乳液原子转移自由基聚合制备星型聚甲基丙烯酸甲酯及纳米粒子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物纳米粒子因其特殊的结构,优良的性能,受到了研究人员的极大关注,特别是在医药生物领域。但是在诸如生物医药等领域应用时,往往会严格要求其粒径的大小及单分散性,而传统的制备方法在制备单分散纳米级微球方面则显出了不足,这就对制备方法提出了更高的要求。
     可逆断裂-加成链转移聚合(RAFT)、单电子转移自由基聚合(SET-LRP)和乳液原子转移自由基聚合(乳液ATRP)自诞生以来,因广泛的单体适用范围,对聚合体系良好的控制性以及可合成多种特殊结构聚合物的特性引起了高分子化学界的极大兴趣。特别是近几年来,随着部分RAFT试剂的工业化以及AGET ATRP和eATRP体系的相继出现,大大促进了这些技术的发展,在一定程度上将这些可控/活性自由基聚合技术带出了实验室,而不仅仅限于理论研究。
     树枝状-星型聚合物本身就具有纳米级的结构,并且具有规整的体型结构、丰富的末端官能基团,一些树枝状-星型聚合物还拥有天然的、可用于包埋小分子的微囊和微腔,因而在载药、靶向等方面具有广阔应用前景。但是树枝状大分子的成本问题一直没得到解决,在这种情况下,拥有大部分大分子性能并且成本更加低廉的星型小分子便成为最理想的替代物质。
     在本课题中,我们使用酰卤改性季戊四醇制备适用于ATRP的星型小分子引发剂,然后采用先聚合后配位的方式制备稀土荧光微球。首先,通过乳液原子转移自由基聚合制备星型结构的聚甲基丙烯酸甲酯纳米微球,成功制备出粒径在100 nm以下且单分散性较好的纳米粒子。随后,使用红外、核磁、GPC、PCS、TEM等仪器分别对其结构、分子量、形貌进行表征。最后,将稀土离子在合适的条件下与聚合物进行配位,研究其荧光性能,并发现在同等稀土添加量时,星型聚合物的荧光性能强于同剂量单体聚合得到的线形聚合物。
     为得到更理想的荧光微球,进一步提高其荧光性能,在随后的研究中我们尝试引入配位效果更佳的功能性单体马来酸酐。马来酸酐水解后会产生双酮基的结构,能与稀土离子形成更稳定的螯合结构,因此会有更好的荧光性能。通过该功能单体的引入,我们期望通过RAFT聚合的方式制备具有更优良荧光强度的星型马来酸酐共聚物。制备的第一步需要先合成星型的RAFT试剂,本课题采用较成熟的CS2方法先合成出含双二硫酯的RAFT试剂,后通过两种不同的途径合成星型RAFT试剂,并用核磁对其结构进行表征。通过核磁表征发现含双二硫酯的RAFT试剂合成成功,但星型RAFT试剂的合成结果不够明确。并且因时间原因,尚未探索出理想的合成条件。
Because of their special structure and excellent performance, nanoparticles have attacted great concern of researchers, particularly in the pharmaceutical and biotech fields. However, in areas such as biomedical application often strictly requires the diameter of the particle size and monodispersity, and the traditional synthetical methods usually have some difficulties in the preparing monodisperse nano-sized particles., while more advanced technique were required.
     Since their inception, reversible addition-fragmentation chain transfer polymerization (RAFT), single electron transfer radical polymerization (SET-LRP) and the emulsion atom transfer radical polymerization (emulsion ATRP) also attracted great interest in polymer science, due to the usage of wide range of monomers, controlled/living charateristic and synthesis of a variety of special structure as well as star-polymers, comb polymers. Especially in recent years, as part of the RAFT agents have been industrialized and the discoveries of AGET ATRP and eATRP system have greatly promoted the development of these technologies. To a certain extent, these breakthroughs have brought controlled/living radical polymerization technique out of the laboratory, not just theorization.
     Dendritic-star polymer itself has a nano-structure, a clear body structure and the great amount of end functional groups. A number of dendrimer-star polymer also has a natural, small microcapsules and micro-cavity that can be used for embedding minimolecules such as the drug and targeting drugs, for the purpose of these reason,they has broad application prospects. However, the cost of dendrimers has not been resolved, in this case, with most properties of these dendrimers and less costly, small star molecules have become the best alternative substances.
     In this issue, star minimolecule acyl halides were synthesis by modification of pentaerythritol as ATRP initiator, and then the polymerization were implemented for the preparation of rare earth complexes fluorescent microspheres. Firstly, star-like PMMA nanoparticles with diameter smaller than 100nm and monodispersed were successfully prepared by emulsion atom transfer radical polymerization. Subsequently, the infrared, NMR, GPC, PCS, TEM and other equipments were used to characterize its structure, molecular weight and morphology characterization. Finally, the rare earth solvent with convenient concentration was added for coordination with the polymer for the studying of the fluorescent properties of rare earth complex by comparing with the linear polymer with the same amount of rare earth, the fluorescence properties of star polymer is stronger than the linear polymer with same dose of monomers.
     In order to get better fluorescent microspheres, and enhance its fluorescent properties, in the subsequent study, we attempt to introduce a better coordinated functional monomer maleic anhydride. Hydrolysis of maleic anhydride will produce double-keto structure, which can form more stable chelate structure with the rare earth; there will be a better fluorescence. By the introduction of the functional monomer, we have to look forward a new technique for the preparing of star maleic anhydride copolymer, which is the RAFT polymerization. The first step was to synthesis star-shaped RAFT agent, a more mature approach with which started by CS2 was conducted to synthesize the double disulfide ester RAFT agent, then star-RAFT agents were synthesiszed by two different pathways and the structures were characterized by NMR. The RAFT agent containing two-disulfide ester was successfully synthesized, but the results of the star-shaped RAFT agent were not clear. What's more, the ideal condition was still unknown for the purpose of time limitied.
引文
[1]夏和生,王琪.聚合物纳米材料研究进展I.纳米聚合物[J].化学研究与应用,2002,14(1):27-30.
    [2]徐国财,张力德.纳米复合材料[M].北京:化学工业出版社,2002:12.
    [3]Wang Y, Maphler M. Degenerate Four-wave Mixing of CdS/polymer Composite [J]. Optics Communications,1987,61(3):233.
    [4]张立德,牟季美.纳米材料和纳米结构[M].北京,科学出版社,2001:43.
    [6]Ruel-Gariepy E, Leroux J C. In Situ-forming Hydro gels--Review of Temperature-Sensitive Systems [J] European Journal of Pharmaceutics and Biopharmaceutics,2004,58(2):409-414.
    [5]丁星兆,柳襄怀.纳米材料的结构、性能及应用[J].材料导报,1997,11(4):1-5.
    [7]许海燕,孔桦,杨子彬.纳米材料及其在生物医学工程中的应用国外[M].医学生物医学工程分册,1998,21(5).262.
    [8]Sharon C G. Some Assembly Required [J]. Science,2004,306(5695):419-420.
    [9]Jiang P, Bertone J F, Colvin V L. A Lost-wax Approach to Monodisperse Colloids and Their Crystals [J]. Science,2001,291(5503):453-457.
    [10]Unezue M J, Schoonbrood H A S, Asua J M, et al. Reactive Surfactants in Heterophase Polymerization. VI. Synthesis and Screening of Polymerizable Surfactants (surfmers) with Varying Reactivity in High Sol ids Styrene-butyl Acrylate-acrylic Acid Emulsion Polymerization [J]. Journal of Applied Polymer Science,1997,66(9):1803-1820.
    [11]Michael Dreja, Wim Pyckhout-Hintzen, Bernd Tieke. Copolymerization Behaviour and Structure of Styrene and Polymerizable Surfactants in Three-Component Cationic Microemulsion [J]. Macromolecules,1998,31(2):272-280.
    [12]Ooi S K, Biggs S. Ultrasonic Initiation of Polystyrene Latex Synthesis [J]. Ultrasonic Sonochemistry,2000,7(3):125-133.
    [13]Zana R, Lang J. (1987) In:Frieberg SE, Bothorel (eds) Microemulsions:structure and dynamics. CRC, Boca Raton, FL, Ch 6.
    [14]Biasia J, Clin B, Laolanne P. (1987) In:Friberg SE, Bothorel P (eds) Microemulsions: structure and dynamics. CRC, Boca Raton, FL, Ch 1.
    [15]JOHNS P L. Characterization of Microemulsion Polymerized Styrene with Watersoluble Versusoil-soluble Initiators [J]. Journal of Polymer Science Polymer Chemistry,1984, 22(12):3967-3982.
    [16]CANDAU F. Polymerization in Organized Media [C]. Philadelphia:Gardon and Beach Sueuce,1992:215-282.
    [17]SCHMUHL N, DAVIS E. Morphology of ThermaHy Polymerized Microporous Polymer Mafrom Methyl Methacrylate and 2-hydroxy-ethyl Methacrylate Micmemulsions [J]. Langmuir,1998,14(4):757-761.
    [18]张志成,徐相凌.丙烯酰胺微乳液聚合[J].高分子学报,1994,8(4):31-35.
    [19]Adam W, Byron D G, Logan S M, et al. Directed Self-assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field [J]. Advanced Materials,2005,17(12): 1507-1511.
    [20]邢丽,张复实,向军辉等.白组装技术及其研究进展[J].世界科技研究与发展,2007,29(3):39-44.
    [21]Wu C F, Qin W P, Zhang J S, et al. Site Selective Spectroscopy of Surfactant-Assembled Y2O3:Eu Nanotubes [J]. Journal of Rare Earths,2003,21(6):601-604.
    [22]Stupp S I, LeBonheur V, Walker K. Supramolecular Materials:Self-organized Nanostructures [J]. Science,1997,276(5311):384-389.
    [23]Zhang G, Liu L, Zhao Y. Self-Assembly of Carboxylated Poly (styrene-b-ethylene-co-butylene-b-styrene) Triblock Copolymer Chains in Water via a Microphase Inversion [J]. Macromolecules,2000,33(17):6340-6343.
    [24]Seigou Kawaguchi, Koichi Ito. Dispersion Polymerization [J]. Advanced Polymer Science,2005(175):299-328.
    [25]Wang Juxiang, Pan Jin, Zhao Xun, et al. Preparation of Ultrafine Metallic Powder by Ultrasonic Electrolysis [J]. Metallic Functional Materials,1997(3):115-118.
    [26]徐僖,王祺.聚合物纳米材料制备技术[C].北京:2000全国材料大会邀请报告,2000,10.
    [27]陈哲,王祺,徐僖.超细聚酰胺6粒子增韧聚丙烯体系的研究[J].高分子学报,2001,2(1):13-17.
    [28]查刘生,高海峰,杨武利等.聚合物纳米粒子用于给药载体[J].高分子通报,2002,6(3):24-32.
    [29]Scholes P D, Coombers A G A. The Preparation of Sub-200 nm Poly(lactide-co-glycolide) Microspheres for Site-specific Drug Delivery [J]. Journal of Controlled Release,1993, 25(27):145-153.
    [30]Zambaux M F, Bonneaux F. Influence of Experimental Parameters on the Characteristics of Poly(lactic acid) Nanoparticles Prepared by a Double Emulsion Method [J]. Journal of Controlled Release,1998,50(2):31-40.
    [31]Crotts G, Park T G. Preparation of porous and nonporous biodegradable polymeric hollow microspheres [J]. Journal of Controlled Release,1995,35(2-3):91-105.
    [32]Wehrle P, Magenheim B. The Influence of Process Parameters on the PLA Nano-particle Size Distribution; Evaluated by Means of Factorial Design [L]. European Journal of Pharmacokinetics and Biopharmaceutics,1995,41(1):19-26.
    [33]Tom J W, Debenedetti P G. Precipitation of Poly(L-lactic acid) and Composite Poly(L-lactic acid)-pyrene Particles by Rapid Expansion of Supercritical Solutions [J]. The Journal of Supercritical Fluids,1994,7(1):9-29.
    [34]Mawson S, Johnston K P. Formation of Poly(1,1,2,2-tetrahydroperfluorodecyl acrylate) Submicron Fibers and Particles from Supercritical Carbon Dioxide Solutions [J]. Macromolecules,1995,28(9):3182-3191.
    [35]喻发全.核-壳型复合结构纳米粒子研究进展[J].现代化工,2004,24(2):12-15.
    [36]陈彰旭,郑炳云,李先学等.模板法制备纳米材料研究进展[J].化工进展,2010,29(1):94-99.
    [37]Liu X Y, Jiang M, Yang S L, et al. Micelles and Hollow Nanospheres Based on s-Caprolactone-Containing Polymers in Aqueous Media [J]. Angewandte Chemie International Edition,2002,41(16):2950-2953.
    [38]王良御,廖松生.液晶化学[M].北京:科学出版社,1998:138-149.
    [39]Szwarc M.'Living' Polymers [J]. Nature,1956,178(4543):1168-1169.
    [40]Webster O W. Living Polymerization Methods [J]. Science,1991,251(4996):887-893.
    [41]Matyjaszewski K. ACS Symposium Series 685, Controlled Radical Polymerization [M]. Washington D. C.:American Chemical Society,1998:170.
    [42]Le T P, Moad G, Rizzardo E, et al. Living Free-radical Polymerization by Reversible Addition-fragmentation Chain Transfer:the RAFT Process [P]. WO:9801478,1998.
    [43]Chiefari J, Chong Y K, Ercole F, et al. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer:The RAFT Process [J]. Macromolecules,1998, 31(16):5559-5562.
    [43]Moad G, Mayadunne R T A, Rizzardo E, et al. Synthesis of Novel Architectures by Radical Ppolymerization with Reversible Addition Fragmentation Chain Transfer (RAFT Polymerization) [J]. Macromolecular Symposia,2003,192(1):1-13.
    [44]朱健,朱秀林,程振平等.硫代羰基化合物中Z和R基团结构对苯乙烯RAFT聚合 的影响[J].中国科技论文在线,2008,3(6):432441.
    [45]Chen M, Ghiggino K P, Mau A W H, et al. Amphiphilic Acenaphthylene-Maleic Acid Light-Harvesting Alternating Copolymers:Reversible Addition-Fragmentation Chain Transfer Synthesis and Fluorescence [J]. Macromolecules,2005,38(8):3475-3481.
    [46]Moad G, Dean K, Edmond L, et al. Novel Copolymers as Dispersants/Intercalants/Exfoliants for Polypropylene-Clay Nanocomposites [J]. Macromolecular Symposia,2006,233(1):170-179.
    [47]Kubo K, Goto A, Sato K, et al. Kinetic Study on Reversible Addition-fragmentation Chain Transfer (RAFT) Process for Block and Random Copolymerizations of Styrene and Methyl Methacrylate [J]. Polymer,2005,46(23):9762-9768.
    [48]Boschmann D, Vana P. Z-RAFT Star Polymerizations of Acrylates:Star Coupling via Intermolecular Chain Transfer to Polymer [J]. Macromolecules.2007,40(8):2683-2693.
    [49]Vosloo J J, Tonge M P, Fellows C M, et al. Synthesis of Comblike Poly(butyl methacrylate) Using Reversible Addition-fragmentation Chain Transfer and an Activated Ester [J]. Macromolecules,2004,37(7):2371-2382.
    [50]Bernard J, Hao X J, Davis T P, et al. Synthesis of Various Glycopolymer Architectures via RAFT Polymerization:From Block Copolymers to Stars [J]. Biomacromolecules, 2006,7(1):232-238.
    [51]Lutz J F, Kirci B, Matyjaszewski K. Synthesis of Well-Defined Alternating Copolymers by Controlled/Living Radical Polymerization in the Presence of Lewis Acids[J]. Macromolecules,2003,36(9):3136-3145.
    [52]Benaglia M, Chiefari J, Chong Y K, et al. Universal (switchable) RAFT Agents [J]. Journal of American Chemical Society,2009,131(20):6914-6915.
    [53]Akeroy d N, Pfukwa R, Klumperman B. Triazole-Based Leaving Group for RAFT-Mediated Polymerization Synthesized via the Cu-Mediated Huisgen 1,3-Dipolar Cycloaddition Reaction [J]. Macromolecules,2009,42(8):3014-3018.
    [54]Chiefair J, Mayadunne R T A, Moad G, et al. POLYMERIZATION PROCESS WITH LIVING CHARACTERISTICS AND POLYMERS MADE THEREFROM [P]. WO: 9931144,1999.
    [55]Kwak Y, Nicolay R, Matyjaszewski K. A Simple and Efficient Synthesis of RAFT Chain Transfer Agents via Atom Transfer Radical Addition-Fragmentation [J]. Macromolecules,2009,42(11):3738-3742.
    [56]Percec V, Guliashvili T, Ladislaw J S, et al. Ultrafast Synthesis of Ultrahigh Molar Mass Polymers by Metal-Catalyzed Living Radical Polymerization of Acrylates, Methacrylates, and Vinyl Chloride Mediated by SET at 25℃ [J]. Journal of American Chemistry Society,2006,128(43):14156-14165.
    [57]丁伟,孙颖,吕崇福等.单电子转移活性自由基聚合的现状及展望fJ].应用化学,2011,28(3):245-253.
    [58]Sienkowska M J, Rosen B M, Percec V SET-LRP of Vinyl Chloride Initiated with CHBr3 in DMSO at 25℃ [J]. Journal of Polymer Science Part A:Polymer Chemistry,2009, 47(16):4130-4140.
    [59]Brad M R, Virgil Percec. Single-Electron Transfer and Single-Electron Transfer Degenerative Chain Transfer Living Radical Polymerization [J]. Chemical Reviews, 2009,109(11):5069-5119.
    [60]Lligadas G, Percec V. Alkyl Chloride Initiators for SET-LRP of Methyl Acrylate [J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(14):4917-4926.
    [61]Lligadas G, Ladislaw J S, Guliashvili T, et al. Functionally Terminated Poly(methyl acrylate) by SET-LRP Initiated with CHBr3 and CHI3 [J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(1):278-288.
    [62]SVEN FLEISCHMANN, VIRGIL PERCEC. SET-LRP of Methyl Methacrylate Initiated with CCl4 in the Presence and Absence of Air [J]. Journal of Polymer Science Part A: Polymer Chemistry,2010,48(10):2243-2250.
    [63]Gu L, Shen Z, Feng C, et al. Synthesis of Double Hydrophilic Graft Copolymer Containing Poly(ethylene glycol) and Poly(methacrylic acid) Side Chains via Successive ATRP [J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(12): 4056-4069.
    [64]Willoughby I, Haddleton D M, Levere M. Online Monitoring of Single Electron Transfer Living Radical Polymerizations using PLPMC. Varian Application Note SI-01202, http://www.varianinc.com.
    [65]Wang W, Zhang Z, Zhu J, et al. Single Electron Transfer-living Radical Polymerization of Methyl Methacrylate in Fluoroalcohol:Dual Control Over Molecular Weight and Tacticity [J]. Journal of Polymer Science Part A:Polymer Chemistry,2009,47(22): 6316-6327.
    [66]Wright P M, Mantovani G, Haddleton D M. Polymerization of Methyl Acrylate Mediated by Copper(0)/Me6-TREN in Hydrophobic Media Enhanced by Phenols; Single Electron Transfer-living Radical Polymerization [J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(22):7376-7385.
    [67]Whittaker M R, Urbani C N, Monteiro M J. Synthesis of Linear and 4-arm star Block copolymers of Poly(methyl acrylate-b-solketal acrylate) by SET-LRP at 25℃ [J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(18):6346-6357.
    [78]Gurr P A, Mill M F, Qiao G G, et al. Initiator Efficiency in ATRP:The Tosyl Chloride/CuBr/PMDETA system [J]. Polymer,2005,46(7):2097-2104.
    [69]Plessis C, Arzamendi G, Alberdi J M, et al. Evidence of Branching in Poly(butyl acrylate) Produced in Pulsed-Laser Polymerization Experiments [J]. Macromolecular Rapid Communications,2003,24(2):173-177.
    [70]Feng C, Shen Z, Gu L, et al. Synthesis and Characterization of PNIPAM-b-(PEA-g-PDEA) Double Hydrophilic Graft Copolymer [J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(16):5638-5651.
    [71]GERARD LLIGADAS, VIRGIL PERCEC. SET-LRP of Acrylates in the Presence of Radical Inhibitors [J]. Journal of Polymer Science Part A:Polymer Chemistry,2008, 46(10):3174-3181.
    [72]Nguyen N H, Rosen B M, Lligadas G, et al. Surface-Dependent Kinetics of Cu(0)-Wire-Catalyzed Single-Electron Transfer Living Radical Polymerization of Methyl Acrylate in DMSO at 25℃ [J]. Macromolecules,2009,42(7):2379-2386.
    [73]Lligadas G, Rosen B M, Bell CA, et al. Effect of Cu(0) Particle Size on the Kinetics of SET-LRP in DMSO and Cu-Mediated Radical Polymerization in MeCN at 25℃ [J]. Macromolecules,2008,41(22):8365-8371.
    [74]Lligadas G, Percec V. Synthesis of Perfectly Bifunctional Polyacrylates by Single-electron-transfer Living radical Polymerization [J]. Journal of Polymer Science Part A:Polymer Chemistry,2007,45(20):4684-4695.
    [75]Lligadas G, Percec V. A Comparative Analysis of SET-LRP of MA in Solvents Mediating Different Degrees of Disproportionation of Cu(I)Br [J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(20):6880-6895.
    [76]Lligadas G, Rosen B M, Monteiro M J, et al. Solvent Choice Differentiates SET-LRP and Cu-Mediated Radical Polymerization with Non-First-Order Kinetics [J]. Macromolecules,2008,41(22):8360-8364.
    [77]XUAN JIANG, BRAD M R, VIRGIL PERCEC. Immortal SET-LRP Mediated by Cu(0) Wire [J]. Journal of Polymer Science Part A:Polymer Chemistry,2010,48(12) 2716-2721.
    [78]Wang J S, Matyjasewski K. Controlled/"living" Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-metal Complexes [J]. Journal of American Chemistry Society,1995,117(20):5614-5615.
    [79]Kato M, Kamigatio M, Sawamoto M. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris-(triphenylphosphine)ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System:Possibility of Living Radical Polymerization [J]. Macromolecules,1995,28(5):1721-1723.
    [80]潘祖仁.高分子化学[M].北京:化学工业出版社,2007,106.
    [81]郭建华,韩哲文,吴平平.原子转移自由基聚合的研究进展[J].高分子通报,1998,9(3):30-36.
    [82]Xia J H, Matyjaszewski K. Contolled/"living" Radical Polymerization. Homogeneous Reverse Atom Transfer Radical Polymerization Using AIBN as the Initiator [J]. Macromolecules,1997,30(25):7692-7696.
    [83]李丽,曹亚峰,梁凌熏.反向原子转移自由基聚合研究进展[J].化工进展,2009,28(2):283-287.
    [84]Gromada J, Matyjaszewski K. Simultaneous Reverse and Normal Initiation in Atom Transfer Radical Polymerization [J]. Macromolecules,2001,34(22):7664-7671.
    [85]Matyjaszewski K, Jakubowski W, Min K, et al. Diminishing Catalyst Concentration in Atom Transfer Radical Polymerization with Reducing Agents [J]. PNAS,2006,42(103): 15309-15314.
    [86]Jakubowski W, Matyjaszewski K. Activator Generated by Electron Transfer for Atom Transfer Radical Polymerization [J]. Macromolecules,2005,38(10):4139-4146.
    [87]Min K, Jakubowski W, Matyjaszewski K. AGET ATRP in the Presence of Air in Miniemulsion and in Bulk[J]. Macromolecular Rapid Communications,2006,27(8): 594-598.
    [88]Oh J K, Matyjaszewski K. Synthesis of Poly(2-hydroxyethyl methacrylate) in Protic Media through Atom Transfer Radical Polymerization using Activators Generated by Electron Transfer [J]. Journal of Polymer Science Part A:Polymer Chemistry,2006, 44(12):3787-3795.
    [89]Zhang L F, Cheng Z P, Shi S P, et al. AGET ATRP of Methyl Methacrylate Catalyzed by FeCl3/iminodiacetic Acid in the Presence of Air [J]. Polymer,2008,49(13-14): 3054-3059.
    [90]Zhang L F, Cheng Z P, Tang F, et al. Iron(III)-Mediated ATRP of Methyl Methacrylate Using Activators Generated by Electron Transfer [J]. Macromolecular Chemistry and Physics,2008,209(16):1705-1713.
    [91]Luo R, Sen A. Electron-Transfer-Induced Iron-Based Atom Transfer Radical Polymerization of Styrene Derivatives and Copolymerization of Styrene and Methyl Methacrylate [J]. Macromolecules,2008,41(12):4514-4518.
    [92]Jakubowski W, Min K, Matyjaszewski K. Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Styrene [J]. Macromolecules,2006,39(1): 39-45.
    [93]Andrew J D, Magenau, Nicholas C, et al. Electrochemically Mediated Atom Transfer Radical Polymerization [J]. Science,2011,4(332):81-84.
    [94]Eslami H, Zhu S P. Emulsion Atom Transfer Radical Polymerization of 2-ethylhexyl Methacrylate [J]. Polymer,2005,46(15):5484-5493.
    [95]Jousset S, Qiu J, Matyjaszewski K. Atom Transfer Radical Polymerization of Methyl Methacrylate in Water-Borne System [J]. Macromolecules,2001,34(19):6641-6648.
    [96]Gaynor S G, Qiu J, Matyjaszewski K. Controlled/"Living" Radical Polymerization Applied to Water-Borne Systems [J]. Macromolecules,1998,31(17):5951-5954.
    [97]Peng H, Cheng S Y, Feng L X, et al. Atom transfer radical polymerization of n-butyl methacrylate in an aqueous dispersed system [J]. Journal of Applied Polymer Science, 2003,89(12):3175-3179.
    [98]Qiu J, Shipp D, Gaynor S G, et al. The Effect of Ligands on Atom Transfer Radical Polymerization in Water-Borne Systems [J]. Polym Prepr (Journal of American Chemistry Society, Div Polymer Chemistry),1999,40(2):418-419.
    [99]Yoo S H, Lee J H, Lee J C, et al. Synthesis of Hyperbranched Polyacrylates in Emulsion by Atom Transfer Radical Polymerization [J]. Macromolecules,2002,35(4):1146-1148.
    [100]张彬,张兆斌,万小龙等.室温下甲基丙烯酸甲酯原子转移自由基乳液聚合反应研究[J].化学学报,2003,61(12):2008-2012.
    [101]Eslami H, Zhu S P. Emulsion atom transfer radical block copolymerization of 2-ethylhexyl methacrylate and methyl methacrylate [J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44(6):1914-1925.
    [102]Kiera B, Thomas H S, Wendy M L, et al. A Luminescent Ruthenium Complex for Ultrasensitive Detection of Proteins Immobilized on Membrane Supports [J]. Analytical Biochemistry,1999,276(2):129-143.
    [103]Amelie K, Perake N. Dual Labeling of a Binding Protein Allows for Specific Fluorescence Detection of Native Protein [J]. Analytical Biochemistry,2001,295(1): 22-30.
    [104]Rtidiger G, Peter F. Detection of Immobilized Proteins on Nitrocellulose Membranes Using a Biotinylation-Dependent System [J]. Analytical Biochemistry,1999,273(2): 291-297.
    [105]Yang J, Zhou G, Zhang G, et al. Determination of Some Cephalosporinsin Pharmaceutical Formulations by a Fluorescence Quenching Method [J].Analytical Communications,1996,33(5):167-170.
    [106]Tian F P, Wu W, Jiang Z X, et al. Adsorption of Sulfur-containing Compounds from FCC Gasoline on Cerium-exchanged Y Zeolite [J]. Chinese Journal of Catalysis,2005, 26(9):734-736.
    [107]李媛媛,闫涛,王冬梅等.稀土配合物的发光机理及其应用[J].济南大学学报(自然科学版),2005,19(2):113-119.
    [108]Ida K. Synthetic Resin Composition and Process for Producing the Same [P]. European Pattern Application, EP108622,1984.
    [109]井田浩三.日本专利,公开特许公报,昭60-161458,1985.
    [110]雷光东,卢志云,朱卫国等.有机荧光防伪材料的制备[J].化学研究与应用,1999,11(3):308-311.
    [111]Georges J. Lanthanide Sensitized Luminescence and Applications to the Determination of Organic Analyses [J]. Analyst,1993,118(12):1481-1486.
    [112]王急琴,黄京根,胡建国等.稀土植物生长光源[J].复旦大学学报(自然科学版).1991,30(3):287-292.
    [113]Matyjaszewski K. Controlled/Living Radical Polymerization-Progress in ATRP, NMP, and RAFT [M]. Washington D. C.:American Chemical Society,2000:27-38.
    [114]Matyjaszewski K, Xia J H. Atom Transfer Radical Polymerization [J]. Chemical Reviews,2001,101(9):2921-2990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700