水下爆炸波浪载荷作用下船体结构动力计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶在其整个的运营航行周期中,会受到各种外载荷的作用。按照载荷随时间变化快慢程度,可以分为静载荷和动载荷。对于同样幅值的两种载荷,动载荷的作用效果更为强烈,因此船舶在动载荷作用下的响应更需要对其关注和开展研究。本文对船舶所遭遇的典型动载——水下爆炸载荷和波浪载荷具有不同时间尺度的特点,对在这些载荷作用下船舶的弹性以及刚体响应进行研究。具体研究内容如下:
     1.对水中三维结构的自由振动特性进行了研究。传统方法将船体横剖面作为刚性平面计算其附加质量不同,考虑横剖而变形对流体附加质量的影响,采用边界元方法计算水中结构的三维附加质量矩阵,对水中三维结构的自由振动进行了计算。结果表明,三维的结构在水中的固有频率要比在空气中低20~25%,并且水中振型空气中振型不同。随后,采用三维附加质量矩阵的方法对水中结构的尺度效应进行计算,结果表明水中结构的比例尺度效应空气中一样符合弹性力相似规律。
     2.对水下爆炸冲击波作用下船体弹性及刚体响应进行研究。首先采用在水下爆炸领域广泛应用的DAA方法,编制程序计算船体结构在水下爆炸载荷作用下的弹性响应。计算表明,船体迎爆面响应最大,但是最大响应并不出现在距爆点最近的位置,而是以距爆点最近的位置为中心,在距其一定距离处呈球面分布。然后,对水下爆炸冲击波作用下,船体刚体运动响应进行研究。推导出冲击波作用下船体刚体运动的理论计算方法,该方法可以在设计初期,船体参数较少的情况下,对船体响应进行计算评估。应用该方法计算一条小艇的运动响应,计算结果实验结果比较吻合,验证了该方法的有效性。在此基础上,对船体剖面参数——宽度、吃水以及剖面形状对响应的影响进行了计算比较。结果表明对于冲击载荷不太大的情况,船体剖而B/T值越大,响应越大,但是当冲击载荷比较大时,增大剖面B/T值有可能使响应有所下降。剖面的形状对刚体运动响应的影响是钝角三角形剖面响应最大,半圆型剖面响应最小。
     3.对水下爆炸气泡作用下船体的弹性及刚体响应进行了研究。将船体简化为船体梁,采用Vernon模型描述气泡,并考虑了气泡上浮效应、上浮阻力效应、水面效应和能量损失。求解气泡作用下船体梁的运动响应。计算表明,船体梁在气泡作用下,既有刚体位移,又有弹性变形。另外,如果不考虑气泡能量损失,可能会导致计算的船体梁的响应过高。在此基础上,对船体的细长程度即长宽比和刚体响应和弹性响应比例的关系进行了计算研究,计算结果表明,船体长宽比在10~11之间,船体所产生的鞭状运动的幅值最大,比较危险。
     4.对波浪载荷作用下船舶的刚体运动响应情况,尤其是三体新船型给船舶在波浪中的运动响应计算带来了新的问题。三体船航速很高,其航行状态属于半滑行状态。高航速使得三体船航行姿态变化较大,另外,三体船主侧体之间存在自由面,会出现数值水动力扰动,在较高频段,出现实际不存在的异常峰值。为解决上述问题,首先在计算中以三体船航行姿态作为平衡位置,来解决高速航行姿态变化大问题;而对于数值水动力扰动,首先对其产生的机理进行分析,通过研究指出数值水动力扰动是由于脉动源方法计算三体船时产生“伪驻波”共振而产生的。通过在主船体侧体之间的水面加入粘性项,来解决高频异常峰值问题。通过二维剖面的计算,表明该方法可以较好的解决高频异常峰值的问题。最后,对一个三体船模型的运动响应进行计算,并实验结果进行比较。比较表明,计算实验结果比较一致,较好的解决了数值水动力扰动高航速运动预报误差大的问题。
During the whole period of operation and navigation, ship should be affected by various forces. According to the rate of change, the forces can be classified into static and dynamic loads. By comparing with each other, the effect of dynamic load should be stronger. Thus, the response of ship under dynamic load should be more paid attention to and studied. The evaluation standard on dynamic load includes force magnitude and acting time. Therein the loads with high impulse, which include not only small amplitude and long time but also big amplitude and short time, are usually considered to be relative stronger. Under these high loads, the characteristic and rules of ship responses should be studied in this paper.
     1. The free vibration of3D submerge structure is studied. In the traditional method, by assuming the cross section to be rigid plane, the added mass is computed. In the present method of this paper, by considering the interaction of fluid and elastic structure, added mass matrix of submerge structure is calculated by3D BEM method. Then the results show that the natural frequency of submerge structure is lower than structure in air by20-25%, and the vibration modes of each other are different. Finally, the scale effect of submerged structure are calculated by3D added mass matrix, and the results show that the scale effects of structure in water and air satisfy the similarity law of elastic force simultaneously.
     2. The ship elastic and rigid responses under shock wave have been studied. Here the popular DAA method is studied and programmed to compute the resonance of vessel structure by underwater explosion. Then the results show that the response on ship side towards explosion wave is max, and the peak of acceleration response isn't the nearest position but spherical distribution on ship structure. Furthermore, a theory method about rigid motion of ship under shock wave is deduced to evaluate the ship response, which can be used in the initial phase of design and validated to be efficient and feasible. On this basis, by comparing the influence of ship section parameters (width, draft and section shape) on ship response, for the small impulse load, the bigger the B/T, the higher ship response. However, while the impulse load is relative big, the response may decrease with the B/T increase. Furthermore the section shape of obtuse triangle has max effect on motion performance, and semi-circular section has min influence.
     3. The elastic and rigid ship responses under the effect of Bubble arc discussed. In this method, the ship is simplified into a hull girder under the Bubble which can be described by Vemon model. Meanwhile the bubble floating effect, floating drag effect, water surface effect and energy loss are considered. The results show that the hull girder has not only rigid displacement but also elastic deformation. Moreover, the response of hull girder should be over-evaluated by neglecting energy loss of bubble. On this basis, the elongated degree of vessel is calculated and analyzed, the results show that the amplitude of whipping motion should be max with the10-11length-width ratio, and this situation is very dangerous.
     4. The rigid motion of ship in wave is studied, and new special problems about high speed vessels (such as trimaran) are further analyzed, which include the large change of navigation attitude and abnormal peak due to numerical hydrodynamic disturbances of free surface. Therein for the large error of high-speed motion response, the navigation attitude is considered in the relative calculation. On the other hand, by theoretical analysis, the reason of numerical hydrodynamic disturbances should be the resonance of false stationary wave due to pulsating source method. Thus the artificial viscous is introduced into the free surface between main and side hulls to solve the problem of abnormal peak. By the calculation of2D cross section, it can be found that the abnormal crest value can be successfully solved. Finally, the motion responses of a trimaran model are calculated and compared with experiment, which shows that the results are in good agreement with experimental data and this method has good ability to accurately and effectively solve the "numerical hydrodynamic disturbances" and the large error of high-speed motion problems.
引文
[1]中国船舶工业行业协会.2011年世界造船三大指标[EB/OL].http://www.cansi.org.cn/cansitjsj/211339.htm,2012-02-14.
    [2]奕恩杰.国防科技名词大典:船舶[M].北京:航空,兵器,原子能出版社,2002.
    [3]宋非非.结构动力学[M].北京:清华大学出版社,2007.
    [4]SAFEHAVEN MARINE. The best of the best' photo gallery[EB/OL]. http://www.safehavenmarine.com/,2012-04-15.
    [5]SPG Media Limited. Oksoy and alta class, norway[EB/OL]. http://www.naval-technology.com/projects/oksoy/oksoy6.html,2011-05-18.
    [6]U.S. Department of Defense. Shock and awe[EB/OL]. http://www.defense.gov/HomePagePhotos/LeadPhotoImage.aspx?id=9645,2008-08-20.
    [7]吴有生,司马灿,刘建湖.船舶结构耦合动力学问题[C].第九届全国振动理论及应用学术会议论文摘要集,2007.
    [8]ST DINIS M, PIERSON JR W J. On the motions of ships in confused seas[J]. Transactions of SNAME,1953,61:p19-33.
    [9]SCHLICK O. On the vibration of steam vessels[J]. Trans. IN A,1884,25:p1-16.
    [10]LEWIS F. Vibration and engine balance in diesel ships[J]. Trans. SNAME,1927,35:p259-286.
    [11]LEWIS F M. The inertia of the water surrounding a vibrating ship[J]. Trans. SNAME,1929,37: p1-20.
    [12]DAIDOLA J. Natural vibrations of beams in a fluid with applications to ships and other marine structures[J]. Transactions-Society of Naval Architects and Marine Engineers,1984,92: P331-351.
    [13]LAKIS A, PAIDOUSSIS M. Free vibration of cylindrical shells partially filled with liquid[J]. Journal of Sound and Vibration,1971,19 (1):p1-15.
    [14]XING J, PRICE W, POMFRET M, et al. Natural vibration of a beam—water interaction system[J]. Journal of Sound and Vibration,1997,199 (3):p491-512.
    [15]刘忠族,黄玉盈,钟伟芳.无限长圆柱壳附连水质量波数的关系[J].中国造船,(1):p52-56.
    [16]ROSS C, JOHNS T. Vibration of thin-walled domes under external water pressure[J]. Journal of Sound and Vibration,1987,114 (3):p453-463.
    [17]ROSS C, HAYNES P, RICHARDS W. Vibration of ring-stiffened circular cylinders under external water pressure[J]. Computers & structures,1996,60 (6):p1013-1019.
    [18]LI X, ZHANG J. Approximate evaluation and analysis for natural frequency of circular cylinder shell in water[J]. Chinese Journal of Applied Mechanics,2008,25:p326-331.
    [19]YANG J, QIN Y, LIU S, et al. Experiment study on vibration characteristic of structures in water[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2010,34 (6):p1104-1107.
    [20]EVERSTINE G. Prediction of low frequency vibrational frequencies of submerged structures [J]. Journal of vibration, acoustics, stress, and reliability in design,1991,113 (2):p187-191.
    [21]陈明,钱家昌,曹为午.不同介质中多舱段复杂壳体的振动模态特性研究[J].噪声振动控制,2009,29(2):p1-5.
    [22]邬海军.水轮机叶片三维有限元刚强度振动特性研究[D].西安理工大学,2005.
    [23]于刚.基于流固耦合方法的船体结构振动数值模拟研究[D].集美大学,2012.
    [24]赵耀,前野嘉孝,安部和教.全双层船体油轮的振动分析[J].华中理工大学学报,23(7):p43-47.
    [25]邵新丹.某散货船全船振动分析[D].大连海事大学,2011.
    [26]李志强.船舶总振动建模方法研究[D].大连:大连理工大学,2006.
    [27]孙洋,赵德有.流固耦合理论在船体总振动附加水质量研究中的应用[J].中国海洋平台,2008,(3):p22-27.
    [28]夏利娟,吴卫国,翁长俭等.高速船垂向振动计算的流固耦合分析[J].上海交通大学学报,2000,(12):p1713-1716.
    [29]李华东,朱锡,罗忠等.附连水质量的边界元法求解[J].海军工程大学学报,2009,21(2):p45-49.
    [30]LIANG C C, LIAO C C, TAI Y S, et al. The free vibration analysis of submerged cantilever plates[J]. Ocean engineering,2001,28 (9):p1225-1245.
    [31]PUSEY H, VOLIN R, SHOWALTER J. Technical information support for survivability[J]. The Shock and Vibration Bulletin.,1983,53:p21-31.
    [32]COLE R H. Underwater explosions[M]. Princeton University Press,1948.
    [33]ZAMYSHLYAEV B V, YAKOVLEV Y S. Dynamic loads in underwater cxplosion[R]. AD0757183,1973.
    [34]REID W D. The response of surface ships to underwater explosions[R]. DSTO-GD-0109,1996.
    [35]李海涛,朱锡,王路等.球面冲击波作用下船体梁整体运动的简化理论模型[J].爆炸冲击,2010,30(1):p85-90.
    [36]宋世红,王京齐,李海涛.球面冲击波作用下船体梁运动响应特性[J].海军工程大学学报,2010,22(4):p29-33.
    [37]李海涛,朱锡,张振华.船体梁在近距爆炸冲击波作用下动态响应的相似律研究[J].振动冲击,2010,29(9):p28-32.
    [38]张振华,汪玉,张立车等.船体梁在水下近距爆炸作用下反直观动力行为的相似分析[J].应用数学和力学,2012,32(12):p1391-1404.
    [39]李海涛,朱锡,楼京俊等.参数对冲击波作用下船体梁变形的影响特性[.J].华中科技大学学报:自然科学版,2011,38(10):p100-103.
    [40]李海涛,朱锡,张振华.水下爆炸球面冲击波作用下船体梁的刚塑性动响应特性[J].工程力学,2010,(10):p202-207.
    [41]TAYLOR G I. The pressure and impulse of submarine explosion waves on plates[J]. The scientific papers of Sir Geoffrey Ingram Taylonaerodynamics and the mechanics of projectiles and explosions,1963,3:p287-303.
    [42]MINDLIN R D, BLEICH H. Response of an elastic cylindrical shell to a transverse step shock wave[J]. J. appl. Mech,1953,20(2):p189-195.
    [43]CHERTOCK G. Transient flexural vibrations of ship-like structures exposed to underwater explosions[J]. The Journal of the Acoustical Society of America,1970,48 (1B):p170-180.
    [44]GEERS T L. Residual potential and approximate methods for three-dimensional fluid-structure interaction problems[J]. The Journal of the Acoustical Society of America,1971,49 (5B):p1505-1510.
    [45]GEERS T L. Doubly asymptotic approximations for transient motions of submerged structures[J], The Journal of the Acoustical Society of America,1978,64:p1500-1508.
    [46]GEERS T L, FELIPPA C A. Doubly asymptotic approximations for vibration analysis of submerged strucrures[J]. Acoustical Society of America Journal,1983,73:pi 152-1159.
    [47]刘建湖.舰船非接触水下爆炸动力学的理论应用[D].无锡:中国船舶科学研究中心,2002.
    [48]姚熊亮,孙士丽,陈玉等.非线性双渐进法应用于水中结构瞬态运动的研究[J].振动冲击,2010,29(10):p9-15.
    [49]王诗平,孙士丽,张阿漫等.冲击波和气泡作用下舰船结构动态响应的数值模拟[J].爆炸冲击,2012,31(4):p367-372.
    [50]MURATA K, TAKAHASHI K, KATO Y. Underwater shock and bubble pulse loading against model steel cylinder[C]. Materials Science Forum.Trans Tech Publ.2004.
    [51]STETTLER J W. Damping mechanisms and their effects on the whipping response of a submerged submarine subjected to an underwater explosion[R]. AD-A298743,1995.
    [52]姚熊亮,陈建平,任慧龙.水下爆炸气泡脉动压力下舰船动态响应分析[J].哈尔滨工程大学学报,2000,21(1):p1-5.
    [53]姚熊亮,陈建平.水下爆炸二次脉动压力下舰船抗爆性能研究[J].中国造船,2001,42(2):p48-55.
    [54]李玉节,陈起富.水下爆炸气泡激起的船体鞭状运动[J].中国造船,2001,42(3):p1-7.
    [55]杜志鹏,汪玉,杜俭业等.舰船水下爆炸鞭状运动中的阻尼效应[J].船海工程,2008,37(5):p95-98.
    [56]曾令玉.水下爆炸载荷作用下舰船总体毁伤评估方法研究[D].哈尔滨工程大学,2010.
    [57]ZONG Z. A hydroplastic analysis of a free-free beam floating on water subjected to an underwater bubble[J]. Journal of fluids and structures,2005,20 (3):p359-372.
    [58]谌勇,汪玉,沈荣瀛等.舰船水下爆炸数值计算方法综述[J].船舶工程,29(4):p48-52.
    [59]郭君,杨文山,姚熊亮等.基于场分离的水下爆炸流固耦合计算方法[J].爆炸冲击,2011,3:p014.
    [60]尹群,陈永念,张健等.水下爆炸载荷作用下舰船结构动响应及新型防护结构[J].中国造船,48(4):p42-52.
    [61]张晓君,杜志鹏,谢永和.夹层板在舰艇冲击防护中的研究进展[J].中国造船,2011,52(4):p270-281.
    [62]钱安其,嵇春艳,王自力.水下爆炸荷载作用下水面舰船设备冲击环境预报方法研究[J].舰船科学技术,28(4):p43-47.
    [63]余晓菲,刘土光,张涛等.水下爆炸载荷作用下加筋圆柱壳的响应分析[J].振动冲击,25(5):p106-115.
    [64]汪浩,王先洲,刘均等.水下爆炸气泡对内加筋圆柱壳结构毁伤机理分析[J].噪声振动控制,2012,32(6):p111-115.
    [65]江浩,程远胜,刘均等.新型矩形蜂窝夹芯夹层加筋圆柱壳抗水下爆炸冲击载荷分析[J].振动冲击,2011,30(001):p162-166.
    [66]吴亚军,周鹏,雷晓莉.水下爆炸对双壳体结构破坏的数值研究[J].鱼雷技术,2008,16(4):p10-14.
    [67]吴春明.中国东南太平洋的史前交通工具[J].南方文物,2008,2:p16.
    [68]FROUDE W. On the rolling of ships[M]. Institution of Naval Architects,1861.
    [69]KRILOFF A. A new theory of the pitching motion of ships on waves, and of the stresses produced by this motion, inst[J], Nav. Archit., Trans,1896,37:p326-368.
    [70]HASKIND I. Md, the hydrodynamic theory of ship oscillations in rolling and pitching[J]. Prik. Mat. Mekh.1,1946:p33-66.
    [71]HASKIND M. The oscillation of a ship in still water[J]. Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 1946, 1:p23-34.
    [72]URSELL F. On the heaving motion of a circular cylinder on the surface of a fluid[J]. The Quarterly Journal of Mechanics and Applied Mathematics,1949,2 (2):p218-231.
    [73]MICHELL J H. The wave-resistance of a ship[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1898,45 (272):p106-123.
    [74]NEWMAN J N. A linearized theory for the motion of a thin ship in regular waves[D]. Massachusetts Institute of Technology,1960.
    [75]MARUO H. High and low-aspect ratio approximation of planing surfaces[J]. Schiffstechnik, 1967,14 (72):p57-64.
    [76]TUCK E. Low-aspect-ratio flat-ship theory[R].1973.
    [77]KORVIN-KROUKOVSKY B. Investigation of ship motions in regular waves[M]. SNAME, 1955.
    [78]KORVIN-KROUKOVSKY B V, JACOBS W R. Pitching and heaving motions of a ship in regular waves[J]. Transaction of SNAME,1957,65:p590-632.
    [79]TASAI F. On the swaying yawing and rolling motions of ships in oblique waves[J]. Selected papers from the journal of the Society of Naval Architects of Japan,1969,3:p92-108.
    [80]GRIM O, SCHENZLE P. Berechnung der torsionsbelastung cines schiffcs in seegang[J]. Institut fur Schiffbau der Universitat Hamburg, Bericht,1969,236:
    [81]TIMMAN R, NEWMAN J. The coupled damping coefficients of a symmetric ship[R].1962.
    [82]SALVESEN N, TUCK E, FALTINSEN O. Ship motions and sea loads[J]. Trans. SNAME,1970, 78:p250-287.
    [83]TASAI F, TAKAKI M. Theory and calculation of ship responses in regular waves[J]. J. Soc. Nav. Arch. Japan,1969:p1-31.
    [84]XIA J, WANG Z. Time-domain hydroelasticity lheory of ships responding to waves[J]. Journal of ship research,1997,41 (4):p286-300.
    [85]JOOSEN W. Slender-body theory for an oscillating ship at forward speed[C].5th Symposium on Naval Hydrodynamics,1964.
    [86]NEWMAN J. A slender-body theory for ship oscillations in wavcs[J]. Journal of Fluid Mechanics, 1964,18(04):p602-618.
    [87]NEWMAN J, TUCK E. Current progress in the slender body theory for ship motions[C]. Fifth Symposium on Naval Hydrodynamics, Bergen, Norway,1964.
    [88]NEWMAN J N. The theory of ship motions[J]. Advance in Applied Mechanics,1978,18: p221-283.
    [89]SCLAVOUNOS P D. The unified slender-body theory:Ship motions in waves[C]. Proceedings of the 15th Symposium on Naval Hydrodynamics,Hamburg,Germany 1984.
    [90]KASHIWAG1 M, MIZOKAMI S, YASUKAWA H, et al. Prediction of wave pressure and loads on actual ships by the enhanced unified theory[C]. Proceedings of the 23rd Symposium on Naval Hydrodynamics,Val de Reuil,France 2000.
    [91]COMMITTEE S. The seakeeping committee report to the 18th ittc[C]. Proceedings of the 18th ITTC.1987.
    [92]CHAPMAN R. Free-surface effects for yawed surface-piercing plates[J]. Journal of ship research, 1976,20(3):p125-136.
    [93]FALTINSEN O, ZHAO R. Flow predictions around high-speed ships in waves[J]. Mathematical approaches in hydrodynamics,1991:p265-288.
    [94]FALTINSEN O, ZHAO R, UMEDA N. Numerical predictions of ship motions at high forward speed[J]. Philosophical Transactions of the Royal Society of London. Series A:Physical and Engineering Sciences,1991,334(1634):p241-252.
    [95]DUAN W Y, HUDSON D, PRICE W. Theoretical prediction of the motions of fast displacement vessels in long-crested head-seas[C]. Third International Conference on High Performance Marine Vehicles, Shanghai, China,2000.
    [96]HESS J. Calculation of non-lifting potential flow about arbitrary threedimensional bodies[.I]. Journal of ship research,1964,8 (2):p22-44.
    [97]HAVELOCK T. The damping of the heaving and pitching motion of a ship[J]. Philosophical Magazine,1942,33 (224):p666-673.
    [98]JOHN F. On the motion of floating bodies. I[J]. Communications on pure and applied mathematics,1949,2(1):p13-57.
    [99]JOHN F. On the motion of floating bodies ii. Simple harmonic motions[J]. Communications on pure and applied mathematics,1950,3(1):p45-101.
    [100]HASKIND M. On wave motion of a heavy fluid[J]. Prikl. Mat. Mekh,1954,18:p15-26.
    [101]宗智,黄鼎良.三维移动脉动源速度势的数值研究[J].水动力学研究进展:A辑,1991,(A12):p55-63.
    [102]缪国平,刘应中,杨勤正等.三维移动脉动源的michell型表达[J].中国造船,1995,(04):p1-11.
    [103]周正全,顾懋祥,孙伯起等.预报船舶在波浪中航行时相对运动的三维模型[J].中国造船,1992,2:p1-10.
    [104]GADD G. A method of computing the flow and surface wave pattern around full forms[M]. National Maritime Inst,1976.
    [105]DAWSON C. A practical computer method for solving ship-wave problems[C]. The proceedings of Second International Conference on Numerical Ship Hydrodynamics,1977.
    [106]CHANG M S. Computations of thfiee-dimensional ship-motions with forward speed[C]. The proceedings of 2nd International Conference on Numerical Ship Hydrodynamics, University of California, Berkeley,1977.
    [107]NAKOS D, SCLAVOUNOS P. On steady and unsteady ship wave patterns[J]. Journal of Fluid Mechanics,1990,215:p263-288.
    [108]李宜乐,刘应中,缪国平Rankine源高阶边界元法求解势流问题[J].水动力学研究进展,1999,14(1):p80-89.
    [109]王毅,卢晓平,赵军强等.以rankine源三维面元法求解三体船纵摇升沉运动[J].中国舰船研究,2012,7(2):p29-36.
    [110]杜朝平.乘风破浪会有时——英国海军“海神”号三体试验舰[J].现代兵器,2004,27(01):p31-35.
    [111]中国国防科技信息网.美国海军接收“独立”号近海战斗舰(1cs 2)[EB/OL].http://www.dsti.net/Information/News/55517,2009-12-20.
    [112]吴春明.史前航海舟船的民族考古学探索[J].海交史研究,2009,2009(2):p59-67.
    [113]巴辛,谭笃光.浅水船舶流体动力学[M].能源出版社,1987.
    [114]晓夫.前景诱人的三体船型战舰[J].航海,2002,2:p17-18.
    [115]李云波,陈康,黄德波.三体船粘性阻力计算计算方法比较[J].水动力学研究进展:A辑,20(4):p452-457.
    [116]闫宏生,许小颖,张英晟等.可调长度高速三体船的概念及水动力研究[J].船舶工程,2012,34(005):p9-12.
    [117]应业炬,赵连恩.用rankine波幅函数预报高速三体/五体船主体侧体的兴波阻力干扰[J].船舶力学,2008,12(4):p529-538.
    [118]周广,黄德波,邓锐等.三体船阻力性能的模型系列试验研究[J].哈尔滨工程大学学报,2010,31(005):p576-584.
    [119]李培勇,裘泳铭,顾敏童等.三体船阻力模型试验[J].中国造船,2002,43(4):p6-12.
    [120]崔健,文逸彦,陈鹏等.一种具有倾斜侧体的三体船阻力试验研究[J].中国舰船研究,2012,7(06):p57-62.
    [121]杨大明,施奇,尹赟凯等.三体船模型阻力性能的试验研究[J].科学技术工程,2008,(22):p6156-6157.
    [122]徐敏,张世联.水深对三体船运动和波浪载荷的影响[J].船舶工程,2011,33(2):p8-10.
    [123]曹正林,吴卫国.影响高速三体船连接桥砰击压力峰值因素研究[J].船舶力学,2010,14(3):p237-242.
    [124]任慧龙,甄春博,冯国庆等.三体船连接桥结构疲劳强度试验研究[J].华中科技大学学报:自然科学版,2012,40(008):p62-66.
    [125]姚竞争,韩端锋,郑向阳.某三体舰船外形雷达隐身性设计[J].舰船科学技术,2011,33(7):p62-67.
    [126]胡开业,卢友敏,丁勇. Nurbs方法的深v型三体船稳性[J].哈尔滨工程大学学报,2011,32(10):p1273-1277.
    [127]BINGHAM A, HAMPSHIRE J, MIAO S, et al. Motions and loads for a trimaran travelling in regular waves[C].6th International Conference on Fast Sea Transportation,2001.
    [128]MCCAULEY M E, PIERCE E C, MATSAGAS P. The high-speed navy:Vessel motion influences on human performancc[J]. Naval Engineers Journal,2007,119 (1):p35-44.
    [129]FANG M C, WU Y C, HU D K, et al. The prediction of the added resistance for the trimaran ship with different side hull arrangements in waves[J]. Journal of ship research,2009,53 (4): P227-235.
    [130]吴乘胜,周德才,兰波等.高速三体船波浪中运动增阻cfd计算研究[J].中国造船,2010,65(04):p1-10.
    [131]LI P Y, QIU Y M, GU M T, et al. Supper slender trimaran model experiments[J]. Ocean Engineering/Haiyang Gongcheng,2002,20 (4):p1-4.
    [132]ZHANG W P, ZONG Z, NI S, et al. Model testing of seakeeping performance of trimaran[J]. Journal of Hydrodynamics (Ser. A),2007,5:p619-624.
    [133]HEBBLEWHITE K, SAHOO P K, DOCTORS L J. A case study:Theoretical and experimental analysis of motion characteristics of a trimaran hull form[J]. Ships and Offshore Structures,2007, 2(2):pl49-156.
    [134]姚迪,卢晓平,王毅.三体小船横摇模型试验及其特性分析[J].中国舰船研究,2010,5(04):p6-11.
    [135]BULIAN G, FRANCESCUTTO A, ZOTTII. Stability and roll motion of fast multihull vessels in beam waves[J]. Ships and Offshore Structures,2008,3 (3):p215-228.
    [136]BULIAN G, FRANCESCUTTO A. Experimental results and numerical simulations on strongly non-linear rolling of multihulls in moderate beam seas[J]. Journal of Engineering for the Maritime Environment,2009,223 (2):p189-210.
    [137]ZHANG J, ANDREWS D. Roll damping characteristics of a trimaran displacement ship[J]. International shipbuilding progress,1999,46 (448):p445-472.
    [138]FRANCESCUTTO A. On the roll motion of a trimaran in beam waves[C]. ISOPE-2001: Eleventh(2001) International Offshore and Polar Engineering Conference,2001.
    [139]李培勇,冯铁城,裘泳铭.三体船横摇运动[J].中国造船,2003,44(3):p24-30.
    [140]BULIAN G, FRANCESCUTTO A. Large amplitude rolling and strongly nonlinear behaviour of multihull ships in moderate beam waves[C]. IUTAM Symposium on Fluid-Structure Interaction in Ocean Engineering,Springer,2008.
    [141]姜宗玉,宗智,陈小波等.三体船横摇运动性能三维数值研究[J].水动力学研究进展:A辑,2009,24(4):p527-534.
    [142]李慧蕾,朱锋,杨松林.三体船横摇运动模式初步分析[C]. Proceedings of 2011 Asia-Pacific Youth Conference on Communication (2011APYCC) Vol.1,2011.
    [143]卢晓平.高速三体船在波浪中的纵向运动研究[A],第九届中国国际船艇展暨高性能船舶学术报告会论文集[C].上海:英国皇家造船师学会,上海船舶工业行业协会,2004.
    [144]DUAN W Y, HUANG D, HUDSON D, et al. Comparison of two seakeeping prediction methods for high speed multi-hull vessels[C]. FAST 2001:Sixth International Conference on Fast Sea Transportation,2001.
    [145]COLAGROSSI A, LANDRINI M, GRAZIANI G. Time-domain analysis of ship motions and wave loads by boundary-integral equations[J]. Ship Technology Research,2002,49 (1):p22-32.
    [146]BRUZZONE D, GRASSO A. Nonlinear time domain analysis of vertical ship motions[J]. ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING,2007,7 (4):p27-37.
    [147]EGOROV G V, TONYUK V. Hydrodynamics characteristics for pitching and heaving of trimaran[A].12th international cogress of the international maritime association of the mediterranean[C]. Varna BULGARIA:2007.
    [148]FANG M C, TOO G Y. The effect of side hull arrangements on the motions of the trimaran ship in waves[J]. Naval Engineers Journal,2006,118(1):p27-37.
    [149]姜宗玉,宗智,贾敬蓓.迎浪状态下三体船垂荡和纵摇运动参数[J].中国造船,2010,51(004):p11-20.
    [150]赵党.大型浮吊船体结构强度和动力学特性研究[D].上海交通大学,2010.
    [151]叶永林,席亦农,尤国红等.小水线面双体船总振动计算试验研究[J].中国造船,2011,52(4):p56-65.
    [152]任慧龙,陈亮亮,甄春博等.高速三体船总振动计算方法研究[J].武汉理工大学学报,2013,35(1):p64-68.
    [153]姜宗玉.船舶在波浪上线性运动的三维频域计算技术研究[D].大连:大连理工大学,2008.
    [154]WEBSTER K. G. Investigation of close proximity underwater explosion effects on a ship-like structure using the multi-material arbitrary lagrangian eulerian finite element method[D]. Virginia Polytechnic Institute and State University,2007.
    [155]DERUNTZ JR J A. The underwater shock analysis code and its applications[C].60th Shock and Vibration Symposium.SAVIAC,1989.
    [156]SHIN Y. Naval ship shock and design analysis[D]. Monterey, CA, Naval Postgraduate School, 1996.
    [157]HUNG C, LIN B, HWANG-FUU J, et al. Dynamic response of cylindrical shell structures subjected to underwater explosion[J]. Ocean Engineering,2009,36 (8):p564-577.
    [158]BARRAS G, SOUL1 M, AQUELET N, ct al. Numerical simulation of underwater explosions using an ale method. The pulsating bubble phenomena[J]. Ocean Engineering,2012,41:p53-66.
    [159]AIRY G B. Tides and waves[J]. Encyclopaedia Metropolitana. London,1845:
    [160]STOKES G G. On the theory of oscillatory waves[J]. Trans Cambridge Philos Soc,1847,8: p441-473.
    [161]RAYLEIGH L. On waves[J]. Phil. Mag,1876,1 (5):p257-279.
    [162]任福安.海洋动力学[M].大连海事大学出版社,2001.
    [163]竺艳蓉.几种波浪理论适用范围的分析[J].海岸工程,1983,2(03):p11-27.
    [164]钟铁毅,袁明武.流固耦合船体结构振动计算研究[J].工程力学,(A03):p37-41.
    [165]SCHNEEKLUTH H. Hydromechanik zum schiffsentwurf:Vorlesungen[M]. Koehler,1977.
    [166]韩继文,汪痒宝,陆鑫森等Green函数法计算船底板振动的附连水质量[J].中国造船,1985,1:p41-46.
    [167]DERUNTZ J A, GEERS T L. Added mass computation by the boundary integral method[J]. International Journal for Numerical Methods in Engineering,1978,12 (3):p531-550.
    [168]刘岳元.水动力学基础[M].上海交通大学出版社,1990.
    [169]金咸定.船体振动学[M].上海交通大学出版社,1987.
    [170]迟世春,林少书.结构动力模型试验相似理论及其验证[J].世界地震工程,2005,20(4):p11-20.
    [171]HUANG H, ETENTINE G C, WANG Y. Retarded potential techniques for the analysis of submerged structures impinged by weak shock waves[A]. Computational methods for fluid-structure interaction problems of asme[C]. New York:1977.
    [172]FELIPPA C. A family of early-time approximations for fluid-structure interaction[J]. Journal of Applied Mechanics,1980,47:p703-708.
    [173]陆鑫森.高等结构动力学[M].上海交通大学出版社,1992.
    [174]PARK K, FELIPPA C A. Partitioned analysis of coupled systems[J]. Computational methods for transient analysis,1983,1:p157-219.
    [175]FELIPPA C, PARK K. Synthesis tools for structural dynamics and partitioned analysis of coupled systems[A]. Multi-physis and multi-scale computer models in nonlinear analysis and optimal design of engineering structures under extreme conditions proceedings nato-arw[C]. Ljubliana,Slovenia:2004.
    [176]PREVOST J H. Partitioned solution procedure for simultaneous integration of coupled-field problems[J]. Communications in numerical methods in engineering,1997,13 (4):p239-247.
    [177]苏波,袁行飞,聂国隽等.流固耦合理论研究述评(1)-流固耦合问题研究进展[C].第七届全国现代结构工程学术研讨会论文集,2007.
    [178]AHMED F. Analysis of data transfer methods between non-matching meshes in multiphysics simulations[D]. Erlangen, den:Friedrich-Alexander-Universitat Erlangen-Nurnberg,2006.
    [179]FELIPPA C A, PARK K, FARHAT C. Partitioned analysis of coupled mechanical systems[J]. Computer methods in applied mechanics and engineering,2001,190 (24):p3247-3270.
    [180]汪玉,华宏星.舰船现代冲击理论及应用[M].科学出版社,2005.
    [181]TAYLOR G. The pressure and impulse of submarine explosion waves on plates[J]. The scientific papers of GI Taylor,1963,3:p287-303.
    [182]VON K RM N T. The impact on seaplane floats during landing[M]. National Advisory Committee for Aeronautics,1929.
    [183]HICKS A N. Explosion induced hull whipping[C]. Advances in Marine Structures Conference,Dunfermline, Scotland, UK 1986.
    [184]胡海岩.机械振动基础[M].北京:北京航空航天大学出版社,2005.
    [185]VERNON T A. Whipping response of ship hulls from underwater explosion bubble loading[R]. ADA 178096,1986.
    [186]SWIFT E, DECIUS J C, WINGET C L, et al. Measurement of bubble pulse phenomena, iii: Radius and period studies[M]. Navy Department, Bureau of Ordnance,1947.
    [187]张效慈.水下爆炸脉动气泡压力场的当量化计算[J].江苏力学,1994,(094):p42-46.
    [188]MATSUMOTO K. Boundary curvature effects on gas bubble oscillations in underwater explosion[R]. AD-A308087,1996.
    [189]盛振邦,刘应中.船舶原理[M].上海:上海交通大学出版社,2003.
    [190]COMMITTEE S. The seakeeping committee report to the 15th ittc[C]. Proceedings of the 15th ITTC.1978.
    [191]COMMITTEE S. The seakeeping committee report to the 16th ittc[C], Proceedings of the 16th ITTC1981.
    [192]PEDERSEN T, JENSEN J J. Wave load prediction-a design tool[D]. Technical University of DenmarkDanmarks Tekniske Universitet, Department of Naval Architecture and Offshore EngineeringInstitut for Skibs-og Havteknik,2000.
    [193]COMMITTEE S. The seakeeping committee report to the 26th ittc[C]. Proceedings of the 26th ITTC2011.
    [194]FOSSEN T I. A nonlinear unified state-space model for ship maneuvering and control in a seaway[J]. International Journal of Bifurcation and Chaos,2005,15 (09):p2717-2746.
    [195]DATTA R, SEN D. A b-spline solver for the forward-speed diffraction problem of a floating body in the time domain[J]. Applied Ocean Research,2006,28 (2):p147-160.
    [196]高石敬史.高速单桨集装箱船在斜波中的摇摆特性[A].船舶适航性译文集[C].上海:交通部上海船舶运输科学研究院,1974.
    [197]李百齐.21世纪海洋高性能船[M].国防工业出版社,2001.
    [198]NI C B, ZHU R C, MIAO G, et al. The resistance prediction for high speed multi-hull vessels with consideration of hull gesture variation during voyage[J]. Chinese Journal of Hydrodynamics, 2011,26(101-107):p101-107.
    [199]WANG Z, LU X, FU P. Calculation of the sinkage and trim of trimaran and their effect on wave making resistance[J]. Journal of Shanghai Jiaotong University,2010,44 (10):p1388-1392.
    [200]BLOK J J, BEUKELMAN W. The high-speed displacement ship systematic series hull forms—seakeeping characteristics[J]. Transactions-Society of Naval Architects and Marine Engineers,1984,92:p125-150.
    [201]MYERS J J. Handbook of ocean and underwater engineering[M], McGraw-Hill,1969.
    [202]NEWMAN J. Marine hydrodynamics[M], Boston:MIT Press,1977.
    [203]MIAO G, LIU Y, LI Y, et al. On false resonance in application of strip theory to motion estimation for catamarans[J]. Shipbuilding of China,1997,50 (2):p32-38.
    [204]LAMB H. Hydrodynamics[M]. Dover,New York,1945.
    [205]BERTRAM V, IWASHITA H. Comparative evaluation of various methods to predict seakeeping of fast ships[A]. Hydrodnnamics of high-speed.Marine vehicles[C]. Cambridge,UK: ODD M. Faltinsen,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700