通载浮桥的水弹性响应及其桥垮接头疲劳性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮桥,作为大型浮式结构物应用的一种形式,在军事和国防建设中发挥着至关重要的作用。传统的船舶海洋结构物相比,浮桥具有的独特之处在于:(1)水平尺度高度之比较大,其弹性变形刚体位移量级相当,结构的弹性变形不可忽略;(2)通常是由各个舟体拼装而成,各舟体间连接构件的动力响应疲劳强度问题是影响自身安全性的重要因素。
     本文作为“十五”和“十一五”国防预研重点项目“高流速下通载浮桥的水弹性动力响应研究”的后续研究,主要研究工作有如下几方面:
     (1)课题相关研究领域的综述——针对水弹性力学理论、浮桥水弹性响应研究、连接器发展状况以及疲劳分析理论四个方面的国内外研究进展进行综述,介绍目前解决这些问题的已有方法、发展过程及应用情况。
     (2)浮式结构三维水弹性分析理论研究——在有限元理论基础上对浮式结构运动方程进行详细推导;通过对弹性结构所受外载荷特性流固耦合界面Price-Wu边界条件的分析,得到弹性浮体的三维水弹性响应控制方程,为后续研究波浪作用下及移动载荷作用下浮桥水弹性响应问题奠定理论基础。
     (3)移动载荷作用下浮桥水弹性分析理论研究——基于非线性有限单元法建立考虑桥节间非线性连接及载荷惯性影响的浮桥水弹性响应运动方程;并采用超单元方法对系统运动方程进行自由度的缩减,以真正实现水弹性分析。
     (4)波浪及移动载荷作用下浮桥水弹性响应分析——结合(2)(3)两方面的工作,在对一自由浮体进行水弹性响应分析以验证三维水弹性理论正确性的基础上,首次应用三维水弹性理论对波浪作用下带式舟桥进行水弹性响应分析,并通过试验结果的比较,表明该理论在浮桥水弹性响应预报中的准确性。此外,研究了移动载荷作用下带式舟桥桥脚分置式舟桥的水弹性响应特性,对课题组前期进行的“非线性连接浮桥水弹性响应研究”工作(付世晓, 2005)进行拓展,并重点研究接头的连接力响应,为后续接头的疲劳寿命预测提供重要的载荷信息。
     (5)疲劳分析基础理论研究——对舟桥接头疲劳寿命分析中所涉及的低周疲劳问题以及各种疲劳分析方法进行对比研究;在此基础上,着重讨论局部应力—应变法的原理及其各个疲劳特性参数的确定。
     (6)浮桥桥垮接头低周疲劳分析——基于上述舟桥水弹性响应分析而求得的桥垮接头的承载历程,并采用局部应力—应变法对所建立的复杂连接接头的实体模型进行疲劳寿命分析,从而建立移动载荷通行速度接头疲劳寿命之间的关系,指出在舟桥设计过程中,载荷通行速度的重要性。
     (7)总结展望——总结全文工作,同时展望未来该领域研究工作的发展方向。
     本文创新性的研究工作主要表现在:波浪作用下带式舟桥的水弹性响应分析、基于水弹性理论的移动载荷作用下舟桥接头的动响应分析、以及桥垮接头的疲劳寿命分析。通过分析研究得出的主要结论如下:
     (1)对于波浪作用下的带式舟桥而言,随着入射角角度的不断增大,浮桥中心线处的水弹性响应幅值明显增大;同样,对于同一入射角、入射波波长逐渐增大的情况也是如此,但预报精度略有下降。
     (2)对于移动载荷作用下的浮桥而言,不论是带式或桥脚分置式,随着通行速度的逐渐增大,桥节间最大连接力响应幅值增加显著,连接接头所承受的交变载荷变化频率加大,致使连接接头所承受的应力幅陡然增大。然而,由于自身重量及所承载重量较大,桥脚分置式舟桥的垂向位移响应及影响范围并不像带式舟桥那样随通行速度增大而显著加大,基本上保持不变。
     (3)在进行舟桥设计时,必须要充分考虑接头承受动载的顺序、疲劳性能参数的大小、以及材料的极限拉伸强度等问题,尤其要对移动载荷的通行速度进行严格控制,以减少对连接接头造成疲劳破坏。此同时,还应大力改进连接接头的焊接工艺,以避免由于焊缝处疲劳强度比母材低而造成在结构发生疲劳破坏之前,焊接位置附近先发生疲劳损伤而缩短构件的使用寿命。
The floating bridge, as one important application form of the floating structures, is of great significance in the construction of military work and national defense. However, it differs from the traditional ships and offshore structures in: (1) the large ratio of length to height and the equivalent magnitudes between flexible deformation and rigid body displacement, i.e. the flexible deformation of the structure cannot to be neglected; (2) the connected slender configuration by several bridge rafts, which will make the connection force and fatigue behavior of the connectors to be critical factors that influence the safety performance of the integrated bridge.
     The present study is a post-research of“Hydroelastic Response of the Floating Bridge Subjected to Moving Loads in High Speed Flow”, which is a national defense pre-research project in the 10th and 11th five-year plan, and mainly consists of the following aspects:
     (1) A literature review of the related research works, including the theory of hydroelasticity, the hydroelastic response analysis of the floating bridges, the development of the connectors, and the theory of fatigue analysis, is presented, in which a description of the existing approaches, development procedure and applied conditions is introduced.
     (2) Three dimensional hydroelasticity theory of the floating structures. Based on the finite element method, the equation of motion for the floating structures is given. Consequently, three dimensional hydroelastic governing equation is obtained via the analyses of the external loads and the Price-Wu boundary condition at the fluid- structure interface, which can be regarded as the theoretical foundation of the hydroelastic analyses for the floating bridge subjected to waves or a moving load.
     (3) Hydroelastic response analysis theory of the floating bridge subjected to a moving load. On the basis of nonlinear finite element method, a hydroelastic equation of motion for the floating bridges considering the nonlinearities between rafts, and the inertial effects of the loads is established. To ensure the implementation of the hydroelastic analysis, the super element method is applied to condense the degrees of freedom (DOFs) of the motion equation.
     (4) Hydroelastic analyses of the floating bridges under wave or a moving load action. Based on the above-mentioned two aspects and accuracy of the approach validated by the hydroelastic analysis of a free floating body, the hydroelastic analysis of a ribbon bridge in waves is first presented and compared with the corresponding experimental results, which indicates that the hydroelasticity theory can be properly applied in the prediction of the floating bridge. In addition, as an extension of the previous work“Hydroelastic Analysis of a Nonlinearly Connected Floating Bridge”(Fu, 2005), an investigation on a ribbon bridge and a pontoon-separated floating bridge subjected to a moving load is performed, with the focus on the connection forces of the bottom connector, which provides the related loading information for the following fatigue analysis of the connector.
     (5) Fatigue analysis theory. Considering the fatigue analysis of the connectors, the basic concept of low cycle fatigue and different fatigue analyses approaches are discussed and compared, with the concentration on the local stress-strain method and the definition of the corresponding fatigue properties parameters.
     (6) Low cycle fatigue analysis of the connectors for the floating bridges. Based on the load history of the connectors obtained from the hydroelastic analyses of the floating bridges, the fatigue life prediction is conducted on the complicated connector model constructed by the solid elements via employing the local stress-strain method. Thus, the relation between the passing speed and fatigue life of the connector can be set up, which implies that the passing speed plays a crucial role in the design of the floating bridge.
     (7) Summary and forecast. Summarizes all the work mentioned in the dissertation and proposes the future development trends of the related fields.
     The innovative research works in the dissertation are primarily represented as the hydroelastic analysis of the ribbon bridge subjected to wave loadings, the dynamic analysis of the connectors for the floating bridge subjected to a moving load based on the theory of hydroelasticity, and the fatigue life prediction of the connectors, with the associated conclusions being drawn as follows:
     (1) As for the ribbon bridge in waves, the hydroelastic response amplitude along the centerline of the floating bridge increases with the increase of the incident wave angle. Similarly, for the same incident wave angle, the response amplitude still goes up with the increasing wavelength, however, the accuracy of the prediction method decreases.
     (2) For the floating bridges, either the ribbon bridge or the pontoon-separated one, subjected to a moving load, the peak connection force rises remarkably with the increasing passing speed, and also the stress amplitude increases sharply due to the increase of the varied frequencies of the alternating loads on the connector. However, considering the heavy self-weight and large loading capacity of the pontoon-separated bridge, the vertical displacement and influential scope keep constantly and do not increase conspicuously as the ribbon bridge does.
     (3) In the design process of the floating bridge, the sequence of the dynamic loads acting on the connectors, the magnitude of various fatigue properties parameters and the ultimate tensile strength should be sufficiently considered, especially the passing speed of a moving load, so that it can inevitably diminish the fatigue damage of the connectors. Moreover, the welding technology should be further improved to avoid the occurrence that the fatigue damage in the vicinity of the welding position happens prior to that of the connectors due to the higher fatigue strength that the parent metal has, otherwise it will shorten the service life of the connectors.
引文
Aksu S. (1993) Study state and transient responses of flexible ship structures traveling in irregular seaway. PhD dissertation, University of Southampton.
    Aksu S., Bishop R.E.D. and Price W.G. et al. (1991a) On the behavior of a product carrier in ballast traveling in a seaway. Transactions of the Royal Institution of Naval Architects, Vol.133:45-59.
    Aksu S., Price W.G. and Temarel P. (1991b) A comparison of two-dimensional and three-dimensional hydroelasticity theories including the effect of slamming. Proceedings of the Institute of Mechanical Engineering Part C - Journal of Mechanical Engineering Science, 205(1):3-15.
    Ballio G. and Castiglioni C.A. (1995) A unified approach for the design of steel structures under low and/or high cycle fatigue. Journal of Constructional Steel Research, 34(1): 75-101.
    B?umel Jr. A. and Seeger T. (1990) Materials data for cyclic loading - supplement I. Amsterdam: Elsevier Science Publishers.
    Belik O., Bishop R.E.D. and Price W.G. (1980) On the slamming response of ships to regular head waves. Transactions of the Royal Institution of Naval Architects, Vol.122:325-337.
    Bentachfine S., Pluvinage G. and Gilgert J. et al. (1999) Notch effect in low cycle fatigue. International Journal of Fatigue, 21(5):421-430.
    Bereznitski A. (2001) Slamming: the role of hydroelasticity. International Shipbuilding Progress, 48(454):333-351.
    Betts C.V., Bishop R.E.D. and Price W.G. (1977) The symmetric generalized fluid forces applied to a ship in a seaway. Transactions of the Royal Institution of Naval Architects, Vol.119:265-278.
    Bishop R.E.D. and Price W.G. (1977) The generalized antisymmetric fluid forces applied to a ship in a seaway. International Shipbuilding Progress, 24:3-14.
    Bishop R.E.D. and Price W.G. (1979) Hydroelasticity of Ships, Cambridge University Press, London, UK.
    Bishop R.E.D., Price W.G. and Tam P.K.Y. (1978) On the dynamics of slamming. Transactions of the Royal Institution of Naval Architects, Vol.120:259-280.
    Bishop R.E.D., Price W.G. and Temarel P. (1980) Antisymmetric vibration of ship hulls. Transactions of the Royal Institution of Naval Architects, Vol.122:197-208.
    Bishop R.E.D., Price W.G. and Temarel P. (1991) A theory on the loss of the MV Derbyshire, Transactions of the Royal Institution of Naval Architects, Vol.133: 389-453.
    Borodii M.V., Kucher N.K. and Strizhalo V.A. (1996) Development of a constitutive model for biaxial low-cycle fatigue. Fatigue and Fracture of Engineering Material and Structures, 19(10):1169-1179.
    Carpinteri A., Brighenti R. and Macha E. et al. (1999a) Expected principal stress directions under multiaxial random loading. Part II: numerical simulation and experimental assessment through the weight function method. International Journal of Fatigue, 21 (1):89-96.
    Carpinteri A., Macha E. and Brighenti R. et al. (1999b) Expected principal stress directions under multiaxial random loading. Part I: theoretical aspects of the weight function method. International Journal of Fatigue, 21(1):83-88.
    Che X.L., Riggs H.R. and Ertekin R.C. (1994) Composite 2D/3D hydroelastic analysis method for floating structures. Journal of Engineering Mechanics, 120(7):1499-1518.
    Che X.L., Riggs H.R. and Ertekin R.C. et al. (1992) Two-dimensional analysis of prying response of twin-hull floating structures. Proceedings of the 2nd International Offshore and Polar Engineering Conference, San Francisco, USA, Vol.I:187-194.
    Chen X., Jin D. and Kim K.S. (2006) A weight function-critical plane approach for low-cycle fatigue under variable amplitude multiaxial loading. Fatigue & Fracture of Engineering Materials & Structures, 29(48):331-339.
    Chen X.J., Wu Y.S. and Cui W.C. et al. (2003) Nonlinear hydroelastic analysis of a moored floating body. Ocean Engineering, 30(8):965-1003.
    Cho I.H. and Kim M.H. (1998) Interactions of a horizontal flexible membrane with oblique incident waves. Journal of Fluid Mechanics, Vol.367:139-161.
    Cho I.H. and Kim M.H. (2000) Interactions of horizontal porous flexible membrane with waves. Journal of Waterway, Port, Coastal and Ocean Engineering, 126(5):245-253.
    Clarke J.D. (1986) Wave loading in warships. Advances in Marine Structures, Elsevier Applied Science Publishers, pp.1-25.
    Conceicao C.A.L., Price W.G. and Temarel P. (1984) The influence of heel on the hydrodynamic coefficients of ship-like sections and a trawler form. International Shipbuilding Progress, 31(355): 56-66.
    Cui W.C. and Huang X.P. (2003) A general constitutive relation for fatigue crack growth analysis of metal structures. Acta Metallurgica Sinica (English Letters), 16(5):342- 354.
    Cui W.C., Bian R.G. and Huang X.P. (2007) Application of the two-parameter unified approach for fatigue life prediction of marine structures. To be published in the Proceedings of the 10th International Symposium on Practical Design of Ships and Other Floating Structures.
    Dong Y.Q. and Lin W.X. (1992) Hydroelasticity and wave loads for full form ship with shallow draft. Journal of Ship Research, 36(3):280-285.
    Dowling N.E., Brose W.R. and Wilson W.K. (1977) Notched member fatigue life predictions by the local strain approach. Advanced in Engineering, 6:55-84.
    Dusenberry D.O., Zarghamee M.S. and Liepins A.A. et al. (1995) Failure of Lacey V. Murrow floating bridge, Seattle, Washington. Journal of Performance of Constructed Facilities, American Society of Civil Engineers, Seattle, Washington, pp.4-23.
    Engel D.J. and Nachlinger R.R. (1982) Frequency domain analysis of dynamic response of floating bridge to waves. Proceedings of Ocean Structural Dynamics Symposium, Oregon, USA, pp.396-411.
    Ergin A., Price W.G. and Randal R. et al. (1992) Dynamic characteristics of a submerged, flexible cylinder vibrating in infinite water depths. Journal of Ship Research, 36(2): 154-167.
    Ertekin R.C., Riggs R.H. and Kim J.W. et al. (2001) Hydroelastic analysis of floating bridges in current. Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil, OMAE2001/OSU-5029.
    Faltinsen O.M. and Zhao R. (1991) Numerical predictions of ship motions at high forward speed. Philosophical Transactions of the Royal Society of London, A334:241-252.
    Fernandez C. Jr. (1999) Nonlinear dynamic analysis of bridge piers. PhD dissertation, University of Florida.
    Fleischer D. and Park S.K. (2004) Plane hydroelastic beam vibrations due to uniformly moving one axle vehicle. Journal of Sound and Vibration, 273(3):585-606.
    Fu S.X., Cui W.C. and Chen X.J. et al. (2005) Hydroelastic analysis of a nonlinearly connected floating bridge subjected to moving loads. Marine Structures, 18(1):85-107.
    Fu S.X., Fan J. and Chen X.J. et al. (2003) Analysis method for the mooring system of a flexible floating body. Proceedings of 10th International Symposium on Deepwater Mooring Systems, Houston, Texas, USA, pp.142-151.
    Fu Y.N., Price W.G. and Temarel P. (1987) The ‘dry and wet’ towage of a jack-up in regular and irregular waves. Transactions of the Royal Institution of Naval Architects, Vol. 129:149-159.
    Genel K. (2004) Application of artificial neural network for predicting strain-life fatigue properties of steels on the basis of tensile tests. International Journal of Fatigue, 26(10):1027-1035.
    Georgiadis C. (1981) Wave induced vibrations of continuous floating structures. PhD dissertation, University of Washington.
    Gu M.X., Wu Y.S. and Xia J.Z. (1988) Time domain analysis of non-linear hydroelastic response of ships. Selected papers of the Chinese Society of Naval Architects and Marine Engineers, Vol.III:125-134.
    Haney J.A. (1999) MOB connector development. Proceedings of the 3rd International Workshop on Very Large Floating Structures, Honolulu, Hawaii, USA, pp.651-659.
    Hartz B.J. (1981) Dynamic response of the hood canal bridge, Proceedings of Dynamic Response of Structures, American Society of Civil Engineers, pp.16-28.
    Heller R. and Abramson H.N. (1959) Hydroelasticity: a new naval science. Journal of the American Society of Naval Engineers, 71(2):205-209.
    Henchi K., Fafard M. and Talbot M. et al. (1998) An efficient algorithm for dynamic analysis of bridges under moving vehicles using a coupled modal and physical components approach. Journal of Sound and Vibration, 212(4):663-683.
    Henry H.L. (2007) Securing of marine platforms in rough sea. Recent Patents on Engineering, 1(1):103-112.
    Hermundstad O.A., Aarsns J.V. and Moan T. (1999) Linear hydroelastic analysis of high-speed catamarans and monohulls. Journal of Ship Research, 43(1):48-63.
    Hoshide T., Yamada T. and Fujimura S. et al. (1985) Short crack growth and life prediction in low-cycle fatigue of smooth specimens. Engineering Fracture Mechanics, 21(1): 85-101.
    Hutchison B.L. (1984) Impulse response techniques for floating bridges and breakwaters subject to short-crested seas. Marine Technology, 21(3):270-276.
    Huther M., Parmentier G. and Mahérault S. (2004) Knowledge limits in cumulative fatigue assessment of marine structures. Presented at SEATECH - Fatigue of Marine Structures, Brest, France.
    Iijima K., Yoshida K. and Suzuki H. (1997) Hydrodynamic and hydroelastic analyses of very large floating structures in waves. Proceedings of the 16th International Conference on Offshore Mechanics and Arctic Engineering, Yokohama, Japan, pp. 139-145.
    Ikegami K., Kumamoto N. and Inoue K. et al. (2001) Elastic response of floating bridge in waves. Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil, OMAE2001/OSU-5151.
    Jensen J.J. and Dogliani M. (1996) Wave-induced ship hull vibrations in stochastic seaways. Marine Structures, 9(3):353-387.
    Jensen J.J. and Pedersen P.T. (1979) Wave-induced bending moments in ships - a quadratic theory. Transactions of the Royal Institution of Naval Architects, Vol.121:151-165.
    Jensen J.J. and Pedersen P.T. (1981) Bending moments and shear forces in ships sailing in irregular waves. Journal of Ship Research, 24(4):243-251.
    Jeon W.S. and Song J.H. (2002) An expert system for estimation of fatigue properties of metallic materials. International Journal of Fatigue, 24(6):685-698.
    Jesnen J.J. and Mansour A.E. (2002) Estimation of the long-term wave-induced bending moment in ships using closed-form expressions. Transactions of the Royal Institution of Naval Architects, Vol.144:41-45.
    Jesnen J.J. and Mansour A.E. (2003) Estimation of the effect of green water and bow flare slamming on the wave-induced vertical bending moment using closed-form expressions. Proceedings of the 3rd International Conference on Hydroelasticity in Marine Technology, Oxford, UK, pp.155-161.
    Jing J.P., Sun Y. and Xia S.B. et al. (2001) A continuum damage mechanics model on low cycle fatigue life assessment of steam turbine rotor. International Journal of Pressure Vessels and Piping, 78(1):59-64.
    Kean A.J., Temarel P. and Wu X.J. et al. (1991) Hydroelasticity of non-beamlike ships in waves. Philosophical Transactions of the Royal Society of London, A334, 339-355.
    Kim K.S., Chen X. and Han C. et al. (2002) Estimation methods for fatigue properties of steels under axial and torsional loading. International Journal of Fatigue, 24(7):783- 793.
    Korvin-Kroukovsky V.B. and Jacobs W.R. (1957) Pitching and heaving motions of a ship in regular waves, Transactions of the Society of Naval Architects and Marine Engineers, Vol.65:590-632.
    Kujawski D (2001a) Enhanced model of partial crack closure for correlation of R-ratio effects in aluminum alloys. International Journal of Fatigue, 23(2):95-102.
    Kujawski D. (2001b) A new driving force parameter for crack growth in aluminum alloys. International Journal of Fatigue, 23(8):733-740. (0.5Δ K +Kmax)
    Kujawski D. (2001c) A new fatigue crack driving force parameter with load ratio effects. International Journal of Fatigue, 23(S1), S239-S246.
    Kujawski D. (2001d) Correlation of long- and physically short-cracks growth in aluminum alloys. Engineering Fracture Mechanics, 68(12):1357–1369.
    Kujawski D. (2005) On assumptions associated with Δ Keff and their implications on FCG predictions. International Journal of Fatigue, 27(10-12):1267–1276.
    Kuroda M. (2002) Extremely low cycle fatigue life prediction based on a new cumulative fatigue damage model. International Journal of Fatigue, 24(6):699-703.
    Kwofie S. and Chandler H.D. (2001) Low cycle fatigue under tensile mean stresses where cyclic life extension occurs. International Journal of Fatigue, 23(4):341-345.
    Ladislva Fryba (1999) Vibration of Solids and Structures under Moving Loads. London: Thomas Telford.
    Landgraf R.W. (1973) Cumulative fatigue damage under complex strain histories. American Society for Testing Materials, special technical publication 519:213-228.
    Langen I. (1983) Probabilistic methods for dynamic analysis of floating bridges. Norwegian Maritime Research, 1:2-15.
    Lee K.S. and Song J.H. (2006) Estimation methods for strain-life fatigue properties from hardness. International Journal of Fatigue, 28(4):386-400.
    Li D.M., Nam W.J. and Lee C.S. (1998). An improvement on prediction of fatigue crack growth from low cycle fatigue properties. Engineering Fracture Mechanics, 60(4): 397-406.
    Li R.P., Shu Z. and Wang Z.J. (2002) A study on the hydroelastic behavior of box-type very large floating structure in waves. Proceedings of the 3rd Conference for New Ship and Marine Technology, Kobe, Korea, pp.41-48.
    Liu X.D. and Sakai S. (2000) Nonlinear analysis on the interaction of waves and flexible floating structure. Proceedings of the 10th International Offshore and Polar Engineering Conference, Seattle, Washington, USA, Vol.I:101-108.
    Liu X.D. and Sakai S. (2002) Time domain analysis on the dynamic response of a flexible floating structure to waves. Journal of Engineering Mechanics, 128(1):48-56.
    Liu X.D., Sakai S. and Makino S. et al. (2001) Tsunami-induced mooring force on a flexible floating structure. Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavanger, Norway, Vol.I:241-247.
    Louarn F., Price W.G. and Temarel P. (1997) Dynamic behavior of a fast sailing monohull in waves. Proceedings of the 7th International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA, Vol.IV:712-720.
    Luft R.W. (1981) Analysis of floating bridge - the hood canal bridge, Proceedings of Dynamic Response of Structures, American Society of Civil Engineers, pp.1-15.
    Lundgen J., Price W.G. and Wu Y.S. (1989) A hydroelastic investigation into the behavior of a floating dry dock in waves. Transactions of the Royal Institution of Naval Architects, Vol.131:213-231.
    Lynn A.K. and DuQuesnay D.L. (2002) Computer simulation of variable amplitude fatigue rack initiation behavior using a new strain-based cumulative damage model. International Journal of Fatigue, 24(9):977-986.
    Manson S.S. (1965) Fatigue: a complex subject - some simple approximations. Experimental Mechanics, 5(7):193-226.
    McEvily A.J. and Ishihara S. (2001) On the dependence of the rate of fatigue crack growth on the σan( 2a) parameter. International Journal of Fatigue, 23(2) 115-120.
    McEvily A.J., Bao H. and Ishihara S. (1999) A Modified Constitutive relation for fatigue crack growth. Proceedings of the 7th International Fatigue Congress, Beijing, China, Higher Education Press, pp.329-336.
    Meggiolaro M.A. and Castro J.T.P. (2004) Statistical evaluation of strain-life fatigue crack initiation predictions. International Journal of Fatigue, 26(5):463-476.
    Melander A. (1997) A finite element study of short cracks with different inclusion types under rolling contact fatigue load. International Journal of Fatigue, 19(l):13-24.
    Miller K.J. (1999) A historical perspective of the important parameters of metal fatigue and problems for the next century. Proceedings of the 7th International Fatigue Congress, Beijing, pp.15-40.
    Mitchell M.R., Socie D.F. and Caulfield E.M. (1977) Fundamentals of modern fatigue analysis. Fracture Control Program Report No.26, University of Illinois, USA, pp.385- 410.
    Morrow J.D. (1965) Cyclic plastic strain energy and fatigue of metals. Internal Friction, Damping, and Cyclic Plasticity, ASTM STP 378, Philadelphia: American Society for testing and Materials, pp.45-87.
    Mukherji B. (1972) Dynamic behavior of a continuous floating bridge. PhD dissertation, University of Washington.
    Muralidharan U. and Manson S.S. (1988) Modified universal slopes equation for estimation of fatigue characteristics. Journal of Engineering Material and Technology, 110(1):55-58.
    Newman J.N. (1978) The theory of ship motions. Advances in Applied Mechanics, Vol.18:221-285.
    Nishi H. (2004) Elastic-plastic FEM analysis on low cycle fatigue behavior for alumina dispersion- strengthened copper/stainless steel joint. Journal of Nuclear Materials, 329 -333:1567-1570.
    Oka S., Kumamoto N. and Inoue K. et al. (2000) Elastic response analysis method for floating bridges in waves. Mitsubishi Heavy Industries Technical Review, 37(2).
    Ong J.H. (1993) An improved technique for the prediction of axial fatigue life from tensile data. International Journal of Fatigue, 15(3):213-219.
    Pan W.F., Hung C.Y. and Cheng L.L. (1999) Fatigue life estimation under multiaxial loadings. International Journal of Fatigue, 21(1):3-10.
    Pedersen P.Y. (1983) A beam model of torsional-bending response of ship hulls. Transactions of the Royal Institution of Naval Architects, Vol.125:171-182.
    Phan T.S. and Temarel P. (2002) Hydroelastic responses of pontoon and semi-submersible types of very large floating structure in regular head waves. Proceedings of the 22nd International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway, pp.753-763.
    Price W.G. and Temarel P. (1982) The influence of hull flexibility in the anti-symmetric dynamic behavior of ships in waves. International Shipbuilding Progress, Vol.29.
    Price W.G. and Wu Y.S. (1985) Structural responses of a SWATH of multi-hulled vessel traveling in waves. International Conference on SWATH Ships and Advanced Multi-hulled Vessels, Royal Institution of Naval Architects, London.
    Raman S.G.S. and Radhakrishnan V.M. (2002). On cyclic stress-strain behavior and low cycle fatigue life. Materials and Design, 23(3):249-254.
    Raske D.T. and Morrow J.D. (1969) Mechanics of materials in low cycle fatigue testing. Manual on Low Cycle Fatigue Testing, ASTM STP 465, Philadelphia: American Society for testing and Materials, pp.1-25.
    Roessle M.L. and Fatemi A. (2000) Strain-controlled fatigue properties of steels and some simple approximations. International Journal of Fatigue, 22(6):495-511.
    Sadananda K. and Vasudevan A.K. (2003) Fatigue crack growth mechanisms in steels. International Journal of Fatigue, 25(9-11):899–914.
    Sadananda K. and Vasudevan A.K. (2004) Crack tip driving forces and crack growth representation under fatigue. International Journal of Fatigue, 26(1):39–47.
    Sadananda K. and Vasudevan A.K. (2005) Fatigue crack growth behavior of titanium alloys. International Journal of Fatigue, 27(10-12):1255–1266.
    Salvesen N., Tuck E.O. and Faltinsen O. (1970) Ship motions and sealoads. Transactions of the Society of Naval Architects and Marine Engineers, Vol.78:250-287.
    Seif M.S. and Inoue Y. (1998) Dynamic analysis of floating bridges. Marine Structures, 11(1):29-46.
    Shang D.G. and Wang D.J. (1998) A new multiaxial fatigue damage model based on the critical plane approach. International Journal of Fatigue, 20(3):241-245.
    Shang H.X. and Ding H.J. (1995) Low cycle fatigue stress-strain relation model of cyclic hardening or cyclic softening materials. Engineering Fracture Mechanics, 54(1):1-9.
    Shiraishi S., Ishimi G. and El Din Haz et al. (1999) Experimental study on the motion of elastic floating body supported by pontoons. Proceedings of the 1st International Conference on Advances in Structural Engineering and Mechanics, Seoul, South Korea, pp.1647-1652.
    S?ding H. (1982) Leckstabilit?t in Seagang. Report 429 of the Institut für Schiffbau, Hamburg.
    Subramanya S.V. and Padmanabhan K A. (1997) Low cycle fatigue behavior of a medium carbon microalloyed steel. International Journal of Fatigue, 19(2):135-140.
    Suo Z.Q. and Guo R.X. (1996) Hydroelasticity of rotating bodies - theory and application. Marine Structures, 9(6):631-646.
    Tateishi K. and Hanji T. (2004) Low cycle fatigue strength of butt-welded steel joint by means of new testing system with image technique. International Journal of Fatigue, 26(12):1349-1356.
    Timman R. and Newman J.N. (1962) The coupled damping coefficients of symmetric ships. Journal of Ship Research, 5(4):289-304.
    Ueda S., Maruyama T. and Ikegami K. et al. (1999) Experimental study on the elastic response of a movable floating bridge in waves, Proceedings of the 3rd International Workshop on Very Large Floating Structures, Honolulu, Hawaii, USA, pp.766-775.
    Ueda S., Oka S. and Kumamoto N. et al. (1996a) Design procedures and computational analysis of motions and deformations of floating bridge subjected to wind and waves. Proceedings of the 3rd Asian-Pacific Conference on Computational Mechanics, Seoul, Korea, pp.2531-2546.
    Ueda S., Seto H. and Kumamoto N. et al. (1996b) Behavior of floating bridge under wind and waves. Proceedings of the 2nd International Workshop on Very Large Floating Structures, Hayama, Yokohama, Japan, pp.257-264.
    Virchis V.J. (1979) Prediction of impact factor for military bridges. Institute of Sound and Vibration Research Technical Report No.107.
    Wang C., Fu S.X. and Cui W.C. et al. (2006a) Hydroelastic analysis of a ribbon bridge under wave actions. Journal of Ship Mechanics, 10(6):61-75.
    Wang C., Fu S.X. and Li N. et al. (2006b) Dynamic analysis of a pontoon-separated floating bridge subjected to a moving load. China Ocean Engineering, 20(3): 419-430.
    Wang M.L., Du S.X. and Ertekin R.C. (1991) Hydroelastic response and fatigue analysis of a multi-module very large floating structure. International Symposium on Fatigue and Fracture in Steel and Concrete Structures, Madras, India, pp.1277-1291.
    Wang S.Q., Ertekin R.C. and Riggs H.R. (1997) Computationally efficient techniques in the hydroelasticity analysis of very large floating structures. Computers and Structures, 62(4):603-610.
    Wang Z.J., Li R.P. and Shu Z. (2001) A study on hydroelastic response of box-type very large floating structures. China Ocean Engineering, 15(3):345-354.
    W?stberg S., Brennan D. and Chen R. et al. (2006) ISSC Committee III.2: Fatigue and fracture. Proceedings of 16th International Ship and Offshore Structures Congress, Southampton, UK, pp.459-527.
    Watanabe E. (2003) Floating bridges: past and present. Structural Engineering International, 13(2):128- 132.
    Watanabe E. and Utsunomiya T. (2003) Analysis and design of floating bridges. Progress in Structural Engineering and Materials, 5(3):127-144.
    Watanabe E., Utsunomiya T. and Murakoshi J. et al. (2003) Development of dynamic response analysis program for floating bridges subjected to wind and wave loadings. Proceedings of the International Symposium on Ocean Space Utilization Technology, Tokyo, Japan.
    Watanabe E., Utsunomiya T. and Shimizu D. et al. (1999) Experiment and analysis on dynamic response of a floating bridge due to waves. Proceedings of the 1st International Conference on Advances in Structural Engineering and Mechanics - Structural Engineering and Mechanics, Seoul, South Korea, pp.827-832.
    Watanabe E., Wang C.M. and Utsunomiya T. et al. (2004) Very large floating structures: applications, analysis and design. Core Report No.2004-02, Center for Offshore Research and Engineering, National University of Singapore.
    Welch S., Yao Y. and Tulin M. et al. (1996) Experimental and numerical investigation of wave loads on floating bridges, including non-linear and wind effects. Proceedings of the 6th International Offshore and Polar Engineering Conference, Vol.I:228-236.
    Wetzel R.M. (1971) A method of fatigue damage analysis. PhD dissertation, University of Waterloo, Ontario, Canada.
    Williams C.R., Lee Y.L. and Rilly J.T. (2003) A practical method for statistical analysis of strain–life fatigue data. International Journal of Fatigue, 25(5):427-436.
    Wu J.J., Whittaker A.R. and Cartmell M.P. (2000) The use of finite element techniques for calculating the dynamic response of structures to moving loads. Computers and Structures, 78(6):789-799.
    Wu J.J., Whittaker A.R. and Cartmell M.P. (2001) Dynamic responses of structures to moving bodies using combined finite element and analytical methods. International Journal of Mechanical Sciences, 43(11):2555-2579.
    Wu J.S. and Sheu J.J. (1996) An exact solution for a simplified model of the heave and pitch motions of a ship hull due to a moving load and experimental results. Journal of Sound and Vibration, 192(2):495-520.
    Wu J.S. and Shih P.Y. (1998) Moving-load-induced vibrations of a moored floating bridge. Computers and Structures, 66(4):435-461.
    Wu Y.S. (1984) Hydroelasticity of floating bodies. PhD dissertation, Brunel University. Wu Y.S., Maeda H. and Kinoshita T. (1997) The second order hydrodynamic actions on a flexible body. Journal of Institute of Industrial Science, 49(4):8-19.
    Wu Y.S., Wang D.Y. and Riggs H.R. et al. (1993) Composite singularity distribution method with application to hydroelasticity. Marine Structures, 6(2-3):143-163.
    Wu Y.S., Xia J.Z. and Du S.X. (1990) Two engineering approaches to hydroelastic analysis of slender ships. Proceedings of the International Union of Theoretical and Applied Mechanics Memorial Symposium on the Dynamics of Marine Vehicles and Structures in Waves, Brunel University, Uxbridge, UK, pp.157-165.
    Xia J.Z. and Wang Z.H. (1997) Time domain hydroelasticity theory of ships responding to waves. Journal of Ship Research, 41(4):286-300.
    Xia J.Z., Wang Z.H. and Jensen J.J. (1998) Non-linear wave loads and ship responses by a time-domain strip theory. Marine Structures, 11(3):101-123.
    Yago K. and Endo H. (1996) Model experiment and numerical calculation of the hydroelastic behavior of mat-like VLFS. Proceedings of the 2nd International Workshop on Very Large Floating Structures, Hayama, Yokohama, Japan, pp.209- 214.
    Yang X.J. (2005) Low cycle fatigue and cyclic stress ratcheting failure behavior of carbon steel 45 under uniaxial cyclic loading. International Journal of Fatigue, 27(9):1124- 1132.
    Yang Y.B. and Wu Y.S. (2001) A versatile element for analyzing vehicle-bridge interaction response. Engineering Structures, 23(5):452-469.
    Yazid M., Philippe M. and Naman R. et al. (2004). Low cycle fatigue of welded joints: new experimental approach. Nuclear Engineering and Design, 228(1-3):161-177.
    陈定华 译 (1984) 浮桥、门桥和冰上渡河. 北京: 中国人民解放军总参谋部工程兵部.
    陈徐均 (2001) 浮体二阶非线性水弹性力学分析方法. 博士学位论文, 中国船舶科学研究中心.
    陈徐均, 林铸明, 吴广怀等 (2006) 通载浮桥动态位移的测试方法数据分析. 振动测试诊断, 26(2):97-101.
    陈徐均, 吴有生, 崔维成等 (2002a) 海洋浮体二阶非线性水弹性力学分析——基本理论. 船舶力学, 6(4):33-44.
    陈徐均, 吴有生, 崔维成等 (2002b) 海洋浮体二阶非线性水弹性力学分析——系泊浮体主坐标响应的频率特征. 船舶力学, 6(5):44-57.
    陈徐均, 吴有生, 崔维成等 (2003) 海洋浮体二阶非线性水弹性力学分析——二阶力对浮体振动时间响应的影响. 船舶力学, 7(2):11-20.
    程光旭 (1994) 压力容器低周疲劳寿命的损伤力学理论研究. 西安交通大学学报, 28(8):59-64.
    程育仁, 缪龙秀, 侯炳麟 (1990) 疲劳强度. 北京: 中国铁道出版社.
    崔卫民, 诸强, 诸德培 (2001) 飞行器结构疲劳寿命分散系数理论值确定的一种方法. 西北工业大学学报, 19(2):233-237.
    戴遗山 (1998) 舰船在波浪中运动的频域时域势流理论. 北京: 国防工业出版社.
    董艳秋, 林维学, 朱建国 (1989) 浅吃水肥大船波激振动研究. 中国造船, 30(1):76-83.
    杜双兴 (1996) 完善的三维航行船体线性水弹性力学频域分析方法. 博士学位论文, 中国船舶科学研究中心.
    方华灿 (1990) 海洋石油钢结构的疲劳寿命. 东营: 石油大学出版社.
    付世晓 (2005) 锚泊弹性浮体及通载浮桥的非线性水弹性响应研究. 博士学位论文, 上海交通大学.
    付世晓, 王琮 (2005) 波浪作用下通载浮桥水弹性响应研究. 总装备部工程兵技术装备研究所项目阶段研究报告.
    贺小帆, 刘文珽 (2002) 服从不同分布的疲劳寿命分散系数分析. 北京航空航天大学学报, 28(1):47-49.
    雷慰宗, 刘元镛 译 (1982) 疲劳设计准则. 北京: 国防工业出版社.
    李福康 译 (1966) 浮桥计算. 北京: 人民铁道出版社.
    李清海 (1988) 车辆荷载作用下军用桥梁动力效应的有限元分析. 硕士学位论文, 南京工程兵工程学院.
    李永乐 (2003) 风—车—桥系统非线性空间耦合振动研究. 博士学位论文, 西南交通大学.
    林吉如 (1995) 超大型油船波激振动研究. 船舶工程, 2:4-9, 23.
    林家浩, 曲乃泗, 孙焕纯 (1989) 计算结构动力学. 北京: 高等教育出版社.
    林铸明 (2005) 高流速下通载浮桥的水弹性动力响应研究. 博士学位论文, 中国船舶科学研究中心.
    林铸明, 崔维成, 张效慈等 (2005) 通载浮桥的水弹性响应分析. 海洋工程, 23(2): 108-114.
    刘应中, 缪国平 (1987) 船舶在波浪上的运动理论. 上海: 上海交通大学出版社.
    潘广和, 官飞 (1994) 估算低周疲劳寿命能量法的探讨. 农业机械学报, 25(4): 106- 111.
    沈为, 彭立华 (1994) 疲劳损伤演变方程寿命估算-连续损伤力学的应用. 机械强度, 16(2):52-57.
    宋皓 (2004) 超大型浮体在非均匀海洋环境下的水弹性响应研究. 博士学位论文, 上海交通大学.
    宋竞正, 任慧龙, 戴仰山 (1995) 船体非线性波激载荷的水弹性分析. 中国造船, 2: 22-31.
    谭笃光 (1977) 浮桥在移动载荷下的动力响应. 学位论文, 中国人民解放军 89001 部队.
    王朝晖 (1992) 船舶二维非线性水弹性力学分析方法. 硕士学位论文, 中国船舶科学研究中心.
    王大云 (1996) 三维船舶水弹性力学的时域分析方法. 博士学位论文, 中国船舶科学研究中心.
    王刚 (2001) 低周疲劳寿命累积损伤规律若干问题的研究. 博士学位论文, 哈尔滨工业大学.
    王建国, 杨胜利, 王红缨等 (2005) 800Mpa 级低合金高强度钢低周疲劳性能. 北京科技大学学报, 27(1):75-78.
    王勖成, 邵敏 (1997) 有限单元法基本原理和数值方法 (第二版). 北京: 清华大学出版社.
    王振鸿, 吴文伟, 徐敏等 (1999) 船舶在波浪中的水平弯曲—扭转耦合响应水弹性分析. 中国造船, 40(2):42-47.
    王志军 (2001) 箱式超大型浮体结构的水弹性响应研究. 博士学位论文, 上海交通大学.
    吴培德, 刘建成, 林铸明等 (2005) 带式舟桥. 北京: 国防工业出版社.
    吴有生 (1991) 修正的水弹性理论及其在细长多体结构中的应用. 中国船舶科学研究中心技术报告.
    吴有生, 杜双兴 (1990) 海洋浮体结构的直接分析方法——三维线性水弹性随机分析理论及应用. 舰船性能研究, No.4.
    吴有生, 夏锦祝, 王朝晖等 (1994) 船舶波浪砰击的二维非线性水弹性力学分析. 中国船舶科学研究中心技术报告.
    夏锦祝, 吴有生 (1993) 流固耦合问题的一个一般交界面条件. 舰船性能研究, 2: 73-79.
    夏利娟, 吴卫国, 翁长俭等 (2000) 高速船垂向振动计算的流固耦合分析. 上海交通大学学报, 34(12): 1713-1716.
    辛实 (2001) 长江铁路浮桥总体方案、力学模型和计算方法. 铁道建筑技术, 2:20-23.
    徐建灵, 陆立太 (2002) 21 世纪浮桥技术展望. 铁道建筑技术, 2:13-14.
    徐向东 (1996) 舰船结构冲击屈曲破损机理. 硕士学位论文, 中国船舶科学研究中心.
    杨正言 (1985) 重心形心不重合之浮体承受移动负荷之动态反应分析. 硕士学位论文, 台湾国立成功大学.
    殷学纲, 陈淮, 塞开林 (1991) 结构振动分析的子结构方法. 北京: 中国铁道出版社.
    于慧臣, 孙燕国, 谢世殊等 (2005) 不锈钢在扭转/拉伸复合载荷下的低周疲劳裂纹扩展. 金属学报, 41(1):73-78.
    余澜 (2004) 移动式海上基地连接器动力响应研究. 博士学位论文, 上海交通大学.
    余澜, 李润培, 舒志 (2003) 移动式海上基地连接器研究现状发展. 海洋工程, 21(1): 60-66.
    曾春华, 邹十践 (1991) 疲劳分析方法及应用. 北京: 国防工业出版社.
    张少雄, 杨永谦, 吴秀恒 (1996) 船舶水弹性分析及试验研究. 水动力学研究进展A 辑, 11(1): 65-72.
    张以增, 李国琛, 徐明英等 (1995) 低碳钢的大应变低周疲劳. 机械强度, 17(4):49-53.
    钟铁毅, 赵德有 (1998) 波浪中船体振动固有频率及响应计算研究. 大连理工大学学报, 38(4):445-449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700