基于倒装焊接的电子封装器件热性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尺寸小型化与功率高密度化是当今电子封装器件两大主要发展趋势。高热流密度芯片发展要求封装器件具有更好的热耗散能力和更高的热可靠性;电子产品的小型化趋势及便携性要求则是空冷技术发展的助推剂。如何在承受高热流密度的同时保证电子封装器件的热性能是当今热工工程师所面临的重要课题。
     本研究以加速芯片耗散热的输出、降低工作温度、减少热失配与热应力、提高封装器件的热可靠性能和使用寿命为目标,对空气冲击射流换热特性、焊料的热机械性能进行基础性的实验研究;在此基础上,建立非线性热应力耦合数学模型,并以FC-CBGA封装器件为研究对象,以ANSYS为计算平台,对服役状态下器件温度和应力分布进行数值模拟研究,并对封装器件热可靠性进行评价与预测。主要工作如下:
     基于数值模拟辅助实验研究理念,针对换热实验系统与热机械性能测试系统,建立了相应数值模型。通过模拟动态测试过程,从数值角度定性与定量分析实验误差及其产生原因,并通过数值模拟辅助分析实验结果。研究表明,在合理选择数学模型和计算方法的前提下,实验数值结合法对发现实验方法与系统的缺陷,评价测试准确性,及定性及定量分析实验数据和解释现象具有裨益。该理念将贯穿于整个研究工作中。
     对毫米级孔径受限空气冲击射流换热特性进行了较系统的实验研究与理论分析。结果表明受限冲击射流换热性能与其流态与速度分布及空间受限程度密切相关,单孔直(无旋转)冲击射流在驻点区具有很强的局部换热特性;在相同Re下,单孔旋转冲击射流Nu存在明显的峰值外迁现象,因此提高旋转度可有效改善射流换热的均匀性;在相同流量下,由于射流之间的相互干涉和碰撞使驻点问的换热系数不再呈单调变化,多孔冲击射流换热较单孔更为均匀。
     为顺应焊料无铅化的趋势,对新型无铅焊料96.5Sn3.5Ag的热机械行为进行了探讨。研究表明,采用Anand粘塑性模型可对焊料96.5Sn3.5Ag热机械行为进行正确描述。并在焊料疲劳特性实验研究基础上,结合位错理论、断裂理论、蠕变损伤理论等对焊料疲劳行为进行理论分析,分析表明,软焊料疲劳失效机理与温度密切相关,蠕变损伤与疲劳损伤共同作用导致软焊料疲劳失效。本研究将为新型焊料热机械行为与失效机理研究提供有益思路。
     外部换热模式与器件内部参量的分布密切相关,故服役状态与均温状态热机械行为存在偏差,因此以服役状态为基准对器件的热机械行为与热可靠性能进行探讨更接近工程实际,其预测结果也更趋安全性。在服役状态下器件的热可靠性能研究涉及多场耦合研究;此外在室温条件下焊料已表现出蠕变等非弹性力学特性,故器件的热可靠性能研究还涉及非线性问题。本文在探讨了非定常温度场与应力场耦合机理的基础上,对耦合热弹塑性问题进行了简化与解耦,提出采用单向顺序耦合方法来求解固体材料内部非定常热应力场。并基于增量理论,对非线性热应力耦合问题及相应的有限元求解方法进行了探讨。
     基于非线性理论与有限单元法,在对服役状态倒装焊球阵列封装器件温度分布与应力分布进行瞬态数值模拟分析的基础上,对处于多轴应力条件下焊点高温低周疲劳寿命预测方法进行了探讨。在研究中,采用粘塑性模型对焊料热机械行为进行描述,并尽可能地再现了器件内部复杂的组成结构,以便更准确地描述服役条件下器件内部特别是凸焊点的热应力场;子模型方法的引入解决了器件内部组件尺寸级数差异带来的网格划分问题、计算效率问题与计算精度问题;“顺序耦合法”的使用则方便地解决了多场耦合、异相间耦合与同相内耦合等问题。
     本研究为开发基于倒装焊接的电子封装器件及提高电子封装器件热性能提供了数据与思路。
The two trends in the electronics packaging component field nowadays are the miniaturization in the size and high intensity in power. Development of high heat flux chips requires better heat dissipation performance and higher thermal reliability of the electronics packaging, meanwhile, the miniaturization tendency and portability demand of the electronics packaging accelerate the research on the air-cooling technology. So the crucial issue which the thermodynamic engineering is facing is how to ensure the thermal performance while the components burden heavier thermal load.
     The main purposes of the research are to accelerate the interior heat diffusion, reduce the mean operating temperature, relieve the inner thermal mismatch and thermal stress, and then improve thermal reliability and lengthen service life of the packaging component. In the thesis, experimental investigation on heat-transfer characteristics of air impingement jet and thermo-mechanical performance of solders was accomplished. After that, the numerical model about non-linear thermal-stress coupling was built, the interior distribution of temperature and stress of FC-CBGA electronic packaging component under the operating condition was simulated via ANSYS software, and then thermal capability of the component was evaluated and predicted. The details were expatiated as follows.
     Firstly, based on the concept of experimental investigation combined with accessorial numerical calculation, the corresponding numerical models were built according to the experimental systems. Then the experimental error and its causation were analyzed qualitatively and quantitively by simulating the dynamic testing process. Meanwhile the numerical simulation was applied to analyze the experimental results accessorially. Investigation indicated that it was feasible and beneficial for the experimental-simulation combination method to detect the limitation of experimental method and system, evaluate the testing precision, analyze experimental results and interpret phenomena qualitatively and quantitively. The concept was embodied through the thesis.
     Secondly, the heat-transfer characteristics of confined air impinging jet with millimeter-level aperture nozzles were investigated experimentally and analyzed theoretically. It could be demonstrated that the heat transfer performance has the direct relationship with the flow state, velocity distribution and confined degree of impinging jet. Comparison of the experimental results, the non-swirl impinging jet has an excellent local heat transfer performance at the stagnation zone, while the peak value of Nu for the swirl impinging jet exists outward transition phenomena along the radius of impact surface. Furthermore, multi-jets could improve the uniformity of heat transfer in the condition of same flux because that the phenomena of coherence and collision between the jets result in the heat trensfer coefficient not present monotone distribution anymore between stagnation zones.
     Thirdly, to develop, investigate and use replacer of lead solders is the international trend. So experiments on 96.5Sn3.5Ag-a new lead-free solder were accomplished to discuss the thermo-mechanical behaviors. The conclusion could be drawn that Anand visco-plastic model can be applied to describe the thermo-mechanical behaviors of solder 96.5Sn3.5Ag correctly. Meanwhile, based on the fatigue-characteristic experments and relevant theories involved in dislocation theroy, fracture mechanics, creep-damage theory, et al, the fatigue behaviors of solder were analyzed theoretically. It can be enunciated that absolute temperature has an important effect on failure mechanism of solders and the synergism of creep-damage and fatigue damage brings on fatigue failure of solders. The investigation provides the useful data for thermo-mechanical behaviors and failure mechanism of new-style solders.
     Exterior heat exchange modes influence parameters distribution inside packaging components, then distinction in thermo-mechanical behaviors exists between operating states and uniform temperature states. So the discussion about the thermo-mechanical behaviors and thermal capability of the component in the operating states could approach the engineering practice more closely. In the operating states, the research of thermal capability on packaging components is involved in multi-field coupling problems. Furthermore, the solders present obvious nonlinear mechanical characteristics such as creep, so the research of thermal capability is also involved in non-linear problems. In this thesis, the coupling mechanism of unsteady temperature and stress fields was discussed. After that, coupling thermal-elastoplastic problems were simplified and decoupled, and the one-way sequential coupling technique was adopted to analyze the unsteady thermal stress inside the solid materials. Besides, based on increment theory, the nonlinear thermo-stress coupling issue and corresponding numerical solution based on Finite Element Method were discussed.
     According to the theories mentioned above, the transient temperature and stress fields of FC-CBGA electronics packaging component in the operating states were simulated. After that, the method of high-temperature low-cycle fatigue life prediction about pumps in multiaxial stress condition was discussed. In the numerical simulation research, in order to describe the temperature and stress distribution inside the component especially inside the solder bumps more precisely, model of visco-plasticity was applied to describe the thermo-mechanical behaviors of solders and a full size model was built which reconstruct the interior configuration as detailed as possible. Furthermore, some techniques were applied to solve specific problems in simulating. Sub-model method based on local influence theorem was introduced to solve the issues such as grid division, computational precision and efficiency caused by scale level discrepancy among subassemblies inside electronics packaging components and it was proved availably. And sequential coupling technique was adapted to solve coupling problems such as multi-fields coupling, heterophase coupling, inphase coupling, et al.
     The research provides experimental and theoretical foundation for development of electronics packaging components based on flip bonding and for improvement of thermal performance about electronics packaging components.
引文
[1]田民波,梁彤翔,何卫.电子封装技术和封装材料[J].半导体情报,1995,32(4):42-61
    [2]Tummala R R.,Rymaszewski E J,Klopfenstein A G.,et al.Microelectronics Packaging Handbook(Second Edition)[M].Beijing:PHEI,2001
    [3]Tummala R R.Fundermental of Microsystems Packaging[M].New York:McGraw-Hill Companies.Inc.,2001
    [4]电子封装技术丛书编委会.集成电路封装实验手册[M].北京:电子工业出版社,1998
    [5]Faulker D,Khotan M and Shekarriz R.Practical design of a 1000w/cm~2 cooling system[A].19th IEEE Semi Therm Symposium[C],2003:223-230
    [6]http://www.darpa.mil/MTO/heretic/
    [7]陈登科.电子冷却技术[J].低温物理学报,2001,27(3):255-262
    [8]李腾,刘静.芯片冷却技术的最新研究进展及其评价[J].制冷学报,2004,(3):22-32
    [9]Nakayama W.Forced convective/conductive conjugate heat transfer in microelectronic equipment[J].Annual Review of Heat Transfer,1997,8:1-48
    [10]Okesys S,Hannemann R J and Cohen A B.High heat from a small package[J].Mechanical Engineering,1986,108(3):26-42
    [11]Fitch J S.A one-dimensional thermal model for the vax 9000 multi chip units [A].ASME Winter Annual Meeting,1990
    [12]Heng S and Pei J.Air impingement cooled pin-fin heat sink for multi-chip units [J].Proceeding of National Electronic Packaging and production Conference,1991,2:1156-1165
    [13]Lin Z H,Chou Y J and Hung Y H.Heat transfer behavior of a confined slot jet impingement[J].Int.J.Heat Mass Transfer,1997,40:1095-1197
    [14]Hansen L G,Webb B W.Air jet impingement heat transfer from modified surfaces[J].Int.J.Heat Mass Transfer,1993,36:989-997
    [15]El-Sheikh H A and Garimella S V.Enhancement of air jet impingement heat transfer using pin-fin heat sinks[J].IEEE Transaction on Component and Packaging Technology,2000,23(2):300-308
    [16]El-Sheikh H A and Garimella S V.Heat transfer from pin-fin heat sinks under multiple impinging jets[J].IEEE Transaction on Advanced Packaging,2000, 23(1):113-119
    [17]Brigoni L A and Garimella S V.Experimental optimazition of confined air jet impingement on a pin fin heat sink[J].IEEE Transations on Components and Packaging Technology,1999,22(3):399-404
    [18]Glezer A and Thompson M.High heat flux air cooling using synthetic microjets [J].Semicon West,1995
    [19]Hilbert C,Sommerfeldt S,Gupta O,et al.High performance air cooled heat sinks for integrated circuits[J].IEEE Trans.CHMT.,1990,14(4):1022-1031
    [20]Zhuang Y,Ma C F and Qin M.Experimental study on local heat transfer with liquid impingement flow into dimensional micro-channels[J].Int.J.Heat Mass Transfer,1997,40(17):4055-4059
    [21]秦曼,郑青,马重芳等.FC-72圆形射流冲击模拟电子芯片单项局部对流传热的实验研究[J].工程热物理学报,1996,17(1):69-74
    [22]陈永昌,马重芳,雷道亨.极小尺寸圆形空气射流强化换热的实验研究[J].北京工业大学学报,2000,26(4):5-8
    [23]陈永昌.微尺度单相射流冲击强化传热实验研究与理论分析[D]:[博士学位论文].西安:西安交通大学,2000
    [24]陈希章,刘中良,马重芳.电子芯片散热特性的测试研究[J].工程热物理学报,2004,25(6):995-997
    [25]Hattori H and Nagano Y.Direct numerical simulation of turbulent heat transfer in plane impinging jet[J].Int.J.Heat Fluid Flow,2004,25:749-758
    [26]Cziesla T,Biswas G,Chattopadhyay H,et al.Large-eddy simulation of flow and heat transfer in an impinging slot[J].Int.J.Heat Fluid Flow,2002,23:200-208
    [27]Beaubert F and Viazzo S.Large eddy simulations of plane turbulent impinging jets at moderate Reynolds numbers[J].Int.J.Heat and Fluid Flow,2003,24:512-519
    [28]贺有多.传输理论和计算[M].北京:冶金工业出版社,1999
    [29]朱自强.应用计算流体动力学[M].北京:北京航空航天大学出版社,1998
    [30]Behnia M,Parneix S,Shabany Y,et al.Numerical study of turbulent heat transfer in confined and unconfined jets[J].Int.J.Heat Fluid Flow,1999,20:1-9
    [31]Merci B and Dick E.Heat transfer predictions with a cubic k-ε model for axisymmetric turbulent jets impinging onto a flat plate[J].Int.J.Heat Mass Transfer,2003,46:469-480
    [32]陈庆光,徐忠,张永建.两种差分格式和两种湍流模型在轴对称冲击射流数 值计算中的比较[J].空气动力学学报,2003,21(1):82-89
    [33]Heyerichs K and Pollard A.Heat transfer in separated and impinging turbulent flows[J].Int.J.Heat Mass Transfer,1996,30:2385-2400
    [34]Olsson E M,Ahrne L M and Tragardh A C.Heat transfer from a slot air jet impinging on a circular cylinder[J].Journal of Food Engineering,2004,63:393-401
    [35]Behnia M,Parneix S,Shabany Y,et al.Numerical study of turbulent heat transfer in confined and unconfined jets[J].Int.J.Heat Fluid Flow,1999,20:1-9
    [36]刘难生.旋转湍流的直接数值模拟和大涡模拟研究:[博士学位论文].合肥:中国科技大学,2003
    [37]Thielen L,Jonker H J and Hanjalic K.Symmetry breaking of flow and heat transfer in multiple impinging jets[J].Int.J.Heat and Fluid Flow,2003,24:444-453
    [38]Yilbas B S,Shuja S Z and Budair M O.Stagnation point flow over a heated plate:consideration of gas jet velocity profiles[J].Arabian Journal for Science and Engineering,2002,27(2C):91-116
    [39]Rhee D H,Yoon P H and Cho H H.Local heat/mass transfer and flow characteristics of array impinging jets with effusion holes ejecting spent air[J].Int.J.Heat Mass Transfer,2003,46:1049-1061
    [40]Katy R H and Pimply W T.Shape and force relationships for molten axisysmmetric solder connections[J].ASME J.Electronics packaging,1992,114:336-341
    [41]Yamada T,Ostutani K,Sham K,et al.Low stress desigh of flipchiptechnology for Si on Si multichip modula[J].IEPS,1985:551-557
    [42]Wan J W,Zhang W J and Bergstrom D J.Recent advances in modeling the underfill process in flip-chip packaging[J].Microelectronics Journal,2007,38:67-75
    [43]S.Suresh.王忠光等译.材料的疲劳[M].北京:国防工业出版社,1999
    [44]张俊善.材料强度学[M].哈尔滨:哈尔滨工业大学出版社,2004
    [45]平修二.郭廷伟,李安定译.热应力与热疲劳[M].北京:国防工业出版社,1984
    [46]Kobayashi F,Watanabe Y,Yamamotu M,et al.Hardwire technology for hitachi m-880 processor group[J].Proceedings of 42nd IEEE ECTC,1992:693-703
    [47]张群.倒装焊及相关问题研究[D]:[博士学位论文].中科院上海冶金研究所,2001
    [48]Liu X W,Plumbridge W J.Thermomechanical fatigue of Sn-37wt%Pb model solder joints[J].Materials Science and Engineering,2003,A362:309-321
    [49]Shi X Q,Pang H L and Zhang X R.Investigation of long-term reliability and failure mechanism of solder interconnections with multifunctional micro-moire interferometry system[J].Microelectronics Reliability,2004,44:841-852
    [50]李禾,傅艳军,李仁增,严超华.球栅阵列倒装焊封装中的热应变值的测试[J].半导体学报,2002,23(6):655-659
    [51]王青春,梁旭文,王金铭等.SMT焊点形态对热应力分布影响的有限元分析[J].电子工艺技术,1996,6:14-17
    [52]Wild R N.Solder Development Studies Being Conducted by IBM[J].FSD Owego,NY,1992,325-416
    [53]http://www.SMTHOME.net
    [54]王恭年,高陇桥.焊料在电子器件中的应用[J].真空电子技术,2001,2:15-18
    [55]Pao Y H.Thermo-mechanical and failure behavior of high-temperature lead and lead-free solder joints[J].ASTM,Philadelphia.1994:60-81
    [56]Zehr S W,Seetoh CW,and Wang Z P.CBGA Solder joint reliability evaluation based on elastic-plastic-creep analysis[J].ASME J.Electron.Package,1986,122(3):255-261
    [57]Busso E P,Lynott G W and Bader F E.Surface mount assembly failure statistics and failure free time[J].Electronic Components and Technology Conference,1994,35(2):487-497
    [58]Zehr S W,Seetoh C W,and Wang Z P.CBGA solder joint reliability evaluation based on elastic-plastic-creep analysis[J].ASME J.Electron.Package,1986,122(3):255-261
    [59]Busso E P,Lynott G W and Bader F E.Surface mount assembly failure statistics and failure tree time[J].Electronic Components and Technology Conference,1994,35(2):487-497
    [60]Wiese S and Wolter K J.Microstructure and creep behavior of eutectic SnAg and SnAgCu solders[J].Microelectronics Reliability,2004,44:1923-1931
    [61]Kashyap B P.Solder joint fatigue models:review and applicability to chip scale packages[J].Microelectronics Reliability,1992,40(6):231-244
    [62]Anand L.Constitutive equation for hot working of metals[J].International J. Plasticity,1985,1:213-231
    [63]Sarihan V.Temperature dependent visio-plastic simulation of controlled collapse solder joint under thermal cycling[J].ASME J.Electronics Packaging,1993,115:16-21
    [64]Amagai M.Characterizing of chip scale packaging materials[J].Microelectronics Reliability,1999,39:1365-1377
    [65]Chen X and Chen G.Cyclic stress-strain relationship of 63Sn37Pb solder under biaxial proportional and non-proportional loading[J].Materials and Design,2005
    [66]Solomon H D.Low cycle fatigue of Sn96 solder with reference to eutectic solder and a high Pb solder[J].J Electron Packaging Trans ASME,1991,113:102-108
    [67]Kanchanomai C,Yamamoto S,Miyashita Y,et al.Low cycle fatigue test for solders using non-contact digital image measurement system[J].International Journal of Fatigue,2002,24:57-67
    [68]Kanchanomai C and Mutoh Y.Temperature effect on low cycle fatigue behavior of Sn-Pb eutectic solder[J].Scripta Materialia,2004,50:83-88
    [69]李晓延,严永长.电子封装焊点可靠性及寿命预测方法[J].机械强度,2005,27(4):470-479
    [70]杨宜科,吴天禄,江先美,朱景鹏等.金属高温强度及试验[M].上海:科学技术出版社,1984:222
    [71]Ross D O.The creep of Sn60 solder and it's impact on leadless chip carriers[J].Proc.1984 IEPS.1984.181-187
    [72]Ross R G,Je.and Wen L.Crack propagation in solder joints during thermal mechanical cycling[J].ASME J.Electron.Packaging,1994,116:6-14
    [73]Knecht S,Fox L R.Constitutive relation and creep-fatigue life model for eutectic Tin-lead solder[J].IEEE Trans.CHMT,1990,13(2):424-433
    [74]Lin P,Lee J & Im S.Design consideration for a flip chip jointing technique[J].Solid State Technol.,1970:48-54
    [75]Engelmaier W.Fatigue life of leadless chip carrier solders joints during power cycling[J].IEEE Trans.CHMT,1983,6(3):232-237
    [76]Akay H,Zhang H and Paydar N.Experimental correlations of an energy-based fatigue life prediction method for solder joints,advance in electronic packaging [A].Proc.Of the Pacific Rim/ASME International Intersociety Electronic and Photonic Packaging Conference,InterPack'97,New York,USA,1997,2: 1567-1574
    [77]Darveaux R.Solder joint fatigue life model,in design and reliability of solders and solder interconnections[J].Orlando,Florida,USA:The Minerals,Metals and Materials Society(TMS),1997:213-218
    [78]徐步陆.电子封装可靠性研究[D]:[博士学位论文].上海:中科院上海微系统与信息计算研究所,2003
    [79]杨洁,张柯柯,周旭东等.微连接焊点可靠性的研究现状[J].电子元件与材料,2005,24(9):58-61
    [80]Ubachs R L J M,Schreurs P J G and Geers M G D.Microstructure dependent viscoplastic damage modeling of tin-lead solder[J].Journal of the Mechanics and Physics of Solids,2006,54:2621-2651
    [81]Kim D G,Kim J W,& Jung S B.Evaluation of solder joint reliability in flip chip package under thermal shock test[J].Thin Solid Films,2006,504(1-2):426-430
    [82]Chen X Y and Zhou D J.Modeling and Reliability Analysis of Lead-Free Solder Joints of Bottom Leaded Plastic(BLP)Package[A].Proceedings of the Eighth IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis,Shanghai,June 27-30,2006:74-80
    [83]Yan C,Qin Q H,Mai Y W.Nonlinear analysis of plastic ball grid array solder joints[J].Journal of materials science:Materials in electronics,2001,12:667-673
    [84]朱奇农,王国忠.复合SnPb焊点的形态与可靠性预测[J].金属学报,2000,36(1):93-98
    [85]Shohji I,Mori H and Orii Y.Solder joint reliability evaluation of chip scale package using a modified Coffin-Manson equation[J].Microelectronics Reliability,2004,44:269-274
    [86]Sarihan V.Energy based methodology fir damage and life prediction of solder joints under thermal cycling[J].IEEE Trans.CHMT,1994,17(4):626-631
    [87]平浚.射流理论基础及应用[M].北京:宇航出版社,1995
    [88]陈庆光,徐忠,张永建.湍流冲击射流流动与传热的数值研究进展[J].力学进展,2002,32(1):92-94
    [89]Martin H.Heat and Mass Transfer between Impinging Gas Jets and Solid Surface[J].Advances in Heat Transfer,1993,23:123-126
    [90]董志勇.冲击射流[M].北京:海洋出版社,1997
    [91]Hrycak P.Heat Transfer from Impinging Jets-A Literature Review[J]. AFWAL-TR-81-3054,Flight Dynamics laboratory,Wright-Patterson AFB,Ohio,1981:52
    [92]埃克尔特著,徐明德译.传热与传质[M].北京:北京科学出版社,1963:176
    [93]Luis A B,Suresh V G.Effects of nozzle-inlet chamfering on pressure drop and heat transfer in confined air jet impingment[J].International Journal of Heat and Mass transfer,2000,43:1133-1139
    [94]Rahimi M,Owen I,Mistry J.Impingement heat transfer in an under-expanded ax- symmetric air jet[J].International Journal of Heat and Mass transfer,2003,46:263-272
    [95]Hwang S D,Chong H H.Effects of acoustic excitation positions on heat transfer and flow in ax-symmetric impinging jet:main jet excitation and shear layer excitation[J].International Journal of Heat and Fluid Flow,2003,24:199-209
    [96]Liu T S,Sullivan J P.Heat transfer and flow structures in an exited circular impinging jet[J].International Journal of Heat and Mass transfer,1996,39(17):3695-3706
    [97]San J Y,Huang C H,Shu M H.Impingement cooling of a confined circular air jet[J].International Journal of Heat and Mass transfer,1997,40(6):1355-1364
    [98]Peter F,Leiner W,Fiegib M.Impinging radial and inline jets:a comparison with regard to heat transfer,wall pressure distribution and pressure loss[J].Experimental Thermal and Fluid Science,1997,14:194-204
    [99]Wolf D H,Incropera F P Viskanta R.Local jet impingement boiling heat transfer [J].International Journal of Heat and Mass transfer,1997,39(7):1395-1406
    [100]Li C Y,Garimella S V.Prandtl-number effects and generalized correlations for confined and submerged jet impingement[J].International Journal of Heat and Mass transfer,1997,44:3471-3480
    [101]Garron K.Morris,Suresh V.Garimella,Janice A.Fitzgerald.improved predictions of the flow filed in submerged and confined impinging jets using the renolds model[C].Inter-Society Conference on Thermal Phenomena,1998
    [102]San J Y and Lai M D.Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets[J].International Journal of Heat and Mass Transfer,2001,44:3997-4007
    [103]余常昭.紊动射流[M].北京:高等教育出版社,1993
    [104]Lee D H,Chung Y S and Kim M G.Turbulent heat transfer from a convex hemispherical surface to a round impinging jet[J].International Journal of Heat and Mass Transfer,1999,42:1147-1156
    [105]陈玉阳,苑中显,马重芳等.旋转射流冲击换热液晶显示实验研究[J].工程热物理学报,2003,24(4):646-648
    [106]Dano B P,Liburdy J A and Kanokjaruvijit K.Flow characteristics and heat transfer performances of a semi-confined impinging array of jets:effect of nozzle geometry[J].International Journal of Heat and Mass Transfer,2005,48:691-701
    [107]Mladin E C and Zumbrunnen D A.Alterations to coherent flow structures and heat transfer due to pulsations in an impinging air-jet[J].Int.J.Therm.Sci.,2000,39:236-248
    [108]刘顺隆,郑群.计算流体力学[M].哈尔滨:哈尔滨工程大学出版社,1998
    [109]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004
    [110]王补宣.工程传热传质学(下)[M].北京:科学出版社,1998
    [111]Gardon R and Akfirat J C.The role of turbulence in determining the heat transfer characteristics of impinging jets[J].Int.J.Heat Mass Transfer.1965,8:1261-1272
    [112]Baydar E.Confined impinging air jet at low Reynolds numbers[J].Experimental Thermal and Fluid Science,1999,19:27-33
    [113]步玉环,王瑞和,沈忠厚.旋转射流流线分析及旋流强度的计算[J].石油大学学报,1998,22(5):45-47
    [114]Chigier N A and Beer J M.Velocity and static pressure distributions in swirling air jets issuing from annular and divergent nozzles[J].Journal of Basic Engineering,Trans.ASNME,series D,1964,86:788-798
    [115]董志勇.射流力学[M].北京:科学出版社.2005
    [116]张莉,程旭,Nose H等.Anand模型预测63Sn37Pb铅锡焊料的应力应变行为[J].机械强度.2004,26(4):447-450
    [117]Ansys Theroy Refernce.Ansys Inc.
    [118]Hu X D and Ju DY.Application of Anand's constitutive model on twin roll casting process of AZ31 magnesium alloy[J].Trans.Nonferrous Met.Soc.China,2006,16:586-590
    [119]宋天霞.非线性结构有限元计算[M].武汉:华中理工大学出版社,1996
    [120]Tanimura T,Yu Q,Sibutani T,Jin J C,et al.Effective acquisitions of plastic,creep,viscoplastic parameters of solder using the stress relaxation method[A]. Proceeding of the 8th International Conference on Electronic Materials and Packaging,Hong Kong,2006:658-666
    [121]MIL-STD-883D,Method 1010.7:Temperature Cycling.29 May 1987
    [122]Andersson C,Sun P and Liu J.Low cycle Fatigue of Sn-based Lead-free Solder Joints and the Analysis of Fatigue Life Prediction Uncertainty[A].Proceedings of the Eighth IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis,Shanghai,2006:19-26
    [123]杨宜科,吴天禄,江先美等.金属高温强度及试验[M].上海:科学技术出版社,1984.
    [124]ASTM Standards.ASTM E606:standard practice for strain-controlled fatigue testing[M].The American Society for Testing and Materials,1998
    [125]JSMS Standards.JSMS-SD-300:Standard Method for low cycle fatigue testing of solders materials[M].The Society of Materials,2000
    [126]Kanchanomai C,Miyashita Y and Mutoh Y.Low cycle fatigue behavior and mechanisms of a eutectic Sn-Pb solder 63Sn/37Pb[J].Int.J.Fatigue,2002,24:671-683
    [127]Kanchanomai and Mutoh Y.Temperature effect on low cycle fatigue behavior of eutectic Sn-Pb solder[J].Scripta Materialia,2004,50:83-88
    [128]姜晋庆,张铎.结构弹塑性有限元分析法[M].北京:宇航出版社,1990
    [129]王勖成,邵敏.有限单元法基本原理和数值方法[第2版][M].北京:清华大学出版社,1997
    [130]杨伯源,张义同.工程弹塑性力学[M].北京:机械工业出版社,2003
    [131]李维特,黄保海,毕仲波.热应力理论分析及应用[M].北京:中国电力出版社,2004
    [132]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社,2004
    [133]严宗达,王洪礼.热应力[M].北京:高等教育出版社,1993
    [134]李景湧.有限元法[M].北京:北京邮电大学出版社,1999
    [135]杨建生,陈建军.先进微电子封装技术(FC/CSP/BGA)发展趋势概述[J].集成电路,2003,12:63-67
    [136]倪安辰.BGA/CSP/倒装芯片技术的发展[J].信息安全与通讯保密,2005,8:87-89
    [137]Goldmann L S.Geometric optimization of controlled collapse interconnections [M]. IBM J. Res. Devel, 1969, 13(3): 251-265
    [138] Towashirapom P, Gall K, Subbarayan G., et al. Power cycling thermal fatigue of Sn-Pb solder joints on a chip scale package [J]. International Journal of Fatigue, 2004, 26: 497-510
    [139] Reichel H, Schubert A and M Topper. Reliability of flip chip and chip size packages [J]. Microelectronics Reliability, 2000,40: 1243-1254
    [140] Norris K C and Landzberg A H. Reliability of controlled collapse interconnections [J]. IBM J. Res. Devel, 1969,13(3): 266-271
    [141] Yan C, Qin Q H, Mai Y W. Nonlinear analysis of plastic ball grid array solder joints [J]. Journal of materials science: Materials in electronics, 2001, 12: 667-673

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700