含硼针铁矿对红壤养分状况、致酸效应的影响及其在油菜上的应答
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硼是植物生长必需的微量元素之一。硼与土壤中铁氧化物之间的相互作用会对土壤微环境-植物生长产生影响,是影响硼的土壤化学行为和硼的植物营养作用的重要因素。本研究模拟土壤中硼与针铁矿的吸附反应,利用凝胶共沉淀方法,人工合成普通针铁矿和含硼针铁矿即:吸附硼针铁矿(ad-B-goethite)和包被硼针铁矿(oc-B-goethite)。将普通针铁矿和含硼针铁矿引入红壤,利用土培方式,通过设置不同处理,观察含硼针铁矿对油菜苗期和收获期长势-长相及表观生物量的影响;研究含硼针铁矿对土壤致酸离子及其它土壤性质的影响;利用同位素示踪试验研究含硼针铁矿在土壤中硼的释放特性及生物有效性。主要研究结果如下:
     1.包被硼针铁矿的热水溶性硼含量和全硼含量比吸附硼针铁矿高,其有效硼占全硼含量的比例比吸附硼针铁矿低;吸附硼针铁矿的硼比包被硼针铁矿的容易释放和被植物吸收利用。不同针铁矿比表面积大小顺序为:包被硼针铁矿>针铁矿>吸附硼针铁矿。含硼针铁矿表面Fe-OH-Fe的表面羟基弯曲振动的部分吸收峰在针铁矿基础上有所减弱,且吸附硼针铁矿保持了针铁矿的结构,而包被硼针铁矿结构发生变化。
     2.含硼针铁矿能提高油菜不同生育期地上部和根部干物质积累量,使油菜生长状况比单独施硼处理和单独施针铁矿处理好。含硼针铁矿增加油菜一级有效分枝数,提高其收获系数,但含硼针铁矿处理油菜株高和第一级有效分枝枝高降低。不同含硼针铁矿在不同的生育期对油菜的影响作用不尽相同。
     3.含硼针铁矿提高土壤热水溶性硼含量和土壤供硼能力,能够持续满足油菜整个生育期对硼的需求。土壤热水溶性硼含量的提高,促进油菜对硼的吸收利用,并且土壤热水溶性硼含量和油菜硼含量与油菜干物质积累密切相关,说明,土壤热水溶性硼含量的提高是油菜硼吸收量增加和生物量增加的重要原因。
     4.含硼针铁矿提高土壤pH值,降低土壤交换性酸含量,油菜收获期土壤pH升高比苗期明显;其效果顺序为:包被硼针铁矿>吸附硼针铁矿>针铁矿。含硼针铁矿对交换性H+影响较明显而对交换性A13+影响较小。油菜生物量表现与土壤pH值升高和交换性酸含量的降低密切相关。由此说明,含硼针铁矿处理,土壤pH值提高和交换性酸下降是油菜生长良好的又一重要原因。
     5.含硼针铁矿降低土壤活性铝、活性锰含量,这一效果在油菜苗期比在收获期明显。苗期土壤活性铝、收获期土壤活性锰含量的减少降低了油菜对铝、锰的吸收,苗期土壤活性铝含量与油菜铝含量,收获期土壤活性锰含量与油菜锰含量分别呈显著正相关关系。含硼针铁矿使土壤不同形态锰含量发生变化,其中植物难以利用形态锰含量增加,减少了植物对过量锰的吸收,促进植物生长。
     6.土壤热水溶性硼含量的增加不能降低土壤活性铝、锰含量,而植物对硼的吸收有利于抑制铝、锰的毒害作用。土壤铝、锰含量与土壤热水溶性硼含量无相关关系,而油菜铝、锰含量与油菜硼含量呈现高度负相关。含硼针铁矿降低土壤活性铝、锰含量,减少土壤铝、锰的供应能力,尤其是通过给油菜提供硼营养从而抑制铝、锰对油菜的毒害作用,促进油菜的生长。逐步回归分析说明,提高土壤pH和降低土壤交换性H+和活性Mn含量为苗期油菜生长提供了良好的土壤微环境;而收获期土壤pH和活性A1对土壤酸环境的影响比较重要。
     7.含硼针铁矿影响土壤不同形态磷含量,对Org-P影响最明显。土壤Al-P、Fe-P、Org-P含量与油菜吸收磷量和油菜干物质积累量高度相关。不同形态的磷对油菜不同部位磷吸收量和干物质积累量影响不同。茎秆磷含量的减少和土壤Org-P含量增加是含硼针铁矿处理油菜株高相对较低的重要原因。
     8.含硼针铁矿在土壤中以晶型状态存在为主,油菜苗期吸附硼针铁矿明显活化,收获期包被硼针铁矿才活化明显。苗期无定形铁、游离铁含量的增加影响土壤A1-P和EXC-Mn的含量,收获期游离铁的增加影响Al-P、Org-P的含量。无定形铁增多有利于O-Fe-P的释放,提高闭蓄态磷的有效性,同时对OM-Mn、RO-Mn含量产生影响。含硼针铁矿的活化对土壤磷、锰形态产生影响,而不会影响含硼针铁矿中硼的解吸,油菜对铁的吸收利用也未出现不利影响。
     9.含硼针铁矿能提高油菜苗期土壤中不同形态活性有机质的含量;高活性有机质与土壤热水溶性硼含量呈显著相关,并影响油菜对硼的吸收利用。有机质对土壤不同磷形态的影响主要是高活性有机质和低活性有机质对A1-P和Org-P的影响。低活性和中活性有机质是影响土壤不同形态锰含量的主要成分。
     10.含硼针铁矿提高油菜苗期土壤中有效钙、镁含量;在此条件下,油菜根部对铜、锌吸收量增加,地上部对铜、锌吸收量减少;逐步回归分析说明,良好的土壤供硼环境和较低的活性铝、锰含量有利于油菜根系生长,而铝、钙含量的减少和镁吸收量的增加有利于油菜地上部的生长。
     11.有无植物参与条件下,含硼针铁处理在土壤中10B释放量都不断增加,包被硼针铁矿比吸附硼针铁矿10B释放量高。植物的参与有利于含硼针铁矿1oB的释放。苗期油菜地上部和根部生物量不断增加,油菜对10B吸收的累积量与含硼针铁矿中10B的释放量一致,即10B的释放有利于植物对硼的吸收利用。10B释放动力学方程拟合结果说明:无植物参与条件下,零级速率方程和抛物线方程对吸附硼针铁矿、一级速率方程对包被硼针铁矿10B释放量拟合度较高;有植物参与条件下,零级、一级和抛物线方程均适合描述吸附硼针铁矿和包被硼针铁矿10B释放过程,其中,一级速率方程对包被硼针铁矿10B释放过程拟合达到极显著。吸附硼针铁矿中10B的释放速度在短期内比较快,而包被硼针铁矿中10B的释放速度持续较高,这与含硼针铁矿在土壤中硼的活化特性相呼应。
Boron is one of the essential trace elements for plant growth. The interaction between boron and iron oxides in soils will impact on soil micro-environment and plant growth, which also was an important factor affecting soil chemical behavior and plant nutrition of boron. In present study, the reaction of boron and goethite was simulated using gel co-precipitation method. Goethite and two types of boron-containing goethite were synthesized in laboratory:goethite which had boron either adsorbed (ad-B-goethite) or occluded (oc-B-goethite). Original goethite and boron-containing goethite were added to red soil using soil culture method. Through setting the different treatment, we observed the effect of boron-containing goethite on the growth of seedling and harvest time of rape and apparent biomass; studied the effect of boron-containing goethite on acidified ion of soil and other soil properties; studied the release characteristics and bioavailability of boron of boron-containing goethite in soil using the test of isotope. The main findings were as follows:
     1. The content of HWSB and total boron of oc-B-goethite were higher than that of ad-B-goethite. The proportion of available boron and total boron of that was lower than ad-B-goethite. The release and uptake for plant of boron in ad-B-goethite was easier than that in oc-B-goethite. The increase of BET of different types of oxides was in order of: oc-B-goethite>goethite>ad-B-goethite. The bands of Fe-OH-Fe in-plane bending and parts of the adsorption peak were weak compared with the original goethite. Ad-B-goethite maintained the structure of goethite, and the structure of oc-B-goethite was changed.
     2. Boron-containing goethite increased the dry accumulation of shoot and root of rape at different growth stages. The growth situation of rape of boron-containing goethite was better than that of boron treatment and goethite treatment. Boron-containing goethite increased the first effective number of branch and the harvesting coefficient of rape. Plant height and the first effective branch height decreased in boron-containing goethite treatment compared with other treatments. Different types of oxides at different growth stages of rape had different effect on the rape growth.
     3. Boron-containing goethite increased the content of HWSB and boron supply capacity of soil, which could continue to meet the needs of rape for boron at the whole growth period. The increase of HWSB content promoted the uptake of boron for rape. The content of HWSB of soil and boron content of rape are closely related with dry matter accumulation, which indicated that it was an important reason for the increase of boron uptake and rape biomass to increase the HWSB content.
     4. Boron-containing goethite increased soil pH and decreased soil exchangeable acid content. Soil pH in harvest time was higher than that in rape seedling. Different types of oxides were in order of:oc-B-goethite>ad-B-goethite>goethite. Boron-containing goethite impact the exchangeable H+ more obvious than the exchangeable Al3+. The increase of soil pH and the decrease of exchangeable acid were closely related to rape biomass, indicating that the increase of soil pH and the decrease of soil exchangeable acid was another important reason for the better growth of rape.
     5. Boron-containing goethite decreased the content of soil active Al and Mn, and the result in rape seedling was more significant than that in harvest time. The decrease of soil active Al content in rape seedling and active Mn content in harvest time reduced the uptake of Al and Mn for rape. Soil active Al content in rape seedling was significantly positive correlated with Al content of rape and active Mn content in harvest time was significantly positive correlated with Mn content of rape. Boron-containing goethite changed the status of different forms of manganese in the soil and the content of non-active manganese for plants increased, which reduced the uptake of manganese for plant and improved the growth of plant.
     6. Although the increase of HWSB could not reduce the content of soil active Al and Mn, the uptake of boron for plant was favorable to inhibiting the effect of Al and Mn toxicity on rape growth. There was no correlation between the content of soil Al or Mn and HWSB content, but Al and Mn content in rape was significantly negative correlated with boron content in rape. Boron-containing goethite could decrease the content of active Al and Mn in soils, reduce the supply capacity of soil Al and Mn, especially could improve the availability of soil boron through the increase of provision of boron nutrition to inhibit the toxicity of Al and Mn, which promoted plant growth. The stepwise regression analyses indicated that the increase of soil pH and the decrease of soil exchangeable H+ and active Mn content provided a better soil micro-environment for rape seedling growth; soil pH and active Al in harvest time of rape had a more important effect on the soil acid environment.
     7. Boron-containing goethite impacted different forms of phosphorus content, especially for Org-P. The content of soil Al-P、Fe-P、Org-P was highly related to phosphorus uptake and dry matter accumulation of rape. The effect of different forms of phosphorus on phosphorus uptake of different parts of rape and dry matter accumulation were different. The decrease of phosphorus content of stem and the increase of soil Org-P were the important reason of height of rape decreased in boron-containing goethite treatment.
     8. Boron-containing goethite mainly existed in crystalline state in soils. Ad-B-goethite was favorable to active in rape seedling and oc-B-goethite was favorable to active in harvest time. The increase of Feo and Fed content of soil in rape seedling impacted Al-P and EXC-Mn content of soil. The increase of Fed content in harvest time impacted Al-P and Org-P content. The increase of Feo content benefited O-Fe-P release increasing the available of occluded phosphorus, while impacted the content of OM-Mn and RO-Mn. The activation of boron-containing goethite impacted the phosphorus and manganese forms, which would not impact the boron desorption. Uptake and utilization of Fe for rape also did not appear adversely affected.
     9. Boron-containing goethite could increase the content of different forms organic matter; high labile organic matter was significantly correlation with HWSB, and affected the uptake of boron for rape. The effect of soil different forms organic matter on different forms phosphorus mainly was the effect of high and low labile organic matter on Al-P and Org-P. Low and middle labile organic matter was main component for the effect of soil different forms Mn.
     10. Boron-containing goethite improved the available Ca and Mg content; the uptake of Cu and Zn of rape root increased and the uptake of Cu and Zn of rape shoot decreased. Stepwise regression analysis showed better soil environment for boron supply and lower active Al and Mn content was favorable to rape root growth, while decrease of Ca and Al content and increase of Mg uptake was favorable to rape shoot growth.
     11. Condition with plants or no plants, the amount of 10B release in boron-containing goethite treatment continued to increase; oc-B-goethite had a higher 10B release amount than ad-B-goethite. The treatments for plants was favorite to increasing the release of 10B of boron-containing goethite. Rape shoot and root biomass continued to increase, while the accumulation of 10B uptake for rape was in keep with the release of 10B of boron-containing goethite. Therefor, the release of 10B was favorable to uptake of 10B for rape. Fitting result of kinetic equations showed that in condition with no plants zero-rate equation and parabolic diffusion equation fitted the rules of 10B release in ad-B-goethite treatment better than other equations, while first order rate equation fitted the rules of 10B release in oc-B-goethite treatment better than other equations. in condition with plants, zero-order, first-order and parabolic diffusion equation fitted to describe the rules of 10B release of ad-B-goethite and oc-B-goethite in the soil. Among them, first-order equation fitting 10B release rules of oc-B-goethite was highest of all. The release rate of 10B in ad-B-goethite is faster in short term, while The release rate of 10B in oc-B-goethite is consistently higher in long term, which was correspond to the activation characteristics of boron of boron-containing goethite in soil.
引文
1.鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2000
    2.蔡妙珍,邢承华.土壤氧化铁的活化与环境意义.浙江师范大学学报(自然科学版),2004,27(3):279-282
    3.曹宁,曲东.水稻土中铁还原与无机磷有效性的关系.土壤通报,2007,3(38):504-507
    4.陈家坊.土壤胶体中的氧化物.土壤通报,1981,2:44-49
    5.陈家坊,何群,邵宗臣.土壤中氧化铁的活化过程的探讨.土壤学报,1983,20(4):387-392.
    6.陈雯,刘玲,周建伟.三种氧化铁吸附水环境中砷的试验研究.环境科学与技术,2009,32(1):63-67
    7.陈秀红,朱端卫,程东升,刘武定.硼的吸附-解吸对土壤表面性质的影响.土壤学报,2002,39(2):145-151
    8.程东升,朱端卫,刘武定.几种常见矿物与硼作用的红外光谱特性研究.土壤学报,2002,39(5):671-677
    9.程东升,朱端卫,刘武定.温度对硼在三种矿物上吸附—解吸特性的影响.土壤学报,2002,39(6):822-829
    10.程谊,蔡祖聪,张金波.15N同位素稀释法测定土壤氮素总转化速率研究进展.土壤,2009,41(2):165-171
    11.杜昌文,王运华.植物硼素营养研究进展.山地农业生物学报,1999,18(6):423-430
    12.杜应琼,廖新荣,黄志尧,何江华,周晓洪.pH和质地对土壤供硼影响的研究.土壤与环境,2000,9(2),125-128
    13.冯固,杨茂秋,白灯沙,黄全生.用同位素示踪法研究土壤磷素对不同作物生物有效性的差异.土壤通报,1993,24(1):30-32
    14.高超,张桃林.氧化还原条件对土壤磷素固定与释放的影响.土壤学报.2002,39(4):542-549
    15.耿明建,吴礼树,刘武定,曹享云.硼对2个棉花品种花器官不同部位矿质营养的影响Ⅰ.对微量元素B、Cu、Zn、Fe和Mn的影响.华中农业大学学报,2003b,22(1):40-41
    16.耿明建,吴礼树,曹享云,刘武定.硼对2个棉花品种花器官不同部位矿质营养的影响.对N、P、K、Ca和Mg的影响.华中农业大学学报,2003a,22(2):133-137
    17.何群,陈家坊.土壤中游离铁和络合态铁的测定.
    18.黄昌勇等.土壤学[M].中国农业出版社,2000
    19.黄开辉,万惠霖.催化原理.北京:科学出版社,1983,513
    20.黄丽,王茹,胡红青,李学垣.有机酸对针铁矿和膨润土吸附Cd2+、Pb2+的影响.土壤学报,2006,43(1):98-103
    21.黄巧云,李学垣,徐凤琳.铝对小麦幼苗生长和根的某些生理特性的影响(简报).植物生理学通讯,1994,30(2):97-100
    22.黄益宗.植物对硼素不足的反应及其成因探讨.土壤与环境.2002,11(4):434-438
    23.蒋梅茵,杨德涌.玄武岩发育的几种红壤的矿物特征.土壤学报,1991,28(3):268-275.
    24.介晓磊,刘凡.磷酸盐吸附对针铁矿表面电化学性质及锌次级吸附的影响.河南农业大学学报,2000,34(2):119-121
    25.雷宏军,刘鑫,朱端卫.酸性土壤磷分级新方法建立与生物学评价.土壤学报,2007,44(5):860-866
    26.李金英,郭冬发,姚继军.质谱学报,2002,23(3):164-179.
    27.李世珍,肖应凯,魏海珍,张崇耿.硼同位素的负热电离质谱测定及进展.盐湖研究.2003,11(4):13-19
    28.李延,秦遂初.Fe2+和Mn2+对水稻锌吸收与运转的影响.热带亚热带土壤科学,1995,4(3):151-155
    29.廖水姣,王娟,朱端卫,任丽英,周文兵,丁家旺.负载硼的针铁矿结构表征研究.土壤学报,2006,43(5):742-748
    30.廖育林,郑圣先,戴平安,聂军,易国英.钾镁锌硼钼肥对椪柑产量和品质的影响.土壤通报,2007,38(6):1158-1161
    31.林葆,林继雄,李家康.长期施肥作物产量和土壤肥力变化.北京:农业科技出版社,1996,1-179
    32.刘凡,徐凤琳.几种可变电荷土壤中氧化铁类型与磷吸附特性.华中农业大学学报,1993,12(5):450-454
    33.刘凡,贺纪正,何慧等.pH对针铁矿表面吸附磷化学形态的影响.中国科协第二届青年学术年会论文集(农业科学分册),中国科技出版社,1995:352-355
    34.刘凡,李学垣,徐凤琳,王代长,荣艺.鄂湘两省几种土壤中磷的有效性与氧化铁的类型.中国农业科学,1995,28(3):49-57
    35.刘凡,介晓磊,贺纪正.不同pH条件下针铁矿表面磷的配位形式及转化特点.土壤学报,1997,34:367-373
    36.刘金萍,王正银.受钙、锌影响硼在酸性紫色土中的吸附特征.中国土壤与肥料,2007,3:36-37
    37.刘莉莉,李合松,马绪亮,吴成春.同位素示踪技术在植物光合作用研究中的应用.湖南农业科学,2007,4:45-48
    38.刘敏,侯立军,许世远.长江口潮滩有机质来源的C、N稳定性同位素示踪.地理学报,2004,59(4):918-926.
    39.刘鹏,吴建之,杨玉爱.土壤中的硼及其植物效应的研究进展.农业环境保护,2000,19(2):119-122
    40.刘武定,皮美美,吴礼树.棉花硼、钾营养相互关系的研究.土壤学报,1987,24(24):43-50
    41.刘莹,梁成华,杜立宇,赵宇光.硼污染土壤中硼释放特征及无机离子对其释放的影响.农业环境科学.2009,28(4):711-715
    42.刘铮,朱其清,唐丽华.土壤中硼的含量和分布规律性.土壤学报,1989,26(4):353-361
    43.刘铮等.微量元素的农业化学.北京:农业出版社,1991,133-134
    44.卢国富.非线性扩散方程.莆田高等专科学校学报,1999,6:13-22
    45.陆景陵.植物营养学(上册)第二版中国农业大学出版社.2003
    46.陆雅海,朱祖祥,袁可能,黄昌勇.针铁矿对重金属离子的竞争吸附研究.土壤学报,1996,33:78-84
    47.鲁如坤.土壤磷素化学研究进展.土壤学进展.1990,(6):1-51
    48.马毅杰,陈家坊.我国红壤中氧化铁形态及其特性和功能.土壤,1998,1:1-6
    49.孟宪厚,黄达峰,李铁球.质谱学报,1987,8(1),53-5
    50.年夫照,彭慧元,徐芳森,石磊,王运华.不同硼效率甘蓝型油菜苗期对硼镁营养的反应.植物营养与肥料学报,2004,10(5):511-515
    51.年夫照,石磊,徐芳森,陈钢,胡承孝,王运华.硼镁营养对不同硼效率甘蓝型油菜品种苗期硼形态的影响.植物营养与肥料学报,2004,10(6):633-637
    52.宁国赞,刘元芳,刘惠琴,黄岩玲,白新学.我国豆科牧草根瘤菌选育及应用研究的进展.中国草地,1989(3)
    53.彭齐鸣,许虹.硼同位素地球化学及其示踪意义
    54.皮美美,刘武定.棉花硼氮营养关系的研究.华中农业大学学报,1987,6(1):42-50
    55.戎秋涛,杨春茂,徐文彬.土壤酸化研究进展.地球科学进展,1996,11(4):396-401
    56.邵兴华,章永松,林咸永,都韶婷,于承艳.三种铁氧化物的磷吸附解吸特性以及与磷吸附饱和度的关系.植物营养与肥料学报,2006,12(2):208-212
    57.施光春.长江口悬浮颗粒有机碳的稳定性同位素.海洋通报,1993,12(1):49-53.
    58.施益华,刘鹏.硼在植物体内生理功能研究进展(综述).亚热带植物科,2002,59.31(2):64-69
    60.史瑞和等.植物营养原理[M].南京:江苏科技出版社,1989,387-393
    61.宋时奎,李文华,严红.曹东土壤性质与硼有效性的关系.东北农业大学学报, 2004,35(1):113-118
    62.苏玲,章永松,林咸永.干湿交替过程中水稻土铁形态和磷吸附解吸的变化.植物营养与肥料学报.2001,7(4):410-415
    63.孙进,王志国,李龙海针铁矿吸附水中硫酸根离子的试验研究.黄金,2005,26(3):43-45
    64.孙玮玮,毕春娟,陈振楼,胡蓓蓓,王东启,刘耀龙,沈军.稳定性同位素示踪技术在环境领域的应用初探.环境科学与技术,2009,32(9):88-92
    65.田霄鸿,王朝辉,李生秀.氮钾锰硼的供应水平对莴笋植株累积矿质元素的影响.干旱地区农业研究,1999,17(2):53-58
    66.王丹丽,董晓丹,王恩德.针铁矿对重金属离子的吸附作用.黄金,2002,23(2):44-46
    67.王福钧.农学中同位素示踪技术.农业出版社,1989,89-108
    68.王娟,廖水姣,朱端卫,任丽英,周文兵,丁家旺.不同氧化物硼负载体吸附锰离子的特性研究.土壤学报,2006,43(5):749-754
    69.王克武,陈清,李晓林.施用硼、锌、钼肥对紫花苜蓿生长及品质的影响.土壤肥料,2003,3:24-28
    70.王晓丽,李鱼,王一喆,蔡宇,王婷,杜显元,刘建林,铁氧化物掺杂对沉积物吸持Cu与Zn能力的影响.吉林大学学报(理学版).2009,47(5):1091-1096
    71.汪吉东,张永春,俞美香,沈明星,许仙菊.不同有机无机肥配合施用对土壤活性有机质含量及pH值的影响.江苏农业学报,2007,23(6):573-578
    72.肖萍,袁林,魏世强.针铁矿对重金属Pb2+、Cd2+的吸附特征.2009,28(1):17-38
    73.肖应凯,刘卫国,魏海珍.硼同位素测定的进展及存在的问题.质谱学报,1998,19(4):65-74
    74.向万胜,黄敏,李学垣.土壤磷素的化学组分及其植物有效性.植物营养与肥料学报,2004,10(6):663-670
    75.熊毅,张敬森,傅积平等.土壤胶体(第2册)[M].北京:科学出版社,1985,245-250
    76.熊毅,陈家坊等编著.土壤胶体的性质(第3册).北京:科学出版社,1990,25-26
    77.徐军.应用碳、氮稳定性同位素探讨淡水湖泊的食物网结构和营养级关系.武汉:中国科学院研究生院(水生生物研究所),2005.
    78.徐明岗,于荣,孙小凤.长期施肥对我国典型土壤活性有机质及碳库管理指数的影响.植物营养与肥料学报,2006,12(4):459-465
    79.许祖诒,陈家坊.土壤中无定形氧化铁的测定
    80.杨红霞,李冰.ICP-MS测定硼矿区饮用水和尿样中的硼及多种元素.质谱学报, 2005,26:17-18.
    81.姚海云,谭靖,郭冬发,崔建勇,罗明标,武朝晖,张彦辉.同位素稀释电感耦合等离子体质谱法测定高纯石英中痕量硼.质谱学报,2004,25(2):77-83
    82.姚海云,鲁红仙,黎金标.同位素稀释等离子体质谱法测定地址样品中痕量硼.分析测试学报,2006,25(1):73-76
    83.应小芳,刘鹏,徐根娣.土壤中的铝及植物效应的研究进展.生态环境,2003,12(2):237-239
    84.喻敏,王运华.不同硼效率甘蓝型油菜品种对镁吸收分配的影响.土壤肥料,1999,(6):12-14
    85.于天仁,季国亮,丁昌璞等著.可变电荷土壤的电化学.科学出版社,北京,1996,211-218
    86.袁可能.植物营养元素的土壤化学.北京:科学出版社,1983,138-421
    87.臧小平.土壤锰毒与植物锰的毒害.土壤通报,1999,30(3):139-141
    88.张宝贵,李贵桐.土壤生物在土壤磷有效化中的作用.土壤学报,1998,36(1):104-111
    89.张桂银,董元彦,李学垣.不同pH、电解质浓度条件下草酸对针铁矿吸附Cd2+的影响及机制.植物营养与肥料学报,2001,7(3):305-310
    90.张剑,唐筱春,陈军响.镁硼锌钼营养对大棚番茄品质与产量的影响.浙江农业科学,2009(5):879-881
    91.张敏,谢运球.硼、镉元素及其交互作用与油菜产量和品质.生态科学,2007,26(4):367-373
    92.章力干,竺伟民,张继榛,陈祖义.同位素示踪法测定稀土在土壤中的吸附、解吸合扩散.土壤稀土学报,1996,14(3):249-253
    93.赵少华,宇万太,张璐,沈善敏,马强.土壤有机磷研究进展.应用生态学报,2004,15(11):2189-219
    94.周代华,李学垣,徐凤琳.Cu2+在针铁矿表面吸附的红外光谱研究.华中农业大学学报,1996,15(2):153-156
    95.周家容,廖益,秦煊南.硼钙营养对柠檬幼苗光合生理及根系活力的影响.西南农业大学学报,1998,20(4):315-320
    96.周修萍,江静蓉,梁伟.模拟酸雨对南方五种土壤理化性质的影响.环境科学,1988(3):6-12
    97.朱端卫,程东升,耿明建,刘武定.氢氧化铝表面硼吸附络合物结构状况的解析.华中农业大学学报,1998,17(1):40-44
    98.朱端卫,成瑞喜,刘景福,刘武定.土壤酸化与油菜锰毒关系研究.热带亚热带土壤科学,1998,7(4):280-283
    99.朱端卫,皮美美,刘武定.土壤硼不同化学库特性研究:Ⅰ.热水溶性硼的植物有效性.华中农业大学学报,1994,13(3):262-267
    100.朱端卫,皮美美,刘武定.硼在土壤中的吸附-解吸及其对植物吸收硼的影响.土壤学报,1998,35(1):70-75
    101.朱端卫,石磊,陈秀红.土壤硼吸附热及温室对硼带后解吸特性影响的研究.土壤学报,2000,37,2:250-256
    102.朱端卫,万小琼,耿明建,成瑞喜.酸化及施碳酸钙对土壤各形态锰的影响.植物营养与肥料学报,2001,7(3):325-330
    103.朱建华,耿明建,曹享云,宋世文,刘武定.缺硼反应不同的棉花品种苗期对B、P、K、Ca、Mg的吸收和分配.华中农业大学学报,2001,20(2):134-137
    104.朱建华,王英.新型固体强碱KNO3/Al2O3碱性.催化学报,1997,18(6):498-502
    105.朱茂旭,蒋新,和文祥等.土壤与酸性含氟溶液相互作用特征及机理研究.环境科学学报,2001,21(4):465-469
    106.Agbenin J O. Extractable Iron and Aluminum Effects on Phosphate Sorption in a Savanna Alfisol. Soil Sci. Soc. Am. J.2003,67:589-595
    107.Ahmad F, Tan K H. Effects of lime and organic matter on soybean seedlings grown in aluminum toxic soil. Soil Sci. Soc. Am. J.1986,50:656-661
    108.A1-Abbas A H, Barber S A. A soil test for phosphorus based upon fractionation of soil phosphorus:I. Correlation of soil phosphorus fractions with plant-available phosphorus. Soil Sci. Soc. Am. J.1964,28:218-221
    109.Ali M A, Dzombak D A. Interactions of copper, organic acids and sulfate in goethite suspensions. Geochimica et Cosmochimica Acta.1996,60(24):5045-5053.
    110.Alkinson R J, Posner A M, Quirk J P. Adsorption of potential determining ions at the ferric oxide aqueous electrolyte interface. Journal of Physical Chemistry.1967, 71:550-558
    111.Alwitt R S. The point of zero charge of pseudoboehmite. J.Colloid Interface Sci.1972, 40:195-198
    112.Asami T. Behaviour of free iron oxide in paddy soils. Part:2,4,5, Soil Sci and Plant Nutrition.1970,16:225-226,228-229
    113.Axt J R, Walbridge M R. Phosphate removal capacity of palus trine forested wetlands and adjacent up lands in Virginia. Soil Science Society of American Journal.1999,63: 1019-1031.
    114.Balishtrieri L S, Murrray J W. The adsorption of Cu, Pb, Zn and Cd on goethite from major ion seawater. Geochim. Cosmochim.Acta.1982,46:1253-1265
    115.Barrow N J. Testing a mechanistic model. X. The effect of pH and electrolyte concentration on boron sorption by a soil. Soil Sci.1989,40:427-435.
    116.Barth S. Boron istotope variations in nature:a synthesis Geol Rundsch.1993,82: 640-651
    117.Bennet R J, Breen C M, Fey M V. The aluminum signal:newdimensions of aluminum tolerance. Plant and Soil.1991,134:153-166.
    118.Berger K C, Truog E. Boron deficiencies as revealed by plant and soil texts. J.Am.Soc.Agron.1940,32:297-301
    119.Berger K C, Truog E. Boron availability in relation to soil reaction and organic matter content. Soil Sci. Soc. Am. Proc.1945, (10):113-116.
    120.Beyrouty C A, Scoyoc G E V, Feldkamp J R. Evidence supporting specific adsorption of boron on synthetic alminum hydroxides. Soil. Sci. Soc Am, J.1984,48:284-287
    121.Biggar J W, Fireman M. Boron adsorption and release by soils. Soil Sci. Soc. Am. Proc.1960,24:115-120.
    122.Bingham F T, Elseewi A, Oertli J J. Characteristics of boron absorption by excised barley roots. Soil Sci Soc Am J.1970,34:613-617.
    123.Bingham F T, Page A L, Coleman N T, Flach K. Boron adsorption characteristics of selected soils from Mexico and Hawaii. Soil Sci. Soc. Am, J.1971,35:546-550.
    124.Binkley J O, Driscoll C T, Allen H L. Acid deposition and forest soil. Springer-Verlag, New York.1989,149
    125.Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian J. of Agric. Res.1995,46:1459-1466
    126.Blamey P P C, Chapman J.1979. Boron toxicity in Spanish groundnuts. Agron. J. 1979,71:57-59.
    127.Bloesch P M, Bell L C, Hughes J D. Adsorption and desorption of boron by goethite. Aust. J. Soil Res.1987,25:377-390
    128.Blume H P, Schwertmann U. Genetic evaluation of the profile distribution of aluminum, iron and manganese. Soil Sci. Soc. Am. J.1969,33:438-444
    129.Borggaard O K, Raben-Lange B, Gimsing A L, Strobel B W. Influence of humic substances on phosphate adsorption by aluminium and iron oxides. Geoderma.2005, 127:270-279
    130.Bowen J E. Micro-element nutrition of sugarcane. Ⅱ. Interactions in microelement accumulation. Trop. Agric.1981,58(3):215-220
    131.Boyd H W. Manganese toxicity to peanuts in autoclaved soil. Plant and Soil.1971, 34:133-144
    132.Brown P H, Hu H N. Boron uptake in sunflower, squash and cultured tobacco cells with stable isotope and ICP-MS. Plant and soil.1993,155-56:147-150
    133.Brown P H, Shelp B J. Boron mobility in plants. Plant and Soil.1997,193:85-101
    134.Chang S C, Jackson M L. Fractionation of soil phosphorous in soils. Soil Sci.1957, 84:1334-1447
    135.Chatterjee C, Sinha P, Agarwala S C. Interactive effect of boron and phosphorus on growth and metabolism of maize grown in refined sand. Can.J. Plant Sci.1990,70: 455-460
    136.Chen H M, Lin Q, Zheng C R. Interaction of Pb and Cd in soil-water-plant system and its mechanism:Ⅱ. Pb-Cd interaction in rhizosphere. Pedosphere.1998,8:237-244
    137.Chetelat B, Liu C Q, Gaillardet J, Wang Q L, Zhao Z Q, Liang C S, Xiao Y K. Boronisotope geochemistry of the Changjiang basin river. Geochmica et Cosmochimica Acta.2009,73:6084-6097
    138.Choi W W, Chen K Y. Evaluation of boron removal by adsorption on solids. Environ. Sci. Technol.1979,13:189-196
    139.Cornell R M, Schwertmann U. The iron oxides:structure, properties, reactions, occurrence and uses.2nd edition WILEY-VCH Verlag GmbH & Co. KgaA. Weinheim 2003
    140.Couch E L, Grim R E. Boron fixation by illites. Clays Clay Miner.1968,16:249-256.
    141.DeMello JWV, Barron V, Torrent J. Phosphorus and iron mobilization in flooded soils from Brazil. Soil Science.1998,163:122-132.
    142.Di H J, Cameron, K C, Mclaren, R G Isotopic dilution methods to determine the gross transformation rates of nitrogen, phosphorus, and sulfur in soil:a review of the theory, methodologies and limitations. Australian Journal of Soil Research.2000,38:213-230
    143.Dixon B, Sagar G R, Shorrocks V M. Effect of calcium and boron on the incidence of tree and storage pit in apple of the cultivar Egremont Russet. J.Hort.Sci.1973, 40(4):403-411
    144.Dnnel F, Pfeffer H, Romheld V. Compartmentation of boron in roots and leaves of sunflower as affected by boron supply. Journal of Plant Physiology.1998,153: 615-622
    145.Echeverria M E, Markewitz D, Morris L A, Hendrick R L. Soil organic matter fractions under managed pine plantations of the southeastern USA. Soil Sci. Soc. Am. J.2004,68:950-958.
    146.Elrashidi M A, O'Connor G A. Boron Sorption and Desorption in Soils. Soil Sci Soc Am J.1982,46:27-31
    147.Elseewi A A, Elmalky A E. Boron distribution in soils and waters of Egypt. Soil Sci. Soc. Am. J.1979,43:297-300.
    148.Emmanuel Lemarchand, Jacques Schott, Jerome Gaillardet. How surface complexes impact boron isotope fractionation:Evidence from Fe and Mn oxides sorption experiments. Earth and Planetary Science Letters.2007,260:277-296
    149.Evans L J. Retention of boron by agricultural soils from Ontario. Can. J. Soil Sci,1987, 67:33-42.
    150.Fleet M E L. Preliminary investigations into the sorption of boron by clay minerals. Clay Miner.1965,6:3-16.
    151.Fleming G A. Essential micronutrients. Ⅰ:Boron and molybdenum. In Applied Soil Trace Elements. Ed. B E Davies.1980,155-197. John Wiley and Sons, New York.
    152.Foy C D. Soil Acidity and Liming Monograph, A. S. A.1984, No.12,2nd Edition. 57-97
    153.Foy, C D. Physiological effects of hydrogen, aluminium and manganese toxicities in acid soil. In:Adams F(ed) 1984. Soil Acidity and Liming, Agronomymonograph No.12 (2nd edn.) (pp 57-97). Amer. Soc. Agron., Madison, Winsconsin.
    154.Gao Y, Mucci A. Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution. Cheochimica et cosmochimica Acat.2001,65(4):2361-2378
    155.Garnett T P, Atester M, Nable R O. The control of boron accumulation by two genotypes of wheat. Plant and Soil.1994,155-156:305-3081
    156.Gimsing A L, Borggaard O K. Competitive adsorption and desorption of glyphosate and phosphate on clay silicates and oxides. Clay Miner.2002,37:509-515
    157.Goldberg S. Reactions of boron with soils. Plant and Soil.1997,193:35-48
    158.Goldberg S. Inconsistency in the triple layer model description of ionic strength dependent boron adsorption. J. Colloid Interface Sci.2005,285:509-517
    159.Goldberg S, Forster H S. Boron sorption on calcareous soils and reference calcites. Soil Sci.1991,152:304-310
    160.Goldberg S, Forster H S, Heick E L. Temperature effects on boron adsorption by reference minerals and soils. Soil Sci.1993a,156:316-321
    161.Goldberg S, Forster H S, Heick E L. Boron adsorption mechanisms on oxides, clay minerals and soils inferred from ionic strength effects. Soil Sci. Soc. Am. J.1993b, 57:704-708
    162.Goldberg S, Forster H S, Lesch S M, Heick E L. Influence of anion competition on boron adsorption by clays and soils. Soil Sci.1996,161:99-103
    163.Goldberg S, Glaubig R A. Boron adsorption on aluminum and iron oxides minerals. Soil Sci. Soc. Am. J.1985,49:1374-1379
    164.Goldberg S, Glaubig R A. Boron adsorption on California soils. Soil Sci. Soc. Am. J. 1986a,50:1173-1176
    165.Goldberg S, Glaubig R A. Boron adsorption and silicon release by the clay minerals kaolinite, montmorillonite, and illite. Soil Sci. Soc. Am. J.1986b,50:1442-1448
    166.Goldberg S, Glaubig R A. Boron and silicon adsorption on an aluminum oxide. Soil Sci. Soc. Am. J.1988,52:87-91
    167.Goldberg S, Shouse P J, Lesch S M, Grieve C M, Poss J A, Forster H S, Suarez D L. Effect of high boron application on boron content and growth of melons. Plant and soil. 2003,256:403-411
    168.Goldberg S, Su C M. New advances in boron soil chemistry. Advances in Plant and Animal Boron Nutrition.2007:313-330
    169.Gu B, Lowe L E. Studies on the adsorption of boron on humic acids. Can. J. Soil Sci. 1990,70:305-311
    170.Gu B, Lowe L E. Observations on the effect of a soil polysaccharide fraction on boron adsorption by clay minerals. Can. J. Soil Sci.1992,72:623-626
    171.Gu B J, Schmitt J, Cheng Z, Liang L, McCarthy J F. Studies on the adsorption of boron on humic acids.Can J Soi 1 Sci.1990,70:305-311
    172.Gunes A, Alpaslan M.2000. Boron uptake and toxicity in maize genotypes in relation to boron and phosphorus supply. J. Plant Nutr.2000,23:541-550.
    173.Gupta U C. Relationship of total and hot-water soluble boron, and fixation of added boron, to properties of Podzol soils. Soil Sci. Soc. Am. Proc.1968,32:45-48.
    174.Gupta U C, Cutcliffe J A. Effect of Lime and boron on brown-heart, leaf tissue calcium/boron ratios and boron concentrations of rutabaga. Soil Sci. Soc.Am.Proc. 1992,36:936-940
    175.Gupta U C, Jame Y W. Boron toxicity and deficiency:A review. Can. J. Soil Sci.1985, 65:381-409;
    176.Guzman G, Alcantara E, Barron V, Torrent J. Phytoavailability of phosphate adsorbed on ferrihydrite, hematite, and goethite. Plant and Soil.1994,159:219-225.
    177.Han F X, Banin A. Solid-Phase manganese fractionation changes in saturated arid-zone soils:pathways and kinetics. Soil Science Society of American journal.1996, 60:1072-1080.
    178.Harada T, Tamai M. Some factors affecting behaviour of boron in soil. I. Some soil properties affecting boron adsorption of soil. Soil Sci. Plant Nutr.1968,14:215-224
    179.Hemming N H, Hanson G N. Aprocedure for the istopic and analysis of boron by negative themal ion-ization mass spectrometry, Chem Gelo.1994,114:147-156
    180.Hirsch A.M, Tnrrey J G. Ultrastructural changes in sunflower root cell in relation to boron deficiency and added auxin. Canada J Bot.1980,58:856-866
    181.Hopmans P, Flinn D W. Boron deficiency in Pinus radiata D. Don and the effect of applied boron on height growth and nutrient uptake. Plant and Soil.1984,79:295-298
    182.Hossain A K, Hossain M A, Koyama H, Hara T. Effects of aluminum and boron supply on growth of seedlings among 15 cultivars of wheat (Triticum aestivum L.) grown in Bangladesh. Soil Sci. Plant Nutr.2004,50:189-195
    183.Hoste S, Vweponck L, Van Der Kelen C P. IR study on the solid state reaction between iron hydroxide and KCN. Bull. Soc. Chim. Belg.1982,91:597-604
    184.Hu H N, Brown P H. Absorption of boron by plant root. Plant and Soils.1997,193: 49-58
    185.Hu H N, Brown P H, Labavitch J M. Species Variability in boron requirement is corrected with cell wall pectin. Journal of Experimental Botany.1996,47:227-232
    186.Hu H N, Perm S G, Lebrilla C B, Brown P H. Isolation and characterization of soluble boron complexes is higher plants. Plant Physiol.1997,113:649-655
    187.Hunt J F, Ohno T, He Z Q, Honeycutt C W, Dail D B. Inhibition of phosphorus sorption to goethite, gibbsite, and kaolin by fresh and decomposed organic matter. Biol Fertil Soils.2007,44:277-288.
    188.Iupac. Isotopic compositions of the element 1997, Pue & Appl Chem.1998,70: 217-235
    189.Janzen H H, Campbell C A, Brandt S A, Lafond G P, Townley-Smith L. Light-fraction organic matter in soils from long-term crop rotations. Soil Sci. Soc. Am. J.1992, 56:1799-1806
    190.Jasmund K, Lindner B. Experiments on the fixation of boron by clay minerals. Proc. Int. Clay Conf.1973:399-412
    191.Jin J Y, Mastens D C, Zelazny L W. Distribution and plant availability of soil boron fractions. Soil Sci Soc Am J.1987,51:1228-1231
    192.Johnson N M. Acid rain:Neutralization within the hubbard brook ecosystem and regional implications. Science.1978,204:497-499
    193.Kanabo I A K, Gilkes R J. The influence of the addition of goethite to soil on the dissolution of North Carolina phosphate rock. Australian Journal of Soil Research. 1987,25(3):313-322
    194.Kaya C, Tuna A L, Dikilitas M, Ashraf M, Koskeroglu S, Guneri M. Supplementary phosphorus can alleviate boron toxicity in tomato. Scientia Horticulturae. 2009,121:284-288
    195.Keren R, Bingham F T. Boron in water, soil, and plants. Adv. Soil Sci.1985, 1:229-276
    196.Keren R, Bingham F T, Rhoades J D. Plant uptake of boron as affected by boron distribution between liquid and solid phases in soil. Soil Sci. Soc. Am. J.1985a, 49:297-302;
    197.Keren R, Bingham F T, Rhoades J D. Effect of clay content in soil on boron uptake and yield of wheat. Soil Sci. Soc. Am. J.1985b,49:1466-1470
    198.Keren R, Gast R G. pH-dependent boron adsorption by montmorillonite hydroxy-aluminum complexes. Soil Sci. Soc. Am. J.1983,47:1116-1121
    199.Keren R, Mezuman U. Boron adsorption by clay mineral using a phenomenological equation. Clay. Clay Miner.1981,29:198-204
    200.Khalid R A, Patrick W H Jr, DeLaune R D. Phosphorus sorption characteristics of flooded soil. Soil Sci. Soc. Am. J.1977,42:305-310
    201.Kooner Z S. Adsorption of copper onto goethite in aqueous systems. Environmental Geology and Water Scencesi.1992,20:205-212
    202.Kortelainen N M, Karhu J A. Tracing the decomposition of dissolved organic carbon in artificial groundwater recharge using carbon isotope ratios. Applied Geochemistry. 2006,21:547-562.
    203.Kumada, Kand Kato H, Browning of pyrogallol as affected by clay mineral.1.Classification of clay mineral based their catalytic effects on the browning reaction of pyrogallol. Soil Science and Plant nutrition.1970,16:195-200
    204.Kumar V, Gilkes R J, Bollang M D A. Phosphate fertilizer placement and tillage systemon phosphorous distribution in soil. Commun. In Soil Sci. and Plant Analy. 1992,23 (13-14):1462-1477
    205.Lamy I, Djafer M, Terce M. Influence of oxalic acid on the adsorption of cadmium at the goethite surface. Water, Air, and Soil Pollution.1991,57-58:457-465
    206.Larsen O, Postma D. Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite and goethite. Geochimica Cosmochim. Acta.2001,65:1367-1379
    207.Lefroy R D B, Blair G J, Strong W. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance. Plant and Soil.1993,155-156:399-402
    208.Li Y, Wang X L, Guo S H. Cu and Zn Adsorp tion onto Non2residual and Residual Components in the Natural Surface Coatings Samp les (NSCSs) in the Songhua River, China. Environmental Pollution.2006,143(2):222-227
    209.adsorption properties of boron-doped goethite. Applied Clay Sci.2007,38:43-50
    210.Ling Y C, Shen Z G. Interaction of silicon and boron in oilseed rape plant. J. of plant Nutri.1994,17:415-425
    211.Ludwig B, Khanna P, Prenzel J. Use of a coupled equilibrium model to describe the buffering of proton and hydroxyl ions in some acid soils. Z Pflanzenernaehr. Bodenkd. 1998,161:547-554
    212.Marschner H. Mechanisms of adaptation of plants to acid soil. Plant and soil.1991, 134:1-20
    213.Matheson F E, NguyenM L, CooperA B. Fate of nitrate in unplanted, planted and harvested riparian wetland soil determined with nitrogen-15. Ecological Engineering. 2002,19:249-26
    214.Matis K A, Zouboulis A I, Zamboulis D, Valtadorou A V. Sorption of as by goethite particles and study of their flocculation. Water, Air, and Soil Pollution.1999, 111:297-316
    215.Matoh T. Boron in plant cell walls. Plants and Soil.1997,193:59-701
    216.Mattigod S V, Frampton J A, Lim C H. Effect of ion-pair formation on boron adsorption by kaolinite. Clays Clay Miner.1985,33:433-437
    217.McBride M B. Electronspin resonance investigation of Mn2+ complexation in natural and synthetic organics. Soil Sci. Soc. Am. J.1982,46:1137-1143
    218.McPhail M, Page A L, Bingham F T. Adsorption interactionsof monosilicic and boric acid on hydrous oxides of iron and aluminum. Soil Sci. Soc. Am. Proc.1972, 36:510-514
    219.Mehra, O P, Jackson M L. Iron oxide removal from soils and clays by a dithionite citrate system buffered with sodium bicar-bonate. Clays Clay Miner.1960,7:313-317
    220.Metwally A I, El-Damaty A H, Yousry M. Anion adsorption as a possible mechanism of boron retention by soils. Egypt J. Soil Sci.1974,14:23-31
    221.Mezuman U, Keren R. Boron adsorption by soils using a phenomenological adsorption equation. Soil Sci. Soc. Am. J.1981,45:722-726
    222.Miguez SR-de, Ras C. Effect of some soil properties on extractable boron content in Argentine Pampas soils. Communications in Soil Science and plant Analysis.1999, (30):2083-2100
    223.Mohamed A A, Shaaban M M. Nutrient status and enzyme activity alteration in cucumber seedlings as a response to boron deficiency. Acta Agri Hungarica.2004, 52(1):9-17
    224.Moraghan J T, Mascagni H J. Environmental and soil factors affecting micronutrient deficienciesa and toxicities. In Micronutrients in Agriculture,2nd ed. Eds. Soil Science Society America Book Serics.1991,4:371-426
    225.Mouhtaridou G N, Sotiropoulos T E, Dimassiand K N, Therios I N. Effects of boron on growth, and chlorophyll and mineral contents of shoots of the apple rootstock MM 106 cultured in vitro. Biologia plantarum.2004,48 (4):617-619
    226.Mwllo J W V, Barron V, Torrent J. Phosphorus and ironmobilization in flooded soils from Brazil. Soil Science.1998,163:122-132
    227.Nable R O, Banuelos G S, Paull J G. Boron toxicity. Plant Soil.1997193:181-198. SAS, (1996). STAT User's Guide, Version 6.11, vol.1, Statistical Analysis Systems Institute Inc., Cary, NC.
    228.Nicholaichuk W, Leyshon A J, Jame Y W, Campbell C A. Boron and salinity survey of irrigation projects and the boron adsorption characteristics of some Saskatchewan soils. Can. J. Soil Sci.1988,68:77-90.
    229.Oka N et al. Chemical Environment and Microorganisms in Soil (Part 3):Mode and Mechanism of Regulation by Magnesium and Phosphate of the Manganous Suppressive Effect on Nitrification [In Japanese]. Japanese Journal of soil science and Plant Nutrition.1992,63 (4):442-446
    230.Okazaki E, Chao T T. Boron adsorption and desorption by some Hawaiian soils. Soil Sci.1968,105:255-259
    231.Olk D C, Cassman K G, Schmidt-Rohr K. Anders M M, Mao J D, Deenik J L. Chemical stabi-lization of soil organic nitrogen by phenolic lignin residues in anaerobic agroecosystems. Soil Biology & Biochemistry.2006, (38):3303-3312
    232.Parfitt R L. Anion adsorption by soils and soil materials. Adv. Agron.1978,30:1-50
    233.Parfitt R L. The availability of P from phosphate-goethite bridging complexes. Desorption and uptake from ryegrass. Plant and Soil.1979,53:55-65
    234.Parfitt RL., Russed J D, Farmer V C. Confirmation of the surface structure of goethite (α-FeOOH) and phosphated goethite by infrared spectroscopy. J. Chen. Soc. Faraday.1976,72:1082-1087
    235.Patrick W H Jr, Khalid R A. Phosphorus release and sorption by soil and sediments: Effects of aerobic and anaerobic conditions. Science.1974,186:53-551
    236.Peak D, Luther G W, Sparks D L. ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide. Geochimica et Cosmochimica Acta.2003, 67(14):2551-2560
    237.Pedersen H D, Postma D, Jakobsen R, Larsen O. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(Ⅱ). Geochimica Cosmochimica Acta.2005,69:3967-3977
    238.Pfeffer H N, Dnnel F, Romheld V. Compartmentation of boron in roots and its translocation to the shoot of sunflower as affected by short term changes in boron supply.plant and soil.1997,203-207
    239.Pia-Walch-Liu, Neumann G, Bangerth F, Engels C. Rapid effects of nitrogen form on leaf morphogenesis in tobacco. Journal of Experimental Botany.2000, 51(343):227-237
    240.Pinyerd C A, Odum J W, Long F L, Dane J H. Boron movement in a Norfolk loamy sand. Soil Sci.1984,137:428-433
    241.Raven J A. Short- and long-distance transport of boric acid in plant. New Phytol.1980, 84:231-249
    242.Ren L Y, Zhu, D W, Cui, J Z, Liao S J, Geng M J, Zhou W B, Hamilton D. Plant availability of boron doped on iron and manganese oxides and its effect on soil acidosis. Geoderma.2009,151:401-406
    243.Reuss J O, Johnson D W. Acid deposition and the acidification of soil water. Springer-Verlag, New York.1986,119
    244.Rhoades J D, lngvalson R D, Hatcher J T. Ad sorption of boron by ferromagnesian m inerals and magnesium hydroxide. Soil Sci. Soc. Am. Proc.1970,34:938-941
    245.Rose S. Anion adsorption and desorption characteristics of a piedmont ultisol:some implications for the fate of sulfate deposition. Water, Air, Soil, Pollution.1998, 101(1-4):333-347
    246.Rose E F, Shimizu N, Layne G D, Grove T L. Melt production beneath Mt. Shasta from boron data in primitive melt inclusions. Science.2001,293:281-283
    247.Ruiz J M, Rivero R M, Romero L. Boron increase synthesis of glutathione in sunflower plants subjected to aluminum stress. Plant and Soil.2006,279:25-30
    248.Ryden J C, McLaughlin J R, Syers J K. Mechanisms of phosphate sorption by soils and hydrous ferric oxide gel. Journal of soil science.1977b,28:72-79
    249.Ryden J C, Syers J K, McLaughlin J R. Effects of ionic strength on chemisorption and potential determining sorption of phosphate by soils. Journal of soil science.1977a, 28:62-71
    250.Schalscha E B, Bingham F T, Galindo G G, Galvan H P. Boron adsorption by volcanic ash soils in Southern Chile. Soil Sci.1973,116:70-76
    251.Schnitzer M. Soil organic matter-the next 75 years. Soil Sci.1991,151:41-581
    252.Schulthess C P, Swanson K, Wijnja H. Porton adsorption on an aluminum oxide in the presence of bicarbonate. Soil Sci. Soc. Am. J.1998,62:136-141
    253.Scott H D, Beasley S D, Thompson L F. Effect of lime on boron transport to and uptake by cotton. Soil Sci. Am. Proc.1975,39:1116-1121
    254.Shahandeh H, Hossner L R, Turner F T. Phosphorus relationships in flooded rice soils with low extractable phosphorus. Soil Sci. Soc. Am. J.1994,58:1184-1189
    255.Sharma P N, et al. Effects of boron deficiency and recovery on water and photosynthesis in cauliflower. Indian J of Expert Biology.1991,29(10):967-970
    256.Shuman L M. Adsorption of Zn by Fe and Al hydrous oxides as influenced by aging
    257.and pH. Soil Sci. Soc. Am.J.1977,41:703-704
    258.Sibabda H M, Young S D. Competitive adsorption of humus acids and phosphate on goethite, gibbsite and two tropical soils. Soil Sci.1986,37:197-204
    259.Sileo E E, Alvarez M, Rueda E H. Structural studies on the manganese for iron substitution in the synthetic goethite-jacobsite system. International Journal of Inorganic Materials.2001,3:271-279
    260.Sim J T. Soil pH effects on the distribution and plant availability of manganese, copper and zinc. Soil Science Society of American journal.1986,50:367-373
    261.Sims J R, Bingham F T. Reaction of boron by layer silicates, sesquioxides, and soil materials:Ⅱ. Sesquioxides. Soil Science Society of American Proceedings,1968, 32:346-369
    262.Sing M. Equilibrium adsorption of boron in soil and clays. Gedema.1971,5:209-217
    263.Sotiropoulos T E, Therios I N, Dimassi K N. Calcium application as a means to improve tolerance of kiwifruit (Actinidia deliciosa L) to boron toxicity. Sci. Hortic. 1999,81:443-449
    264.Sposito G. The chemical forms of trace metals in soils. In:Thorton I ed. Applied environmental geochemistry. San Diego. CA:Academic Press.1983,123-170
    265.Su C, Suarez D L. Coordination of adsorbed boron:A FTIR spectroscopic study. Environ. Sci. Technol.1995,29:302-311
    266.Su C M, Suarez D L. Boron Sorption and Release by allophane. Soil. Sci. Soc. Am.J. 1997,61:69-77
    267.Sulaiman W, Kay B D. Measurement of the diffusion coefficient of boron in soil using a single cell technique. Soil Sci. Soc. Am. Proc.1972,36:746-752
    268.Swhart G H, Mchay F H, Smith D H, Siefke J W. A boron isotopic study of amineralogically zoned lacustrine borate deposite the Kramet deposit, California, USA Chem Geol.1996,127:241-250
    269.Tate K R. The biological transformation of P in soil. Plant and Soil.1984,76:245-256
    270.Tate F R, Salcedo I. Phosphorus control of soil organic matter accumulation and cycling. Biogeochemistry.1988,5:99-107
    271.Toner C V, Sparks D L. Chemical relaxation and double layer model analysis of boron adsorption on alumina, Soil Sci. Soc. Am. J.1995,59:395-404
    272.Torrent J. Rapid and slow phosphate sorption by Mediterranean soils:effect of Iron oxides. Soil Sci.Soc. Am. J.1987,51:78-82
    273.Torrent J, Barron V. Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Sci. Soc. Am. J.1990,54:1007-1012
    274.Uertli J J. The mobility of boron in plants. Plant and Soil.1967,27:300-302
    275.Verma L P, Singh A P, Srivastva M K. Relationship between Olsen-P and inorganic P fraction in soil. J. of Indian Soc. of Soil Sci.1991,39:361-3621
    276.Vickery H B, Puclier G W, Schoenheimerand R. The as-similation study with isotopic nitrogen. J Bicl Chem.1940,135:531-539
    277.Voβ M, Struck U. Stable nitrogen and carbon isotopes as indicator of eutrophication of the Oder River (Baltic Sea). Marine Chemistry.1997,59(1-2):35-49
    278.Wada K, Warward, M E. Amorphous clay constituents of soils. Advance in Agron. 1974,26:211-254
    279.Wang K J, Xing B S. Adsorption and desorption of cadium by goethite pretreated with phosphate. Chemosphere.2002,48:665-670
    280.Wang Q G, Shen J Y, Chen Y. Surface acidity of γ-Al2O3 modified by iron salts. Chinese J. Cata.1996,17(4):271-272
    281.Wear J, Patterson R M. Effect of soil pH and texture on the availability of water-soluble boron in the soil. Soil Sci. Soc. Am. Proc.1962, (6):44-346
    282.Weesner F J, Bleam W F. Binding characteristics of Pb2+ on anion-midified and pristine hydrous oxide sufaces studied by electrophoretic mobility and X-ray absorption spectroscopy. Journal of colloid and interface science.1998,205:308-389
    283.Whitbread A M, Lefroy R D B, Blair G J. A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales. Australian J. of Soil Res.1998,36:669-681
    284.Wojcik P. Impact of boron on biomass production and nutrition of aluminium stressed apple rootstocks. J. Plant Nutr.2003,26:2439-2451
    285.Yamanouchi, M. Effect of phosphorus, potassium, calcium, magnesiumand iron treatment on the absorption and translocation of boron in several crop grown in high concentration of boron. Nippon Dojo Hiryogaku Zasshi.1980,51:126-130
    286.Yermiyaho U, Keren R, Chen Y. Boron Sorption on Composted Organic Matter. Soil Sci Soc Am J.1988,52:1309-1313
    287. Yermiyahu U, Keren R, Chen Y. Boron sorption by soil in the presence of composted organic matter. Soil Sci. Soc. Am. J.1995,59:405-409
    288.Yuan G, Lavkulich L M. Phosphate sorption in relation to extractable Fe and Al in Spodosols. Soil Sci. Soc. Am. J.1994,58:343-346
    289.Zhu D W, Chen X H, Cheng D S, Geng M J, Liu W D. Electrical characteristics and desorption kinetics of soil boron. Pedosphere.2000,10(1):61-68
    290.Zhu D W, Pi M M, Liu W D. Relationship between soil boron adsorption kinetics and rape plant boron response. Pedosphere.1997,7(3):269-274
    291.Zhu D W, Shi L, Liu W D. Temperature effect on boron adsorption-desorption kinetics in soils. Pedosphere.1999,9(3):243-250
    292.Zhu D W, Wang J, Liao S J, Liu W D. Relationship between plant availability of boron and the physico-chemical properties of boron in soils. Advances in Plant and Animal Boron Nutrition.2007:345-354

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700