrolytes. J. Appl Electrochem. 2001, 31(2):233~243
    45 J. Prakash, A. T. Donald. Kinetic Investigation of Oxygen Reduction and Evolution Reaction on Lead Ruthenate Catalysts. J. Electrochem Soc. 1999, 146(11):4145~4151
    46 Li Lin, Peihong Qiu, Xuni Cao, et al. Colloidal Silver Nanoparticles Modified Electrode and Its Application to the Electroanalysis of Cytochrome C. Electrochimica Acta. 2008, 53(16):5368-5372
    47詹姆斯·拉米尼[英],安德鲁·迪克斯[英].燃料电池系统.科学出版社. 2006:1~19
    48衣宝廉.燃料电池.化学工业出版社. 2003:1~47
    49 Tapan, Niyazi Alper, Kok, et al. Characterization of Cerium Oxide and Carbon Supported Ag-Cu Electro-Catalysts for Anode Electrode in Direct Ethanol Fuel Cells. Chemical Engineering Communications. 2009, 196(1-2):131~147
    50吕鸣祥,黄长保,宋玉瑾.化学电源.天津大学出版社. 1992:336~344
    51 Huang. H, Holme. T, Prinz. F.B. Oxygen Reduction Characteristics on Ag, Pt, and Ag-Pt Alloys in Low Temperature SOFCs. ECS Transactions. 2007, 3(32):31~40
    52 G. F. McLean, T. Niet, S. Prince-Richard, et al. An Assessment of Alkaline Fuel Cell Technology. Int. J. Hydrogen Energy. 2002, 27:507~526
    53朱科,陈延禧,张继贵.直接乙醇燃料电池的研究现状及前景.电源技术. 2004, 28(3):187~190
    54 Boone B. Owens, Priscilla Realeand, Bruno Scrosati. Silver Solid-State Batteries: A 33 Years Storage Realities. Electrochemistry Communications. 2007, 9(4):694~696
    55 C. Lamy, S. Rousseau, E. M. Belgsir, et al. Recent Progress in the Direct Ethanol Fuel Cell: Development of New Platinum-Tin Electrocatalysts. Electrochimica Acta. 2004, 49:3901~3908
    56 Y. J. Li, C. C. Chang, T. C. Wen. Mixture Design Approach to Thermally Prepared Ir-Pt-Au Temary Electrodes for Oxygen Reduction in Alkaline Solution. J. Appl Electrochem. 1997, 27:227~234
    57 J. M. Léger, S. Rousseau, C. Coutanceau, et al. How Bimetallic Electrocatalysts Does Work for Reactions Involved in Fuel Cells?. Electrochimica Acta. 2005, 50:5118~5125
    58 Kyoung-Kook Hong, Sung-Bin Cho, Jae Sung You, et al. Mechanism for the Formation of Ag Crystallites in the Ag Thick-Film Contacts of Crystalline Si Solar Cells. Solar Energy Materials and Solar Cells. 2009, 93(6-7):898~904
    59姜鲁华,周振华,周卫江等.直接乙醇燃料电池PtSn/C电催化剂的合成表征和性能.高等学校化学学报. 2004, 25(8):1511~1516
    60 E. Gulzow, M. Schulze. Long-Term Operation of AFC Electrodes with CO2 Containing Gases. J. Power Sources. 2004, 127:243~251
    61 E. Gulzow, M. Schulze, G. Steinhilber. Investigation of the Degradation of Different Nickel Anode Types for Alkaline Fuel Cells (AFCs). J. Power Sources. 2002, 106:126~135
    62 Pan Junqing, Sun Yanzhi, Wang Zihao, et al. Nano Silver Oxide (AgO) as A Super High Charge/Discharge Rate Cathode Material for Rechargeable Alkaline Batteries. Journal of Materials Chemistry. 2007, 17(45):4820~4825
    63 Y. Sakito, A. Hirano, N. Imanishi, et al. Silver Infiltrated La0.6Sr0.4Co0.2Fe0.8O3 Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. J. Power Sources. 2008, 182(2):476~481
    64 K. Karl, G. Josef. Intermittent Use of A Low-Cost Alkaline Fuel Cell-Hybrid System for Electric Vehicles. J. Power Sources. 1999, 80:190~197
    65 Steven K. Hau, Hin-Lap Yip, Kirsty Leong, et al. Spraycoating of Silver Nanoparticle Electrodes for Inverted Polymer Solar Cells. Organic Electronics. 2009, 10(4):719~723
    66 Girotto. Claudio, Rand. Barry. P, Steudel. Soeren. Nanoparticle-Based, Spray- Coated Silver Top Contacts for Efficient Polymer Solar Cells. OrganicElectronics: Physics, Materials, Applications. 2009, 10(4):735~740
    67 V. Ahuja, R. K. Green. CO2 Removal from Air for Alkaline Fuel Cells Operating with Liquid Hydrogen Heat Exehanger Development. Int. J. Hydrogen Energy. 1996, 21:415~421
    68 V. Ahuja, R. Green. Carbon Dioxide Removal from Air for Alkaline Fuel Cells Operating with Liquid Hydrogen–A Synergistic Advantage. Int. J. Hydrogen Energy. 1998, 23:131~137
    69 S. Rahman, M. Al-Saleh, A. Al-Zakri, et al. Study of the Preparation of Gas-Diffusion Electrodes for Alkaline Fuel Cells by A Filtration Method. J. Power Sources. 1998, 72(1):71~76
    70 K. Yoshitsugu, H. Tetsuya. Recycling Process of Sodium Metaborate to Sodium Borohydride. Int. J. Hydrogen Energy. 2003, 28(9):989~993
    71 JoséManuel Delgado, JoséManuel Orts, Antonio Rodes. A Comparison Between Chemical and Sputtering Methods for Preparing Thin-Film Silver Electrodes for in Situ ATR-SEIRAS Studies. Electrochimica Acta. 2007, 52 (14): 4605~4613
    72 H. Dong, H. Yang, X. Ai, et al. Hydrogen Production from Catalytic Hydrolysis of Sodium Borohydride Solution Using Nickel Boride Catalyst. Int. J. Hydrogen Energy. 2003, 28(10):1095~1100
    73 C. Steven. Amendola, L. Stefanie. Sharp-Goldman, M. Saleem Janjua, et al. A Safe, Portable, Hydrogen Gas Generator Using Aqueous Borohydride Solution and Ru Catalyst. Int. J. Hydrogen Energy. 2000, 25:969~975
    74 Amendola, S. C. Sharp-Goldman, S. L. Janjua, et al. An Ultrasafe Hydrogen Generator Using Aqueous Borohydride Solutions. J. Power Sources. 2000, 85:186~191
    75 Wenping Lian, Li Wang, Yonghai Song, et al. A Hydrogen Peroxide Sensor Based on Electrochemically Roughened Silver Electrodes. Electrochimica Acta. 2009, 54(18):4334~4339
    76 V. C. Y. Kong, F. R. Foulkes, D. W. Kirk, et al. Development of Hydrogen Storage for Fuel Cell Generators. 1: Hydrogen Generation Using Hydrolysis Hydrides. Int. J. Hydrogen Energy. 1999, 24:665~675
    77孙雷,李宁,王桂香.硼氢化纳制氢技术.电池. 2004, 35(5):382~383
    78 R. Aiello, J. H. Sharp, M. A. Matthews. Production of Hydrogen from Chemical Hydride via Hydrolysis with Steam. Int. J. Hydrogen Energy. 1999, 24: 1123~1130
    79 K. Nakamura, M. Shiomi, K. Takahashi, et al. Failure Modes of Valve- Regulated Lead/Acid Batteries. J. Power Sources. 1996, 59:153~158
    80 S. Amendola. Electroconversion Cell. 1998.9, US Patent 5804329
    81 C. Wu, H. M. Zhang, B.L. Yi. Hydrogen Generation from Catalytic Hydrolysis of Sodium Borohydride for Proton Exchange Membrane. Catalysis Today. 2004, 93-95:477~483
    82 N. A. Choudhury, R. K. Raman, S. Sampath, et al. An Alkaline Direct Borohydride Fuel Cell with Hydrogen Peroxide as Oxidant. J. Power Sources. 2005, 143:1~8
    83 Mi C.H, Cao Y.X, Zhang X.G, et al. Synthesis and Characterization of LiFePO4/(Ag+C) Composite Cathodes with Nano-Carbon Webs. Powder Technology. 2008, 181(3):301~306
    84 Satoru Takakusagi, Ken Kitamura, Kohei Uosaki. Electrodeposition of Ag and Pd on A Reconstructed Au(111) Electrode Surface Studied by in Situ Scanning Tunneling Microscopy. Electrochimica Acta. 2009, 54(22):5137-5141
    85 M. M. Kreevoy, R. W. Jacobson. The Rate of Decomposition of NaBH4 in Basic Aqueous Solution. Ventron Alembic. 1979, 15:2~3
    86 Esther S. Takeuchi, Amy C. Marschilok, Randolph Leising, et al. A Sol–Gel Synthesis and Controlled Sintering of Silver Vanadium Oxide. J. Power Sources. 2007, 174(2):552~553
    87 Roberta Bomparola, Stefano Caporali, Alessandro Lavacchi, et al. Silver Electrodeposition from Air and Water-Stable Ionic Liquid: An Environmentally Friendly Alternative to Cyanide Baths. Surface and Coatings Technology. 2007, 201(24):9485-9490
    88 Elif Sanli, Bekir ZühtüUysal, Mehmet Levent Aksu. The Oxidation of NaBH4 on Electrochemicaly Treated Silver Electrodes. Int. J. Hydrogen Energy. 2008, 33 (8):2097~2104
    89 S. Suda, Y.M. Sun, B. H. Liu, et al. Catalytic Generation of Hydrogen by Applying Fluorinated-Metal Hydrides as Catalysts. Appl. Phys. 2001, A72: 209~213
    90 C. Steven. Amendola, P. Onnerud, T. Michael. Kelly, et al. A Novel High Power Density Borohydride-Air Cell. J. Power Sources. 1999, 84:130~133
    91 Z. P. Li, B. H. Liu, K. Arai, et al. A Fuel Cell Development for Using Borohydrides as the Fuel. J. Electrochem Soc. 2003, 150(7):A868~A872
    92 Z. P. Li, B. H. Liu, K. Arai, et al. Evaluation of Alkaline Borohydride Solutionsas the Fuel for Fuel Cell. J. Power Sources. 2004, 126:28~33
    93 A. Verma, A. K. Jha, S. Basu. Manganese Dioxide as A Cathode Catalyst for A Direct Alcohol or Sodium Borohydride Fuel Cell with A Flowing Alkaline Electrolyte. J. Power Sources. 2005, 141:30~34
    94 A. Verma, S. Basu. Direct Use of Alcohols and Sodium Borohydride as Fuel in An Alkaline Fuel Cell. J. Power Sources. 2005, 145:282~285
    95 E. Deiss, F. Holzer, O. Haas. Modeling of An Electrically Rechargeable Alkaline Zn-Air Battery. Electrochimica Acta. 2002, 47( 25):3995~4010
    96 G. Koscher, K. Kordesch. Can Refillable Alkaline Methanol-Air Systems Replace Metal-Air Cells. J. Power Sources. 2004, 136:215~219
    97 M. J. Montenegro, J. Lippert, S. Muller, et al. Pulsed Laser Deposition of Electrochemically Active Perovskite Films. Appl. Surf. Sci. 2002, 505:197~198
    98 J. Ponce, JL. Rehspringer, G. Poillerat, et al. Electrochemical Study of Nickel-Aluminium-Manganese Spinel NixAl1-xMn2O4. Electrocatalytical Properties for the Oxygen Evolution Reaction and Oxygen Reduction Reaction in Alkaline Media. Electrochim Acta. 2001, 46:3373~3380
    99 RN. Singh, B. Lal. High Surface Area Lanthanum Cobaltate and Its A and B Sites Substituted Derivatives for Electrocatalysis of O2 Evolution in Alkaline Solution. J. Hydrogen Energy. 2002, 27:45~55
    100 J. C. Flores, V. Torres, M. Popa, et al. Preparation of Core–Shell Nanospheres of Silica–Silver: SiO2@Ag. Journal of Non-Crystalline Solids. 2008, 354(52-54):5435~5439
    101 AN. Jain, SK. Tiwari, RN. Singh, et al. Low-Temperature Synthesis of Perov- skite-Type Oxides of Lanthanum and Cobalt and Their Electrocatalytic Properties for Oxygen Evolution in Alkaline-Solutions. J. Chem. Soc., Faraday Trans. 1995, 91(12):1871~1875
    102 NL. Wu, WR. Liu, SJ. Su. Effect of Oxygenation on Electrocatalysis of La0.6Ca0.4CoO3-x in Bifunctional Air Electrode. Electrochimica Acta. 2003, 48(11):1567~1571
    103 O. Haas, F. Holzer, S. Muller, et al. X-ray Absorption and Diffraction Studies of La0.6Ca0.4CoO3 Perovskite, A Catalyst for Bifunctional Oxygen Electrodes. Electrochim Acta. 2002, 47(19):3211~3217
    104郑绍良,童明良,陈小明.六次甲基四胺-银(Ⅰ)分子建筑研究的新进展.无机化学学报. 2002, 18(1):17~23
    105 A. P. Cōté, G. K. H. Shimizu. The Supramolecular Chemistry of the SulfonateGroup in Extended Solids. Coordination Chemistry Reviews. 2003, 245:49~64
    106 A. P. Cōté, G. K. H. Shimizu. Silver(Ⅰ)Arylsulfonates: A Systematic Study of“Softer”Hybrid Inorganic-Organic Solids. Inorganic Chemistry. 2004, 43(21):6663~6673
    107 S. M. Lu, S. B. Qin, Y. X. Ke, et al. Synthesis and Structure of 2D- and 3D- Inorganic-Organic Coordination Polymers: Based on Ag-Hmt Subunit. Crystal Research and Technology. 2004, 39(1):89~93
    108 X. M. Gan, M. Megumu, K. S. Takayoshi, et al. Syntheses and Structures of One-and Two-Dimensional Copper(Ⅰ) Coordination Polymers with Tetrakis (Ethylthio) Tetrathiafulvalene(TTC2-TTF) and the Properties of Their Iodine-Doped Compounds. Polyhedron. 1995, 14(10):1343~1350
    109 Limin Guo, Jingjing Nie, Binyang Du, et al. Thermoresponsive Polymer- Stabilized Silver Nanoparticles. Journal of Colloid and Interface Science. 2008, 319(1):175~181
    110 S. Q. Liu, K. Hisashi, K. S. Takayoshi, et al. 3D Coordination Polymers of Paracyclophane and In Situ Silver(Ⅰ) Perfluoro-Di-Carboxylates: Effects of the Dicarboxylate Spacers and Conformations on the Formation of Complex. Inorg. Chim. Acta. 2005, 358:919~926
    111 Y. Mikiko, G. Xinmin, K. S. Takayoshi, et al. Syntheses, Structures and P Roperties of Linear Copper(Ⅰ) Coordination Polymers with Tetrakis(Ethylthio) Tetrathiafulvalene and Tetrakis(Propylthio) Tetrathiafulvalene. Inorg. Chim. Acta. 1997, 261:169~174
    112 G. S. Fang, Y. Ji, S. Wang, et al. Synthesis and Crystal Structure of A Copper (Ⅰ) Coordination Polymer with 4,5-Bis(Methlthio)-1,3-Dithiole-2-Thione Ligand. Chin. J. Inorg. Chem. 2004, 20(5):603~607
    113 X. M. Gan, M. Megumu, K. S. Takayoshi, et al. Synthesis, Structure and Properties of A Linear Coopper(Ⅰ) Coordination Polymerwith Tetrakis ( Ethylthio) Tetrathiafulvalene. Polyhedron. 1995, 14(1):1647~1651
    114 J. Dai , K. S. Takayoshi, M. Megumu, et al. S…S Contact-Assembled Silver(Ⅰ) Complexes of 4,5-Ethylenedithio-1,3-Dithiole-2-Thione Having Unique Supramolecular Networks. J. Chem. Soc. Dalton Trans. 1997, 13:2363~2368
    115 J. Dai, M. Megumu, K. S. Takayoshi, et al. A Unique Coordination Polymer Consisting of Two Parallel C5H4 S5 Molecules Bridging Two Silver(Ⅰ) Ions (4,5-Ethylenedithio-1,3-Dithiole-2-Thione). Inorg. Chim. Acta. 1997, 255: 163~166
    116 Y. Ding, J. C. Zhong, M. Megumu, et al. A Novel 3-D Open Coordination Polymeric Network Assembled from Silver(Ⅰ) and 4,5-Bis(Cyanoethysulfanyl) -1,3-Dithiole-2-Thione with S…S Contacts. Chem. Lett. 2005, 34(12): 1632~1633
    117 S. L. Zheng, J. P. Zhang, X. M. Chen, et al. Effect of Synthetic Conditions on the Structures of Silver(Ⅰ)-Hexamethylenetetramine Coordination Polymers: Crystal Structures of Two Three-Dimensional Frameworks Featuring New Topological Motifs. Journal of Solid State Chemistry. 2003, 172(1):45~52
    118 L. J. Zhi, T. Zhao, Y. Z. Yu. Preparation of Phenolic Resin/Silver Nano- composites via in Situ Reduction. Scripta Materialia. 2002, 47(12): 875~879
    119 E. V. Alieva, L. A. Kuzik, V. A. Yakovlev. Sum Frequency Generation Spectroscopy of Thin Organic Films on Silver Using Visible Surface Plasmon Generation. Chemical Physics Letters. 1998, 292(4-6):542~546
    120 J. R. Bertolino, M. L. A.Temperini, O. Sala. SERS Effect of Hexamethylene- tetramine Adsorbed on A Silver Electrode. Journal of Molecular Structure. 1988, 178:113~120
    121 I. S. Ahuja, R. Singh, C. L. Yadava. Structural Information on Cobalt(Ⅱ), Nickel(Ⅱ), Copper(Ⅱ), Zinc(Ⅱ), Silver(Ⅰ) and Cadmium(Ⅱ) Nitrate Complexes with Bexamethylenetetramine from Their Magnetic Moments, Electronic and Infrared Spectra. Journal of Molecular Structure. 1980, 68: 333~339
    122陈小明,蔡继文.单晶结构分析原理与实践.科学出版社. 2007:44~47
    123 S. H. Wu, C. Y. Zhu. Polymer Immobilized Smai Ni-Ag Bimetallic Catalysts Ⅱ. XPS, XRD Characterization and Magnetic Measurement. Chinese Journal of Catalysis. 1996, 17(3):252~255
    124 S. H. Wu, C. Y. Zhu. Polymer Immobilized Smai Ni-Ag Bimetallic Catalysts
    Ⅲ. the Catalytic Properties of the Catalysts. Chinese Journal of Catalysis. 1996, 17(4):319~322
    125 Z. B. Wang, G. P. Yin, P. F. Shi. Influence of Buffer Solution on the Performance of Anodic Catalyst Pt-Ru/C During Preparation. Chinese Journal of Catalys. 2005, 26(10):923~928
    126尹鸽平,彭工厂,高云智,史鹏飞,荒又明子.用于PEMFC的Pt/C阳极催化剂制备与性能研究.哈尔滨工业大学学报. 2003, 35(10):1224~ 1227
    127 Yogesh K. Anguchamy, Jong-Won Lee, Branko N. Popov. Electrochemical Performance of Polypyrrole/Silver Vanadium Oxide Composite Cathodes inLithium Primary Batteries. J. Power Sources. 2008, 184(1):297~302
    128 Cao Jiang Li, Wang Xiao Hui, Gui Zhi Lun, et al. Structural Investigations of the Co-Fired Interface of Pb-Based Relaxor Ferroelectrics and Ag-Pd Electrode. Ceramics International. 2008, 34(8):2025~2028
    129 Bin Hong Liu, Zhou Peng Li, S. Suda. A Study on Performance Stability of the Passive Direct Borohydride Fuel Cell. J. Power Sources. 2008, 185(2): 1257~1261
    130史鹏飞.化学电源工艺学.哈尔滨工业大学出版社. 2006:310~312
    131 Murali Venkatraman, J.W. Van Zee. A Model for the Silver–Zinc Battery During High Rates of Discharge. J. Power Sources. 2007, 166(2):537~548
    132 R. Othman, W. J. Basirun, A. H. Yahaya, et al. Hydroponics Gel as A New Electrolyte Gelling Agent for Alkaline Zinc–Air Cells. J. Power Sources. 2001, 103(1):34~41
    133 Katarzyna Szot, Wojciech Nogala, Joanna Niedziolka-J?nsson, et al. Hydro- philic Carbon Nanoparticle-Laccase Thin Film Electrode for Mediatorless Dioxygen Reduction: SECM Activity Mapping and Application in Zinc-Dioxygen Battery. Electrochimica Acta. 2009, 54(20):4620~4625
    134 T. D. Chung, F. C. Anson. Catalysis of the Electroreduction of O2 by Cobalt 5,10,15,20-Tetraphenylporphyrin Dissolved in Thin Layers of Benzonitrile on Graphite Electrodes. J. Electroanal. Chem. 2001, 508(1-2):115~122
    135 R. P. Kingsborough, T. M. Swager. Electrocatalytic Conducting Polymers: Oxygen Reduction by A Polythiophene-Cobalt Salen Hybrid. Chem. Mater. 2000, 12(4):872~874
    136 J. S. Yang, J. J. Xu. Nanoporous Amorphous Manganese Oxide as Electro- catalyst for Oxygen Reduction in Alkaline Solutions. Electrochem Commun. 2003, 5(4):306~311
    137 L. M. Ang, T. S. A. Hor, G. Q. Xu. Decoration of Activated Carbon Nanotubes with Copper and Nickel. Carbon. 2000, 38(3):363~372
    138 P. C. P. Watts, W. K. Hsu, V. Kotzeva, et al. Fe-Filled Carbon Nanotube- Polystyrene: RCL Composites. Chem. Phys Lett.. 2002, 366(1-2):42~50
    139 X. P. Gao, L. Lan, G. L. Pan, et al. Electrochemical Hydrogen Storage by Carbon Nanotubes Decorated with Metallic Nickel. Electrochem. Solid-State Lett.. 2001, 4(10):A173~175
    140 V. B. Baez, D. Pletcher. Preparation and Characterization of Carbon/Titanium Dioxide Surfaces—the Reduction of Oxygen. J. Electroanal. Chem. 1995,382(1-2):59~64
    141 Y. L. Cao, H. X. Yang, X. P. Ai, et al. The Mechanism of Oxygen Reduction on MnO2-Catalyzed Air Cathode in Alkaline Solution. J. Electroanal. Chem. 2003, 557:127~134
    142 B. Klapt, J. Vondrak, J. Velicka. MnOx/C Composites as Electrode Materials II. Reduction of Oxygen on Bifunctional Catalysts Based on Manganese Oxides. Electrochim. Acta. 2002, 47(15):2365~2369
    143 L. Demarconnay, C. Coutanceau, J. M. Leger. Electroreduction of Dioxygen (ORR) in Alkaline Medium on Ag/C and Pt/C Nanostructured Catalysts-Effect of the Presence of Methanol. Electrochim. Acta. 2004, 49(25):4513~4521
    144 Wilder J. W. G, Venema L. C, Rinzler AG, et al. Electronic Structure of Atomically Resolved Carbon Nanotubes. Nature. 1998, 391:59~62
    145 Z. F. Ren, Z. P. Huang, J. W. Xu, et al. Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass. Science. 1998, 282:1105~1107
    146 R. H. Baughman, A. A. Zakhidov, W. A. Heer. Carbon Nanotubes—the Route Toward Applications. Science. 2002, 297:787~792
    147 J. M. Planeix, N. Coustel, B. Coq, et al. Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis. J. Am. Chem. Soc. 1994, 116(17): 7935~7936
    148 R. Q. Yu, L. W. Chen, Q. P. Liu, et al. Platinum Deposition on Carbon Nanotubes via Chemical Modification. Chem. Mater. 1998, 10:718~722
    149 H. Tang, J. H. Chen, Z. P. Huang, et al. High Dispersion and Electrocatalytic Properties of Platinum on Well-Aligned Carbon Nanotube Arrays. Carbon. 2004, 24(1):191~197
    150 G. Q. Zhang, X. G. Zhang. MnO2/MCMB Electrocatalyst for All Solid-State Alkaline Zinc–Air Cells. Electrochim. Acta. 2004, 49(6):873~877
    151 G. Q. Zhang, X. G. Zhang, Y. G. Wang. A New Air Electrode Based on Carbon Nanotubes and Ag–MnO2 for Metal Air Electrochemical Cells. Carbon. 2004, 42(15):3097~3102
    152 Khoshnevisan B, Behpour M, Ghoreishi S.M., et al. Absorptions of Hydrogen in Ag-CNTs Electrode. Int. J. Hydrogen Energy. 2007, 32(16):3860~3863
    153 M.A. Kostowskyj, R.J. Gilliam, D.W. Kirk. Silver Nanowire Catalysts for Alkaline Fuel Cells. Int. J. Hydrogen Energy. 2008, 33(20):5773~5778
    154 L. S. Schadler, S. C. Giannaris, P. M. Ajayan. Load Transfer in Carbon Nanotube Epoxy Composites. Appl. Phys. Lett. 1998, 73(26):3842~3844
    155陈军,陶占良,苟兴龙.化学电源.化学工业出版社. 2006:276~278
    156 M. Mario, O. Claudio, S. Morela, et al. Effect of Structure of the Electrical Performance of Gas Diffusion Electrode for Metal Air Batteries. Electrochim. Acta. 2000, 46:423~432
    157 R. X. Feng, Y. L. Cao, X. P. Ai, et al. Ag-Ni Alloy Used as Anodic Catalyst for Direct Borohydride Fuel Cells. Acta Phys-Chim. Sin. 2007, 23(6):932~934
    158 J. W.Teng, L. H. Jin, L. C. Tang. Study on the Oxygen Electrode of Alkaline Fuel Cells—Effect of Preparation Condition on the Catalytic Activity of Ag-Ni-Bi-Hg/C Catalyst. Chinese Journal of Power Sources. 1997, 21(6): 252~255
    159 Elif Sanli, Bekir ZühtüUysal, Mehmet Levent Aksu. The Oxidation of NaBH4 on Electrochemicaly Treated Silver Electrodes. Int. J. Hydrogen Energy. 2008, 33(8):2097~2104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700