铈基复合氧化物制备及其部分氧化甲烷制合成气性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晶格氧用于甲烷部分氧化制合成气是一种甲烷转化新工艺,该方法考虑选择一些合适的储氧材料,利用它们的晶格氧作为甲烷催化氧化制合成气的氧源直接将甲烷高选择性的氧化为合成气,失去晶格氧的储氧材料可以通过空气再生重新获得晶格氧,从而实现循环利用。与单纯的催化部分氧化法(POM)相比,该工艺采用空气代替纯氧,可以较大幅度降低合成气的生产成本;另外,该方法中采用甲烷和空气分开进料,能有效地避免POM中存在的爆炸危险。
     本论文以共沉淀法制备了系列铈基复合氧化物Ce-M-O(M=Fe、Mn、Cu、Co),对较适合用于部分氧化甲烷制合成气的Ce-Fe-O,系统的研究了不同制备条件以及ZrO_2掺杂对其性能的影响,并探讨了其部分氧化甲烷的反应机理。
     在不同复合氧化物Ce-M-O(M=Fe、Mn、Cu、Co)中,Ce-Fe-O显示了最好的部分氧化甲烷性能。对系列Ce-Fe-O-X(X为铈铁摩尔比,X=9/1、8/2、7/3、6/4、5/5、4/6、2/8)氧载体的研究表明,铈铁间存在着强烈的相互作用,不仅表现在铈铁固溶体的形成,而且分散在CeO_2表面的Fe_2O_3对复合氧化物与甲烷的反应也有相当的影响。在与甲烷反应时,表面Fe_2O_3首先转换为还原性铁物种Fe或Fe_3C,该铁物种被认为是整个反应的活性位:甲烷先在活性Fe物种上的活化裂解生成活化碳物种和H_2,然后氧化铈将活化碳物种选择性氧化为CO。过高的铁含量不仅不利于复合氧化物活性的提高而且容易造成甲烷的完全氧化,在该系列复合氧化物中,Ce-Fe-O-7/3显示了最好的部分氧化甲烷性能。
     焙烧温度对铈铁复合氧化物的性能有较大影响,较高的焙烧温度引起较好的结晶度对提高产物气中合成气选择性有利,但却会导致氧载体活性下降,而较低的焙烧温度会引起较多吸附氧,进而导致CO和H_2选择性明显降低。800℃焙烧样品具有很好的部分氧化甲烷性能,但经长时间循环Ce-Fe-O-7/3(800)的部分氧化甲烷性能略微降低,这主要是由CeO_2的烧结引起。
     在Ce-Fe-O-7/3(800)氧载体中掺杂ZrO_2不仅能提高其部分氧化甲烷活性,而且还可以改变其对碳物种和氢物种的选择性氧化匹配性,使产物气中n(H_2)∶n(CO)更接近于理论值2。更重要的是,添加ZrO_2可以很好地改善氧载体的抗烧结能力和循环使用性能。
A novel process of methane partial oxidation using lattice oxygen instead of gaseous oxidant to participate in methane partial oxidation to synthesis gas has been recently proposed.In this process a suitable oxygen storage compound(OSC)is circulated between two reactors.In one reactor,methane is oxidized to synthesis gas by the lattice oxygen of OSC,and in the other,the reduced OSC are re-oxidized by air to restore its initial state.This technology has many advantages,when compared with the partial oxidation of methane(POM).First,it can avoid the risk of explosion due to the premixed CH_4/O_2 mixture within the ignition and explosion limits.Second,the selectivity of desired product can be enhance,because the product is not easy to be deeply oxidized in the absence of molecular oxygen.Third,it can save oxygen supply by the cryogenic distillation of air needs additional investment and operational expense,because which does not need using pure oxygen.
     In this thesis,we incorporate ceria and transition metal oxides such as Fe_2O_3,CuO, MnO_2 and Co_3O_4 aimed at increasing the oxygen storage capacity and the oxygen mobility in the oxygen storage compound for this redox cycle process.Their catalytic activities in the direct conversion of methane to synthesis gas in a fixed-bed reactor are investigated in the absence of gas-phase oxygen by temperature programmed surface reaction,continuous reactions,and sequential redox cycles.The Ce-Fe-O sample was found to be suitable for partial oxidation methane to synthesis gas.Then,the effect of n(Ce):n(Fe),calcination temperature and doped Zirconia on catalytic activity was measured.The OSC with good performance and the reaction mechanism between oxygen carriers and methane are desirable to be obtained.
     The Ce-Fe-O sample exhibits the highest selectivity to synthesis gas,and it is the best oxygen carrier among the tested Ce-M-O oxides for synthesis gas production.The phase cooperation between CeO_2 and Fe_2O_3 is responsible for the better activity.First,the solid solution based upon ceria-ferric oxide system can enhance the lattice oxygen mobility of oxygen carrier.Second,dispersed Fe_2O_3 was firstly returned to original state and then virtually form Fe or Fe_3C species on the catalyst which could be considered as the active site for selective CH_4 oxidation.The appearance of carbon formation is significant and the oxidation of carbon appears to be the rate-determining step.CeO_2 mainly provides selective lattice oxygen which is the necessities for synthesis gas production.Too high content of Fe_2O_3 seems to be disadvantageous to the catalytic activity enhancement and favor deep oxidation of methane.There is a suitable atom ratio exhibits highest degree of interaction between Ce and Fe species.Comparison of seven types of complex oxide systems Ce-Fe-O-X(X was the cerium iron Molar ratio,X=9/1.8/2.7/3.6/4.5/5.4/6.2/8)made in this work,Ce-Fe-O-7/3 shows the best catalytic activity.
     The calcination temperature exerts an important influence to the performance of the ceria-ferric oxide system,the concerned results have shown that there exist a best temperature range which is at about 800℃.A better crystallinity could improve the syngas selectivity,but actually would lead to decreased activity of oxygen carrier.After a long-term redox cycle,the selective methane oxidation performance of Ce-Fe-O-7/3(800) decreased appreciably,mainly caused by the sintering of CeO_2.However,the oxygen storage capacity of Ce-Fe-O-7/3(800)has not declined but increased slightly through redox cycle.
     It is shown that introduction of ZrO_2 into the Ce-Fe-O-7/3(800)framework with formation of cerium-zirconium solid solution strongly modifies the reduction behaviour in comparison to that seen with Ce-Fe-O-7/3(800)alone.Moreover,it also results in more active catalysts with enhanced synthesis gas selectivity and promotes the value of n(H_2):n (CO)more close to 2.Remarkably,ZrO_2 enhances the thermal stability and the oxygen storage capacity of Ce-Fe-O-7/3(800),resulting in better redox capacities for partial oxidation of methane at moderate temperatures.
引文
[1]沈师孔.天然气转化利用技术的研究进展[J].石油化工,2006,35(9):799-809
    [2]Angelo B,Luca P.An experimental study of multilayered composite palladium membrane reactors for partial oxidation of methane to syngas[J].Catal.Today,2001,67(1-3):55-64
    [3]胡捷,货德华.甲烷直接转化及制合成气研究进展[J],天然气化工,2003,28(2):46-51
    [4]Sousa-Aguiar E F,Appel L G,Motaet C.Natural gas chemical transformations:The path to refining in the future[J].Catal.Today,2005,101(1):3-7
    [5]Rostrup-Nielsen J R.Production of synthesis gas[J].Catal.Today,1993,18:305-324
    [6]Pena M A,Gomez J P,Fierro J L G.New catalytic routes for syngas and hydrogen production[J].Appl.Catal.,A:General,1996,144:7-57
    [7]Song C S.Tri-reforming:A new process for reducing CO_2 emissions[J].Chemical Innovation,2001,31(1):21-26
    [8]路勇,沈师孔.甲烷催化部分氧化制合成气研究新进展[J].石油与天然气化工,1997,26(1):6-13
    [9]孙长庚,刘宗章,张敏华.甲烷催化部分氧化制合成气的研究进展[J].化学工业与工程,2004,2 1(4):276-280
    [10]Santos A,Menendz M,Santamaria J,et al.Partial oxidation of methane to carbon monoxide and hydrogen in a fluidized bed reactor[J].Catal.Today,1994,21:481-488
    [11]Provendier H,Petit C,Estoumes C,et al Stabilisation of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition[J]Appl.Catal.,A:General,1999,180(1-2):163-173
    [12]Elmasides C,Xenophon E V.Mechanistic Study of Partial Oxidation of Methane to Synthesis Gas over Modified Ru/TiO_2 Catalyst[J].J.Catal.,2001,203:477-486
    [13]Wang H H,Cong Y,Yang W S.Partial oxidation of methane to syngas in tubular oxygen-permeable reactor[J].Chinese Science Bulletin,2002,47(7):534-537
    [14]王海涛,李振花,田树勋等.助剂对甲烷部分氧化制合成气镍基催化剂性能的影 响[J].燃料化学学报,2004,32(4):475-480
    [15]Zhu Y R,Li Z H,Zhou Y H,et al.Plasma Treatment of Ni Catalyst for Partial Oxidation of Methane[J].Journal of Natural Gas Chemistry,2005,14(1):1-3
    [16]Shen S K,Pan Z Y,Dong C Y.A Novel Two-Stage process for Catalytic Oxidation of Methane to Synthesis gas[J].Stud.Surf.Sci.Catal.,2001,136:99-140
    [17]Fathi M,Hofstad H K,Sperle T,et al.Partial oxidation of methane to synthesis gas at very short contact times[J].Catal.Today,1998,42:205-209
    [18]Song C S,Pan W.Tri-reforming of methane:a novel concept for catalytic production of industrially useful synthesis gas with desired H_2/CO ratios[J].Catal.Today,2004,98:463-484
    [19]姜洪涛,李会泉,张懿.甲烷三重整制合成气[J].化学进展,2006,18(10):1270-1277
    [20]Halmann M,Steinfeld A.Thermoneutral tri-reforming of flue gases from coal- and gas-fired power stations[J].Catal.Today,2006,115:170-178
    [21]Halmann M,Steinfeld A.Fuel saving,carbon dioxide emission avoidance,and syngas production by tri-reforming of flue gases from coal and gas-fired power stations,and by the carbothermic reduction of iron oxide[J].Energy 2006,31:3171-3185
    [22]Looij F Van,Geus J W.Nature of the Active Phase of a Nickel Catalyst during the Partial Oxidation of Methane to Synthesis Gas[J].J.Catal.,1997,168:154-163
    [23]Stobbe E R,Boer B A,Geus J W.The reduction and oxidation behaviour of manganese oxides[J].Catal.Today,1999,47:161-167
    [24]Otsuka K,Ushiyama,T,Yamanaka I.Partial oxidation of methane using the redox of cerium oxide[J].Chem.Lett.,1993,22(9):1517-1521
    [25]Otsuka K,Sunada,E,Ushiyama T,et al.The production of synthesis gas by the redox of cerium oxide[J].Stud.Surf.Sci.Catal.1997,107:531-536
    [26]Otsuka K,Wang Y,Sunada E,et al.Direct partial oxidation of methane to synthesis gas by cerium oxide[J].J.Catal.,1998,175:152-160
    [27]Steghuis A G,Van ommen J G,Lercher J A.On the reaction mechanism for methane partial oxidation over yttria/zirconia[J].Catal.Today,1998,46(2):91-97
    [28]Hofstad K H,Hoebink J H B J,Holmen A,et al.Partial oxidation of methane to synthesis gas over rhodium catalysts[J].Catal.Today,1998,40:157-170
    [29]Fathi M,Monnet F,Schuurman Y,et al.Reactive oxygen species on platinum gauzes during partial oxidation of methane into synthesis gas[J].J.Catal.2000,190:439-445
    [30]Mallens E P J,Hoebink J H B J,Marin G B.The reaction mechanism of the partial oxidation of methane to synthesis gas:A transient kinetic study over rhodium and a comparison with platinum[J].J.Catal.,1997,167:43-56
    [31]Ishida M,Jin H.A new advanced power-generation system using chemical- looping combustion[J].Energy,1994,19(4):415-422
    [32]Wang H,Ma W H,He F,et al.Non-flame combustion technology.Chinese Patent:01107032.3 May,2001
    [33]He F,Wang H,Dai Y N.Thermodynamic analysis and experimental investigation into Nonfame Combustion Technology(NFCT)with thermal cyclic carrier[J].Chemical Research in Chinese Universities,2004,20(5):612-616
    [34]王华,何方,胡建杭等.熔融盐中用晶格氧催化氧化天然气制氢的方法.中国,CN1636862.2005
    [35]Wei Y G,Wang H,He F,et al,Ceria-based oxygen carrier partial oxidation of methane to synthesis gas in molten salts:Thermodynamic analysis and experimental investigation[J].Journal of Natural Gas Chemistry,2007,16:6-11
    [36]M Fathi,E Bjorgum,T Viig,et al.Partial oxidation of methane to synthesis gas:Elimination of gas phase oxygen[J].Catal.Today,2000,63:489-497
    [37]Chang Y F,McCarty J G.Novel oxygen storage components for advanced catalysts for emission control in natural gas fueled vehicles[J].Catal.Today,1996,30(1-3):163-170
    [38]Mattisson T,Lyngfelt A,Paul Cho.The use of iron oxide as an oxygen carrier in Chemical-Looping Combustion of methane with inherent separation of CO_2[J].Fue1,2001,80(13):1953-1962
    [39]Lyngfelt A,bo Leckner,Mattisson T.A fluidized-bed combustion process with inherent CO_2 separation;Application of Chemical-Looping Combustion[J].Chemical Engineering Science,2001,56(10):3101-3113
    [40]Abad A,Mattisson T,Lyngfelt A,et al.The use of iron oxide as oxygen carrier in a chemical-looping reactor[J].Fuel,2007,86:1021-1035
    [41]李然家,沈师孔.品格氧用于甲烷氧化制合成气的研究—氧化铁的氧化还原性能. 分子催化,2001,15(3):181-186
    [42]李然家,余长春,代小平,沈师孔.以晶格氧为氧源的甲烷部分氧化制合成气.催化学报,2002,23(4):381-387
    [43]陈懿.双金属氧化物和氧化物载体组分间的相互作用.复旦学报(自然科学版),2002,41(3):251-259
    [44]王军威,田志坚,徐金光等.甲烷高温燃烧催化剂研究进展.化学进展,2003,15(3):242-248
    [45]Fornasiero P,Monte R D,Ranga-Rao G,et al.Rh-Loaded CeO_2-ZrO_2 solid solutions as Highly Efficient Oxygen Exchangers:Dependence of the reduction behavior and the oxygen storage capacity on the structural properties[J].J.Catal.,1995,151:168-177
    [46]Kundakovic L,Flytzani-Stephanopoulos M.Cu- and Ag-Modified cerium oxide catalysts for methane oxidation[J].J.Catal.,1998,179:203-221
    [47]Wilkes M F,Hayden P,Bhattacharya A K.Catalytic studies on ceria lanthana solid solutions Ⅰ.Oxidation of methane[J].J.Catal.,2003,219:286-294
    [48]A.Bueno-Lopez,Krishna K,Makkee M,et al.Enhanced soot oxidation by lattice oxygen via La~(3+)-doped CeO_2[J].J.Catal.,2005,230:237-248
    [49]Otsuka K,Wang Y,Nakamura M.Direct conversion of methane to synthesis gas through gas-solid reaction using CeO_2-ZrO_2 solid solution at moderate temperature[J].Appl.Catal.A:General,1999,183:317-324
    [50]Kang Z C,Eyring L.Lattice oxygen transfer in fluorite-type oxides containing Ce,Pr,and/or Tb[J].J.Solid State Chem.,2000,155:129-137
    [51]Kang Z C,Eyring L,Hydrogen production from methane and water by lattice oxygen transfer with Ce_(0.7)Zr_(0.25)Tb_(0.05)O_(2-x)[J].J.Alloys Compd.,2001,323:97-101
    [52]Sadykov V A,Kuznetsova T G,Alikina G M,et al.Ceria-based fluorite-like oxide solid solutions as catalysts of methane selective oxidation into syngas by the lattice oxygen:synthesis,Characterization and performance[J].Catal.Today,2004,93-95:45-53
    [53]Sadykov V A,Lunin V,Kuznetsova T,et al.Methane selective oxidation into syngas by the lattice oxygen in ceria-based solid electrolytes promoted by Pt[J].The 7th Natural gas conversion Ⅶ.Dalian Shi,2004,241-246
    [54]Eguchi K,Arai H.Recent advances in high temperature catalytic combustion[J].Catal. Today,1996,29:379-386
    [55]李然家,余长春,朱光荣等.AFeO_3(A=La、Nd、Sm、Eu)钙钛矿中的晶格氧用于甲烷选择性氧化制取合成气[J].石油与天然气化工,2004,33(增刊):5-7
    [56]Dai X P,Li R J,Yu C C,et al.Unsteady-State Direct Partial Oxidation of Methane to Synthesis Gas in a Fixed-Bed Reactor Using AFeO_3(A=La,Nd,Eu)Perovskite-Type Oxides as Oxygen Storage[J].J.Phys.Chem.B,2006,110:22525-22531
    [57]孔繁华,景志刚,李然家等.钙钦矿型LaFeO_(3-λ)催化剂焙烧条件对甲烷部分氧化性能的影响[J].石油化工,2005,34(增刊):291-293
    [58]李杰.晶格氧催化剂LaFeO_3的成型及放大研究:[硕士学位论文].北京:中国石油大学(北京),2005
    [59]史凯娇.钙钛矿催化剂用于甲烷选择性氧化制合成气的研究:[硕士学位论文].北京:中国石油大学(北京),2006
    [60]Li R J,Yu C C,Zhu G R,et al.Methane oxidation to synthesis gas using lattice oxygen of La_(1-x)Sr_xMO_(3-λ)(M=Fe,Mn)perovskite oxides instead of molecular oxygen[J].Petroleum Science,2005,2(1):19-23
    [61]Shen S K,Li R J,Zhou J P,et al.Selective oxidation of light hydrocarbons using lattice oxygen instead of molecular oxygen[J].Chinese J.Chem.Eng,2003,11(6):649-655
    [62]李然家,余长春,代小平等.钙钛矿型La_(0.8)Sr_(0.2)FeO_3中的晶格氧用于甲烷选择氧化制取合成气[J].催化学报,2002,23(6):549-554
    [63]Li R J,Yu C C,Ji W J,et al.Methane oxidation to synthesis gas using lattice oxygen in La_(1-x)Sr_xFeO_3 perovskite oxides instead of molecular oxygen[J].The 7th Natural gas conversion Ⅶ.Dalian Shi,2004,199-204
    [64]钟子宜,陈立刚,颜其洁等.纳米钙钛矿型复合氧化物La_(1-x)Sr_xFeO_3晶格氧与催化甲烷完全氧化性能研究[J].分子催化,1997,11(1):55-58
    [65]Steinfeld A,Kuhn P,Reller A,et al.Solar-processed metals as clean energy carriers and water-splitters[J].Int.J.Hydrogen Energy,1998,23(9):767-774.
    [66]李鑫,李安定,李斌等,太阳能制氢研究现状及展望,太阳能学报,2005,20(1):127-133
    [67]魏永刚,王华,何方等.熔融盐中用晶格氧部分氧化甲烷制取合成气技术及其热 力学分析,中国稀土学报,2006,24(spec.issue):31-35
    [68]樊江涛.甲烷催化部分氧化制合成气循环流化床反应器的开发研究:[硕士学位论文].北京:中国石油大学(北京),2005
    [69]Steinfeld A,Kuhn P,Kami J.High-temperature solar thermochemistry:Production of iron and synthesis gas by Fe_3O_4-reduction with methane[J].Energy,1993,18(3):239-249
    [70]Steinfeld A,Frei A,Kuhn P,et al.Solar thermal production of Zinc and syngas via combined ZnO-reduction and CH_4-reforming processes[J].Int.J.Hydrogen Energy,1995,20(10):793-804
    [71]Steinfeld A,Larson C,Palumbo R,et al.Thermodynamic analysis of the Co-production Zinc and Synthesis gas using solar process heat[J].Energy,1996,21(3):205-222
    [72]Tsuji M,Wada Y,Tamaura Y,et al.Coal gasification by the coal/CHn-ZnO-Zn-H_2O solar energy conversion system[J].Energy Convers.Mgmt,1996,37(6-8):1315-1320
    [73]Tamaura Y,Yoshida Y W T,Tsuji M,et al.The coal/Fe_3O_4 system for mising of solar and fossil energies[J].Energy,1997,22(2-3):337-342
    [74]Steinfeld A,Brack M,Meier A,et al.A solar chemical reactor for co-production of Zinc and synthesis gas[J].Energy,1998,23(10):803-814
    [75]Steinfeld A,Spiewak I.Economic evaluation of the solar thermal co-production of Zinc and synthesis gas[J].Energy Convers.Mgmt,1998,39(15):1513-1518
    [76]Hirsch D,Epstein M,Steinfeld A.The solar thermal decarbonization of natural gas[J].Int.J.Hydrogen Energy,2001,26:1023-1033
    [77]Halmann M,Frei A,Steinfeld A.Thermo-neutral production of met als and hydrogen or methanol by the combined reduction of the oxides of zinc or iron with partial oxidation of hydrocarbons[J].Energy,2002,27:1069-1084
    [78]Ebrahim H A,Jamshidi E.Synthesis gas production by zinc oxide reaction with methane elimination of greenhouse gas emission from a metallurgical plant[J].Energy Conversion & Management,2004,45:345-363
    [79]郭耘,卢冠忠.稀土催化材料的应用及研究进展[J].中国稀土学报,2007,25(1):1-15
    [80]Fabris S,Gironcoli S,Baroni S,etal.Taming multiple valency with density functionals:A case study of defective ceria[J].Phys Rev.B,2005,71:041102-(1-4)
    [81]Kim D K,Stowe K,Muller F,et al.Maier Mechanistic study of the unusual catalytic properties of a new Ni-Ce mixed oxide for the CO_2 reforming of methane[J].J.Catal.,2007,247:101-111
    [82]Lambrou P S,Savva P G,Fierro J L G,et al.The effect of Fe on the catalytic behavior of model Pd-Rh/CeO_2-Al_2O_3 three-way catalyst[J].Appl.Catal.,B:Environmental,2007,76:375-385
    [83]Martinez-Arias A,Gamarra D,Fernandez-Garcia M,et al.Comparative study on redox properties of nanosized CeO_2 and CuO/CeO_2 under CO/O_2[J].J.Catal.,2006,240:1-7
    [84]Otsuka K,Wang Y,Sunada E,et al.Direct Partial Oxidation of Methane to Synthesis Gas by Cerium oxide[J].J.Catal.,1998,175:152-160
    [85]Trovarelli A.Catalysis by ceria and related materials[M].London:Imperial College Press,2002
    [86]Campbell C T,Peden C H F.Oxygen Vacancies and Catalysis on Ceria Surfaces[J].Science 2005,309:713-714
    [87]Rocchini E,Trovarelli A,Llorca J,et al.Relationships between Structural/Morphological Modifications and Oxygen Storage-Redox Behavior of Silica-Doped Ceria [J]J.Catal.,2000,194:461-478
    [88]陈懿.双金属氧化物和氧化物载体组分间的相互作用.复旦学报(自然科学版),2002,41(3):251-259
    [89]Esch F,Fabris S,Zhou L,et al.Electron localization determines defect formation on ceria substrates[J]Science,2005,309:752-755
    [90]Schmieg,S J,Belton,D N,Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive catalyst[J].Appl.Catal.,B:Environmental,1995,6:127-144
    [91]Park S,Vohs J M.,Gorte R J.Direct oxidation of hydrocarbonsin a solid-oxide fuel cell[J].Nature,1999,404:265-267
    [92]Vidmar P,Fornasiero P,Kaspar J,et al.Effects of trivalent dopants on the redox properties of Ce_(0.6)Zr_(0.4)O_2 mixed oxide[J].J.Catal.,1997,171:160-168
    [93]Mamontov,Egami E,Brezny T,et al.Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia[J]J.Phys.Chem.B,2000,104:11110-11116
    [94]Li G S,Smith R L.,Inomata H.Synthesis of nanoscale Ce_(1-x)Fe_xO_2 solid solutions via a low-temperature approach[J].J.Am.Chem.Soc.,2001,123:11091-11092
    [95]Perez-Alonso F J,Granados M L,Ojeda M,et al.Chemical structures of coprecipitated Fe-Ce mixed oxides[J].Chem.Mater.,2005,17:2329-2339
    [96]刘源,孙海龙,刘金生等.氧化铈气凝胶担载氧化铜催化剂的TPR研究[J].催化学报,2001,22(6):523-526
    [97]徐秀峰,索掌怀,李大力等.MnO_x/Al_2O_3、MnO_x/BaO-Al_2O_3催化剂的制备、表征及其对甲烷低温燃烧的催化活性[J].分子催化,2001,15(4):259-262
    [98]季生福,李树本,许传芝等.Na-W-Mn/SiO_2催化剂晶格氧的扩散行为.分子催化,2002,16(5):369-373
    [99]马迪,梅大江,李璇等.稀土等碱性助剂对甲烷部分氧化制合成气整体式Ni/γ-Al_2O_3催化剂性能的影响.中国稀土学报,2006,24(3):293-297
    [100]周振华,张爱莲,龚茂初等.焙烧温度对Ni/δ-Al_2O_3催化剂性能的影响[J].化学研究与应用,2000,12(5):521-525
    [101]Dae-Joon K.Lattice Parameters,Ionic Conductivities,and Solubility limits in Fluorite-Structure MO_2 Oxide[M=Hf~(4+),Zr~(4+),Ce~(4+)T,h~(4+),U~(4+))Solid Solutions[J].J.Am.Ceram.Soc.,1989,72(8):1415-1421
    [102]Buscail H,Larpin J P.The influence of cerium surface addition on low-pressure oxidation of pure iron at high temperatures[J].Solid State Ionics,1996,92:243-251
    [103]楚文玲,杨维慎,林励吾.钙钛矿型复合氧化物在甲烷部分氧化反应中催化性能的研究.高等学校化学学报.2002,23(9):1787-1789
    [104]马红钦,谭欣,朱慧铭等.La_(1-x)Ce_xFeO_3钙钛石高变催化剂的XPS研究.中国稀土学报,2003,21(4):445-448
    [105]Barosa A L,Herguido J,Santamaria J.Methane combustion over unsupoorted iron oxide catalysts[J].Catal.Today,2001,64:43-50
    [106]Salomonsson P,Griffin T,Kasemo B.Oxygen desorption and oxidation reduction kinetics with methane and carbon monoxide over perovskite type met al oxide catalysts[J].Appl.Catal.,A:General,1993,104(2):175-197
    [107]万江,刘够生,宋兴福等.Co-Mo/γ-AI_2O_3耐硫脱氧催化剂的TPD-TPR研究的. 高校化学工程学报,2005,19(5):703-707
    [108]邹汉波,董新法,林维明.Cu-Zr-Ce-O复合氧化物催化剂上CO选择性氧化性能.化工学报,2005,12:2320-2325
    [109]Fomasiero P,Monte R D,Ranga Bao G,et al.Rh-Loaded CeO_2-ZrO_2 solid solutions as highly efficient oxygen exchangers:dependence of the reduction behavior and the oxygen storage capacity on the structural properties[J].J.Catal.,1995,151:168-177
    [110]陈清泉,张丽娟,陈耀强等.Ce_(0.67)Zr_(0.33)O_2对CH_4燃烧催化剂Fe_2O_3/Al_2O_3的改性作用[J].高等学校化学报,2005,26(9):1704-1708
    [111]An Y,Zhu L Y,wang J,et al.Catalytic activity of Ceria-Zirconia nano -structured materials prepared via reversed microemulsion method[J].Journal of rare earths,2005,23(6):690-694.
    [112]王来来,吕士杰,马忠乾等.钙钛矿型稀土.过渡金属复合氧化物催化剂的稳定性及XPS研究[J].分子催化,1993,7(4):317-322
    [113]Boskovic G,Smith K J.Methane homologation and reactivity of carbon species on supported Co catalysts[J].Catal.Today,1997,37:25-32
    [114]Xu G L,Shi K Y,Gao Y,et al.Studies of reforming natural gas with carbon dioxide to produce synthesis gas:Ⅹ.The role of CeO_2 and MgO promoters[J].J.Mol.Catal.A:Chem.,1999,147(1-2):47-54
    [115]Fathi M,Bjorgum E,Viig T,et al.Partial oxidation of methane to synthesis gas:Elimination of gas phase oxygen[J].Catal.today,2000,63:489-497
    [116]李建中,吕功煊,李克.甲烷在Ni/SiO_2催化剂上裂解制炭纳米管和氢气[J].石油与天然气化工,2004,33(4):222-227
    [117]Kuijpers E G M,Jansen J W,Van Dillen A J,et al.The reversible decomposition of methane on a Ni/SiO_2 catalyst[J].J.Catal.,1981,72(1):75-82
    [118]Zhang T J,Amiridis M D.Hydrogen production via the direct cracking of methane over silica-supporter nickel catalysts[J].Appl.Catal.,A:General,1998,167(2):161-172
    [119]博利勇,谢卫国,吕绍洁.CH_4、CO_2和O_2制合成气反应中载体对催化剂抗积炭性能的影响[J].中国科学(B辑),2000,30(1):84-89
    [120]Takenaka S,Otsuka K.Specific reactivity of the carbon filaments formed by decomposition of methane over Ni/SiO_2 catalyst:gasification with CO_2[J].Chem.Lett, 2001,218-219.
    [121]叶青,徐柏庆.Ce_(1-x)Zr_xO_2的氧化还原性能及其对CO_2重整CH_4反应的影响[J].催化学报,27(2):151-156
    [122]宋一兵,余林,孙长勇等.稀土Ce对制合成气用Ce-Ni/AI_2O_3催化剂活性和稳定性的影响[J].催化学报,2002,23(3):517-520
    [123]李基涛,陈明旦,严前古等.助剂对CH_4/CO_2重整镍基催化剂性能的影响[J].天然气化工,1999,24(3):25-27
    [124]宋一兵,陈德平,林维明.CH_4、CO_2、O_2制合成气用Ni-Ce/Al_2O_3催化剂的XPS 研究[J].光谱实验室,2003,20(3):459-462
    [125]金荣超,陈燕馨.甲烷部分氧化Ni催化剂及助剂的研究[J].物理化学学报,1998,14(8):737-741
    [126]Lv H,Tu H Y,Zhao B Y,et al.Synthesis and electrochemical behavior of Ce_(1-x)Fe_xO_(2-δ)as a possible SOFC anode materials[J].Solid State Ionics,177,2007:3467-3472
    [127]Yao H C,Yao Y F Y.Ceria in automotive exhaust catalysts:Ⅰ.Oxygen storage[J].J.Catal.,1984,86(2):254-265
    [128]Apostolescu N,Geiger B,Hizbullah K,et al.Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts.Appl.Catal B:Environ,2006,62(1-2):104-114
    [129]Alessandro Trovarelli,Catalytic properties of ceria and CeO_2-containing materials[J].Catal.Rev.,1996,38:439-520.
    [130]Ozaki T,Masui T,Machida K.Redox behavior of surface-modified CeOE-ZrO_2catalysts by chemical filing process[J]Chem.Mater.2000,12,643-649
    [131]Sirichaipraserta K,Luengnaruemitchalb A,Pongstabodeea S.Selective oxidation of CO to CO_2 over Cu-Ce-Fe-O composite-oxide catalyst in hydrogen feed stream[J].Int.J.Hydrogen Energy,2007,32:915-926
    [132]He F,Wang H,Dai Y N.Application of Fe_2O_3/Al_2O_3 composite particles as oxygen carrier of chemical looping combustion[J].Journal of Natural Gas Chemistry,2007,16:155-161
    [133]Campbell C T,Peden C H F.Oxygen vacancies and catalysis on ceria surfaces [J].Science,2005,309:713-714
    [134]Takenaka S,Serizawa M,Otsuka K.Formation of filamentous carbons over supported Fe catalysts through methane decomposition[J].J.Catal.,2004,222:520-531
    [135]Oelerich W,Klassen T,Bormann R.Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials[J].J.Alloys Compd.,2001,315:237-242
    [136]Liang G,Huot J,Boily S,et al.Catalytic effect of transition met als on hydrogen sorption in nanocrystalline ball milled MgH_2-Tm(Tm=Ti,V,Mn,Fe and Ni)systems[J].J.Alloys Compd.,1999,292:247-252
    [137]Huang Z G,Guo Z P,Calka A,et al.Effects of iron oxide(Fe_2O_3,Fe_3O_4)on hydrogen storage properties of Mg-based composites[J].J.Alloys Compd.,2006,422:299-304
    [138]Laachir,A,Perrichon,V,Badri,A,et al.Reduction of CeO_2 by Hydrogen[J].J.Chem.Soc.Faraday Trans.,1991,87:1601-1609
    [139]Fallah J E,Boujana S,Dexpert H,et al.Redox processes on pure ceria and on Rh/CeO_2 catalyst monitored by X-ray absorption[J].J.phys.Chem.,1994,98:5522-5533
    [140]Mcbride J R,Hass K C,Poindexter B D,et al.Raman and x-ray studies of Ce_(1-x)RE_xO_(2-y),where RE=La,Pr,Nd,Eu,Gd and Tb[J].J.Appl.Phys.,1994,76(4):2435-2441
    [141]De Faria D L A,Venau ncio Silva S,de Oliveira M T.Raman microspectros- copy of some iron oxides and oxyhydroxides[J].J.Raman Spectrosc.,1997,28:873-878
    [142]Jawhari T,Roid A,Casado J.Raman spectroscopic characterization of some commercially available carbon black materials[J].Carbon,1995,33(11):1561-1565
    [143]Sinha K,Menendez J.First-and second-order resonant Raman scattering in graphite [J].Phys.Rev.B,1990,41:10845-10847
    [144]张福勤,黄启忠,黄伯云等.C/C复合材料石墨化度的喇曼光谱表征[J].无机材料学报,2003,18(2):361-366
    [145]Odier E,Schuurman Y,Mirodatos C.Non-stationary catalytic cracking of methane over ceria-based catalysts:Mechanistic approach and catalyst optimization[J].Catal.Today,2007,127:230-237
    [146]Rieken M,Nolting J,Riessl.Specific heat and phase diagram of nonstoichio- metric ceria(CeO_(2-x))[J].J.Solid state Chem.,1984,54:89-99
    [147]Jung C R,Han J,Nan S W,et al.Selective oxidation of CO over CuO-CeO_2 catalyst:effect of calcination temperature[J].Catal.Today,2004,93-95:183-190
    [148]Larese C,Lopez Granados M,Mariscal R,et al.The effect of calcination temperature on the oxygen storage and release properties of CeO_2 and Ce-Zr-O metal oxides modified by phosphorus incorporation[J].Appl.Catal.,B:Environmental,2005,59:13-25
    [149]Tang X F,Li Y G,Huang X M,et al.MnO_x-CeO_2 mixed oxide catalysts for complete oxidation of formaldehyde:Effect of preparation method and calcination temperature[J].Appl.Catal.,B:Environmental,2006,62:265-273
    [150]Mercera P D L,Van Ommen J G,et al.Zirconia as a support for catalysts.Evolution of the texture and structure on calcination in air[J].Applied Catalysis,1990,57:127-148.
    [151]Kobune M,Sato S,Takahashi R.Surface-structure sensitivity of CeO_2 for several catalytic reactions[J].J.Mol.Catal.A:Chem.,2008,279:10-19
    [152]辛勤.固体催化剂研究方法[M].北京:科学出版社,2004.
    [153]Fu Y P,Lin C H,Hsu C S.Preparation of ultrafine CeO_2 powders by microwave-induced combustion and precipitation[J].J.Alloys Compd.,2005,391:110-114
    [154]Guo Y,Lu G Z,Zhang Z G,et al.Preparation of Ce_xZr_(1-x)O_2(x=0.75,0.62)solid solution and its application in Pd-only three-way catalysts[J].Catal.Today,2007,126:296-302
    [155]Knozinger H,Mestl G.Laser Raman spectroscopy-a powerful tool for in situ studies of catalytic materials[J].Top.Catal.,1999,8:45-55
    [156]Lin X M,Li L P,Li G S,et al.Transport property and Raman spectra of nanocrystalline solid solutions Ce_(0.8)Nd_(0.2)O_(2-δ)with different particle size[J].Materials Chemistry and Physics,2001,69:236-240
    [157]Weber W H,Hass K C,MeBride J R.Raman study of CeO_2:Second-odrer scattering,Lattice dynamics,and Particle-size effects.Phy.Rev.B,1993,48:178-185
    [158]闫宗兰,林霞,罗建海等.Ce_xPr_(1-x)O_(2-δ)复合氧化物的制备、表征及CO和CH_4氧化性能研究[J].无机材料学报,2005,20(3):653-658
    [159]Spanier J E,Robinson R D,Zheng F,et al.Size dependent properties of CeO_(2-y)nanoparticles as studied by Raman scattering[J].Phys.Rev.B,2001,64 (24):245407-245413
    [160]Reddy B M,Khan A,Yamada Y,er al.Structural characterization of CeO_2-MO_2(M =Si~4+,Ti~(4+)and Zr~(4+))mixed oxides by Raman spectroscopy,X-ray photo,electron spectroscopy and other techniques[J].J.Phys.Chem.B,2003,107(41):11475-11484.
    [161]缪建英,蔡俊修.Ce_(0.5)Zr_(0.5)O_2固溶体的原位拉曼光谱[J].催化学报,1999,20(1):25-28
    [162]Shan W J,Feng Z C,Li Z L,et al.Oxidative team reforming of methanol on Ce_(0.9)Cu_(0.1)O_y catalysts prepared by deposition precipitation,co-precipitation and complexation combustion methods[J].J Catal,2004,228(1):206-217
    [163]Luo M F,Yan Z L,Jin L Y.Structure and redox properties of Ce_xPr_(1-x)O_(2-δ)mixed oxides and their catalytic activities for CO,CH_3OH and CH_4 combustion[J].J.Mol.Catal.A:Chem.,2006,260:157-16
    [164]Liu Z G,Zhou R X,Zheng X M.Influence of residual K~+ on the catalytic performance of CuO-CeO_2 catalysts in preferential oxidation of CO in excess hydrogen[J].Int.J.Hydrogen Energy,2008,In press
    [165]李淑莲,陈光文,孙继良等.CeO_2-ZrO_2复合氧化物对金属蜂窝整体催化剂性能的影响[J].催化学报,2002,23(4):341-344
    [166]伊楠.稀土基复合氧化物的制备及其在甲烷催化燃烧中的应用:[硕士学位论文].上海:复旦大学,2005
    [167]Liotta L F,Di Carlo G,Pantaleo G,et al.Catalytic performance of Co_3O_4/CeO_2 and Co_3O_4/CeO_2-ZrO_2 composite oxides for methane combustion:Influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture[J].Appl.Catal.,B:Environmental,2007,70:314-322
    [168]Ozawa M,Kimura M,Isogai A.The application of Ce-Zr oxide solid solution to oxygen storage promoters in automotive catalysts[J].J.Alloys Compd.,1993,193(1-2):73-75
    [169]Murota T,Hasegawa T,Aozasa S,et al.Production method of cerium oxide with high storage capacity of oxygen and its mechanism[J].J.Alloys Compd.,1993,193(1-2):298-299
    [170]Vidal H,Kaspar J,Pijolat M,et al.Redox behavior of CeO_2-ZrO_2 mixed oxides:Ⅰ. Influence of redox treatments on high surface area catalysts. Appl. Catal., B: Environmental,2000, 27:49-63
    
    [171] Jose' I. Gutie'rrez-Ortiz, De Rivas B, Rube'n Lo'pez-Fonseca, et al. Catalytic purification of waste gases containing VOC mixtures with Ce/Zr solid solutions [J]. Appl. Catal., B: Environmental, 2006, 65: 191-200
    
    [172] Aneggi E, De Leitenburg C, Dolcetti G, et al. Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO_2 and CeO_2-ZrO_2 [J]. Catal.Today, 2006, 114:40-47
    
    [173] Yue B H, Zhou R X, Wang Y J. Influence of transition metals (Cr, Mn, Fe, Co and Ni) on the methane combustion over Pd/Ce-Zr/Al_2O_3 catalyst[J]. Appl. Surf. Sci., 2006, 252:5820-5828
    
    [174] Letichevsky S, Tellez C A, De Avilleza R R, et al. Obtaining CeO_2-ZrO_2 mixed oxides by coprecipitation: role of preparation conditions [J]. Appl. Catal., B: Environmental,2005, 58: 203-210
    
    [175] Wei Y G, Wang H, Li K Z, et al. Preparation and Performance of Ce/Zr Mixed Oxides for Direct Conversion of Methane to Syngas[J]. Journal of Rare Earths, 2007, 25(spec issue): 110-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700